JP3806174B2 - Manufacturing method of hot-rolled steel sheet with small material variations by continuous hot-rolling process - Google Patents
Manufacturing method of hot-rolled steel sheet with small material variations by continuous hot-rolling process Download PDFInfo
- Publication number
- JP3806174B2 JP3806174B2 JP08193096A JP8193096A JP3806174B2 JP 3806174 B2 JP3806174 B2 JP 3806174B2 JP 08193096 A JP08193096 A JP 08193096A JP 8193096 A JP8193096 A JP 8193096A JP 3806174 B2 JP3806174 B2 JP 3806174B2
- Authority
- JP
- Japan
- Prior art keywords
- hot
- rolling
- steel sheet
- coil
- rolled
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
- Metal Rolling (AREA)
- Heat Treatment Of Steel (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は熱延鋼板を製造する熱間圧延設備において、移動する鋼板の先行鋼板後端部と、これに続く後行鋼板先端部を接合し、複数の鋼板を連続して圧延するいわゆる熱延連続化プロセスによる熱延鋼板の製造方法に関する。
【0002】
【従来の技術】
従来の熱延鋼板製造プロセスでは、スラブ毎での圧延を行うため鋼板の先端部と後端部は、鋼板が仕上圧延機を出た後に巻取られるまでの間においては、無張力状態のいわゆる、非定常部とならざるを得なかった。このため、この部分に該当する鋼板は擦り傷、形状不良、板幅不良、板厚不良等の鋼板表面品位および形状品位の劣化は避けられなかった。
また、上記形状品位の変化は鋼板の材質についても大きく影響し、冷却時の冷却ムラにより機械的性質(引張特性等)が大きくバラツキ、定常部分に比し良好な鋼板が得られなかった。そのため、不良部分の除去により鋼板歩留りの低下と共に、精整通板を必要とする等の作業付加があった。
また材質については、通板性等の操業上の観点からコイル(圧延された鋼板はスラブ単位に仕上圧延後は巻取機によって巻取られてコイル状となるので、以下単にコイルと称す)長手方向(圧延方向)で圧延速度が異なるため、単一コイル内の定常部であっても圧延温度等の熱延条件が変化し、機械的性質の変動が生じていた。
【0003】
このような状況下において、近年複数の粗圧延後のシートバー(以下、粗バーと称す)を順次接合して、連続して所定の速度で熱間圧延処理する、いわゆる熱延連続化プロセスが試みられている。
この熱延連続化プロセスは、一般に、粗バーを供給する工程、この粗バーの先端と後端を切断する工程、走行しながら先行粗バーの後端部と、後行粗バーの先端部を、各々クランプして突き合わせて接合する工程、複数のスタンドで該圧延用鋼板を所定の圧延スケジュールで、所定のサイズにする熱間仕上圧延工程、熱間仕上圧延工程を出た鋼板を冷却し巻取る工程、熱間仕上圧延工程と巻取り工程との間にあって、鋼板を所定の重量または長さ単位で切断する走間切断分割工程とから構成されている。
【0004】
このための粗バーの接合方法としては、各種の提案がなされており、例えば、特開平4−288906号公報には、先行材と後行材の端面接触領域を幅方向の少なくとも両端部域となるよう切断加工を施し、加熱と搬送速度を調整し両縁部近傍に圧縮応力を発生させて相互に密着させることが開示されており、また、特開平5−104107号公報では、先行材と後行材の端面幅方向両端部同士を圧延前に熱間溶接した後、幅方向中央の未接合部を圧延によって熱間圧接する方法が提案されている。また、特公平5−62035号公報では、長手方向で先行圧延材の後端部と後行圧延材の先端部を重ね合わせて切断し、切断面に直角に圧縮力を加えることにより、新生面同士の結合領域を拡げスケールの除去なしで両金属板を溶着し、厚み方向で全面接触して強固に結合する方法が提案されている。
【0005】
【発明が解決しようとする課題】
熱延連続化プロセスについて、その手段は上記のごとく種々の提案がなされているが、鋼板の材質面からの検討については一部なされているのみで、完全なる対策については多くの開発の余地が残されており、従来での鋼板の先・後端部における材質不良部を完全に解消するまでには到っていない。
本発明は前記した従来法でのコイル内での材質のバラツキを解消した熱延鋼板の製造方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明は上記課題を解決するためになされたものであって、その手段は下記の通りである。
(1)質量%で、C:0.01〜0.60%、Si:≦2.50%、Mn:0.05〜2.50%、P:≦0.050%、S:≦0.025%、Al:0.005〜0.100%、N:≦0.010%を含有し、残部Feと不可避的不純物からなる鋼板を、熱延連続化プロセスによりコイル内仕上圧延温度差を50℃未満、仕上圧延機の入側と出側の温度差を100℃未満、コイル内仕上圧延速度差を400mpm未満とし、かつ、仕上圧延機内での張力を0.1kgf/mm2以上に、かつ、冷却床内での張力も0.5kgf/mm2以上にしたことを特徴とする熱延連続化プロセスによる材質バラツキの小さい熱延鋼板の製造方法。
【0007】
(2)上記(1)において、鋼板はさらに質量%で、Nb:0.005〜0.060%、Ti:0.005〜0.150%、B:≦0.0050%、V:≦0.060%、Ca:≦0.0060%、Ni:≦0.50%、Cr:≦0.80%、Mo:≦0.70%のうち1種または2種以上含むことを特徴とする熱延連続化プロセスによる材質バラツキの小さい熱延鋼板の製造方法。
【0008】
【発明の実施の形態】
本発明は鋼板の圧延を熱延連続化プロセスで行うことにより、従来での圧延で発生していた鋼板の先・後端部の表面品位、形状品位の劣化を回避すると共に、鋼板定常部を含む鋼板コイル内での材質のバラツキを防ぐところに主眼があり、組成としては通常の鋼板に用いられている主要元素を含み、これに加えてその目的に応じ例えば高強度、高靱性、高耐食性等の特性を発揮する元素の添加を行うものである。
【0009】
本発明が対象としている鋼の成分限定理由について以下説明する。
Cは硬化元素であり、C量が少ない程加工性に有利であるが、C量を低下させる脱酸処理の経済性を考慮してC量の下限を0.01wt%とした。しかし、0.60wt%を超えると溶接性や低温靱性が劣化する。従って、その含有量は0.01wt%以上、0.60wt%以下とする。
【0010】
Siは脱酸剤として有効であり、また強度向上の元素でもある。さらには鋼中のフェライトの生成を促進し、炭化物の生成を抑制することにより残留オーステナイトを確保する作用を有する。しかし、その含有量は2.50wt%を超えるとその効果は飽和し、かえって溶接性の劣化、また鋳造鋳片での割れ発生の原因ともなる。従って、その含有量は2.50wt%以下とする。
Mnは強度、靱性を向上させるために有効な成分で、0.05wt%以上を必要とする。しかし、2.50wt%を超えると溶接性が劣化する。従って、その含有量は0.05wt%以上、2.50wt%とする。
【0011】
Pは低温靱性を劣化させ、溶接時に高温割れを発生させることがあることから、その含有量は0.050wt%以下とする。ただし、鋼板表面のスケール疵防止の観点からは0.010wt〜0.020wt%が好ましい。
SはMnと結合してA系介在物を生じて、靱性、延性を劣化させることからその含有量は0.025wt%以下とする。
【0012】
Alは鋼の脱酸に用いられる。その効果は0.005wt%以上で生じ、0.100wt%を超えると飽和する。従って、その含有量は0.005wt%以上、0.100wt%以下とする。
Nは靱性を劣化させるため可能な限り少ない方がよいが、経済性を考慮し、その含有量は0.010wt%以下とする。
【0013】
さらに、本発明においては、上記の主要成分組成例に加えて、例えば、Nb,Ti,B,V,Ca,Ni,Cr,Moのうちから選んだ1種または2種以上を含有させることができる。
【0014】
Nbは微量添加で大幅に強度を上昇させ、かつ、固溶Nによる歪時効によって靱性の劣化を防止する好ましい成分である。その効果は、0.005wt%以上で期待できるが、0.060wt%を超えると飽和する。従って、その含有量は0.005wt%以上、0.060wt%以下とする。
TiはNbと同様、微量添加で大幅に強度を上昇させ、制御圧延との相乗効果により靱性を向上させる好ましい成分である。その効果は0.005wt%以上で期待できるが、0.150wt%を超えると飽和する。従って、その含有量は0.005wt%以上、0.150wt%以下とする。
【0015】
Bは微量の添加で大幅に延性の増大に寄与し、また、時効性の向上にも効果を有する好ましい成分であり、その効果は0.0050wt%で飽和するのでその上限を0.0050wt%とする。
Vは微量添加で大幅な強度の向上が期待できる成分であるが、0.060wt%を超えて含有するとその効果は飽和し、溶接性が劣化する。従って、上限を0.060wt%とする。
Caは介在物の形態制御により、低温靱性、延性に好ましいばかりでなく、セパレーション対策としても好ましい成分である。しかし、0.0060wt%を超えて含有すると、溶接性、および靱性の劣化をまねく。従って、上限を0.0060wt%とする。
【0016】
Niは、強度、靱性の向上に有効な成分であるが、0.50wt%を超えて含有すると溶接性が劣化する。従って、上限を0.50wt%とする。
CrはNiと共に強度、靱性の向上に有効な成分であるが、0.80wt%を超えて含有すると溶接性が劣化するので、上限を0.80wt%とする。
Moは強度、靱性の向上に有効な成分であるが、0.70wt%を超えて含有すると溶接性が劣化する。従って、上限を0.70wt%とする。
【0017】
次に、本発明の熱延連続化プロセスを工程順にその特徴部分と、その効果および熱延条件の限定理由について以下に説明する。
図1は本発明を実施するための設備配置の一例を示した図である。加熱炉で加熱されたスラブは、粗圧延機で圧延された後巻取られて粗圧延コイル(粗バー)となる。この粗圧延コイルが巻戻され、溶接用シャーにおいて先・後端部を切断された後、接合装置(接合装置については特に限定しないので、ここでは特に触れない。また、接合方法についても種々の方法が考えられるが、レーザー溶接方法が好ましい)により先行材の後端部と後行材の先端部が接合され、仕上圧延機で圧延される。したがって、最初の粗バーの先端部と最後の粗バーの後端部を除いた部分は仕上圧延において圧延端のない圧延ができる。
【0018】
さらに、仕上圧延速度を高速、かつその変動を小さく(400mpm未満)することができるため、圧延温度等の熱延条件の変動も小さくすることができる。最適な熱延仕上温度は、Ar3 〜900℃である。熱延仕上温度が、Ar3 変態点未満では延性が著しく低下し、900℃を超えると延性の劣化を来すためである。また、コイル内の仕上圧延温度差を50℃未満とすることができ、仕上圧延機の入側と出側の温度差を100℃未満とすることが可能である。これらの熱延条件の変動の減少は材質バラツキの低減につながる。
【0019】
さらに、仕上圧延機でのオーステナイト領域の圧延で鋼板の先・後端部を含めコイル全長にわたって張力を0.1kgf/mm2 以上にすることができるようになった。これに加えて、冷却床においても同様にコイル全長にわたって張力を0.5kgf/mm2 以上にできる。冷却床は温度的に丁度鋼のオーステナイトからフェライトへの変態が起る部位に該当するので、変態が張力下で進行促進され焼入性の低下に繋がり、材質バラツキの低減に有効である。
【0020】
さらに、ピンチロール後のシャーにより鋼板接合部を走行切断して巻取機にてコイルを巻取るため、従前コイル先・後端部で発生していたタング状、またはフィッシュテール状の形状不良部分が皆無となる。従って、従前の精整通板による形状不良部分の矯正、および先・後端部分を含んだ形状不良部の切捨てを大幅に減らすことができ、精整工程の削減、成品歩留りの向上が達成できる。
【0021】
以上、本発明の設備上での特徴部分の説明とそれによってもたらされる効果についての説明を行ったが、本発明においては従前の工程によって得られる鋼板に比し最も大きな効果の違いは本発明を実施することによって、鋼板の品質特性のバラツキ、すなわちコイル内のバラツキが著しく低下し、均一で安定した材質の成品が得られるところに大きな意義を有する。
【0022】
本発明では、最近の鋼板製造技術の急速な進歩に伴い、鋳片での偏析の改善、圧延での制御圧延の向上と相まって熱延連続化プロセスを採用することにより、これらコイル内の材質の変動を極く小さい範囲内に抑制することができるようになったものであり、それぞれの圧延上での限定値は連続圧延プロセスの実施によって得られた実績からその範囲を導き出したものである。
この結果によって、需要家においては同一コイル内ではどの位置に該当する鋼板であっても、その部位を配慮することなくバラツキの少ない均一な材質の鋼板の使用が可能となった。
【0023】
【実施例】
以下、本発明における前述の効果を実施例によって具体的かつ、詳細に説明する。
本発明は殆ど全ての鋼種に適用できるが、その代表として普通加工用鋼板(A)と自動車用高張力鋼板(B)および鋼管用鋼板(C)の3種を選んで鋼板の化学組成を表1に示した。
【0024】
【表1】
【0025】
この3種の鋼種から鋳造されたスラブを本発明によって表2に示す条件で鋼板に圧延し、圧延された成品について各鋼種毎に同一ロット(1回の圧延単位で鋼板が接合されて連続圧延されたもの)内からコイル1本(ただし、最先端、最後端コイル以外)をランダムに抽出し、コイル全長のうちの5個所(非定常部に該当する先・後端部および定常部に該当する中央部から均等距離を置いた3個所の部分)から試料を採取した。
なお、表2中張力1とあるのは仕上圧延機内の張力で、張力2とあるのは冷却床上での張力を表している。
【0026】
【表2】
【0027】
この試料について材質の調査をそれぞれ行い、コイル内での材質特性を表3に示した。なお、比較のために従来方法で圧延した鋼板についても同様に表2に圧延条件を表3に材質の調査結果を示した。
表3中Δとあるのはコイル内の変動(バラツキ)を示したもので、最大値−最小値で表した。
【0028】
【表3】
【0029】
表3から明らかなように、本発明によれば従来方法に比較して全ての材質特性においてコイル内の変動幅が少なくなっており、均一で安定した材質の鋼板が得られていることがわかる。
【0030】
【発明の効果】
本発明によれば熱間圧延鋼板のコイル内での材質のバラツキが小さく、従来切捨てまたは格落ちになっていたコイル先・後端部分も成品として採用できる。
また、鋼板先・後端部の切捨て量が低減したため、歩留り面からは大きな向上がみられ、さらには鋼板巻取後の巻戻し精整工程を削減できる等多くの効果が得られた。
【図面の簡単な説明】
【図1】本発明を実施するための設備配置の一例を示す図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hot rolling facility for producing a hot-rolled steel sheet, a so-called hot-rolling process in which a rear end of a preceding steel plate of a moving steel plate is joined to a front end of a subsequent steel plate, and a plurality of steel plates are continuously rolled. The present invention relates to a method for producing a hot-rolled steel sheet by a continuous process.
[0002]
[Prior art]
In the conventional hot-rolled steel sheet manufacturing process, since rolling is performed for each slab, the leading edge and the trailing edge of the steel sheet are in a so-called tensionless state until the steel sheet is wound after leaving the finish rolling mill. It must be an unsteady part. For this reason, the steel plate corresponding to this portion cannot avoid deterioration of the surface quality and shape quality of the steel plate such as scratches, shape defects, plate width defects, plate thickness defects, and the like.
In addition, the change in shape and quality greatly affected the material of the steel sheet, and the mechanical properties (tensile characteristics, etc.) varied greatly due to cooling unevenness during cooling, and a steel sheet that was better than the steady part could not be obtained. For this reason, the removal of the defective part has resulted in a reduction in the yield of the steel sheet and the addition of operations such as requiring a precision plate.
The material is coiled from the operational point of view, such as sheeting (the rolled steel sheet is wound into a coil after being finished and rolled into slab units by a winder, hereinafter simply referred to as a coil). Since the rolling speed is different depending on the direction (rolling direction), the hot rolling conditions such as the rolling temperature are changed even in the stationary part in the single coil, and the mechanical properties fluctuate.
[0003]
Under such circumstances, a so-called hot rolling continuation process in which a plurality of rough-rolled sheet bars (hereinafter referred to as rough bars) are sequentially joined and hot-rolled continuously at a predetermined speed in recent years. Has been tried.
This hot rolling continuous process generally includes a step of supplying a rough bar, a step of cutting the front end and the rear end of the rough bar, and the rear end of the preceding rough bar and the front end of the subsequent rough bar while traveling. , Each of the clamping, butting and joining processes, the steel sheets for rolling in a plurality of stands, with a predetermined rolling schedule, a hot finish rolling process to make a predetermined size, a steel sheet that has undergone the hot finish rolling process is cooled and wound It is between the process of taking, the hot finishing rolling process, and the winding process, and is composed of a running cutting and dividing process of cutting the steel sheet by a predetermined weight or length unit.
[0004]
For this purpose, various proposals have been made as a method for joining the rough bars. For example, in Japanese Patent Laid-Open No. 4-288906, the end surface contact areas of the preceding material and the following material are defined as at least both end regions in the width direction. It is disclosed that a cutting process is performed, heating and conveying speed are adjusted, compressive stress is generated in the vicinity of both edges, and they are brought into close contact with each other. A method has been proposed in which both end portions in the widthwise direction of the succeeding material are hot-welded before rolling, and then the unjoined portion in the center in the widthwise direction is hot-welded by rolling. In Japanese Patent Publication No. 5-62035, the rear end portion of the preceding rolled material and the front end portion of the subsequent rolled material are overlapped and cut in the longitudinal direction, and a compressive force is applied at right angles to the cut surface, so A method has been proposed in which both of the metal plates are welded without expanding the bonding area without removing the scale, and are firmly bonded by contacting the entire surface in the thickness direction.
[0005]
[Problems to be solved by the invention]
As described above, various proposals have been made for the hot rolling continuous process, but only a part of the study from the material aspect of the steel sheet has been made, and there is much room for development for complete measures. It remains, and it has not yet reached the point where the defective material portions at the front and rear ends of the conventional steel plate are completely eliminated.
It is an object of the present invention to provide a method for producing a hot-rolled steel sheet that eliminates material variations in the coil according to the conventional method.
[0006]
[Means for Solving the Problems]
The present invention has been made to solve the above-described problems, and the means thereof is as follows.
(1) By mass% , C: 0.01 to 0.60%, Si: ≤ 2.50%, Mn: 0.05 to 2.50%, P: ≤ 0.050%, S: ≤ 0. A steel sheet containing 025%, Al: 0.005 to 0.100%, N: ≦ 0.010%, and the balance Fe and inevitable impurities , is subjected to a hot rolling continuous process to give a finish rolling temperature difference of 50 in the coil. Less than 100 ° C., the temperature difference between the entry side and the exit side of the finish mill is less than 100 ° C., the difference in the finish rolling speed in the coil is less than 400 mpm, and the tension in the finish mill is 0.1 kgf / mm 2 or more, and The method for producing a hot-rolled steel sheet having a small material variation by a hot-rolling continuation process, wherein the tension in the cooling bed is also 0.5 kgf / mm 2 or more.
[0007]
(2) In said (1), a steel plate is further mass%, Nb: 0.005-0.060%, Ti: 0.005-0.150%, B: <= 0.0050%, V: <= 0 .060%, Ca: ≦ 0.0060%, Ni: ≦ 0.50%, Cr: ≦ 0.80%, Mo: ≦ 0.70% A method for producing hot-rolled steel sheets with small material variations by the continuous rolling process.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention avoids deterioration of the surface quality and shape quality of the front and rear end portions of the steel plate, which has been generated by conventional rolling, by rolling the steel plate by a hot rolling continuous process. The main point is to prevent material variations in the steel sheet coil, and the composition includes the main elements used in ordinary steel sheets. In addition to this, depending on the purpose, for example, high strength, high toughness, high corrosion resistance An element that exhibits such characteristics is added.
[0009]
The reason for limiting the components of the steel targeted by the present invention will be described below.
C is a hardening element, and the smaller the amount of C, the better the workability. However, the lower limit of the amount of C is set to 0.01 wt% in consideration of the economics of deoxidation treatment that lowers the amount of C. However, if it exceeds 0.60 wt%, weldability and low temperature toughness deteriorate. Therefore, the content is 0.01 wt% or more and 0.60 wt% or less.
[0010]
Si is effective as a deoxidizer and is an element for improving strength. Furthermore, it has the effect | action which ensures a retained austenite by promoting the production | generation of the ferrite in steel and suppressing the production | generation of a carbide | carbonized_material. However, when the content exceeds 2.50 wt%, the effect is saturated, and on the contrary, the weldability is deteriorated and cracks are generated in the cast slab. Therefore, the content is 2.50 wt% or less.
Mn is an effective component for improving strength and toughness, and requires 0.05 wt% or more. However, if it exceeds 2.50 wt%, the weldability deteriorates. Therefore, the content is 0.05 wt% or more and 2.50 wt%.
[0011]
P degrades the low temperature toughness and may cause high temperature cracks during welding, so its content is 0.050 wt% or less. However, from the viewpoint of preventing scale wrinkles on the steel sheet surface, 0.010 wt% to 0.020 wt% is preferable.
Since S combines with Mn to produce A-based inclusions and deteriorates toughness and ductility, the content is set to 0.025 wt% or less.
[0012]
Al is used for deoxidation of steel. The effect occurs at 0.005 wt% or more, and is saturated when it exceeds 0.100 wt%. Therefore, the content is made 0.005 wt% or more and 0.100 wt% or less.
N is preferably as small as possible because it degrades toughness, but its content is set to 0.010 wt% or less in consideration of economy.
[0013]
Furthermore, in the present invention, in addition to the above main component composition examples, for example, one or more selected from Nb, Ti, B, V, Ca, Ni, Cr, and Mo may be included. it can.
[0014]
Nb is a preferred component that significantly increases the strength when added in a small amount and prevents deterioration of toughness due to strain aging caused by solid solution N. The effect can be expected at 0.005 wt% or more, but when it exceeds 0.060 wt%, it is saturated. Therefore, the content is made 0.005 wt% or more and 0.060 wt% or less.
Ti, like Nb, is a preferred component that significantly increases the strength when added in a small amount and improves toughness by a synergistic effect with controlled rolling. The effect can be expected at 0.005 wt% or more, but when it exceeds 0.150 wt%, it is saturated. Therefore, the content is made 0.005 wt% or more and 0.150 wt% or less.
[0015]
B is a preferred component that contributes to a significant increase in ductility with the addition of a small amount, and is also effective in improving aging, and its effect is saturated at 0.0050 wt%, so its upper limit is 0.0050 wt%. To do.
V is a component that can be expected to greatly improve the strength by adding a small amount, but if it exceeds 0.060 wt%, the effect is saturated and weldability deteriorates. Therefore, the upper limit is 0.060 wt%.
Ca is not only preferable for low-temperature toughness and ductility by controlling the form of inclusions, but is also a preferable component as a countermeasure against separation. However, if the content exceeds 0.0060 wt%, weldability and toughness deteriorate. Therefore, the upper limit is set to 0.0060 wt%.
[0016]
Ni is an effective component for improving strength and toughness, but if it exceeds 0.50 wt%, weldability deteriorates. Therefore, the upper limit is 0.50 wt%.
Cr is an effective component for improving strength and toughness together with Ni, but if it exceeds 0.80 wt%, weldability deteriorates, so the upper limit is made 0.80 wt%.
Mo is an effective component for improving strength and toughness, but if it exceeds 0.70 wt%, weldability deteriorates. Therefore, the upper limit is set to 0.70 wt%.
[0017]
Next, the hot rolling continuation process of the present invention will be described below in the order of its features, the effects thereof, and the reasons for limiting the hot rolling conditions.
FIG. 1 is a diagram showing an example of equipment layout for carrying out the present invention. The slab heated in the heating furnace is rolled by a roughing mill and then wound to form a rough rolling coil (rough bar). After this rough rolled coil has been unwound and the front and rear end portions have been cut in the welding shear, the joining device (the joining device is not particularly limited, so it is not particularly touched here. Also, there are various joining methods. Although the method is conceivable, the laser welding method is preferred), the rear end portion of the preceding material and the front end portion of the succeeding material are joined and rolled by a finishing mill. Therefore, the portion excluding the front end portion of the first rough bar and the rear end portion of the last rough bar can be rolled without a rolling end in finish rolling.
[0018]
Furthermore, since the finish rolling speed can be increased and the fluctuation can be reduced (less than 400 mpm), fluctuations in hot rolling conditions such as rolling temperature can also be reduced. The optimum hot rolling finishing temperature is Ar 3 to 900 ° C. This is because when the hot rolling finishing temperature is lower than the Ar 3 transformation point, the ductility is remarkably lowered, and when it exceeds 900 ° C., the ductility is deteriorated. Moreover, the finish rolling temperature difference in the coil can be less than 50 ° C., and the temperature difference between the entry side and the exit side of the finish rolling mill can be less than 100 ° C. These reductions in fluctuations in hot rolling conditions lead to a reduction in material variation.
[0019]
Further, the austenite region rolling in the finishing mill can make the tension 0.1 kgf / mm 2 or more over the entire length of the coil including the front and rear ends of the steel sheet. In addition, in the cooling bed, the tension can be increased to 0.5 kgf / mm 2 or more over the entire length of the coil. Since the cooling bed corresponds to a part where the transformation from austenite to ferrite of steel occurs in terms of temperature, the transformation is promoted under tension, leading to a decrease in hardenability and effective in reducing material variations.
[0020]
In addition, because the steel plate joint is run and cut by the shear after the pinch roll and the coil is wound by the winder, the tongue-shaped or fishtail-shaped defective portion that has occurred at the front and rear end portions of the previous coil There will be no. Therefore, it is possible to drastically reduce the correction of the defective shape portion by the conventional finishing plate and the truncation of the defective shape portion including the front and rear end portions, and it is possible to achieve the reduction of the finishing process and the improvement of the product yield. .
[0021]
As mentioned above, although the description of the characteristic part on the installation of this invention and the effect brought about by it was performed, in this invention, the biggest difference of the effect compared with the steel plate obtained by the previous process is the present invention. By carrying out the process, the variation in quality characteristics of the steel sheet, that is, the variation in the coil is remarkably reduced, and a product having a uniform and stable material can be obtained.
[0022]
In the present invention, with the recent rapid progress of steel plate manufacturing technology, by adopting a hot rolling continuous process combined with improvement of segregation in slab and improvement of controlled rolling in rolling, the material in these coils can be improved. The fluctuation can be suppressed within a very small range, and the limit values on each rolling are derived from the results obtained by the continuous rolling process.
As a result, it has become possible for consumers to use a steel plate made of a uniform material with little variation without considering the position of the steel plate at any position in the same coil.
[0023]
【Example】
The above-described effects of the present invention will be described specifically and in detail with reference to examples.
The present invention can be applied to almost all types of steel. As representatives, three types of steel plates for ordinary processing (A), high-tensile steel plates for automobiles (B), and steel plates for steel pipes (C) are selected to represent the chemical composition of the steel plates. It was shown in 1.
[0024]
[Table 1]
[0025]
The slab cast from these three types of steel is rolled into a steel plate under the conditions shown in Table 2 according to the present invention, and the rolled product is continuously rolled by joining the same lot for each steel type (the steel plate is joined in one rolling unit). 1 coil (except for the most advanced and rearmost coil) is randomly extracted from the inside, and 5 points out of the total length of the coil (corresponding to the front / rear end and the stationary part corresponding to the unsteady part) Samples were taken from three portions at equal distances from the central part.
In Table 2, the tension 1 is the tension in the finishing mill, and the tension 2 is the tension on the cooling bed.
[0026]
[Table 2]
[0027]
The samples were examined for materials, and the material properties in the coil are shown in Table 3. For comparison, the steel sheet rolled by the conventional method is similarly shown in Table 2 with the rolling conditions and Table 3 with the material survey results.
In Table 3, Δ is a variation (variation) in the coil, and is expressed as a maximum value-minimum value.
[0028]
[Table 3]
[0029]
As is apparent from Table 3, according to the present invention, the fluctuation range in the coil is reduced in all material characteristics as compared with the conventional method, and it is understood that a steel plate having a uniform and stable material is obtained. .
[0030]
【The invention's effect】
According to the present invention, the variation of the material in the coil of the hot rolled steel sheet is small, and the coil tip / rear end portion which has been cut off or down in the past can be adopted as a product.
In addition, since the cutting amount of the front and rear ends of the steel sheet was reduced, a great improvement was seen from the yield surface, and many effects such as reduction of the rewinding and refining process after winding the steel sheet were obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of equipment layout for carrying out the present invention.
Claims (2)
C :0.01〜0.60%、
Si:≦2.50%、
Mn:0.05〜2.50%、
P :≦0.050%、
S :≦0.025%、
Al:0.005〜0.100%、
N :≦0.010%
を含有し、残部Feと不可避的不純物からなる鋼板を、熱延連続化プロセスによりコイル内仕上圧延温度差を50℃未満、仕上圧延機の入側と出側の温度差を100℃未満、コイル内仕上圧延速度差を400mpm未満とし、かつ、仕上圧延機内での張力を0.1kgf/mm2以上に、かつ、冷却床内での張力も0.5kgf/mm2以上にしたことを特徴とする熱延連続化プロセスによる材質バラツキの小さい熱延鋼板の製造方法。 % By mass
C: 0.01 to 0.60%
Si: ≦ 2.50%
Mn: 0.05-2.50%,
P: ≦ 0.050%,
S: ≦ 0.025%,
Al: 0.005 to 0.100%,
N: ≦ 0.010%
A steel sheet comprising the remainder Fe and inevitable impurities, the difference in finish rolling temperature in the coil is less than 50 ° C. , the temperature difference between the entry side and the exit side of the finishing mill is less than 100 ° C. It is characterized in that the inner finishing rolling speed difference is less than 400 mpm , the tension in the finishing mill is 0.1 kgf / mm 2 or more, and the tension in the cooling bed is also 0.5 kgf / mm 2 or more. A method of manufacturing a hot-rolled steel sheet with small material variations by a continuous hot-rolling process.
Nb:0.005〜0.060%、Nb: 0.005 to 0.060%,
Ti:0.005〜0.150%、Ti: 0.005 to 0.150%,
B :≦0.0050%、B: ≦ 0.0050%,
V :≦0.060%、V: ≦ 0.060%,
Ca:≦0.0060%、Ca: ≦ 0.0060%,
Ni:≦0.50%、Ni: ≦ 0.50%,
Cr:≦0.80%、Cr: ≦ 0.80%,
Mo:≦0.70%Mo: ≦ 0.70%
のうち1種または2種以上を含むことを特徴とする請求項1記載の熱延連続化プロセスによる材質バラツキの小さい熱延鋼板の製造方法。The manufacturing method of the hot-rolled steel plate with small material variation by the hot-rolling continuous process of Claim 1 characterized by including 1 type, or 2 or more types.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08193096A JP3806174B2 (en) | 1996-03-12 | 1996-03-12 | Manufacturing method of hot-rolled steel sheet with small material variations by continuous hot-rolling process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08193096A JP3806174B2 (en) | 1996-03-12 | 1996-03-12 | Manufacturing method of hot-rolled steel sheet with small material variations by continuous hot-rolling process |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09241740A JPH09241740A (en) | 1997-09-16 |
JP3806174B2 true JP3806174B2 (en) | 2006-08-09 |
Family
ID=13760198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08193096A Expired - Fee Related JP3806174B2 (en) | 1996-03-12 | 1996-03-12 | Manufacturing method of hot-rolled steel sheet with small material variations by continuous hot-rolling process |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3806174B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106319352A (en) * | 2016-08-31 | 2017-01-11 | 安阳钢铁股份有限公司 | Titanium microalloy strengthened pipeline steel hot-rolled coiled plate and production method thereof |
-
1996
- 1996-03-12 JP JP08193096A patent/JP3806174B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH09241740A (en) | 1997-09-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000271603A (en) | Hot-rolling method of extra-thin strip and rolling apparatus | |
JP3915460B2 (en) | High strength hot rolled steel sheet and method for producing the same | |
JP3806173B2 (en) | Manufacturing method of hot-rolled steel sheet with small material variations by continuous hot-rolling process | |
JP3806176B2 (en) | Manufacturing method of hot-rolled steel sheet with small material variations by continuous hot-rolling process | |
JP3806174B2 (en) | Manufacturing method of hot-rolled steel sheet with small material variations by continuous hot-rolling process | |
JP3806172B2 (en) | Manufacturing method of hot-rolled steel sheet with good surface properties and pickling properties by continuous hot-rolling process | |
JP3806175B2 (en) | Manufacturing method of hot-rolled steel sheet with small material variations by continuous hot-rolling process | |
JP2001164321A (en) | Method for producing high tensile strength hot rolled steel plate for working using hot rolling continuous process | |
JP3872538B2 (en) | Method for producing hot-rolled steel sheet with good surface properties and pickling properties | |
JP3872537B2 (en) | Method for producing hot-rolled steel sheet with good surface properties and pickling properties | |
JPH09241790A (en) | Hot rolled high strength steel plate of low yield ratio type, excellent in durability and fatigue characteristic, by continuous hot rolling process and its production | |
JPH1112686A (en) | Steel sheet for can having excellent homogeneity and its manufacture | |
JPH10330847A (en) | Method for directly softening hot rolled wire rod | |
JP2975087B2 (en) | Manufacturing method of high toughness and high tensile strength hot rolled steel sheet with excellent uniformity | |
JP2790730B2 (en) | Manufacturing method of high carbon steel sheet with excellent material uniformity | |
JP3872536B2 (en) | Manufacturing method of hot-rolled steel sheet with excellent deep drawability using hot-rolling continuous process | |
JPH04289126A (en) | Production of hot rolled steel plate having high workability and high tensile strength and excellent in uniformity of quality | |
JPH09157790A (en) | High strength hot rolled steel plate excellent in upset butt weldability and formability, produced by continuous hot rolling process, and its production | |
JPH09241791A (en) | High strength hot rolled steel plate excellent in hole spreadability by continuous hot rolling process and its production | |
JPH09235624A (en) | Production of hot rolled steel plate excellent in atmospheric corrosion resistance by continuous hot rolling process | |
JP3694425B2 (en) | Rolling method with hot continuous rolling line | |
JP3834094B2 (en) | Manufacturing method of hot-rolled steel sheet for processing with excellent formability and good toughness using hot-rolling continuous process | |
JP2000087141A (en) | Production of thin high tensile hot rolled steel strip containing residual austenite | |
JP3834095B2 (en) | Manufacturing method of hot-rolled steel sheet for processing with good formability and good toughness using hot-rolling continuous process | |
JPH04289125A (en) | Production of hot rolled high tensile strength steel plate excellent in uniformity of quality |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060131 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060331 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060509 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060512 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100519 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100519 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110519 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120519 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |