JP3888402B2 - Process for producing optically active N-carbobenzoxy-tert-leucine - Google Patents
Process for producing optically active N-carbobenzoxy-tert-leucine Download PDFInfo
- Publication number
- JP3888402B2 JP3888402B2 JP20427797A JP20427797A JP3888402B2 JP 3888402 B2 JP3888402 B2 JP 3888402B2 JP 20427797 A JP20427797 A JP 20427797A JP 20427797 A JP20427797 A JP 20427797A JP 3888402 B2 JP3888402 B2 JP 3888402B2
- Authority
- JP
- Japan
- Prior art keywords
- tert
- leu
- optically active
- salt
- leucine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【0001】
【発明の属する技術分野】
本発明はN−カルボベンゾキシ−(RS)−tert−ロイシン(以下、「Z−(RS)−tert−Leu」と略す)から光学分割法により光学活性N−カルボベンゾキシ−tert−ロイシン(以下、「光学活性Z−tert−Leu」と略す)を製造する方法および光学活性Z−tert−Leuの製造中間体として有用な新規物質光学活性Z−tert−Leu・アミン塩に関する。光学活性Z−tert−Leuから例えば接触還元によって容易に誘導される光学活性tert−ロイシン(以下、「ロイシン」を「Leu」と略す)は天然には存在しないアミノ酸ではあるが、側鎖に疎水性で嵩高いtert−ブチル基を持つユニークな構造を持つために、不斉合成の触媒として、また、ペプチド系医薬品の成分として有用な化合物である[A.S.Bommarius et al、Tetrahedron Asymmetry 6,2851(1995)]。
【0002】
【従来の技術】
従来公知の光学活性tert−Leuの製造法としては、ジアステレオマーを生成させて分別晶析する方法と酵素的分割方法に大別される。
【0003】
前者の光学活性tert−Leuを得る方法としては、DL−tert−Leuにカンファースルホン酸などの光学活性スルホン酸を作用させ生成するジアステレオマーを分別晶析により分離する方法が知られている[J.Viret etal、Tetrahedron Lett.27 5865(1986)、特公昭63−54700号公報、特開平5−271169号公報]。
【0004】
しかし、これらの方法では、分割剤として用いる光学活性スルホン酸が親水性を持つために、ジアステレオマー塩分解後のリサイクル使用の回収に難点があり、工業的に有用な方法とは言えない。
【0005】
また、DL−tert−Leuのアミノ基を保護した、N−保護−(RS)−tert−Leuに光学分割剤としてブルシン、シンコニン、キニン、キニジンなどの天然アルカロイドを作用させ、生成するジアステレオマーを分別晶析により分離する方法が知られている[E.Abderhalden et al.,Z.physiol.Chem.228 187(1934)、T.Miyazawa et al.,Bull.Chem.Soc.Jpn.52 1539(1979)、G.C.Barrett et al., J.Chem.Soc.Perkin Trans.I 2313(1975)、D.A.Jaeger et al., J.Am.Chem.Soc.101 717(1979)]。
【0006】
しかし、これらの方法は高価で且つ毒性の強い天然アルカロイドを用いなければならないこと、さらには、分割剤は天然型の光学異性体のみが入手可能なことから高い光学純度で得られるのは一方の対掌体のみに限られるという欠点があった。
【0007】
後者の酵素的合成法として、(1) DL−tert−ブチルヒダントインをD−ヒダントイナーゼで開環し、N−カルバモイル−D−tert−Leuを中間体として得、これに亜硝酸処理を施してD−tert−Leuを得る方法[ドイツ特許出願公開第195292号明細書(1995)]、(2) N−ベンゾイル−DL−tert−Leuを無水酢酸で処理してアズラクトンを得、これをブタノール中、リパーゼで処理し、N−ベンゾイル−L−tert−Leuブチルエステルとし、これをアルカラーゼ処理でエステルを除去、次いで塩酸処理して脱ベンゾイルし、L−tert−Leuを得る方法(N.J.Turner et al、Tetrahedron Lett.36 1113(1995)、(3) N−フェニルアセチル−DL−tert−LeuをペニシリンGアシラーゼ処理で、脱アシル化することでL−tert−Leuを得、一方未反応N−フェニルアセチル−D−tert−Leuは酸加水分解でD−tert−Leuに導く方法[欧州特許第014223号明細書(1987)]などが知られている。
【0008】
しかし、上記(1)、(2)の方法ではD体もしくはL体のどちらか一方しか得られず、しかも、(2)の方法においては煩雑な処理を伴う酵素反応を2回も行わなければならないという欠点がある。(3)の方法においては、D体、L体のどちらも得られるが、高価な保護基であるフェニルアセチル基を用いるため工業的な製法とは言えない。
【0009】
【発明が解決しようとする課題】
本発明は、ペプチド合成においてアミノ保護基として有用なカルボベンゾキシ基を持つZ−(RS)−tert−Leuの操作的に簡便で且つ安価な光学分割法および光学活性Z−tert−Leuの製造中間体として有用な光学活性Z−tert−Leu・アミン塩を提供することを目的としている。
【0010】
【課題を解決するための手段】
本発明者は上記課題を達成すべく鋭意検討を行った結果、Z−(RS)−tert−Leuを、化学合成的手法により容易に入手し得るある種の光学活性アミンを分割剤として用いることにより高い分割効率で光学分割が可能であり、しかも、用いた光学活性アミンが高収率で回収できることから、工業的に有利な光学分割法であることを見出し、本発明を完成するに至った。
【0011】
即ち、本発明は、Z−(RS)−tert−Leuを光学活性erythro−2−アミノ−1,2−ジフェニルエタノールまたは光学活性cis−2−ベンジルアミノシクロヘキサンメタノールを分割剤として用いて光学分割することを特徴とする光学活性Z−tert−Leuの製造法である。
【0012】
また、本発明は、光学活性Z−tert−Leuの製造中間体として有用な新規物質光学活性Z−tert−Leu・erythro−2−アミノ−1,2−ジフェニルエタノール塩および光学活性Z−tert−Leu・cis−2−ベンジルアミノシクロヘキサンメタノール塩に関する。
【0013】
【発明の実施の形態】
本発明は、Z−(RS)−tert−Leuと上記特定な光学活性アミンとを適当な溶媒中で反応させ、生成する2種のジアステレオマー塩の溶解度差を利用して、難溶性のジアステレオマー塩を固液分離操作で固体として得、この塩を分解することで光学活性Z−tert−Leuを得るという方法である。
【0014】
出発原料である Z−(RS)−tert−Leu は、例えばアセトンからピナコール転移で得られるピナコロンを、過マンガン酸で酸化してα−ケト酸とし、次いで、ヒドロキシアミンでオキシムにした後、亜鉛還元することで得られる(RS)−tert−LeuをカルボベンゾキシクロリドとSchotten−Baumann反応させることによって得られる(J.P.Greenstein,M.Winitz,“ Chemistry of the Amino Acid”Vol.III(1961) John Wiley & Sons New Yorkp.2580−2588)。
【0015】
また、本発明で用いられる、Z−(RS)−tert−LeuはR体、S体が等量ずつ含まれる完全なラセミ体のみならず、どちらか一方の対掌体が過剰に存在するものも用いることが可能である。
【0016】
本発明で分割剤として用いる光学活性erythro−2−アミノ−1,2−ジフェニルエタノール及び光学活性cis−2−ベンジルアミノシクロヘキサンメタノールの2種が後記実施例から明らかなように、Z−(RS)−tert−Leuに対して良好な分割効率を示し、同様の光学活性アミンであっても、これら2種以外の例えばα−メチルベンジルアミン、1−(4−トリル)エチルアミン、4−フェニル−2−ブチルアミン、1−(1−ナフチル)エチルアミン、N−ベンジル−α−メチルベンジルアミン、3−メチル−2−フェニルブチルアミン、threo−2−アミノ−1−(4−ニトロフェニル)−1,3−プロパンジオール、2−アミノ−1−ブタノールではジアステレオマー塩の結晶化が全く起こらなかったり、起こっても分割効率が本発明の分割剤のそれに比べて1/2〜1/8程度と大幅に低く、分割剤として不適当である。このように上記2種の光学活性アミン分割剤による特異性が本発明者の研究結果により初めて見出されたものである。
【0017】
また、本発明で用いられる上記2種の光学活性アミンは、いずれも合成的手法で得られるものであるから、ブルシン、シンコニンなどの天然物由来の光学活性アミンと異なり、どちらの対掌体も市販品として容易に入手可能である。従ってZ−tert−Leuの求める光学活性体により、使い分けることが出来るという利点が挙げられる。
【0018】
更に本発明で用いる光学活性アミンは、いずれも非常に安定な化合物であり、分割回収の際に、分解、ラセミ化することは殆どない。
【0019】
本発明で用いられる溶媒としては、水、エタノール、2−プロパノールなどのアルコール類、酢酸エチル、酢酸イソプロピルなどの酢酸エステル類、アセトン、メチルエチルケトンなどのケトン類、アセトニトリルなどのニトリル類、トルエン、キシレンなどの芳香族炭化水素類、ジメチルホルムアミド、ジクロロメタン、クロロホルムなどのハロゲン化炭化水素類、テトラヒドロフラン、メチル−tert−ブチルエーテルなどのエーテル類などのように中性溶媒であれば特に限定されないが、就中、酢酸エチル、エタノール、イソプロパノールが好適に用いられる。また、これらの溶媒は単独で用いる外、互いに混和するものであれば2種以上の混合溶媒であっても差し支えない。
【0020】
これら溶媒の使用量は、用いられる光学活性アミン及び溶媒の種類によって異なり、一概に決められないが、通常は用いられたZ−(RS)−tert−Leuと光学活性アミンの合計量1g当たり3〜50ml用いればよい。
【0021】
Z−(RS)−tert−Leuと光学活性アミンとの混合比は前者1モルに対し、後者が0.3〜1.5モルの範囲内であれば特に問題はないが、通常は当モルで行われる。
【0022】
本発明での晶析の操作は、上記溶媒中にZ−(RS)−tert−Leu及び光学活性アミンを一挙に加えてもよいし、それらを順次加えても良い。この場合、より光学純度の高いジアステレオマー塩を得るためには、一旦溶解させた方がよい。そのためには、希薄な濃度で混合溶解させたものを濃縮して晶析させる方法、一旦加熱溶解させた後に冷却晶析させる方法、またはより溶解度を下げる溶媒を添加し結晶を析出させる方法が採用される。
【0023】
晶析により得られたジアステレオマー塩は濾過、遠心分離などの通常の固液分離操作により、もう一方の溶解度の高いジアステレオマー塩と容易に分離することができる。
【0024】
得られたジアステレオマー塩の分解方法は任意であり、通常行われているように、酸またはアルカリを添加することで容易に分解し、所望とする光学活性Z−tert−Leuと原料光学活性アミンとに分離することができる。
【0025】
具体的には、固液分離により得られたジアステレオマー塩に水酸化ナトリウム水溶液などのアルカリ水溶液を加え複分解した後、水と分層する有機溶媒で光学活性アミンを抽出除去した後、Z−tert−Leuナトリウム塩を含む水層を塩酸などの鉱酸を加えて酸性にすることで、Z−tert−Leuを得ることが出来る。この場合酸性にすることで、Z−tert−Leuが結晶として析出した場合にはそのまま晶析分離操作を行うことで、共存する塩化ナトリウムなどの無機塩と分離することができる。また、酸性にした後、水と分層する有機溶媒で抽出することで、有機層にZ−tert−Leuを抽出することもできる。抽出したZ−tert−Leuを含む有機層は、ペプチド合成に供する場合はそのまま用いることも出来るし、溶媒を留去することで容易にZ−tert−Leuを単離することもできる。
【0026】
また上記操作で有機溶媒に抽出した光学活性アミンは再度、光学分割に用いることができる。
【0027】
【実施例】
以下実施例により本発明をさらに詳細に説明する。
【0028】
[実施例1]
〈光学純度検定法〉
光学純度は光学分割晶析により得られた Z−tert−Leu と光学活性アミンとのジアステレオマー塩を以下の方法で複分解後、得られたZ−tert−Leuをメチルエステル体に誘導し、光学活性HPLCカラムにより、その面積比から算出した。
【0029】
具体的には、光学分割晶析により得られた塩に蒸留水と1M水酸化ナトリウム水溶液を加えアルカリ性にすることで複分解した後、エーテルで光学活性アミンを抽出した。残った水層に1M塩酸を加えてコンゴーレッド酸性にした後、酢酸エチルでZ−tert−Leuを抽出した。抽出した酢酸エチル層を無水硫酸ナトリウムで乾燥した後、減圧下に濃縮乾固し、光学活性Z−tert−Leuを得た。
【0030】
得られたZ−tert−Leu100mg当たり、乾燥塩化メチレン2mlを加えた後、乾燥メタノール18mg、4−ジメチルアミノピリジン46mgをそれぞれ少量の乾燥塩化メチレンとともに加えた。約30分間撹拌して均一にした後、N,N'−ジシクロヘキシルカルボジイミド78mgを加え、室温で24時間撹拌した。反応液にジエチルエーテル8mlを加え、析出したN,N'−ジシクロヘキシルウレアを濾別した後、濾液を飽和食塩水8mlで洗浄した。得られた有機層を無水硫酸ナトリウムで乾燥した後、溶媒を減圧下に留去してZ−tert−Leuメチルエステルを得た。これを光学活性HPLCカラムで測定することにより光学純度の検定を行った。
【0031】
〈HPLC条件〉
カ ラ ム:DAICEL CHIRALCEL OD
移 動 相:10% 2−プロパノール/ヘキサン
流 速:0.5ml/min
検出波長:254nm
【0032】
〈計算式〉
・塩収率=(得られた塩のモル単位の物質量)/(用いたZ−tert−Leuのモル単位の物質量)×2×100(%)
得られた塩はZ−tert−Leuとアミンとの等モルの塩とみなし、原料Z−tert−Leu中の一方の活性体に対する収率として算出した。
・分割効率=光学純度×塩収率/100(%)
【0033】
[実施例2]
Z−(RS)−tert−Leu 1mmolと表1に示す光学活性アミン10mmolと、これら2成分の合計1グラム当たり酢酸エチル3〜50mlを加え、加熱溶解した後、室温下で1日放置した。析出した結晶を吸引濾過分離した。得られた塩を実施例1の方法に従い、メチルエステルに誘導後、HPLCで光学純度を検定した。結果は表1に示したとおりであった。
【0034】
【表1】
*) 表中の略号
ADPE:erythro−2−アミノ−1,2−ジフェニルエタノール
cis−Am:cis−2−ベンジルアミノシクロヘキサンメタノール
MBA:α−メチルベンジルアミン
TEA:1−(4−トリル)エチルアミン
PBA:4−フェニル−2−ブチルアミン
NEA:1−(1−ナフチル)エチルアミン
BMBA:N−ベンジル−α−メチルベンジルアミン
MPB:3−メチル−2−フェニルブチルアミン
ANP:threo−2−アミノ−1−(4−ニトロフェニル)−1,3−プロパンジオール
2AB:2−アミノ−1−ブタノール
【0035】
[実施例3]
(−)−cis−2−ベンジルアミノシクロヘキサンメタノール1mmol及びZ−tert−Leuを1mmol、分割晶析溶媒として表2に示すものを用いた以外は実施例2と同様に行った。結果を表2に示す。
【0036】
【表2】
【0037】
[実施例4]
(−)−erythro−2−アミノ−1,2−ジフェニルエタノール1mmol及びZ−tert−Leuを1mmol、分割溶媒として表3に示すものを用いる以外は実施例2と同様に行った。結果を表3に示す。
【0038】
【表3】
【0039】
[実施例5]
Z−(RS)−tert−Leu1.327g(5.0mmol)に(−)−erythro−2−アミノ−1,2−ジフェニルエタノール1.066g(5.0mmol)を入れ、ジアステレオマー塩を形成させ、2−プロパノール19mlを加え、撹拌しながら83℃に加熱溶解させた後、室温で1晩かけてゆっくりと放冷し結晶化させた。析出した結晶を吸引濾過し、少量の2−プロパノールで洗浄した後、デシケーター内で乾燥した。結晶得量1.727g。本結晶の少量を実施例1の方法に従い複分解したところ、光学純度55.5%eeのZ−(S)−tert−Leuであった。一方、本結晶1.427gを1グラム当たり9mlの2−プロパノールを用いて同様の再結晶を2回行い、0.661gのZ−(S)−tert−Leuと(−)−erythro−2−アミノ−1,2−ジフェニルエタノールとの塩を得た。収率66.8%(対原料Z−(RS)−tert−Leu中のS体)、mp160.0〜161.0℃、比施光度[α]D 29−66.80°(c=1.04,MeOH)。
【0040】
この塩0.446gに水5mlと1M水酸化ナトリウム水溶液3mlを加え複分解した後、(−)−erythro−2−アミノ−1、2−ジフェニルエタノールをエーテル10mlで3回抽出した。水層に1M塩酸6mlを加えてコンゴーレッド酸性にした後、Z−(S)−tert−Leuを酢酸エチル10mlで3回抽出した。得られた酢酸エチル層を無水硫酸ナトリウムで乾燥した後、減圧濃縮して0.197gのZ−(S)−tert−Leuを得た。収率53.2%(対原料Z−(RS)−tert−Leu中のS体)。光学純度98.6%ee。
【0041】
一方、上記エーテル層を減圧濃縮して0.185gの(−)−erythro−2−アミノ−1、2−ジフェニルエタノールを得た。回収率93.5%。
【0042】
[実施例6]
Z−(RS)−tert−Leu0.265g(1.00mmol)に(−)−cis−2−ベンジルアミノシクロヘキサンメタノール0.219g(1.0mmol)を入れ、ジアステレオマー塩を形成させ、95%エタノール5mlを加え、攪拌しながら80℃に加熱溶解させた後、室温で一晩かけてゆっくりと放冷し結晶化させた。析出した結晶を吸引濾過し、少量の95%エタノールで洗浄した後、デシケータ内で一晩乾燥した。結晶得量0.212g。本結晶を95%エタノール4mlで再結晶して、0.134gのZ−(S)−tert−Leuと(−)−cis)−2−ベンジルアミノシクロヘキサンメタノールとの塩を得た。収率55.3%(対原料Z−(RS)−tert−Leu中のS体)、mp171.5〜172.5℃。
【0043】
この塩0.134gに水2mlと1M水酸化ナトリウム水溶液2mlを加え複分解した後、(−)−cis−2−ベンジルアミノシクロヘキサンメタノールをエーテル10mlで3回抽出した。水層に1M塩酸4mlを加えてコンゴーレッド酸性にした後、Z−(S)−tert−Leuを酢酸エチル10mlで3回抽出した。得られた酢酸エチル層を無水硫酸ナトリウムで乾燥した後、減圧下濃縮して0.089gのZ−(S)−tert−Leuを得た。光学純度97.6%ee。
【0044】
【発明の効果】
以上説明したように本発明によれば、リサイクル使用が可能で且つどちらの対掌体も入手可能な光学活性アミンをZ−(RS)−tert−Leuの分割剤として使用するもので、光学活性Z−tert−Leuの製造中間体として有用な新規物質光学活性Z−tert−Leu・アミン塩が得られ、当該塩を分解して効率よく目的とする光学活性Z−tert−Leuを製造取得することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to optically active N-carbobenzoxy-tert-leucine (hereinafter abbreviated as “Z- (RS) -tert-Leu”) by optical resolution method from N-carbobenzoxy- (RS) -tert-leucine (hereinafter abbreviated as “Z- (RS) -tert-Leu”). The following description relates to a method for producing “optically active Z-tert-Leu” and a novel substance optically active Z-tert-Leu · amine salt useful as an intermediate for producing optically active Z-tert-Leu. Optically active tert-leucine (hereinafter, “leucine” is abbreviated as “Leu”) easily derived from optically active Z-tert-Leu, for example, by catalytic reduction, is an amino acid that does not exist in nature, but is hydrophobic in the side chain. It is a compound useful as a catalyst for asymmetric synthesis and as a component of peptide pharmaceuticals because it has a unique and bulky tert-butyl group [AS Bommarius et al, Tetrahedron Asymmetry 6 , 2851 (1995)].
[0002]
[Prior art]
Conventionally known methods for producing optically active tert-Leu are roughly classified into a method for producing diastereomers and fractional crystallization and an enzymatic resolution method.
[0003]
As a method for obtaining the former optically active tert-Leu, a method is known in which an optically active sulfonic acid such as camphorsulfonic acid is allowed to act on DL-tert-Leu to separate diastereomers formed by fractional crystallization [ J. Villet et al., Tetrahedron Lett. 27 5865 (1986), Japanese Examined Patent Publication No. 63-54700, Japanese Unexamined Patent Publication No. 5-271169].
[0004]
However, in these methods, since the optically active sulfonic acid used as a resolving agent has hydrophilicity, there is a difficulty in recovering recycling after diastereomeric salt decomposition, and it cannot be said that it is an industrially useful method.
[0005]
Diastereomers produced by reacting natural alkaloids such as brucine, cinchonine, quinine, and quinidine as optical resolution agents with N-protected- (RS) -tert-Leu in which the amino group of DL-tert-Leu is protected Is known by fractional crystallization [E. Abderhalden et al., Z. physiol. Chem. 228 187 (1934), T.P. Miyazawa et al., Bull. Chem. Soc. Jpn. 52 1539 (1979), G.M. C. Barrett et al. , J .; Chem. Soc. Perkin Trans. I 2313 (1975), D.I. A. Jaeger et al. , J .; Am. Chem. Soc. 101 717 (1979)].
[0006]
However, these methods require the use of expensive and highly toxic natural alkaloids. Furthermore, since only the natural optical isomers are available as resolution agents, it is possible to obtain high optical purity. There was a disadvantage that it was limited to the enantiomer.
[0007]
As the latter enzymatic synthesis method, (1) DL-tert-butylhydantoin is opened with D-hydantoinase to obtain N-carbamoyl-D-tert-Leu as an intermediate, which is treated with nitrous acid to form D -Method of obtaining tert-Leu [DE 195292 (1995)], (2) N-benzoyl-DL-tert-Leu is treated with acetic anhydride to obtain azlactone, which is dissolved in butanol. Treatment with lipase to give N-benzoyl-L-tert-Leu butyl ester, which is treated with alcalase to remove the ester and then treated with hydrochloric acid to remove benzoyl to obtain L-tert-Leu (NJ Turner) et al, Tetrahedron Lett. 36 1113 (1995), (3) N- phenylacetyl -DL-ter -Leu is deacylated by penicillin G acylase treatment to obtain L-tert-Leu, while unreacted N-phenylacetyl-D-tert-Leu is converted to D-tert-Leu by acid hydrolysis [ EP 014223 (1987)] and the like are known.
[0008]
However, in the methods (1) and (2), only one of the D-form and the L-form can be obtained, and in the method (2), an enzymatic reaction involving complicated treatment is not performed twice. There is a disadvantage of not becoming. In the method (3), both D-form and L-form can be obtained, but it cannot be said to be an industrial production process because a phenylacetyl group which is an expensive protective group is used.
[0009]
[Problems to be solved by the invention]
The present invention provides an operationally simple and inexpensive optical resolution method of Z- (RS) -tert-Leu having a carbobenzoxy group useful as an amino protecting group in peptide synthesis and production of optically active Z-tert-Leu. An object is to provide an optically active Z-tert-Leu · amine salt useful as an intermediate.
[0010]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above-mentioned problems, the present inventor uses Z- (RS) -tert-Leu as a resolving agent of a certain optically active amine that can be easily obtained by a chemical synthesis method. Thus, optical resolution can be achieved with high resolution efficiency, and since the optically active amine used can be recovered in high yield, the present invention has been found to be an industrially advantageous optical resolution method and the present invention has been completed. .
[0011]
That is, the present invention optically resolves Z- (RS) -tert-Leu using optically active erythro-2-amino-1,2-diphenylethanol or optically active cis-2-benzylaminocyclohexanemethanol as a resolving agent. This is a method for producing optically active Z-tert-Leu.
[0012]
The present invention also provides a novel substance optically active Z-tert-Leu erythro-2-amino-1,2-diphenylethanol salt useful as an intermediate for the production of optically active Z-tert-Leu and optically active Z-tert- It relates to Leu cis-2-benzylaminocyclohexane methanol salt.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The present invention reacts with Z- (RS) -tert-Leu and the above-mentioned specific optically active amine in an appropriate solvent, and makes use of the difference in solubility between the two diastereomeric salts that are produced, resulting in poor solubility. In this method, a diastereomeric salt is obtained as a solid by solid-liquid separation, and this salt is decomposed to obtain optically active Z-tert-Leu.
[0014]
Z- (RS) -tert-Leu, which is a starting material, is prepared by, for example, converting pinacolone obtained by the pinacol transfer from acetone into α-keto acid by permanganic acid, and then converting it to oxime with hydroxyamine, followed by zinc (RS) -tert-Leu obtained by reduction can be obtained by reacting carbobenzoxyl chloride with Schottten-Baumann (J. P. Greenstein, M. Winitz, “Chemistry of the Amino Acid” Vol. III ( 1961) John Wiley & Sons New York. 2580-2588).
[0015]
In addition, Z- (RS) -tert-Leu used in the present invention includes not only a complete racemate containing equal amounts of R and S isomers but also an excess of either enantiomer. Can also be used.
[0016]
As is apparent from the examples described later, Z- (RS) is an optically active erythro-2-amino-1,2-diphenylethanol and an optically active cis-2-benzylaminocyclohexanemethanol used as a resolving agent in the present invention. Even if it is the same optically active amine, for example, α-methylbenzylamine, 1- (4-tolyl) ethylamine, 4-phenyl-2, etc., other than these two, exhibit good resolution efficiency with respect to -tert-Leu. -Butylamine, 1- (1-naphthyl) ethylamine, N-benzyl-α-methylbenzylamine, 3-methyl-2-phenylbutylamine, threo-2-amino-1- (4-nitrophenyl) -1,3- In propanediol and 2-amino-1-butanol, crystallization of diastereomeric salts did not occur at all or occurred. However, the splitting efficiency is significantly low, about 1/2 to 1/8, compared with that of the splitting agent of the present invention, and is not suitable as a splitting agent. Thus, the specificity by the above-mentioned two kinds of optically active amine resolving agents has been found for the first time based on the results of research by the present inventors.
[0017]
Further, since the two optically active amines used in the present invention are both obtained by a synthetic method, unlike the optically active amines derived from natural products such as brucine and cinchonine, both enantiomers are It is easily available as a commercial product. Therefore, there is an advantage that it can be used properly depending on the optically active substance desired by Z-tert-Leu.
[0018]
Furthermore, any of the optically active amines used in the present invention is a very stable compound, and is hardly decomposed or racemized during fractional collection.
[0019]
Examples of the solvent used in the present invention include water, alcohols such as ethanol and 2-propanol, acetates such as ethyl acetate and isopropyl acetate, ketones such as acetone and methyl ethyl ketone, nitriles such as acetonitrile, toluene, xylene and the like. Is not particularly limited as long as it is a neutral solvent such as aromatic hydrocarbons, halogenated hydrocarbons such as dimethylformamide, dichloromethane and chloroform, ethers such as tetrahydrofuran and methyl-tert-butyl ether, etc. Ethyl acetate, ethanol and isopropanol are preferably used. These solvents may be used alone or in combination of two or more as long as they are miscible with each other.
[0020]
The amount of these solvents to be used varies depending on the optically active amine and the type of solvent used, and is not generally determined, but is usually 3 per gram of the total amount of Z- (RS) -tert-Leu and optically active amine used. ˜50 ml may be used.
[0021]
The mixing ratio of Z- (RS) -tert-Leu and optically active amine is not particularly problematic as long as the latter is in the range of 0.3 to 1.5 moles with respect to 1 mole of the former, but is usually equivalent to this mole. Done in
[0022]
In the operation of crystallization in the present invention, Z- (RS) -tert-Leu and an optically active amine may be added to the solvent at once, or they may be added sequentially. In this case, in order to obtain a diastereomeric salt with higher optical purity, it is better to dissolve it once. For this purpose, a method of concentrating and crystallizing a mixture dissolved at a dilute concentration, a method of cooling and crystallizing after heating and dissolving once, or a method of precipitating crystals by adding a solvent with lower solubility is adopted. Is done.
[0023]
The diastereomeric salt obtained by crystallization can be easily separated from the other highly diastereomeric salt by ordinary solid-liquid separation operations such as filtration and centrifugation.
[0024]
The method for decomposing the obtained diastereomeric salt is arbitrary, and as usual, it can be easily decomposed by adding an acid or alkali, and the desired optically active Z-tert-Leu and the raw material optically active It can be separated into amines.
[0025]
Specifically, the diastereomeric salt obtained by solid-liquid separation was subjected to metathesis by adding an alkaline aqueous solution such as an aqueous sodium hydroxide solution, and then the optically active amine was extracted and removed with an organic solvent that was separated from water. Z-tert-Leu can be obtained by acidifying the aqueous layer containing tert-Leu sodium salt by adding a mineral acid such as hydrochloric acid. In this case, when Z-tert-Leu is precipitated as crystals, it can be separated from the coexisting inorganic salt such as sodium chloride by performing the crystallization separation operation as it is by making it acidic. Moreover, after making it acidic, Z-tert-Leu can also be extracted to an organic layer by extracting with the organic solvent which separates with water. The organic layer containing the extracted Z-tert-Leu can be used as it is when it is used for peptide synthesis, or Z-tert-Leu can be easily isolated by distilling off the solvent.
[0026]
The optically active amine extracted into the organic solvent by the above operation can be used again for optical resolution.
[0027]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
[0028]
[Example 1]
<Optical purity test method>
The optical purity is obtained by metathesis of a diastereomeric salt of Z-tert-Leu obtained by optical resolution crystallization and an optically active amine by the following method, and then the obtained Z-tert-Leu is derived into a methyl ester form. The area ratio was calculated using an optically active HPLC column.
[0029]
Specifically, the salt obtained by optical resolution crystallization was metabolized by adding distilled water and 1M aqueous sodium hydroxide solution to make it alkaline, and then the optically active amine was extracted with ether. 1M hydrochloric acid was added to the remaining aqueous layer to make it Congo red, and then Z-tert-Leu was extracted with ethyl acetate. The extracted ethyl acetate layer was dried over anhydrous sodium sulfate and then concentrated to dryness under reduced pressure to obtain optically active Z-tert-Leu.
[0030]
After adding 2 ml of dry methylene chloride to 100 mg of the obtained Z-tert-Leu, 18 mg of dry methanol and 46 mg of 4-dimethylaminopyridine were added together with a small amount of dry methylene chloride. After stirring for about 30 minutes to make it uniform, 78 mg of N, N′-dicyclohexylcarbodiimide was added, and the mixture was stirred at room temperature for 24 hours. 8 ml of diethyl ether was added to the reaction solution, and the precipitated N, N′-dicyclohexylurea was filtered off, and the filtrate was washed with 8 ml of saturated brine. The obtained organic layer was dried over anhydrous sodium sulfate, and then the solvent was distilled off under reduced pressure to obtain Z-tert-Leu methyl ester. This was assayed for optical purity by measuring with an optically active HPLC column.
[0031]
<HPLC conditions>
Column: DAICEL CHIRALCEL OD
Mobile phase: 10% 2-propanol / hexane flow rate: 0.5 ml / min
Detection wavelength: 254 nm
[0032]
<a formula>
-Salt yield = (amount of substance in mol unit of the obtained salt) / (amount of substance in mol unit of Z-tert-Leu used) x 2 x 100 (%)
The obtained salt was regarded as an equimolar salt of Z-tert-Leu and amine, and was calculated as a yield based on one active substance in the raw material Z-tert-Leu.
Resolution efficiency = optical purity x salt yield / 100 (%)
[0033]
[Example 2]
Z- (RS) -tert-Leu 1 mmol, optically active amine 10 mmol shown in Table 1, and 3 to 50 ml of ethyl acetate per gram of these two components were added, dissolved by heating, and then allowed to stand at room temperature for 1 day. The precipitated crystals were separated by suction filtration. The obtained salt was derivatized into a methyl ester according to the method of Example 1, and optical purity was assayed by HPLC. The results were as shown in Table 1.
[0034]
[Table 1]
*) Abbreviations in Table ADPE: erythro-2-amino-1,2-diphenylethanol cis-Am: cis-2-benzylaminocyclohexane methanol MBA: α-methylbenzylamine TEA: 1- (4-tolyl) ethylamine PBA : 4-phenyl-2-butylamine NEA: 1- (1-naphthyl) ethylamine BMBA: N-benzyl-α-methylbenzylamine MPB: 3-methyl-2-phenylbutylamine ANP: threo-2-amino-1- ( 4-Nitrophenyl) -1,3-propanediol 2AB: 2-amino-1-butanol
[Example 3]
The same procedure as in Example 2 was carried out except that 1 mmol of (-)-cis-2-benzylaminocyclohexanemethanol and 1 mmol of Z-tert-Leu were used, and those shown in Table 2 were used as the split crystallization solvent. The results are shown in Table 2.
[0036]
[Table 2]
[0037]
[Example 4]
The same procedure as in Example 2 was performed except that 1 mmol of (−)-erythro-2-amino-1,2-diphenylethanol and 1 mmol of Z-tert-Leu were used, and the solvents shown in Table 3 were used as the resolving solvent. The results are shown in Table 3.
[0038]
[Table 3]
[0039]
[Example 5]
Add 1.66 g (5.0 mmol) of (-)-erythro-2-amino-1,2-diphenylethanol to 1.327 g (5.0 mmol) of Z- (RS) -tert-Leu to form a diastereomeric salt. Then, 19 ml of 2-propanol was added, and the mixture was heated and dissolved at 83 ° C. with stirring, and then allowed to cool slowly at room temperature overnight to allow crystallization. The precipitated crystals were filtered with suction, washed with a small amount of 2-propanol, and then dried in a desiccator. Crystal yield 1.727 g. When a small amount of this crystal was metathesized according to the method of Example 1, it was Z- (S) -tert-Leu with an optical purity of 55.5% ee. On the other hand, 1.427 g of this crystal was recrystallized twice using 9 ml of 2-propanol per gram, and 0.661 g of Z- (S) -tert-Leu and (-)-erythro-2- A salt with amino-1,2-diphenylethanol was obtained. Yield 66.8% (vs raw material Z- (RS) -tert-Leu S), mp 160.0-161.0 ° C., specific light intensity [α] D 29 -66.80 ° (c = 1) .04, MeOH).
[0040]
After metathesis by adding 5 ml of water and 3 ml of 1M aqueous sodium hydroxide solution to 0.446 g of this salt, (−)-erythro-2-amino-1,2-diphenylethanol was extracted three times with 10 ml of ether. The aqueous layer was acidified with Congo red by adding 6 ml of 1M hydrochloric acid, and then Z- (S) -tert-Leu was extracted three times with 10 ml of ethyl acetate. The obtained ethyl acetate layer was dried over anhydrous sodium sulfate and then concentrated under reduced pressure to obtain 0.197 g of Z- (S) -tert-Leu. Yield 53.2% (vs. S form in raw material Z- (RS) -tert-Leu). Optical purity 98.6% ee.
[0041]
On the other hand, the ether layer was concentrated under reduced pressure to obtain 0.185 g of (−)-erythro-2-amino-1,2-diphenylethanol. Recovery rate 93.5%.
[0042]
[Example 6]
0.219 g (1.0 mmol) of (-)-cis-2-benzylaminocyclohexanemethanol was added to 0.265 g (1.00 mmol) of Z- (RS) -tert-Leu to form a diastereomeric salt. After adding 5 ml of ethanol and heating and dissolving at 80 ° C. with stirring, it was allowed to cool slowly at room temperature overnight to allow crystallization. The precipitated crystals were filtered by suction, washed with a small amount of 95% ethanol, and dried overnight in a desiccator. Crystal yield 0.212 g. The crystal was recrystallized from 4 ml of 95% ethanol to obtain a salt of 0.134 g of Z- (S) -tert-Leu and (-)-cis) -2-benzylaminocyclohexanemethanol. Yield 55.3% (vs raw material Z- (RS) -tert-Leu in tert-Leu), mp 171.5-172.5 ° C.
[0043]
To 0.134 g of this salt, 2 ml of water and 2 ml of 1M aqueous sodium hydroxide solution were added for metathesis, and (−)-cis-2-benzylaminocyclohexanemethanol was extracted three times with 10 ml of ether. The aqueous layer was acidified with Congo Red by adding 4 ml of 1M hydrochloric acid, and then Z- (S) -tert-Leu was extracted three times with 10 ml of ethyl acetate. The obtained ethyl acetate layer was dried over anhydrous sodium sulfate and then concentrated under reduced pressure to obtain 0.089 g of Z- (S) -tert-Leu. Optical purity 97.6% ee.
[0044]
【The invention's effect】
As described above, according to the present invention, an optically active amine that can be recycled and both enantiomers are available is used as a Z- (RS) -tert-Leu resolving agent. A novel optically active Z-tert-Leu-amine salt useful as an intermediate for the production of Z-tert-Leu is obtained, and the desired optically active Z-tert-Leu is efficiently obtained by decomposing the salt. be able to.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20427797A JP3888402B2 (en) | 1997-07-30 | 1997-07-30 | Process for producing optically active N-carbobenzoxy-tert-leucine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20427797A JP3888402B2 (en) | 1997-07-30 | 1997-07-30 | Process for producing optically active N-carbobenzoxy-tert-leucine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1143475A JPH1143475A (en) | 1999-02-16 |
JP3888402B2 true JP3888402B2 (en) | 2007-03-07 |
Family
ID=16487826
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20427797A Expired - Fee Related JP3888402B2 (en) | 1997-07-30 | 1997-07-30 | Process for producing optically active N-carbobenzoxy-tert-leucine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3888402B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4126921B2 (en) * | 2002-02-15 | 2008-07-30 | 味の素株式会社 | Process for producing optically active β-phenylalanine derivative |
JP5122871B2 (en) * | 2007-06-01 | 2013-01-16 | 大東化学株式会社 | Process for producing optically active N-benzyloxycarbonylamino acid and diastereomeric salt |
CN118000312A (en) * | 2024-03-25 | 2024-05-10 | 南京农业大学 | Application of N-carbobenzoxy-leucine in reducing rumen methane emission of ruminants |
-
1997
- 1997-07-30 JP JP20427797A patent/JP3888402B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1143475A (en) | 1999-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS581105B2 (en) | Optically active amino acid-mandelic acid complex and method for producing the same | |
US5057615A (en) | Process for purifying tryptophan | |
WO1999033785A1 (en) | PROCESSES FOR PRODUCING β-HALOGENO-α-AMINO-CARBOXYLIC ACIDS AND PHENYLCYSTEINE DERIVATIVES AND INTERMEDIATES THEREOF | |
FR2504918A1 (en) | PROCESS FOR THE PREPARATION OF D-2- (6-METHOXY-2-NAPHTHYL) -PROPIONIC ACID | |
JP3888402B2 (en) | Process for producing optically active N-carbobenzoxy-tert-leucine | |
HU229189B1 (en) | Process for the preparation of n-[(s)-1-carboxy-butyl]-(s)-alanine esters and their use for synthesizing perindopril | |
SK14052002A3 (en) | Novel method for synthesis of N-[(S)-1-carboxybutyl]-(S)-alanine esters and use in synthesis of perindopril | |
CN108409589A (en) | A kind of preparation method of the beta-amino acid esters of band chirality | |
JPH0393753A (en) | Production of alpha-amino acid | |
JP3716376B2 (en) | Optical resolving agent and method for producing optically active 3-aminopyrrolidine derivative using the same | |
JP2555244B2 (en) | Novel optically active tert-leucine.1- (4-methylphenyl) ethanesulfonate and its production method | |
JP2801500B2 (en) | Method for producing N-alkoxycarbonyl amino acid | |
JP3665976B2 (en) | Optical resolving agent and process for producing optically active N-tert-butyl-2-piperazinecarboxamide using the same | |
RU2696099C1 (en) | Chemoenzymatic synthesis of 2,5-diketomorfoline derivatives | |
JPH0393757A (en) | Production of alpha-amino acid | |
FR2496660A1 (en) | PROCESS FOR THE PREPARATION OF N-ACYLCARNOSINE | |
WO2006053440A1 (en) | New processes for the preparation of optically pure indoline-2-carboxylic acid and n-acetyl-indoline-2-carboxylic acid | |
EP0844230A2 (en) | Optical resolution method of (plus, minus)-3,4-dihydroxybutanoic acid | |
JPH02243663A (en) | Method for synthesizing optically active amino acid | |
US6093846A (en) | Process for preparing optically active 2-hydroxy-methyl-3-phenylpropionic acid | |
JPH05279325A (en) | Production of optically active 3-hydroxypyrolidine | |
JPH0751090A (en) | Production of optically active 3-aminobutanoic acid and its ester intermediate | |
JPH01120298A (en) | Method for preparing optically pure homophenylalanine | |
JPH08157437A (en) | Production of d-amino acid-n-(s)-alpha-alkylbenzylamide | |
JPH01149775A (en) | Production of optically active 2-methylpiperazine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Effective date: 20061101 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061108 |
|
A61 | First payment of annual fees (during grant procedure) |
Effective date: 20061121 Free format text: JAPANESE INTERMEDIATE CODE: A61 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091208 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 3 Free format text: PAYMENT UNTIL: 20091208 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 4 Free format text: PAYMENT UNTIL: 20101208 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101208 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |