Nothing Special   »   [go: up one dir, main page]

JP3873579B2 - Manufacturing method of high formability hot-rolled steel sheet - Google Patents

Manufacturing method of high formability hot-rolled steel sheet Download PDF

Info

Publication number
JP3873579B2
JP3873579B2 JP2000173934A JP2000173934A JP3873579B2 JP 3873579 B2 JP3873579 B2 JP 3873579B2 JP 2000173934 A JP2000173934 A JP 2000173934A JP 2000173934 A JP2000173934 A JP 2000173934A JP 3873579 B2 JP3873579 B2 JP 3873579B2
Authority
JP
Japan
Prior art keywords
less
cooling
hot
temperature
rolled steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000173934A
Other languages
Japanese (ja)
Other versions
JP2001355023A (en
Inventor
博士 中田
正 井上
透 稲積
貞則 今田
啓泰 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000173934A priority Critical patent/JP3873579B2/en
Priority to AT00962864T priority patent/ATE490349T1/en
Priority to DE60045303T priority patent/DE60045303D1/en
Priority to EP00962864A priority patent/EP1149925B1/en
Priority to KR10-2001-7002777A priority patent/KR100430987B1/en
Priority to PCT/JP2000/006640 priority patent/WO2001023625A1/en
Priority to US09/838,017 priority patent/US6623573B2/en
Publication of JP2001355023A publication Critical patent/JP2001355023A/en
Priority to US10/445,631 priority patent/US6818079B2/en
Priority to KR10-2003-0075559A priority patent/KR100430983B1/en
Priority to US10/899,642 priority patent/US20050000606A1/en
Application granted granted Critical
Publication of JP3873579B2 publication Critical patent/JP3873579B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱延鋼板の製造方法に関し、特に局部伸びに優れた高加工性熱延鋼板の製造方法に関する。
【0002】
【従来の技術】
フェライトとマルテンサイトが主体の複合組織を有する高強度熱延鋼板は、伸びー強度バランスが良好で加工性に優れていることから、自動車の軽量化など種々の構造部材や部品に適用が進められている。最近、その適用範囲の拡大に伴い、加工性をより向上させることが望まれるようになってきた。
【0003】
高強度複合組織において切欠き伸び特性、伸びフランジ加工性を向上させるためには複合組織の微細化が有効とされている。複合組織鋼は、Ar3変態点以上からフェライト・オーステナイト2相が共存する温度まで冷却後、その温度で保持し、フェライト変態をさせることにより、オーステナイト相にCを濃縮させ、その後の急冷する2段冷却によりオーステナイト相をマルテンサイト組織とするものである。
【0004】
複合組織の微細化は、このような製造工程の限定によりなされるものであり、先行技術として、例えば、特開昭54−65118号公報、特開昭56−33429号公報、特開昭60−121225号公報等が挙げられる。
【0005】
特開昭54−65118号公報では、一次冷却の冷却速度を80℃/秒以上としてフェライトの粒成長を抑制する技術、特開昭56−33429号公報では一次冷却開始温度を720〜850℃、一次冷却速度を30〜200℃/秒としてフェライトを微細化する技術、特開昭60−121225号公報ではAr3〜Ar3+40℃の温度域で、45%以上の累積圧下をおこない、フェライトを微細分散させ、マルテンサイトを微細化する技術が開示されている。
【0006】
【発明が解決しようとする課題】
しかしながら、上述した従来技術はいずれも、冷却能力が小さい既存の設備を前提としたものであるため、複合組織の微細化や第2相組織の微細化に限界があり、最近の適用範囲の拡大に伴う局部伸び向上の要望を必ずしも満足するものではない。
【0007】
本発明は、以上の点に鑑みなされたもので、その目的は、局部伸び等の加工性に優れた高強度熱延鋼板の製造方法を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは上記目的を達成するため、2段冷却による複合組織鋼の製造を対象に、複合組織の微細化に及ぼす仕上圧延後の冷却の影響について鋭意検討した。その結果、仕上圧延後のランナウト冷却での2段冷却において、一次冷却開始までの時間を1.0秒以内とし、一次冷却速度を200℃/sを超える高冷却速度とすることが有効なことを見出した。
【0009】
本発明は以上の知見を基に更に検討を加えてなされたものである。すなわち本発明は、
1.質量%で、C:0.04〜0.2%、Si:0.25〜2.0%、Mn:0.5〜2.5%、Sol.Al:0.1%以下、残部がFeおよび不可避的不純物からなる鋼を連続鋳造後、粗圧延を行う工程と、
(b)1050℃以下で30%以上の累積圧下を含み、圧延終了温度をAr3以上、Ar3+60℃以下とする仕上圧延を行う工程と、
(c)圧延終了後、1.0秒以内に、冷却開始温度と冷却終了温度との差が100℃以上、250℃未満となる冷却域を200℃/s超えで一次冷却する工程と、
(d)720℃以下580℃越えの温度域を2sec以上20sec以下の間10℃/s以下で冷却後、30℃/s以上で2次冷却する工程と、
(e)巻取り温度400℃未満で巻取りする工程とを具備したことを特徴とする、強度−切欠き伸びバランスがTS(MPa)×N.EI(%)≧7201(MPa・%)である高加工性熱延鋼板の製造方法。
【0011】
2.連続熱間仕上げ圧延機の入り側、または連続熱間仕上圧延機のスタンド間の加熱装置により、粗バーを加熱して仕上終了温度を制御することを特徴とする請求項1記載の高加工性熱延鋼板の製造方法。
【0012】
3.鋼成分として、更に、質量%で、Ti,Nb,V,Zrの一種又は二種以上を0.01〜0.2%含有することを特徴とする1または2記載の高加工性熱延鋼板の製造方法。
【0013】
4.鋼成分として、更に、質量%で、Cr:1%以下、Mo:0.5%以下の一種又は二種を含有することを特徴とする1乃至3の何れかに記載の高加工性熱延鋼板の製造方法。
【0014】
【発明の実施の形態】
成分組成、製造条件の限定について詳細に説明する。
【0015】
1.成分組成

Cは、オーステナイトの焼入れ性を向上させ、複合組織中に適量のマルテンサイト、もしくはマルテンサイトとベイナイトを混在させて強度を確保するため0.04%以上添加する。一方、0.2%を超えると加工性及び溶接性を劣化させるため、0.04〜0.2%(0.04%以上、0.2%以下)とする。
【0016】
Si
Siは、固溶強化によりフェライトを強化するとともに、熱間圧延後の緩冷却または放冷時のフェライトの析出を促進し、オーステナイトへのCの濃縮を促進させるため、0.25%以上添加する。一方、2.0%を超えると溶接性および表面性状が劣化するため、0.25〜2.0%とする。
【0017】
Mn
Mnは、Cと同様未変態オーステナイトの焼入れ性を高めるため、0.5%以上添加する。一方、2.5%を超えるとその効果が飽和し、バンド状組織を形成して加工性を劣化させるので、0.5〜2.5%とする。
【0018】
Sol.Al
Alは脱酸材及び不可避的不純物として含有されるNを固定して加工性を向上させるため添加する。0.1%を超えるとその効果が飽和し、清浄度を悪化させ加工性を劣化させるため、0.1%以下とする。
【0019】
本発明鋼は基本成分組成として以上の元素を含有するが、その作用効果が得られる範囲で他の元素を含有することは差し支えない。例えば、所望する強度、加工性等の特性に応じてTi,Nb,V,Zr,Cr,Mo、Caの一種又は二種以上を添加することができる。
【0020】
Ti,Nb,V,Zr
強度の調整または炭窒化物形成により固溶C,Nを低減させて非時効化し、深絞り性を向上させる場合、Ti,Nb,V,Zrの一種又は二種以上を合計として0.01〜0.2%添加する。
【0021】
Cr,Mo
Cr,Moは、オーステナイトの焼入れ性を高め、C,Mnと同様な効果を有するため、必要とする場合、添加する。高価な元素のため、多量に添加すると素材コストが上昇し、溶接性を劣化させるため、Cr:1%以下、Mo:0.5%以下とする。
Ca
Caは加工性を向上させる場合、0.005%を超えない範囲で添加する。
【0022】
2.製造条件
本発明鋼は連続鋳造により鋼片を製造し、鋼片は粗圧延、仕上圧延後、緩冷却を含む2段冷却を行う。粗圧延の条件については特に規定せず、仕上圧延前、再加熱後、または連続鋳造後、直接、行うことが可能である。
【0023】
仕上圧延条件
仕上圧延は、歪みの導入により、仕上圧延後の冷却過程でフェライト核の生成を促進させ、組織を微細化させるため、1050℃以下で累積圧下率30%以上とする。圧延終了温度はオーステナイトの結晶粒径を微細化するため、Ar3以上、Ar3+60℃以下とする。尚、より有効に、組織を微細化するためには連続熱間仕上圧延機の入り側またはスタンド間に設けた誘導加熱装置により、圧延温度を精密に制御し、仕上終了温度をAr3直上とすることが好ましい。
【0024】
冷却条件
一次冷却
一次冷却は仕上圧延により、導入されたオーステナイト結晶粒内の変形帯密度を維持し、オーステナイト結晶粒界のみならず結晶粒内からも多数のフェライト核生成させるため、圧延終了後、1.0秒以内に開始し、冷却速度はフェライト変態開始温度を低下させ、フェライト核生成後の結晶粒成長速度を遅くするため、200℃/s超えとする。尚、冷却速度は速いほど有利であり、300℃/s以上が好ましい。
【0025】
一次冷却の冷却域は、結晶粒径の微細化と強度を確保するため冷却開始温度と冷却終了温度との差が100℃以上、250℃未満となる温度域とする。
【0026】
温度差が100℃未満では、微細なフェライトの析出が少なく結晶粒が十分微細化されず、250℃以上では2次冷却前にベイナイトが生成し、十分な強度が得られない。
【0027】
一次冷却後、緩冷却を経て、二次冷却を行う。緩冷却はフェライト変態を十分促進するために720℃以下580℃超えの温度域で2sec以上、10℃/s以下で行う。20secを超えると、パーライトが析出しやすく加工性が劣化するため、20sec以下とする。尚、緩冷却には放冷を含むものとする。
【0028】
二次冷却
二次冷却の冷却速度は、安定して、オーステナイトをマルテンサイトまたはマルテンサイトに一部ベイナイトを含んだ組織とするため、30℃/s以上とする。
【0029】
巻取り温度
二次冷却を経た後、巻取りを行う。巻取温度は、400℃以上の場合、十分な量のマルテンサイトが得られず、得られたマルテンサイトも巻取り後のコイル冷却過程において焼戻され、軟化する。また、フェライト/マルテンサイト界面に導入された可動転位が回復し、複合組織鋼の特徴である低降伏比が失われるため、400℃未満とする。
【0030】
尚、本発明により、板厚が2.0mm以下の薄鋼板を製造する場合、2.0mmt以下に限らず、仕上げ温度狭レンジ制御は組織制御に有効なため、連続熱間仕上圧延機のスタンド間または仕上圧延前に粗バーの幅方向エッジ部を誘導加熱装置により、加熱することが好ましく、また本発明の効果を損なうものではない。また、本発明は、コイルボックス等を用いて保熱した粗バーを溶接して行う連続熱延プロセスに適用することも可能である。
【0031】
【実施例】
表1に示す化学成分の鋼を溶製し、表2に示す製造方法で板厚3.2mmの熱延鋼板を製造した。表3に製造した熱延鋼板の機械的性質を示す。本発明の成分組成、製造条件を満足し、本発明の実施例であるサンプルNo.1,2では、優れた強度−切欠き伸びバランス(TS×N.El)で降伏比も低く、比較例であるサンプルNo.3,4に対し、加工性に優れている。
【0032】
図1に本実施例による強度−切欠き伸びバランス(TS×N.El)に及ぼす一次冷却速度の影響を示す。
【0033】
【表1】

Figure 0003873579
【0034】
【表2】
Figure 0003873579
【0035】
【表3】
Figure 0003873579
【0036】
【発明の効果】
本発明によれば、特殊な成分組成によらず複合組織が微細化され、局部伸びなどの加工性に優れた熱延鋼板を製造することが可能で、産業上、極めて有用である。
【図面の簡単な説明】
【図1】切欠き伸び−強度バランスに及ぼす一次冷却速度の影響を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a hot-rolled steel sheet, and more particularly to a method for producing a highly workable hot-rolled steel sheet having excellent local elongation.
[0002]
[Prior art]
High-strength hot-rolled steel sheets with a composite structure mainly composed of ferrite and martensite have a good elongation-strength balance and excellent workability, so they are being applied to various structural members and parts such as automobile weight reduction. ing. Recently, with the expansion of the application range, it has been desired to further improve the workability.
[0003]
In order to improve notch elongation characteristics and stretch flangeability in a high strength composite structure, refinement of the composite structure is effective. The composite steel is cooled from the Ar 3 transformation point or higher to the temperature at which the two phases of ferrite and austenite coexist, and then held at that temperature and ferrite transformation is performed, thereby concentrating C in the austenite phase and then rapidly cooling 2 The austenite phase has a martensitic structure by stage cooling.
[0004]
The refinement of the composite structure is made by such a limitation of the manufacturing process. As prior arts, for example, JP-A-54-65118, JP-A-56-33429, JP-A-60- 121225 gazette etc. are mentioned.
[0005]
JP-A-54-65118 discloses a technique for suppressing the grain growth of ferrite by setting the cooling rate of primary cooling to 80 ° C./second or more, and JP-A-56-33429 discloses a primary cooling start temperature of 720 to 850 ° C. A technology for refining ferrite with a primary cooling rate of 30 to 200 ° C./second, Japanese Patent Application Laid-Open No. 60-121225 performs a cumulative reduction of 45% or more in a temperature range of Ar 3 to Ar 3 + 40 ° C. A technique for finely dispersing martensite is disclosed.
[0006]
[Problems to be solved by the invention]
However, since all of the above-mentioned conventional technologies are based on existing facilities with a small cooling capacity, there is a limit to the refinement of the composite structure and the refinement of the second phase structure, and the recent application range has been expanded. This does not necessarily satisfy the demand for improvement in local elongation.
[0007]
This invention is made | formed in view of the above point, The objective is to provide the manufacturing method of the high strength hot-rolled steel plate excellent in workability, such as local elongation.
[0008]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the present inventors diligently studied the influence of cooling after finish rolling on the refinement of the composite structure, aiming at the manufacture of the composite structure steel by two-stage cooling. As a result, in the two-stage cooling in the runout cooling after finish rolling, it is effective to set the time until the start of primary cooling within 1.0 second and the primary cooling rate to a high cooling rate exceeding 200 ° C / s. I found.
[0009]
The present invention has been made based on the above findings and further studies. That is, the present invention
1. In mass%, C: 0.04 to 0.2%, Si: 0.25 to 2.0%, Mn: 0.5 to 2.5%, Sol. Al: 0.1% or less , the step of performing rough rolling after continuous casting of steel consisting of Fe and inevitable impurities ,
(B) a step of performing finish rolling including a cumulative reduction of 30% or more at 1050 ° C. or less, with the rolling end temperature being Ar 3 or more and Ar 3 + 60 ° C. or less;
(C) Within 1.0 second after the end of rolling, a step of performing primary cooling at a temperature exceeding 200 ° C./s in a cooling region where the difference between the cooling start temperature and the cooling end temperature is 100 ° C. or more and less than 250 ° C .;
(D) a step of cooling at a temperature range of 720 ° C. or less and over 580 ° C. at 10 ° C./s or less for 2 seconds or more and 20 seconds or less, and then secondary cooling at 30 ° C./s or more;
(E) The strength-notch elongation balance is characterized by comprising a step of winding at a winding temperature of less than 400 ° C. TS (MPa) × N. A method for producing a high workability hot-rolled steel sheet satisfying EI (%) ≧ 7201 (MPa ·%) .
[0011]
2. 2. The high workability according to claim 1, wherein the finishing end temperature is controlled by heating the rough bar by a heating device on the entrance side of the continuous hot finish rolling mill or between the stands of the continuous hot finish rolling mill. A method for producing a hot-rolled steel sheet.
[0012]
3. The high-workability hot-rolled steel sheet according to 1 or 2, further comprising 0.01 to 0.2% of one or more of Ti, Nb, V, and Zr as a steel component by mass%. Manufacturing method.
[0013]
4). The high workability hot-rolling according to any one of 1 to 3, further comprising, as a steel component, one or two of Cr: 1% or less and Mo: 0.5% or less in mass%. A method of manufacturing a steel sheet.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The limitation on the component composition and production conditions will be described in detail.
[0015]
1. Ingredient composition C
C is added in an amount of 0.04% or more in order to improve the hardenability of austenite and to ensure strength by mixing an appropriate amount of martensite or martensite and bainite in the composite structure. On the other hand, if it exceeds 0.2%, workability and weldability are deteriorated, so 0.04 to 0.2% (0.04% or more and 0.2% or less).
[0016]
Si
Si strengthens ferrite by solid solution strengthening, promotes precipitation of ferrite during slow cooling or cooling after hot rolling, and promotes concentration of C into austenite, so 0.25% or more is added. . On the other hand, if over 2.0%, the weldability and surface properties deteriorate, so 0.25 to 2.0%.
[0017]
Mn
Mn, like C, is added in an amount of 0.5% or more in order to improve the hardenability of untransformed austenite. On the other hand, if it exceeds 2.5%, the effect is saturated and a band-like structure is formed to deteriorate the workability, so the content is made 0.5 to 2.5%.
[0018]
Sol. Al
Al is added to fix N which is contained as a deoxidizing material and inevitable impurities and to improve workability. If it exceeds 0.1%, the effect is saturated, and the cleanliness is deteriorated and the workability is deteriorated.
[0019]
The steel of the present invention contains the above elements as a basic component composition, but may contain other elements as long as its effects can be obtained. For example, one or more of Ti, Nb, V, Zr, Cr, Mo, and Ca can be added according to desired properties such as strength and workability.
[0020]
Ti, Nb, V, Zr
When solid solution C and N are reduced by non-aging by adjusting the strength or forming carbonitride to improve deep drawability, one or more of Ti, Nb, V, and Zr are added in a total amount of 0.01 to Add 0.2%.
[0021]
Cr, Mo
Cr and Mo increase the hardenability of austenite and have the same effect as C and Mn. Therefore, Cr and Mo are added when necessary. Since it is an expensive element, if it is added in a large amount, the material cost increases and the weldability is deteriorated, so Cr: 1% or less, Mo: 0.5% or less.
Ca
When improving workability, Ca is added in a range not exceeding 0.005%.
[0022]
2. Production Conditions The steel of the present invention produces a steel slab by continuous casting, and the steel slab undergoes two-stage cooling including slow cooling after rough rolling and finish rolling. The conditions for rough rolling are not particularly defined, and can be performed directly before finish rolling, after reheating, or after continuous casting.
[0023]
Finishing rolling conditions Finishing rolling has a cumulative rolling reduction of 30% or more at 1050 ° C. or lower in order to promote the formation of ferrite nuclei and refine the structure in the cooling process after finishing rolling by introducing strain. The rolling end temperature is set to Ar3 or higher and Ar3 + 60 ° C or lower in order to refine the crystal grain size of austenite. In order to make the structure more effective, the rolling temperature is precisely controlled by the induction heating device provided on the entrance side or between the stands of the continuous hot finishing mill, and the finishing temperature is just above Ar3. It is preferable.
[0024]
Cooling conditions Primary cooling Primary cooling maintains the deformation band density in the introduced austenite grains by finish rolling, and generates a large number of ferrite nuclei not only from the austenite grain boundaries but also from within the grains. The cooling rate starts within 1.0 second, and the cooling rate is set to exceed 200 ° C./s in order to lower the ferrite transformation start temperature and to slow down the crystal grain growth rate after ferrite nucleation. The faster the cooling rate, the better.
[0025]
The cooling region for primary cooling is a temperature region in which the difference between the cooling start temperature and the cooling end temperature is 100 ° C. or more and less than 250 ° C. in order to ensure refinement of crystal grain size and strength.
[0026]
If the temperature difference is less than 100 ° C., the precipitation of fine ferrite is small and the crystal grains are not sufficiently refined, and if it is 250 ° C. or more, bainite is generated before secondary cooling, and sufficient strength cannot be obtained.
[0027]
After the primary cooling, the secondary cooling is performed after slow cooling. The slow cooling is performed at a temperature range of 720 ° C. or less and 580 ° C. or more and 2 seconds or more and 10 ° C./s or less in order to sufficiently promote the ferrite transformation. If it exceeds 20 sec, pearlite is likely to precipitate, and the workability deteriorates. Note that the slow cooling includes cooling.
[0028]
Secondary cooling The cooling rate of the secondary cooling is set to 30 ° C./s or more in order to stably form austenite with martensite or a structure containing partly bainite in martensite.
[0029]
After passing through the secondary cooling of the winding temperature, the winding is performed. When the winding temperature is 400 ° C. or more, a sufficient amount of martensite cannot be obtained, and the obtained martensite is also tempered and softened in the coil cooling process after winding. Further, the movable dislocation introduced at the ferrite / martensite interface is recovered, and the low yield ratio characteristic of the composite structure steel is lost.
[0030]
In addition, when manufacturing a thin steel plate having a plate thickness of 2.0 mm or less according to the present invention, it is not limited to 2.0 mmt or less, and the finishing temperature narrow range control is effective for structure control. It is preferable to heat the widthwise edge portion of the rough bar with an induction heating device during or before finish rolling, and the effect of the present invention is not impaired. Further, the present invention can also be applied to a continuous hot rolling process in which a rough bar retained by using a coil box or the like is welded.
[0031]
【Example】
Steels having chemical components shown in Table 1 were melted and hot rolled steel sheets having a thickness of 3.2 mm were manufactured by the manufacturing method shown in Table 2. Table 3 shows the mechanical properties of the hot-rolled steel sheets produced. Satisfying the component composition and production conditions of the present invention, sample No. Nos. 1 and 2 have excellent strength-notch elongation balance (TS × N.El) and a low yield ratio. Compared to 3 and 4, it is excellent in workability.
[0032]
FIG. 1 shows the effect of the primary cooling rate on the strength-notch elongation balance (TS × N.E1) according to this example.
[0033]
[Table 1]
Figure 0003873579
[0034]
[Table 2]
Figure 0003873579
[0035]
[Table 3]
Figure 0003873579
[0036]
【The invention's effect】
According to the present invention, it is possible to produce a hot-rolled steel sheet having a finer composite structure and excellent workability such as local elongation regardless of a special component composition, which is extremely useful industrially.
[Brief description of the drawings]
FIG. 1 is a graph showing the effect of primary cooling rate on notch elongation-strength balance.

Claims (4)

質量%で、C:0.04〜0.2%、Si:0.25〜2.0%、Mn:0.5〜2.5%、Sol.Al:0.1%以下、残部がFeおよび不可避的不純物からなる鋼を連続鋳造後、粗圧延を行う工程と、
(b)1050℃以下で30%以上の累積圧下を含み、圧延終了温度をAr3以上、Ar3+60℃以下とする仕上圧延を行う工程と、
(c)圧延終了後、1.0秒以内に、冷却開始温度と冷却終了温度との差が100℃以上、250℃未満となる冷却域を200℃/s超えで一次冷却する工程と、
(d)720℃以下580℃越えの温度域を2sec以上20sec以下の間10℃/s以下で冷却後、30℃/s以上で2次冷却する工程と、
(e)巻取り温度400℃未満で巻取りする工程とを具備したことを特徴とする、強度−切欠き伸びバランスがTS(MPa)×N.EI(%)≧7201 ( MPa・%)である高加工性熱延鋼板の製造方法。
In mass%, C: 0.04 to 0.2%, Si: 0.25 to 2.0%, Mn: 0.5 to 2.5%, Sol. Al: 0.1% or less , the step of performing rough rolling after continuous casting of steel consisting of Fe and inevitable impurities ,
(B) a step of performing finish rolling including a cumulative reduction of 30% or more at 1050 ° C. or less, with the rolling end temperature being Ar 3 or more and Ar 3 + 60 ° C. or less;
(C) Within 1.0 second after the end of rolling, a step of performing primary cooling at a temperature exceeding 200 ° C./s in a cooling region where the difference between the cooling start temperature and the cooling end temperature is 100 ° C. or more and less than 250 ° C .;
(D) a step of cooling at a temperature range of 720 ° C. or less and over 580 ° C. at 10 ° C./s or less for 2 seconds or more and 20 seconds or less, and then secondary cooling at 30 ° C./s or more;
(E) The strength-notch elongation balance is characterized by comprising a step of winding at a winding temperature of less than 400 ° C. TS (MPa) × N. A method for producing a high workability hot-rolled steel sheet having EI (%) ≧ 7201 ( MPa ·%) .
連続熱間仕上げ圧延機の入り側、または連続熱間仕上圧延機のスタンド間の加熱装置により、粗バーを加熱して仕上終了温度を制御することを特徴とする請求項1記載の高加工性熱延鋼板の製造方法。2. The high workability according to claim 1, wherein the finishing end temperature is controlled by heating the rough bar by a heating device on the entrance side of the continuous hot finish rolling mill or between the stands of the continuous hot finish rolling mill. A method for producing a hot-rolled steel sheet. 鋼成分として、更に、質量%で、Ti,Nb,V,Zrの一種又は二種以上を0.01〜0.2%含有することを特徴とする請求項1または2に記載の高加工性熱延鋼板の製造方法。  The high workability according to claim 1 or 2, further comprising 0.01 to 0.2% of one or more of Ti, Nb, V, and Zr as a steel component by mass%. A method for producing a hot-rolled steel sheet. 鋼成分として、更に、質量%で、Cr:1%以下、Mo:0.5%以下の一種又は二種を含有することを特徴とする請求項1乃至3の何れかに記載の高加工性熱延鋼板の製造方法。  The high workability according to any one of claims 1 to 3, further comprising, as a steel component, one or two of Cr: 1% or less and Mo: 0.5% or less in mass%. A method for producing a hot-rolled steel sheet.
JP2000173934A 1999-09-19 2000-06-09 Manufacturing method of high formability hot-rolled steel sheet Expired - Fee Related JP3873579B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2000173934A JP3873579B2 (en) 2000-06-09 2000-06-09 Manufacturing method of high formability hot-rolled steel sheet
DE60045303T DE60045303D1 (en) 1999-09-29 2000-09-27 STEEL PLATE AND METHOD FOR THE PRODUCTION THEREOF
EP00962864A EP1149925B1 (en) 1999-09-29 2000-09-27 Sheet steel and method for producing sheet steel
KR10-2001-7002777A KR100430987B1 (en) 1999-09-29 2000-09-27 Steel sheet and method therefor
PCT/JP2000/006640 WO2001023625A1 (en) 1999-09-29 2000-09-27 Sheet steel and method for producing sheet steel
AT00962864T ATE490349T1 (en) 1999-09-29 2000-09-27 STEEL SHEET AND METHOD FOR THE PRODUCTION THEREOF
US09/838,017 US6623573B2 (en) 1999-09-29 2001-04-19 Steel sheet and method for manufacturing the same
US10/445,631 US6818079B2 (en) 1999-09-19 2003-05-27 Method for manufacturing a steel sheet
KR10-2003-0075559A KR100430983B1 (en) 1999-09-29 2003-10-28 Steel sheet and method therefor
US10/899,642 US20050000606A1 (en) 1999-09-29 2004-07-26 Method for manufacturing a steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000173934A JP3873579B2 (en) 2000-06-09 2000-06-09 Manufacturing method of high formability hot-rolled steel sheet

Publications (2)

Publication Number Publication Date
JP2001355023A JP2001355023A (en) 2001-12-25
JP3873579B2 true JP3873579B2 (en) 2007-01-24

Family

ID=18676066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000173934A Expired - Fee Related JP3873579B2 (en) 1999-09-19 2000-06-09 Manufacturing method of high formability hot-rolled steel sheet

Country Status (1)

Country Link
JP (1) JP3873579B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4470701B2 (en) * 2004-01-29 2010-06-02 Jfeスチール株式会社 High-strength thin steel sheet with excellent workability and surface properties and method for producing the same

Also Published As

Publication number Publication date
JP2001355023A (en) 2001-12-25

Similar Documents

Publication Publication Date Title
JP6700398B2 (en) High yield ratio type high strength cold rolled steel sheet and method for producing the same
WO2001023625A1 (en) Sheet steel and method for producing sheet steel
JP6079726B2 (en) Manufacturing method of high-strength steel sheet
CN111218620A (en) High-yield-ratio cold-rolled dual-phase steel and manufacturing method thereof
JP3514158B2 (en) Manufacturing method of high tensile strength hot rolled steel sheet with excellent stretch flangeability and material stability
JP3915460B2 (en) High strength hot rolled steel sheet and method for producing the same
JP3879440B2 (en) Manufacturing method of high strength cold-rolled steel sheet
JP7357691B2 (en) Ultra-high strength cold-rolled steel sheet and its manufacturing method
JP2004018912A (en) High-tensile strength cold-rolled steel plate excellent in elongation and stretch-flanging property and method for manufacturing the same
JPH0432512A (en) Production of hot rolled high strength dual-phase steel plate for working
JP3864663B2 (en) Manufacturing method of high strength steel sheet
CN110402298B (en) High-strength cold-rolled steel sheet and method for producing same
JP2023071938A (en) High strength steel sheet having excellent ductility and workability, and method for manufacturing the same
JPH06264183A (en) Hot rolled high tensile strength steel plate with high workability and its production
JPH02163318A (en) Production of high-tension cold rolled steel sheet having excellent press formability
JP3873579B2 (en) Manufacturing method of high formability hot-rolled steel sheet
JP4543471B2 (en) Manufacturing method of high-strength hot-rolled steel sheet with excellent plate shape and workability
CN112400033B (en) Hot-rolled plated steel sheet having high strength, high formability, and excellent bake hardenability, and method for producing same
JP3508657B2 (en) High strength cold rolled steel sheet excellent in ductility and stretch flangeability and method for producing the same
CN113862563B (en) High-strength cold-rolled steel sheet
JP3873581B2 (en) Manufacturing method of high formability hot-rolled steel sheet
JP2690791B2 (en) High-strength hot-rolled steel sheet with excellent workability and method for producing the same
JP3818025B2 (en) Method for producing cold-rolled steel sheet with small anisotropy
JPH10280050A (en) Production of high strength hot rolled steel sheet excellent in press formability
JP2003342680A (en) Dual-phase high-tensile cold rolled steel sheet excellent in deep drawability and stretch-flangeability and its production method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061016

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees