Nothing Special   »   [go: up one dir, main page]

JP3869526B2 - Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor - Google Patents

Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor Download PDF

Info

Publication number
JP3869526B2
JP3869526B2 JP11861897A JP11861897A JP3869526B2 JP 3869526 B2 JP3869526 B2 JP 3869526B2 JP 11861897 A JP11861897 A JP 11861897A JP 11861897 A JP11861897 A JP 11861897A JP 3869526 B2 JP3869526 B2 JP 3869526B2
Authority
JP
Japan
Prior art keywords
electrolytic capacitor
electrolytic solution
aluminum electrolytic
aluminum
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11861897A
Other languages
Japanese (ja)
Other versions
JPH10303077A (en
Inventor
秀美 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elna Co Ltd
Original Assignee
Elna Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Elna Co Ltd filed Critical Elna Co Ltd
Priority to JP11861897A priority Critical patent/JP3869526B2/en
Publication of JPH10303077A publication Critical patent/JPH10303077A/en
Application granted granted Critical
Publication of JP3869526B2 publication Critical patent/JP3869526B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)

Description

【0001】
【産業上の利用分野】
本発明は電解コンデンサ駆動用電解液を使用したアルミニウム電解コンデンサに関するものである。
【0002】
【従来の技術】
アルミニウム電解コンデンサは、エッチングされたアルミニウム箔の表面に電解酸化などによって酸化被膜を形成したアルミニウム陽極箔とアルミニウム陰極箔とをセパレータを介して巻回したコンデンサ素子に電解コンデンサ駆動用電解液を含浸し、これを有底の金属ケ−ス内に入れ開口部を絶縁性の封口体で密封し、陽極箔および陰極箔にそれぞれ固着された引出しリードを、それぞれ封口体の貫通孔から外に引き出してなる構造を有する。
【0003】
アルミニウム電解コンデンサ(以下、「電解コンデンサ」という)の駆動用電解液(以下、「電解液」という)は、このような構造を有する電解コンデンサの実質的に誘電体である電極箔(陽極箔)の酸化被膜に接し、真の陰極として機能するとともに酸化被膜の修復能力を有しており、通電中は常に酸化被膜の再生という化学反応を起こして、コンデンサ特性を安定させている。しかし長期間使用していたり、長期間保管した後に使用すると酸化被膜の再生が不十分となり、コンデンサとしての機能が低下してしまう。
【0004】
そのために電解液の酸化被膜修復能力が、電解コンデンサ自体の特性に直接影響を及ぼすことになる。したがって、高性能の電解コンデンサを得るには、優れた酸化被膜修復能力を有した電解液を用いることが不可欠の条件とされている。
【0005】
そこでその好適な電解液として、非プロトン溶媒を主溶媒とし、カルボン酸またはその塩を溶解したものがよく使用されている。特に、低圧用の電解コンデンサにはγ−ブチロラクトンを主体とした溶媒に芳香族カルボン酸の第4級アンモニウム塩や、第3級アミン塩を溶質として溶解した電解液が多く使用されている。
【0006】
【発明が解決しようとする課題】
しかしながら、第3級アミン塩や第4級アンモニウム塩を含有する電解液を使用した電解コンデンサは火花電圧が低いという欠点がある。また第3級アミン塩を含む電解液は電気伝導度が低く、第4級アンモニウム塩を含有する電解液より電気伝導度において劣る。
【0007】
さらに、第4級アンモニウム塩を含有する電解液は電気伝導度は良いが、漏液が多いという欠点がある。すなわち第4級アンモニウム塩を含有する電解液はブチルゴムなどの封口体を膨潤させたり、特に陰極箔に固着されたリード線のタブ端子の近傍において電解液のpHが強アルカリとなり、タブ端子を腐食させてゴム封口体に穿設された透孔との嵌合が弱まり、ゴム封口体とタブ端子の間から外部へ漏液しやすくなるという問題点がある。
【0008】
【課題を解決するための手段】
本発明は上述した従来の課題に鑑みなされたもので、電気伝導度および火花電圧に優れ漏液のない信頼性の高いアルミニウム電解コンデンサおよびアルミニウム電解コンデンサ駆動用電解液を提供するものである。すなわち、本発明は芳香族または脂肪族カルボン酸のトリルトリアゾ−ル塩を溶質とした電解液を特徴とするものである。
【0009】
トリルトリアゾ−ルとして5メチル−1H−ベンゾトリアゾ−ル、4メチル−1H−ベンゾトリアゾ−ル、または5メチル−1H−ベンゾトリアゾ−ルと4メチル−1H−ベンゾトリアゾ−ルとの混合物を例示できる。当該混合物において、混合割合は任意に選択できる。
【0010】
本発明に用いられる芳香族カルボン酸はフタル酸、安息香酸、サリチル酸またはレゾルシル酸が好ましいが、これに限定するものではない。
【0011】
また、本発明に用いられる脂肪族カルボン酸はマレイン酸、シトラコン酸、フマル酸またはマロン酸が好ましいが、これに限定するものではない。
【0012】
本発明の電解液は溶媒として非プロトン溶媒を用いるのが好ましく、非プロトン溶媒としてはβ−ブチロラクトン、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、γ−カプロラクトン、ε−カプロラクトン、γ−ヘプタラクトン、γ−ヒドロキシ−n−カプリル酸ラクトン、γ−ノナラクトン、δ−デカラクトン、γ−ウンデカラクトンなどのラクトン類が挙げられるが、ラクトン類にのみに限定するものではない。
【0013】
また、本発明においては非プロトン溶媒に他の溶媒を混合してもよい。この場合、混合する溶媒はグリコール類が好ましく、エチレングリコール、エチレングリコールモノアルキルエーテル、エチレングリコールジアルキルエ−テル、プロピレングリコール、ジエチレングリコール、ジエチレングリコールモノアルキルエーテル、ジエチレングリコールジアルキルエーテル、ポリエチレングリコール、グリセリンなどが挙げられるが、本発明で混合される溶媒はグリコール類のみに限定するものではない。
【0014】
本発明に係る電解液において、ラクトン類やグリコール類などの溶媒中におけるカルボン酸のトリルトリアゾ−ル塩の含有量は、種々に選択し得るが、飽和溶液の状態が最も電気伝導度が高く好適である。カルボン酸のトリルトリアゾ−ル塩の含有量は電解液中1〜60重量%、好ましくは10〜40重量%程度であり、60重量%を超えると溶解しなくなる。
【0015】
本発明において、ラクトン類やグリコール類をそれぞれ単独で用いることもできるが、混合して用いる方が高い電気伝導度が得られやすい。ラクトン類とグリコール類の混合割合は重量比20対80から95対5程度が採用される。
【0016】
本発明においては、本発明に係る電解液の火花電圧を向上させるために硼酸、リン酸、タングステン酸、ヘテロポリ酸などの無機酸またはその塩やマンニット、ソルビットなどの多糖類を0.1〜10重量%、好ましくは0.1〜5重量%添加してもよい。
【0017】
さらに、電解コンデンサの初期の損失角の正接(tanδ)を改善するために、本発明に係る電解液にケトン類、ニトロ化合物またはその塩を0.1〜10重量%、好ましくは0.1〜5重量%を添加してもよい。
【0018】
本発明に係る電解液のpHは必要に応じて所望のpH調整剤を添加することにより4〜12、好ましくは5〜7に調整される。また、電解液中の水分の存在はアルミニウム箔の腐食の原因などとなるので、出来るだけ存在しない方が望ましいが、5重量%程度以下であれば特に不都合は生じない。
【0019】
【実施例】
実施例として下記のような組成の実施例1、2の電解液を作製し、また比較例として下記の比較例1〜4の電解液を作製した。
【0020】

Figure 0003869526
【0021】
Figure 0003869526
【0022】
Figure 0003869526
【0023】
Figure 0003869526
【0024】
Figure 0003869526
【0025】
Figure 0003869526
【0026】
実施例1、2および比較例1〜4の電解液の電気伝導度(μS/cm;液温40℃にて)および火花電圧(V;液温85℃にて)を測定した。その結果を表1に示す。
【0027】
【表1】
Figure 0003869526
【0028】
この結果から、実施例1、2の電解液は比較例1〜4の電解液に比べて、電気伝導度に優れ、火花電圧が格段に高いことがわかる。
【0029】
次に、実施例1、2の電解液と比較例1〜4の電解液を用いて定格10V820μF(製品サイズ;直径8mm、軸長9mm)の電解コンデンサを各々100個作製し、105℃の温度下で負荷試験を3000時間実施し、試験前後における静電容量の変化率を測定した。その平均値を表2に示す。
【0030】
【表2】
Figure 0003869526
【0031】
この結果から、実施例1、2の電解液は比較例1〜4の電解液に比べて、長時間の負荷試験後においても静電容量変化率が少ないことがわかる。
【0032】
また、実施例1、2の電解液と比較例1〜4の電解液を用いて定格10V120μF(製品サイズ;直径5mm、軸長5mm)の電解コンデンサを各々100個作製し、温度60℃、湿度95%の下で貯蔵試験を2000時間実施し、試験後、各電解コンデンサの漏液状態を目視検査で確認した。その結果を表3に示す(数値は100個中の漏液のあった個数を示す)。
【0033】
【表3】
Figure 0003869526
【0034】
表3から、本発明の電解コンデンサでは、漏液は比較例1、3と同じく発見されなかった。
【0035】
さらに、実施例1、2の電解液と比較例1〜4の電解液を用いて定格100V470μF(製品サイズ;直径22mm、軸長25mm)の電解コンデンサの製品化を試みた。その結果比較例1〜4では火花電圧不足で製品化できなかったが、実施例では製品化ができ、実施例1の電解コンデンサの初期特性を測定したところ静電容量471μF、損失角の正接(tanδ)0.082、漏れ電流LC(1分値)16μAであった。また実施例2の電解コンデンサの初期特性は静電容量470μF、損失角の正接(tanδ)0.070、漏れ電流LC(1分値)18μAであった。
【0036】
【発明の効果】
本発明によれば、芳香族または脂肪族カルボン酸のトリルトリアゾ−ル塩を溶質としたことにより、電気伝導度に優れ、火花電圧が高く、静電容量の経時変化が少なく、漏液のないアルミニウム電解コンデンサ駆動用電解液およびアルミニウム電解コンデンサを得ることができる。[0001]
[Industrial application fields]
The present invention relates to an aluminum electrolytic capacitor using an electrolytic solution for driving an electrolytic capacitor.
[0002]
[Prior art]
An aluminum electrolytic capacitor is obtained by impregnating an electrolytic solution for driving an electrolytic capacitor into a capacitor element in which an aluminum anode foil and an aluminum cathode foil in which an oxide film is formed by electrolytic oxidation or the like are wound on a surface of an etched aluminum foil through a separator. Then, this is put in a bottomed metal case, the opening is sealed with an insulating sealing body, and the lead leads fixed to the anode foil and the cathode foil are respectively pulled out from the through holes of the sealing body. It has the structure which becomes.
[0003]
An electrolytic solution (hereinafter referred to as “electrolytic solution”) for driving an aluminum electrolytic capacitor (hereinafter referred to as “electrolytic capacitor”) is an electrode foil (anode foil) that is substantially a dielectric of the electrolytic capacitor having such a structure. The oxide film is in contact with the oxide film, functions as a true cathode, and has the ability to repair the oxide film. During the energization, a chemical reaction is always caused to regenerate the oxide film, thereby stabilizing the capacitor characteristics. However, if it is used for a long period of time or is used after being stored for a long period of time, regeneration of the oxide film becomes insufficient and the function as a capacitor deteriorates.
[0004]
Therefore, the ability of the electrolytic solution to repair the oxide film directly affects the characteristics of the electrolytic capacitor itself. Therefore, in order to obtain a high-performance electrolytic capacitor, it is essential to use an electrolytic solution having an excellent ability to repair an oxide film.
[0005]
Therefore, a suitable electrolytic solution is often used in which an aprotic solvent is used as a main solvent and a carboxylic acid or a salt thereof is dissolved. In particular, an electrolytic solution in which a quaternary ammonium salt of an aromatic carboxylic acid or a tertiary amine salt is dissolved as a solute in a solvent mainly composed of γ-butyrolactone is used for an electrolytic capacitor for low pressure.
[0006]
[Problems to be solved by the invention]
However, an electrolytic capacitor using an electrolytic solution containing a tertiary amine salt or a quaternary ammonium salt has a drawback that the spark voltage is low. In addition, an electrolytic solution containing a tertiary amine salt has a low electrical conductivity and is inferior in electrical conductivity to an electrolytic solution containing a quaternary ammonium salt.
[0007]
Furthermore, although the electrolytic solution containing a quaternary ammonium salt has good electrical conductivity, there is a drawback that there is much leakage. That is, the electrolyte containing the quaternary ammonium salt swells the sealing body such as butyl rubber, or the pH of the electrolyte becomes strong alkali near the tab terminal of the lead wire fixed to the cathode foil, and corrodes the tab terminal. Thus, there is a problem that the fitting with the through hole formed in the rubber sealing body is weakened, and the liquid is easily leaked from between the rubber sealing body and the tab terminal.
[0008]
[Means for Solving the Problems]
The present invention has been made in view of the above-described conventional problems, and provides a highly reliable aluminum electrolytic capacitor having excellent electrical conductivity and spark voltage and no leakage, and an electrolytic solution for driving an aluminum electrolytic capacitor. That is, the present invention is characterized by an electrolytic solution having a tolyl triazole salt of an aromatic or aliphatic carboxylic acid as a solute.
[0009]
Examples of tolyltriazole include 5methyl-1H-benzotriazole, 4methyl-1H-benzotriazole, or a mixture of 5methyl-1H-benzotriazole and 4methyl-1H-benzotriazole. In the mixture, the mixing ratio can be arbitrarily selected.
[0010]
The aromatic carboxylic acid used in the present invention is preferably phthalic acid, benzoic acid, salicylic acid or resorcylic acid, but is not limited thereto.
[0011]
The aliphatic carboxylic acid used in the present invention is preferably maleic acid, citraconic acid, fumaric acid or malonic acid, but is not limited thereto.
[0012]
The electrolyte solution of the present invention preferably uses an aprotic solvent as the solvent, and the aprotic solvent is β-butyrolactone, γ-butyrolactone, γ-valerolactone, δ-valerolactone, γ-caprolactone, ε-caprolactone, γ- Examples include lactones such as heptalactone, γ-hydroxy-n-caprylic acid lactone, γ-nonalactone, δ-decalactone, and γ-undecalactone, but are not limited to lactones.
[0013]
In the present invention, another solvent may be mixed with the aprotic solvent. In this case, the solvent to be mixed is preferably glycols, and examples include ethylene glycol, ethylene glycol monoalkyl ether, ethylene glycol dialkyl ether, propylene glycol, diethylene glycol, diethylene glycol monoalkyl ether, diethylene glycol dialkyl ether, polyethylene glycol, glycerin and the like. However, the solvent mixed in the present invention is not limited to glycols.
[0014]
In the electrolytic solution according to the present invention, the content of the tolyltriazole salt of the carboxylic acid in the solvent such as lactones or glycols can be variously selected, but the saturated solution is most preferable because of its highest electrical conductivity. is there. The content of the tolyltriazole salt of carboxylic acid is 1 to 60% by weight, preferably about 10 to 40% by weight in the electrolytic solution.
[0015]
In the present invention, lactones and glycols can be used alone, respectively, but high electrical conductivity is easily obtained when they are used in combination. The mixing ratio of lactones and glycols is about 20 to 80 to 95 to 5 by weight.
[0016]
In the present invention, in order to improve the spark voltage of the electrolytic solution according to the present invention, an inorganic acid such as boric acid, phosphoric acid, tungstic acid or heteropoly acid or a salt thereof, or a polysaccharide such as mannitol or sorbit is added in an amount of 0.1 to 0.1. You may add 10 weight%, Preferably 0.1-5 weight%.
[0017]
Further, in order to improve the tangent (tan δ) of the initial loss angle of the electrolytic capacitor, 0.1 to 10% by weight, preferably 0.1 to 10% by weight of ketones, nitro compounds or salts thereof are added to the electrolytic solution according to the present invention. 5% by weight may be added.
[0018]
The pH of the electrolytic solution according to the present invention is adjusted to 4 to 12, preferably 5 to 7, by adding a desired pH adjusting agent as necessary. Further, the presence of moisture in the electrolytic solution may cause corrosion of the aluminum foil, so it is desirable that it not be present as much as possible. However, there is no particular inconvenience if it is about 5% by weight or less.
[0019]
【Example】
As examples, electrolytic solutions of Examples 1 and 2 having the following compositions were produced, and as comparative examples, electrolytic solutions of Comparative Examples 1 to 4 below were produced.
[0020]
Figure 0003869526
[0021]
Figure 0003869526
[0022]
Figure 0003869526
[0023]
Figure 0003869526
[0024]
Figure 0003869526
[0025]
Figure 0003869526
[0026]
The electric conductivity (μS / cm; liquid temperature at 40 ° C.) and spark voltage (V; liquid temperature at 85 ° C.) of the electrolyte solutions of Examples 1 and 2 and Comparative Examples 1 to 4 were measured. The results are shown in Table 1.
[0027]
[Table 1]
Figure 0003869526
[0028]
From this result, it can be seen that the electrolytes of Examples 1 and 2 are superior in electrical conductivity and have a significantly higher spark voltage than the electrolytes of Comparative Examples 1 to 4.
[0029]
Next, 100 electrolytic capacitors each having a rated voltage of 10 V 820 μF (product size; diameter 8 mm, shaft length 9 mm) were prepared using the electrolytic solutions of Examples 1 and 2 and Comparative Examples 1 to 4, and the temperature was 105 ° C. The load test was performed for 3000 hours below, and the change rate of the capacitance before and after the test was measured. The average value is shown in Table 2.
[0030]
[Table 2]
Figure 0003869526
[0031]
From this result, it can be seen that the electrolytic solutions of Examples 1 and 2 have a smaller capacitance change rate even after a long load test than the electrolytic solutions of Comparative Examples 1 to 4.
[0032]
In addition, 100 electrolytic capacitors each having a rated voltage of 10 V and 120 μF (product size; diameter 5 mm, shaft length 5 mm) were prepared using the electrolytic solutions of Examples 1 and 2 and Comparative Examples 1 to 4, and the temperature was 60 ° C. and the humidity was 60 ° C. A storage test was conducted under 95% for 2000 hours, and after the test, the leakage state of each electrolytic capacitor was confirmed by visual inspection. The results are shown in Table 3 (numerical values indicate the number of liquid leaks out of 100).
[0033]
[Table 3]
Figure 0003869526
[0034]
From Table 3, in the electrolytic capacitor of the present invention, no leakage was found as in Comparative Examples 1 and 3.
[0035]
Furthermore, an attempt was made to commercialize an electrolytic capacitor having a rating of 100 V 470 μF (product size; diameter 22 mm, shaft length 25 mm) using the electrolytic solutions of Examples 1 and 2 and Comparative Examples 1 to 4. As a result, in Comparative Examples 1 to 4, the product could not be commercialized due to insufficient spark voltage. However, the product could be commercialized in the Example, and the initial characteristics of the electrolytic capacitor of Example 1 were measured. tan δ) 0.082 and leakage current LC (1 minute value) 16 μA. The initial characteristics of the electrolytic capacitor of Example 2 were a capacitance of 470 μF, a loss angle tangent (tan δ) of 0.070, and a leakage current LC (1 minute value) of 18 μA.
[0036]
【The invention's effect】
According to the present invention, by using a tolyltriazole salt of an aromatic or aliphatic carboxylic acid as a solute, aluminum having excellent electrical conductivity, high spark voltage, little change in capacitance with time, and no leakage. An electrolytic solution for driving an electrolytic capacitor and an aluminum electrolytic capacitor can be obtained.

Claims (6)

芳香族カルボン酸のトリルトリアゾ−ル塩を溶質としたことを特徴とするアルミニウム電解コンデンサ駆動用電解液。An electrolytic solution for driving an aluminum electrolytic capacitor, characterized in that a tolyltriazole salt of an aromatic carboxylic acid is used as a solute. 脂肪族カルボン酸のトリルトリアゾ−ル塩を溶質としたことを特徴とするアルミニウム電解コンデンサ駆動用電解液。An electrolytic solution for driving an aluminum electrolytic capacitor, characterized in that a tolyltriazole salt of an aliphatic carboxylic acid is used as a solute. 溶媒として非プロトン溶媒を用いたことを特徴とする請求項1または2に記載のアルミニウム電解コンデンサ駆動用電解液。3. The electrolytic solution for driving an aluminum electrolytic capacitor according to claim 1, wherein an aprotic solvent is used as the solvent. 芳香族カルボン酸のトリルトリアゾ−ル塩を溶質としたアルミニウム電解コンデンサ駆動用電解液を使用することを特徴とするアルミニウム電解コンデンサ。An aluminum electrolytic capacitor characterized by using an electrolytic solution for driving an aluminum electrolytic capacitor having a tolyltriazole salt of an aromatic carboxylic acid as a solute. 脂肪族カルボン酸のトリルトリアゾ−ル塩を溶質としたアルミニウム電解コンデンサ駆動用電解液を使用することを特徴とするアルミニウム電解コンデンサ。An aluminum electrolytic capacitor characterized by using an electrolytic solution for driving an aluminum electrolytic capacitor in which a tolyltriazole salt of an aliphatic carboxylic acid is used as a solute. 溶媒として非プロトン溶媒を用いたアルミニウム電解コンデンサ駆動用電解液を使用することを特徴とする請求項4または5に記載のアルミニウム電解コンデンサ。The aluminum electrolytic capacitor according to claim 4 or 5, wherein an electrolytic solution for driving an aluminum electrolytic capacitor using an aprotic solvent as a solvent is used.
JP11861897A 1997-04-23 1997-04-23 Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor Expired - Fee Related JP3869526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11861897A JP3869526B2 (en) 1997-04-23 1997-04-23 Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11861897A JP3869526B2 (en) 1997-04-23 1997-04-23 Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH10303077A JPH10303077A (en) 1998-11-13
JP3869526B2 true JP3869526B2 (en) 2007-01-17

Family

ID=14741010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11861897A Expired - Fee Related JP3869526B2 (en) 1997-04-23 1997-04-23 Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP3869526B2 (en)

Also Published As

Publication number Publication date
JPH10303077A (en) 1998-11-13

Similar Documents

Publication Publication Date Title
JPH0257694B2 (en)
US20050117276A1 (en) Electrolytes for high voltage electrolytic capacitors
JP2945890B2 (en) Electric double layer capacitor
JP3729588B2 (en) Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor
JP3869526B2 (en) Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor
JP3729587B2 (en) Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor
JP3869525B2 (en) Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor
JP4123311B2 (en) Aluminum electrolytic capacitor and electrolytic solution for driving aluminum electrolytic capacitor
JP2001223136A (en) Aluminum electrolytic capacitor
JP2906011B2 (en) Aluminum electrolytic capacitor and electrolyte for driving aluminum electrolytic capacitor
EP0299496B1 (en) Electrolytic capacitor
JPH10233343A (en) Aluminum electrolytic capacitor and electrolytic solution for driving it
JPH10233344A (en) Aluminum electrolytic capacitor and electrolytic solution for driving it
JP2000164470A (en) Aluminium electrolytic capacitor and electrolytte for aluminium electrolytic capacitor drive
JP2906206B2 (en) Aluminum electrolytic capacitor and electrolyte for driving aluminum electrolytic capacitor
JP2572021B2 (en) Electrolyte for electrolytic capacitors
JPH11186108A (en) Aluminum electrolytic capacitor and electrolytic solution for driving it
JP2624710B2 (en) Electrolytic capacitor
JPH11186107A (en) Aluminum electrolytic capacitor and electrolytic solution for driving it
JPH09148196A (en) Aluminium electrolytic capacitor and electrolyte for the aluminium electrolytic capacitor drive use
JPH1012499A (en) Aluminum electrolytic capacitor and electrolytic solution for driving it
JP4082407B2 (en) Aluminum electrolytic capacitor
KR0152001B1 (en) Electrolyte for a low-pressure electrolytic condenser
JPH08227827A (en) Aluminum electrolytic capacitor and aluminum-electrolytic-capacitor driving electrolyte
JPH0351285B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061013

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees