Nothing Special   »   [go: up one dir, main page]

JP3812580B2 - Exhaust gas purification catalyst material and exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst material and exhaust gas purification catalyst Download PDF

Info

Publication number
JP3812580B2
JP3812580B2 JP2004351154A JP2004351154A JP3812580B2 JP 3812580 B2 JP3812580 B2 JP 3812580B2 JP 2004351154 A JP2004351154 A JP 2004351154A JP 2004351154 A JP2004351154 A JP 2004351154A JP 3812580 B2 JP3812580 B2 JP 3812580B2
Authority
JP
Japan
Prior art keywords
mass
ratio
catalyst
zro
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004351154A
Other languages
Japanese (ja)
Other versions
JP2006159016A (en
Inventor
真明 赤峰
秀治 岩国
誠治 三好
啓司 山田
明秀 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2004351154A priority Critical patent/JP3812580B2/en
Priority to EP05017319A priority patent/EP1632288B1/en
Priority to US11/200,305 priority patent/US7307039B2/en
Publication of JP2006159016A publication Critical patent/JP2006159016A/en
Application granted granted Critical
Publication of JP3812580B2 publication Critical patent/JP3812580B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02T10/22

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は排気ガス浄化用触媒材料及び排気ガス浄化用触媒に関するものである。 The present invention relates to an exhaust gas purification catalyst material and an exhaust gas purification catalyst.

エンジンの排気ガス浄化等に用いる触媒材料として、Ce、Zr及びNdを含む複酸化物の結晶格子又は原子間に触媒金属としてRhが配置されているものが知られている(特許文献1参照)。この触媒材料は、Rhを複酸化物の結晶格子又は原子間に配置することによって、該Rhのシンタリング抑制、複酸化物自体のシンタリング抑制を図り、少量のRhでも高い触媒浄化性能を得るようにするとともに、酸素吸蔵性能の向上を図ったものであり、また、Ndを含有する複酸化物とすることによって、触媒材料の低温活性の向上及び耐熱性の向上が図られている。また、この特許文献1には、上記複酸化物のZrO2/(CeO2+ZrO2)の比率を65〜90質量%とすると、当該触媒材料を三元触媒として利用したときの低温活性の向上及び高温での浄化性能の向上に有利であることが記載されているとともに、ZrO2:CeO2:Nd23=72.8:24.5:2.6の質量比を採用した複酸化物が記載されている。
特開2004−174490号公報
As a catalyst material used for purifying exhaust gas of an engine, a material in which Rh is arranged as a catalyst metal between crystal lattices or atoms of a double oxide containing Ce, Zr and Nd is known (see Patent Document 1). . In this catalyst material, by arranging Rh between crystal lattices or atoms of a double oxide, the sintering of the Rh and the sintering of the double oxide itself are suppressed, and a high catalyst purification performance is obtained even with a small amount of Rh. In addition, the oxygen storage performance is improved, and the Nd-containing double oxide improves the low-temperature activity and heat resistance of the catalyst material. Further, in Patent Document 1, when the ratio of ZrO 2 / (CeO 2 + ZrO 2 ) of the above-mentioned double oxide is 65 to 90% by mass, the low temperature activity is improved when the catalyst material is used as a three-way catalyst. And a double oxide employing a mass ratio of ZrO 2 : CeO 2 : Nd 2 O 3 = 72.8: 24.5: 2.6 is described. .
JP 2004-174490 A

本発明者は、触媒貴金属のシンタリング防止、触媒のコスト低減の観点から、上述の如き複酸化物に関して、その結晶格子又は原子間に配置する触媒貴金属量を少なくする方向でさらに研究を進めた。しかし、触媒貴金属は複酸化物表面に現れていることが触媒の排気ガス浄化性能を高める上で重要であるところ、触媒貴金属量が少なくなると、複酸化物表面に現れる触媒貴金属も少なくなる。その結果、排気ガスが触媒貴金属に接触する機会が減少し、排気ガス浄化性能が低下するという問題がある。特に、触媒材料が高温の排気ガスに晒されると、複酸化物がシンタリングしてその比表面積が低下することから、それに伴って該複酸化物の表面に現れている触媒貴金属も少なくなる。     The present inventor further advanced research in the direction of reducing the amount of catalyst noble metal disposed between crystal lattices or atoms of the above-described double oxide from the viewpoint of preventing sintering of the catalyst noble metal and reducing the cost of the catalyst. . However, it is important for the catalyst noble metal to appear on the surface of the double oxide in order to improve the exhaust gas purification performance of the catalyst. When the amount of the catalyst noble metal decreases, the amount of the catalyst noble metal that appears on the surface of the double oxide also decreases. As a result, there is a problem that the chance of exhaust gas coming into contact with the catalyst noble metal is reduced, and the exhaust gas purification performance is lowered. In particular, when the catalyst material is exposed to high-temperature exhaust gas, the complex oxide is sintered and its specific surface area is reduced, and accordingly, the catalyst noble metal appearing on the surface of the complex oxide is also reduced.

そこで、本発明は、少ない貴金属量でも触媒が高い排気ガス浄化性能を長期間にわたって維持できるように、複酸化物の耐熱性を改善すること、併せて触媒のコスト低減を図ることを課題とする。     Accordingly, an object of the present invention is to improve the heat resistance of the double oxide and to reduce the cost of the catalyst so that the exhaust gas purification performance of the catalyst can be maintained over a long period even with a small amount of noble metal. .

本発明者は、上記複酸化物のZrO2/(CeO2+ZrO2)の比率を65〜90質量%とすることが好ましいことを踏まえて、その耐熱性及び浄化性能の向上の観点から当該複酸化物の成分についての検討を進め、Ndの添加量が当該複酸化物の結晶構造及び比表面積に大きな影響を与え、その添加量を多くすることが上記課題の解決に結びつくことを見いだし、本発明を完成するに至った。 The present inventor considers that the ratio of ZrO 2 / (CeO 2 + ZrO 2 ) of the above-mentioned complex oxide is preferably 65 to 90% by mass from the viewpoint of improving its heat resistance and purification performance. We proceeded with studies on oxide components, found that the amount of Nd added greatly affects the crystal structure and specific surface area of the double oxide, and that increasing the amount added leads to the solution of the above problems. The invention has been completed.

すなわち、請求項1に係る発明は、Ce、Zr及びNdを含む複酸化物の結晶格子又は原子間に貴金属が配置されている排気ガス浄化用触媒材料であって、
上記複酸化物は、ZrO2/(CeO2+ZrO2)の比率が65質量%以上90質量%以下であり、Nd23/(CeO2+ZrO2+Nd23)の比率が2.6質量%よりも高く40質量%以下であることを特徴とする。
That is, the invention according to claim 1 is an exhaust gas purifying catalyst material in which a noble metal is arranged between crystal lattices or atoms of a double oxide containing Ce, Zr and Nd,
In the double oxide, the ratio of ZrO 2 / (CeO 2 + ZrO 2 ) is 65% by mass or more and 90% by mass or less, and the ratio of Nd 2 O 3 / (CeO 2 + ZrO 2 + Nd 2 O 3 ) is 2.6. It is characterized by being higher than 40% by weight and 40% by weight or less.

ZrO2/(CeO2+ZrO2)の比率を65質量%以上90質量%以下としているから、当該触媒材料の低温活性の向上が図れ、また、当該触媒材料を排気ガス浄化用触媒に用いたときの高温での浄化性能の向上が図れる。 Since the ratio of ZrO 2 / (CeO 2 + ZrO 2 ) is 65% by mass or more and 90% by mass or less, the low-temperature activity of the catalyst material can be improved, and when the catalyst material is used as an exhaust gas purification catalyst The purification performance at a high temperature can be improved.

そうして、本発明において重要な点は、Nd23/(CeO2+ZrO2+Nd23)の比率を2.6質量%よりも高く40質量%以下としたことである。すなわち、Nd23比率が2.6質量%を越えると、当該触媒材料の比表面積が急に大きくなるとともに、高温ガスに晒されたときにその比表面積が減少する度合いが小さくなる。 Thus, an important point in the present invention is that the ratio of Nd 2 O 3 / (CeO 2 + ZrO 2 + Nd 2 O 3 ) is higher than 2.6% by mass and not higher than 40% by mass. That is, when the Nd 2 O 3 ratio exceeds 2.6% by mass, the specific surface area of the catalyst material suddenly increases, and the degree to which the specific surface area decreases when exposed to high-temperature gas decreases.

比表面積が大きくなるということは、触媒材料に微細孔が多く形成され、それだけ複酸化物の結晶格子又は原子間に配置されている貴金属が複酸化物表面(細孔面)に多く現れるということである。その結果、当該触媒材料で処理すべきガスと貴金属との接触機会が増え、触媒としての活性が高くなる。     A large specific surface area means that many fine pores are formed in the catalyst material, and a large amount of noble metal arranged between the crystal lattices or atoms of the double oxide appears on the double oxide surface (pore surface). It is. As a result, the chance of contact between the gas to be treated with the catalyst material and the noble metal increases, and the activity as a catalyst increases.

また、高温ガスに晒されたときのその比表面積の減少度合いが小さくなるということは、耐熱性が高くなることを意味するが、その理由は、Nd23比率の増大に伴い、触媒材料の構造が正方晶から立方晶へと変化して熱的に安定になるためと考えられる(この点は後述の実施例で明らかになる。)。また、立方晶になるということは、酸素吸蔵能(酸素濃度が高いときに酸素を吸蔵し、酸素濃度が低下したときにその酸素を放出する性能)に優れていることが知られているセリアの結晶構造に近づく、つまり、酸素吸蔵能が高くなるということであり、酸素が関与する触媒反応の促進に有利になる。従って、結晶構造が立方晶になるようにNd23比率を高くすることが好ましい。 In addition, when the degree of decrease in the specific surface area when exposed to a high-temperature gas is small, it means that the heat resistance is high. The reason is that as the Nd 2 O 3 ratio increases, the catalyst material increases. This is considered to be because the structure changes from tetragonal to cubic and becomes thermally stable (this point will be clarified in Examples described later). In addition, the fact that it becomes cubic crystal is known to have excellent oxygen storage capacity (the ability to store oxygen when the oxygen concentration is high and to release the oxygen when the oxygen concentration decreases). This means that the oxygen storage capacity is increased, which is advantageous for promoting a catalytic reaction involving oxygen. Therefore, it is preferable to increase the Nd 2 O 3 ratio so that the crystal structure becomes cubic.

一方、上記Nd23比率が高くなるほど上記複酸化物の比表面積が大きくなるとともに、その耐熱性も高くなるものの、30質量%以上になると飽和状態になる(比表面積の増加等が殆どなくなる。)。かえって、Nd23比率の増加に伴い、相対的にCeO2の比率が下がって、触媒材料の低温活性及び高温浄化性能に不利になる。従って、上記Nd23比率は40質量%以下が好ましい。 On the other hand, the higher the Nd 2 O 3 ratio, the larger the specific surface area of the double oxide and the higher its heat resistance, but it becomes saturated when it exceeds 30% by mass (the increase in specific surface area is almost eliminated). .) On the contrary, as the Nd 2 O 3 ratio increases, the CeO 2 ratio relatively decreases, which is disadvantageous for the low temperature activity and high temperature purification performance of the catalyst material. Therefore, the Nd 2 O 3 ratio is preferably 40% by mass or less.

請求項2に係る発明は、請求項1において、
上記Nd23/(CeO2+ZrO2+Nd23)の比率が5質量%以上35質量%以下であることを特徴とする。
The invention according to claim 2 is the invention according to claim 1,
The ratio of Nd 2 O 3 / (CeO 2 + ZrO 2 + Nd 2 O 3 ) is 5% by mass or more and 35% by mass or less.

従って、触媒材料の比表面積増大による触媒の低温活性向上、耐熱性の向上、及び排気ガス浄化用触媒に用いたときの高温浄化性能の向上に有利になる。     Therefore, it is advantageous for improving the low-temperature activity of the catalyst by increasing the specific surface area of the catalyst material, improving the heat resistance, and improving the high-temperature purification performance when used for an exhaust gas purification catalyst.

請求項3に係る発明は、エンジンの排気ガス通路に配設される排気ガス浄化用触媒であって、
ハニカム状担体のセル壁表面に触媒層が形成され、
上記触媒層は、Ce、Zr及びNdを含み且つ結晶格子又は原子間に貴金属が配置されている複酸化物と、活性アルミナとを含有し、
上記複酸化物は、ZrO2/(CeO2+ZrO2)の比率が65質量%以上90質量%以下であり、Nd23/(CeO2+ZrO2+Nd23)の比率が2.6質量%よりも高く40質量%以下であることを特徴とする。
The invention according to claim 3 is an exhaust gas purifying catalyst disposed in an exhaust gas passage of an engine,
A catalyst layer is formed on the cell wall surface of the honeycomb-shaped carrier,
The catalyst layer contains a mixed oxide containing Ce, Zr and Nd and having a noble metal disposed between crystal lattices or atoms, and activated alumina.
In the double oxide, the ratio of ZrO 2 / (CeO 2 + ZrO 2 ) is 65% by mass or more and 90% by mass or less, and the ratio of Nd 2 O 3 / (CeO 2 + ZrO 2 + Nd 2 O 3 ) is 2.6. It is characterized by being higher than 40% by weight and 40% by weight or less.

従って、排気ガスの浄化における触媒の低温活性の向上、耐熱性の向上、及び高温浄化性能の向上が図れる。     Therefore, it is possible to improve the low-temperature activity of the catalyst, the heat resistance, and the high-temperature purification performance in exhaust gas purification.

以上の発明において、上記貴金属としては、Pt、Rh、Pd、Irなど白金族及び同族の各種貴金属を採用することができる。     In the above invention, as the noble metal, platinum group and various noble metals of the same group such as Pt, Rh, Pd and Ir can be adopted.

以上のように、本発明によれば、Ce、Zr及びNdを含む複酸化物の結晶格子又は原子間に貴金属が配置されているとともに、該複酸化物のZrO2/(CeO2+ZrO2)比率が65質量%以上90質量%以下であり、Nd23/(CeO2+ZrO2+Nd23)比率が2.6質量%よりも高く40質量%以下であるから、触媒の低温活性の向上、耐熱性の向上、及び高温浄化性能の向上に有利になる。
As described above, according to the present invention, a noble metal is arranged between crystal lattices or atoms of a double oxide containing Ce, Zr and Nd, and ZrO 2 / (CeO 2 + ZrO 2 ) of the double oxide. Since the ratio is 65% by mass or more and 90% by mass or less and the Nd 2 O 3 / (CeO 2 + ZrO 2 + Nd 2 O 3 ) ratio is higher than 2.6% by mass and 40% by mass or less, the low temperature activity of the catalyst It is advantageous for improvement of heat resistance, improvement of heat resistance, and improvement of high temperature purification performance.

以下、本発明の実施形態を図面に基づいて詳細に説明する。     Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1は自動車のエンジンの排気通路に配設される排気ガス浄化用触媒(三元触媒)1が示されている。この触媒1は、排気ガス流れ方向に貫通する多数のセル3を有する多孔質のモノリス担体(ハニカム状担体)2を有し、図2に示すように、各セル壁5の表面に、排気ガス浄化用の触媒層6が形成されている。     FIG. 1 shows an exhaust gas purifying catalyst (three-way catalyst) 1 disposed in an exhaust passage of an automobile engine. This catalyst 1 has a porous monolithic carrier (honeycomb-like carrier) 2 having a large number of cells 3 penetrating in the exhaust gas flow direction, and as shown in FIG. A purification catalyst layer 6 is formed.

触媒層6は、Ce、Zr及びNdを含有し、その結晶格子又は原子間に触媒貴金属が配置され、且つZrO2/(CeO2+ZrO2)比率が65質量%以上90質量%以下、Nd23/(CeO2+ZrO2+Nd23)比率が2.6質量%よりも高く40質量%以下の酸素吸蔵放出能を有する複酸化物と活性アルミナとバインダとによって形成されている。 The catalyst layer 6 contains Ce, Zr, and Nd, a catalytic noble metal is disposed between crystal lattices or atoms thereof, and a ZrO 2 / (CeO 2 + ZrO 2 ) ratio is 65% by mass or more and 90% by mass or less, Nd 2 It is formed of a double oxide having an O 3 / (CeO 2 + ZrO 2 + Nd 2 O 3 ) ratio higher than 2.6 mass% and an oxygen storage / release capacity of 40 mass% or less, activated alumina, and a binder.

なお、上記複酸化物及び活性アルミナにはさらに上記触媒貴金属と同一の又は異なる触媒貴金属を担持させるようにしてもよく、また、セル壁5の表面に上記触媒層6と、該触媒層とは配合の異なる他の触媒層とを層状に形成してもよい。     The double oxide and activated alumina may further carry the same or different catalyst noble metal as the catalyst noble metal, and the catalyst layer 6 and the catalyst layer on the surface of the cell wall 5 Other catalyst layers with different blending may be formed in layers.

以下、好ましいZrO2/(CeO2+ZrO2)比率、及びNd23/(CeO2+ZrO2+Nd23)比率の策定について、触媒層6に関する実施例及び比較例に基いて説明する。 Hereinafter, the formulation of a preferable ZrO 2 / (CeO 2 + ZrO 2 ) ratio and Nd 2 O 3 / (CeO 2 + ZrO 2 + Nd 2 O 3 ) ratio will be described based on examples and comparative examples relating to the catalyst layer 6.

<Nd23/(CeO2+ZrO2+Nd23)比率>
−触媒の調製−
以下の方法により、Nd23/(CeO2+ZrO2+Nd23)比率が相異なる6種類の、すなわち、該比率が0質量%、0.26質量%、10質量%、20質量%、30質量%及び50質量%の各複酸化物(触媒材料)を調製した。いずれも、ZrO2/(CeO2+ZrO2)比率は75質量%であり、Rh量は当該複酸化物の0.125質量%である。
<Nd 2 O 3 / (CeO 2 + ZrO 2 + Nd 2 O 3 ) Ratio>
-Preparation of catalyst-
According to the following method, six kinds of Nd 2 O 3 / (CeO 2 + ZrO 2 + Nd 2 O 3 ) ratios are different, that is, the ratio is 0 mass%, 0.26 mass%, 10 mass%, 20 mass%. 30 mass% and 50 mass% of each double oxide (catalyst material) were prepared. In any case, the ratio of ZrO 2 / (CeO 2 + ZrO 2 ) is 75% by mass, and the amount of Rh is 0.125% by mass of the complex oxide.

オキシ硝酸ジルコニウム、硝酸第一セリウム、硝酸ネオジム(III)含水、及び硝酸ロジウム溶液各々の所定量と水とを混合して合計300mLとし、この混合溶液を室温で約1時間撹拌した。この混合溶液を80℃まで加熱昇温させた後、この混合溶液に28%アンモニア水50mLを一気に加えて1秒以内に攪拌混合し反応を終了させた。アンモニア水の混合により白濁した溶液を一昼夜放置し、生成したケーキを遠心分離器にかけ、十分に水洗した。この水洗したケーキを約150℃の温度で乾燥させた後、400℃の温度に5時間保持し、次いで500℃の温度に2時間保持するという条件で焼成した。     A predetermined amount of each of zirconium oxynitrate, cerium nitrate, neodymium (III) nitrate, and rhodium nitrate solution was mixed with water to make a total of 300 mL, and this mixed solution was stirred at room temperature for about 1 hour. After this mixed solution was heated to 80 ° C. and heated, 50 mL of 28% aqueous ammonia was added at once to the mixed solution and stirred and mixed within 1 second to complete the reaction. The solution clouded by mixing with aqueous ammonia was allowed to stand overnight, and the resulting cake was centrifuged and washed thoroughly with water. The cake washed with water was dried at a temperature of about 150 ° C. and then calcined under the condition that it was kept at a temperature of 400 ° C. for 5 hours and then kept at a temperature of 500 ° C. for 2 hours.

以上により得られた各複酸化物は、原料溶液にRh成分を添加して共沈法により生成されているから、Rhは、Ce、Zr及びNdと同じく当該複酸化物の結晶格子に配置された状態、あるいは当該複酸化物の原子間に配置された状態になり、いずれにしても、Rhが複酸化物の表面及び内部において均一に分散した状態となる。     Each of the double oxides obtained as described above is generated by coprecipitation method by adding the Rh component to the raw material solution. In any case, Rh is uniformly dispersed on the surface and inside of the double oxide.

上記各複酸化物について、これに活性アルミナ、バインダ(第一稀元素社製 ジルコゾールAC-7)及び水の所定量を混合することによりスラリーを調製し、これにコージェライト製ハニカム状担体を浸漬して引き上げ、余分なスラリーを吹き飛ばした後、500℃の温度に2時間保持する焼成を行なうことにより、各触媒を得た。     For each of the above double oxides, a slurry was prepared by mixing a predetermined amount of activated alumina, a binder (Zircosol AC-7 manufactured by Daiichi Rare Element Co., Ltd.) and water, and a cordierite honeycomb carrier was immersed in the slurry. Then, after pulling up and blowing off excess slurry, each catalyst was obtained by carrying out firing that was maintained at a temperature of 500 ° C. for 2 hours.

いずれの触媒に関しても、担体としては容積24mL、1平方インチ(約6.54cm2)当たりのセル数400、相隣るセルを隔てる壁厚4ミル(約0.1mm)のものを用い、担体容積1L当たりの触媒担持量は181g/L(複酸化物担持量112g/L,活性アルミナ担持量51g/L,ジルコニアバインダ担持量18g/L)とした。Rh担持量は112g/L×0.125質量%=0.14g/Lとなる。また、これらの触媒に対しては、大気雰囲気において1000℃の温度に24時間保持するエージングを行なった。 For any catalyst, a carrier having a volume of 24 mL, 400 cells per square inch (about 6.54 cm 2 ), and a wall thickness of 4 mil (about 0.1 mm) separating adjacent cells is used. The catalyst loading per liter of volume was 181 g / L (double oxide loading 112 g / L, activated alumina loading 51 g / L, zirconia binder loading 18 g / L). The amount of Rh supported is 112 g / L × 0.125 mass% = 0.14 g / L. In addition, these catalysts were subjected to aging that was maintained at a temperature of 1000 ° C. for 24 hours in an air atmosphere.

−触媒性能評価−
モデルガス流通反応装置及び排気ガス分析装置を用いて、上記各触媒(上記エージング後のもの)をモデルガス流通反応装置に取り付け、空燃比リッチのモデルガス(温度600℃)を20分間流した後、下記のモデルガスにより、HC、CO及びNOxの浄化に関するライトオフ温度T50及び高温浄化率C500を測定した。T50は、触媒に流入するモデルガス温度を100℃から500℃まで漸次上昇させていき、浄化率が50%に達したときの触媒入口のガス温度である。C500は触媒入口ガス温度が500℃のときの浄化率である。モデルガスは、A/F=14.7±0.9とした。すなわち、A/F=14.7のメインストリームガスを定常的に流しつつ、所定量の変動用ガスを1Hzでパルス状に添加することにより、A/Fを±0.9の振幅で強制的に振動させた。空間速度SVは60000h-1、昇温速度は30℃/分である。
-Catalyst performance evaluation-
Using the model gas flow reactor and the exhaust gas analyzer, each catalyst (after aging) is attached to the model gas flow reactor and the air-fuel ratio rich model gas (temperature 600 ° C.) is allowed to flow for 20 minutes. The light-off temperature T50 and the high-temperature purification rate C500 related to the purification of HC, CO, and NOx were measured using the following model gas. T50 is the gas temperature at the catalyst inlet when the model gas flowing into the catalyst is gradually raised from 100 ° C. to 500 ° C. and the purification rate reaches 50%. C500 is the purification rate when the catalyst inlet gas temperature is 500 ° C. The model gas was A / F = 14.7 ± 0.9. That is, the A / F is forced at an amplitude of ± 0.9 by adding a predetermined amount of fluctuation gas in a pulse form at 1 Hz while constantly flowing the main stream gas of A / F = 14.7. Vibrated. The space velocity SV is 60000 h −1 , and the heating rate is 30 ° C./min.

T50の結果を図3に示し、C500の結果を図4に示す。なお、図3及び図4、並びに後述の図5及び図6において、Nd23比率とは、Nd23/(CeO2+ZrO2+Nd23)比率を意味する(以下、同じ)。 The result of T50 is shown in FIG. 3, and the result of C500 is shown in FIG. In FIGS. 3 and 4 and FIGS. 5 and 6 to be described later, the Nd 2 O 3 ratio means a Nd 2 O 3 / (CeO 2 + ZrO 2 + Nd 2 O 3 ) ratio (the same applies hereinafter). .

T50(図3)をみると、HCに関しては、Nd23比率が高くなっても大きな変化はないが、Nd23比率が20質量%のときに低くなっている。これに対して、CO及びNOxに関しては、Nd23比率が20質量%になるまでは該Nd23比率の増大に伴ってT50が低下し、その後はNd23比率の増大に伴ってT50が上昇していく傾向にある。一方、C500(図4)をみると、HC、CO及びNOのいずれに関しても、Nd23比率が20質量%になるまでは該Nd23比率の増大に伴って上昇し、その後はNd23比率の増大に伴って低下していく傾向にある。CO及びNOにおいては当該傾向が特に顕著である。また、Nd23比率が50質量%になると、0質量%のときよりもC500が悪化している。 Looking at T50 (FIG. 3), HC does not change greatly even when the Nd 2 O 3 ratio is increased, but is low when the Nd 2 O 3 ratio is 20 mass%. In contrast, with respect to CO and NOx, to Nd 2 O 3 ratio of 20 mass% reduces the T50 with increasing the Nd 2 O 3 ratio, thereafter the increase of Nd 2 O 3 ratio Along with this, T50 tends to increase. On the other hand, looking at C500 (FIG. 4), for any of HC, CO, and NO, the Nd 2 O 3 ratio increases with an increase in the Nd 2 O 3 ratio until the Nd 2 O 3 ratio reaches 20% by mass, and thereafter It tends to decrease as the Nd 2 O 3 ratio increases. This tendency is particularly remarkable in CO and NO. Further, when the Nd 2 O 3 ratio is 50% by mass, C500 is worse than when it is 0% by mass.

そうして、図3及び図4に示すNd23比率の増大に伴うT50及びC500の変化の傾向から、Nd23比率は40質量%以下が好ましく、35質量%以下がさらに好ましく、さらには30質量%以下がより好ましいことがわかる。 Then, from the tendency of the change of T50 and C500 accompanying the increase in the Nd 2 O 3 ratio shown in FIGS. 3 and 4, the Nd 2 O 3 ratio is preferably 40% by mass or less, more preferably 35% by mass or less, Furthermore, it turns out that 30 mass% or less is more preferable.

−BET比表面積−
上述の如くNd23比率が高くなるとT50及びC500が良くなる理由を検討するために、Nd23比率が相異なる上記6種類の複酸化物のフレッシュ時(上記エージング前)及び上記エージング後のBET比表面積を測定した。結果は図5に示されている。Nd23比率が30質量%になるまではNd23比率の増大に伴ってBET比表面積が増大しており、Nd23比率が複酸化物の比表面積に大きな影響を与えることがわかる。また、Nd23比率が2.6質量%を越えると、BET比表面積が120m2/g以上になることがわかる。
-BET specific surface area-
In order to examine the reason why T50 and C500 are improved when the Nd 2 O 3 ratio is increased as described above, the above-mentioned six kinds of double oxides having different Nd 2 O 3 ratios (before the aging) and the above aging are used. The subsequent BET specific surface area was measured. The result is shown in FIG. Nd 2 to O 3 ratio of 30 mass% is a BET specific surface area increases with increased Nd 2 O 3 ratio, the Nd 2 O 3 ratio has a great influence on the specific surface area of the mixed oxide I understand. It can also be seen that when the Nd 2 O 3 ratio exceeds 2.6 mass%, the BET specific surface area becomes 120 m 2 / g or more.

上記エージングによるBET比表面積の劣化度((フレッシュ時の値−エージング後の値)/フレッシュ時の値)をみると、図6に示すように、Nd23比率が10質量%になるまでは劣化度が急激に減少しているものの、その後はNd23比率が増大しても劣化度には殆ど変化がない。 When the degree of deterioration of the BET specific surface area due to the aging ((value at the time of fresh-value after aging) / value at the time of fresh) is seen, until the Nd 2 O 3 ratio becomes 10% by mass, as shown in FIG. Although the degree of deterioration decreases rapidly, there is almost no change in the degree of deterioration after that even if the Nd 2 O 3 ratio increases.

以上から、Nd23比率が高くなるとT50及びC500が良くなる理由の一つは、Nd23比率の増大に伴って複酸化物の比表面積が大きくなるとともに、エージングによる劣化度も小さくなって、大きな比表面積が確保されたことにあると考えられる。そうして、図5及び図6に示すNd23比率の増大に伴う比表面積及びその劣化度の変化の傾向から、Nd23比率は2.6質量%よりも高くすることが好ましいことがわかり、その比率は5質量%以上にすることが、さらには10質量%以上にすることがより好ましいということができる。 From the above, one of the reasons why Nd 2 O 3 ratio is the T50 and C500 is improved higher, with a specific surface area of the mixed oxide increases with the Nd 2 O 3 ratio of increase, deterioration degree of aging is also small Thus, it is considered that a large specific surface area is secured. Then, from the tendency of the change in the specific surface area and the degree of deterioration accompanying the increase in the Nd 2 O 3 ratio shown in FIGS. 5 and 6, the Nd 2 O 3 ratio is preferably higher than 2.6 mass%. It can be seen that the ratio is preferably 5% by mass or more, and more preferably 10% by mass or more.

−複酸化物のXRDチャート−
上記Nd23比率が50質量%のものを除く残り5種類の複酸化物について、XRDにより、、エージング(大気雰囲気で1000℃の温度に24時間保持)後の構造解析を行なった。図7はそれら複酸化物のXRDチャートである。なお、同図では例えば「Nd=0質量%」としているが、この「Nd=」は「Nd23比率=」を略記したものである。
-XRD chart of double oxide-
The remaining five types of complex oxides excluding those having an Nd 2 O 3 ratio of 50% by mass were subjected to structural analysis after aging (held at a temperature of 1000 ° C. for 24 hours in an air atmosphere) by XRD. FIG. 7 is an XRD chart of these double oxides. In the figure, for example, “Nd = 0 mass%” is used, but “Nd =” is an abbreviation of “Nd 2 O 3 ratio =”.

同図によれば、Nd23比率が0質量%のときは複酸化物が正方晶になっているが、2.6質量%になると、立方晶に近づき、Nd23比率がさらに高くなると、立方晶の傾向が強くなる。このように、Nd23比率を高くすると、複酸化物の結晶構造が正方晶から立方晶に変化していくから、それによって熱的に安定になり、すなわち、耐熱性が高くなり、大きな比表面積の確保に有利になる。また、酸素吸蔵能が良いCeO2は立方晶であるから、上述の如く複酸化物が立方晶になるということは、その酸素吸蔵能も良くなるということであり、そのことは触媒の低温活性及び高温浄化性能の向上に有利に働く。 According to the figure, when the Nd 2 O 3 ratio is 0% by mass, the double oxide is tetragonal. However, when the Nd 2 O 3 ratio is 2.6% by mass, it approaches a cubic crystal, and the Nd 2 O 3 ratio further increases. The higher the tendency, the stronger the cubic tendency. In this way, when the Nd 2 O 3 ratio is increased, the crystal structure of the double oxide changes from tetragonal to cubic, thereby making it thermally stable, that is, heat resistance is increased, This is advantageous for securing a specific surface area. Further, since CeO 2 having a good oxygen storage capacity is cubic, the fact that the double oxide becomes cubic as described above means that the oxygen storage capacity is also improved, which means that the low-temperature activity of the catalyst is improved. And it works to improve the high temperature purification performance.

<ZrO2/(CeO2+ZrO2)比率>
次にZrO2比率(ZrO2/(CeO2+ZrO2))が50質量%、75質量%、80質量%及び100質量%の各Ce−Zr系複酸化物(但し、Ndは含まず、Rh量は0.486質量%である。)を先のケースと同様にして調製し、さらにそれら各複酸化物を用いて同様の触媒(但し、担体容積1L当たりのRh担持量0.27g)を調製した。そうして、得られた各触媒について大気雰囲気において1000℃の温度に24時間保持するエージングを施した後、上記触媒性能評価と同じ方法でT50及びC400(触媒入口ガス温度が400℃のときの浄化率)を測定した。T50の結果は図8に示し、C400の結果は図9に示す。
<ZrO 2 / (CeO 2 + ZrO 2 ) Ratio>
Next, each Ce—Zr-based double oxide (however, Nd is not included, Rh is 50%, 75%, 80%, and 100% by weight of ZrO 2 ratio (ZrO 2 / (CeO 2 + ZrO 2 )) In the same manner as in the previous case, and using each of these double oxides, a similar catalyst (provided that the amount of Rh supported per 0.2 liter of carrier volume is 0.27 g) is prepared. Prepared. Thus, each catalyst obtained was aged at a temperature of 1000 ° C. for 24 hours in an air atmosphere, and then subjected to T50 and C400 (when the catalyst inlet gas temperature was 400 ° C.) by the same method as the above catalyst performance evaluation. The purification rate was measured. The result of T50 is shown in FIG. 8, and the result of C400 is shown in FIG.

図8及び図9によれば、ZrO2比率80%のときにT50及びC400が最も良い結果を示しているが、同図からZrO2比率が65質量%以上90質量%以下の範囲で、特に70質量%以上90質量%以下の範囲で良好な結果が得られることが見込まれる。 According to FIGS. 8 and 9, T50 and C400 show the best results when the ZrO 2 ratio is 80%. From the same figure, the ZrO 2 ratio is in the range of 65% by mass to 90% by mass. It is expected that good results will be obtained in the range of 70% by mass or more and 90% by mass or less.

本発明に係る排気ガス浄化用触媒の斜視図である。1 is a perspective view of an exhaust gas purifying catalyst according to the present invention. 同触媒の一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of the catalyst. 複酸化物のNd23比率が異なる各触媒のT50を示すグラフ図である。Nd 2 O 3 ratio of the double oxide is a graph illustrating the T50 for each different catalyst. 複酸化物のNd23比率が異なる各触媒のC500を示すグラフ図である。Nd 2 O 3 ratio of the double oxide is a graph illustrating the C500 for each different catalyst. Nd23比率が異なる各複酸化物のフレッシュ時及びエージング後のBET比表面積を示すグラフ図である。Nd 2 O 3 ratio is a graph showing the BET specific surface area after fresh time and aging of different each mixed oxide. Nd23比率が異なる各複酸化物のエージングによる比表面積の劣化度を示すグラフ図である。Nd 2 O 3 ratio is a graph showing the degree of deterioration of the specific surface area due to the aging of the different respective mixed oxide. Nd23比率が異なる各複酸化物のXRDチャート図である。Nd 2 O 3 ratio is XRD chart of different respective mixed oxide. ZrO2比率と触媒のT50との関係を示すグラフ図である。It is a graph showing the relationship between T50 of ZrO 2 ratio and the catalyst. ZrO2比率と触媒のC400との関係を示すグラフ図である。It is a graph showing the relationship between C400 of ZrO 2 ratio and the catalyst.

符号の説明Explanation of symbols

1 排気ガス浄化用触媒
2 担体
3 セル
5 セル壁
6 触媒層
DESCRIPTION OF SYMBOLS 1 Exhaust gas purification catalyst 2 Carrier 3 Cell 5 Cell wall 6 Catalyst layer

Claims (3)

Ce、Zr及びNdを含む複酸化物の結晶格子又は原子間に貴金属が配置されている排気ガス浄化用触媒材料であって、
上記複酸化物は、ZrO2/(CeO2+ZrO2)の比率が65質量%以上90質量%以下であり、Nd23/(CeO2+ZrO2+Nd23)の比率が2.6質量%よりも高く40質量%以下であることを特徴とする排気ガス浄化用触媒材料。
An exhaust gas purifying catalyst material in which a noble metal is arranged between crystal lattices or atoms of a double oxide containing Ce, Zr and Nd,
In the double oxide, the ratio of ZrO 2 / (CeO 2 + ZrO 2 ) is 65% by mass or more and 90% by mass or less, and the ratio of Nd 2 O 3 / (CeO 2 + ZrO 2 + Nd 2 O 3 ) is 2.6. An exhaust gas purifying catalyst material characterized by being higher than mass% and not higher than 40 mass%.
請求項1において、
上記Nd23/(CeO2+ZrO2+Nd23)の比率が5質量%以上35質量%以下であることを特徴とする排気ガス浄化用触媒材料。
In claim 1,
A catalyst material for exhaust gas purification, wherein the ratio of Nd 2 O 3 / (CeO 2 + ZrO 2 + Nd 2 O 3 ) is 5% by mass or more and 35% by mass or less.
エンジンの排気ガス通路に配設される排気ガス浄化用触媒であって、
ハニカム状担体のセル壁表面に触媒層が形成され、
上記触媒層は、Ce、Zr及びNdを含み且つ結晶格子又は原子間に貴金属が配置されている複酸化物と、活性アルミナとを含有し、
上記複酸化物は、ZrO2/(CeO2+ZrO2)の比率が65質量%以上90質量%以下であり、Nd23/(CeO2+ZrO2+Nd23)の比率が2.6質量%よりも高く40質量%以下であることを特徴とする排気ガス浄化用触媒。
An exhaust gas purifying catalyst disposed in an exhaust gas passage of an engine,
A catalyst layer is formed on the cell wall surface of the honeycomb-shaped carrier,
The catalyst layer contains a mixed oxide containing Ce, Zr and Nd and having a noble metal disposed between crystal lattices or atoms, and activated alumina.
In the double oxide, the ratio of ZrO 2 / (CeO 2 + ZrO 2 ) is 65% by mass or more and 90% by mass or less, and the ratio of Nd 2 O 3 / (CeO 2 + ZrO 2 + Nd 2 O 3 ) is 2.6. An exhaust gas purifying catalyst characterized by being higher than mass% and not higher than 40 mass%.
JP2004351154A 2004-09-03 2004-12-03 Exhaust gas purification catalyst material and exhaust gas purification catalyst Expired - Fee Related JP3812580B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004351154A JP3812580B2 (en) 2004-12-03 2004-12-03 Exhaust gas purification catalyst material and exhaust gas purification catalyst
EP05017319A EP1632288B1 (en) 2004-09-03 2005-08-09 Exhaust gas purification catalyst and oxygen storage component for the same
US11/200,305 US7307039B2 (en) 2004-09-03 2005-08-10 Exhaust gas purification catalyst and oxygen storage component for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004351154A JP3812580B2 (en) 2004-12-03 2004-12-03 Exhaust gas purification catalyst material and exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2006159016A JP2006159016A (en) 2006-06-22
JP3812580B2 true JP3812580B2 (en) 2006-08-23

Family

ID=36661605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004351154A Expired - Fee Related JP3812580B2 (en) 2004-09-03 2004-12-03 Exhaust gas purification catalyst material and exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP3812580B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110526290B (en) * 2019-08-08 2021-11-02 山东国瓷功能材料股份有限公司 Nano cerium-zirconium composite oxide and application thereof in catalyzing NOXApplication in reduction reaction

Also Published As

Publication number Publication date
JP2006159016A (en) 2006-06-22

Similar Documents

Publication Publication Date Title
US8853120B2 (en) Double layered exhaust gas purification catalyst
US8950174B2 (en) Catalysts for gasoline lean burn engines with improved NH3-formation activity
JP4760625B2 (en) Exhaust gas purification catalyst device
EP2104567B2 (en) Method of making a NOx storage material
JP3498453B2 (en) Exhaust gas purification catalyst and method for producing the same
EP1967263B1 (en) Catalytic Material And Catalyst For Purifying Exhaust Gas Component
JP4959129B2 (en) Exhaust gas purification catalyst
EP2611536B1 (en) Catalyst for gasoline lean burn engines with improved nh3-formation activity
EP1632288B1 (en) Exhaust gas purification catalyst and oxygen storage component for the same
US20190126248A1 (en) Exhaust gas purifying catalyst
JP6869976B2 (en) Three-way catalyst for purifying gasoline engine exhaust gas
JP2006334490A (en) Catalyst for cleaning exhaust gas
JP4687389B2 (en) Exhaust gas purification catalyst
JPH10286462A (en) Catalyst of purifying exhaust gas
JP3882627B2 (en) Exhaust gas purification catalyst
US20110118113A1 (en) Exhaust gas purifying catalyst
JPH05200294A (en) Catalyst for purifying exhaust gas and purification system with the same used therefor
JP3766568B2 (en) Exhaust gas purification catalyst and exhaust gas purification method
JP3812580B2 (en) Exhaust gas purification catalyst material and exhaust gas purification catalyst
JP4835028B2 (en) Exhaust gas purification catalyst
JP3812578B2 (en) Exhaust gas purification catalyst and oxygen storage material for the catalyst
JP2006297259A (en) Exhaust gas clarifying catalyst
JP4561217B2 (en) Exhaust gas purification catalyst
JP3812579B2 (en) Exhaust gas purification catalyst
JP3264696B2 (en) Exhaust gas purification catalyst and purification system using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060509

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060522

R150 Certificate of patent or registration of utility model

Ref document number: 3812580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090609

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100609

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110609

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120609

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130609

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees