Nothing Special   »   [go: up one dir, main page]

JP3858256B2 - Cemented carbide end mill with excellent wear resistance and chipping resistance - Google Patents

Cemented carbide end mill with excellent wear resistance and chipping resistance Download PDF

Info

Publication number
JP3858256B2
JP3858256B2 JP24297799A JP24297799A JP3858256B2 JP 3858256 B2 JP3858256 B2 JP 3858256B2 JP 24297799 A JP24297799 A JP 24297799A JP 24297799 A JP24297799 A JP 24297799A JP 3858256 B2 JP3858256 B2 JP 3858256B2
Authority
JP
Japan
Prior art keywords
end mill
cemented carbide
powder
carbide
carbide end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24297799A
Other languages
Japanese (ja)
Other versions
JP2001062623A (en
Inventor
安彦 田代
和則 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP24297799A priority Critical patent/JP3858256B2/en
Publication of JP2001062623A publication Critical patent/JP2001062623A/en
Application granted granted Critical
Publication of JP3858256B2 publication Critical patent/JP3858256B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Milling Processes (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、特に高速切削で、すぐれた耐摩耗性と耐チッピング性を発揮する超硬合金製エンドミル(以下、超硬エンドミルと云う)に関するものである。
【0002】
【従来の技術】
一般に、超硬エンドミルが、例えば図1(a)に概略正面図で、同(b)に切刃部のエンドミル中心線に対する概略横断面図で示されるように、シャンク部と外周刃が形成された切刃部からなり、前記外周刃は逃げ面とすくい面、これら両面の交わる切刃稜で構成され、これが結合相形成成分としてCo:5〜16重量%を含有する炭化タングステン基超硬合金(以下、単に超硬合金と云う)の焼結体からなることは良く知られるところである。
また、上記の超硬エンドミルが、原料粉末として、いずれも0.5〜6μmの範囲内の所定の平均粒径を有するWC粉末、(Ti,W)C粉末、(Ti,W)CN粉末、(Ta,Nb)C粉末、TaC粉末、NbC粉末、ZrC粉末、VC粉末、Cr32粉末、Co粉末、およびCr粉末などを用い、これら原料粉末を所定の配合組成に配合し、湿式混合し、乾燥した後、所定径を有する丸棒圧粉体にプレス成形し、この丸棒圧粉体を、10-2〜10-1Torrの真空雰囲気中、5〜10℃/分の昇温速度で1370〜1470℃に昇温し、この昇温温度に1〜2時間保持後、炉冷の条件で焼結して、結合相形成成分としてのCoを焼結性および靭性(強度)付与の目的で5〜16重量%含有する超硬合金で構成された丸棒焼結体素材を形成し、この丸棒焼結体素材から図1に示される形状に研削加工することにより製造されることも知られている。
さらに、上記の全体が焼結体からなる超硬エンドミルをエンドミル本体とし、このエンドミル本体の少なくとも切刃部の表面に、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、TiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、窒酸化物(以下、TiNOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1種の単層または2種以上の複層からなるTi化合物層と、酸化アルミニウム(以下、Al23で示す)層で構成されたセラミック硬質皮膜を1〜10μmの平均膜厚で化学蒸着および/または物理蒸着してなる被覆超硬エンドミルも知られている。
【0003】
【発明が解決しようとする課題】
一方、近年の切削加工の省力化および省エネ化、さらに低コスト化に対する要求は強く、これに伴い、切削加工は高速切削を強いられる傾向にあるが、上記の従来超硬エンドミルおよび従来被覆超硬エンドミルにおいては、これを高速切削に用いると、前者ではエンドミル全体が靭性のすぐれた超硬合金で構成されているので、切刃にチッピング(微小欠け)の発生なく、すぐれた耐チッピング性を示すものの、硬さ不足のために摩耗進行がきわめて速く、また一般にエンドミルの場合、その切削形態から、切削速度が速くなればなるほど「ねじれ」や「たわみ」が大きくなるが、後者ではセラミック硬質皮膜のエンドミル本体への密着性が十分でないために、上記のエンドミル自体に発生する大きな「ねじれ」や「たわみ」によってセラミック硬質皮膜にチッピング発生の原因となる剥離が発生し易い状態となり、この結果前者では摩耗、後者ではチッピングが原因でそれぞれ比較的短時間で使用寿命に至るのが現状である。
【0004】
【課題を解決するための手段】
そこで、本発明者らは、上述のような観点から、耐摩耗性および耐チッピング性のすぐれた超硬エンドミルを開発すべく研究を行った結果、通常のスパッタリング装置、例えば図2に概略説明図で示されるスパッタリング装置にて、上記の従来超硬エンドミルをエンドミル本体として基板上に装着し、ターゲットとして、結合相形成成分であるCoの含有量を前記エンドミル本体に比して相対的に少ない1〜4重量%とした超硬合金を用い、装置内をヒーターで300〜600℃に加熱した状態で、圧力:2〜5×10-3TorrのAr反応雰囲気中、前記基板には例えば−100V、前記ターゲットには例えば−800Vのバイアス電圧を印加して、前記基板とターゲット間にプラズマを発生させ、もって上記エンドミル本体の少なくとも切刃部の表面に、前記ターゲットを構成する超硬合金と実質的に同じ組成を有するスパッタ蒸着皮膜を1〜10μmの平均膜厚で形成すると、この結果の超硬エンドミルにおいては、
(a)上記スパッタ蒸着皮膜がエンドミル本体と同種の超硬合金からなるので、高い密着性をもち、高速切削で発生する大きな「ねじれ」や「たわみ」によって剥離することがなく、したがって切刃部でのチッピング発生が著しく抑制されること。
(b)上記スパッタ蒸着皮膜における結合相形成成分としてのCoの含有量が1〜4重量%と相対的に低いので、高い表面部硬さをもつようになることから、これの摩耗が抑制され、一方エンドミル本体における結合相形成成分としてのCoの含有量は5〜16重量%と相対的に高いので、エンドミル自体がすぐれた靭性をもつようになること。
(c)一般に超硬合金の焼結体では、原料粉末として平均粒径で1μm以下の微細なWC粉末を用い、かつWC粒成長抑制あるいはWC粒微細化の目的でCr32粉末やCr粉末を配合しても、走査型電子顕微鏡による断面組織観察で、WC粒の平均粒径を0.5μm以下にすることはきわめて困難であるが、上記のスパッタ蒸着皮膜におけるWC粒は平均粒径で0.05μm以下のきわめて微細な粒径をもち、これによって耐摩耗性の著しい向上がもたらされること。
以上(a)〜(c)に示される特性を具備するようになるという研究結果が得られたのである。
【0005】
この発明は、上記の研究結果に基づいてなされたものであって、切刃部とシャンク部からなり、かつ結合相形成成分としてCo:5〜16重量%を含有する超硬合金の焼結体で構成されたエンドミル本体の少なくとも切刃部の表面に、結合相形成成分としてCo:1〜4重量%を含有する超硬合金のスパッタ蒸着皮膜を1〜10μmの平均膜厚で形成してなる、耐摩耗性および耐チッピング性のすぐれた超硬エンドミルに特徴を有するものである。
【0006】
以下に、この発明の超硬エンドミルにおいて、これを構成するエンドミル本体およびスパッタ蒸着皮膜のCo含有量、並びにスパッタ蒸着皮膜の平均膜厚を上記の通りに限定した理由を説明する。
(1) ()エンドミル本体のCo含有量
その含有量が5重量%未満では、所望の強度と靭性を確保することができず、この結果切刃部に欠けが生じ易くなるばかりでなく、特に高速切削では折損の発生も避けられず、一方その含有量が16重量%を越えると、特に切刃部に熱塑性変形が起り易くなり、これが偏摩耗の原因となることから、その含有量を5〜16重量%と定めた。
【0007】
(2) ()スパッタ蒸着皮膜のCo含有量
その含有量が1重量%未満では、エンドミル本体表面への密着性が不充分となるばかりでなく、十分な皮膜強度が得られず、一方その含有量が4重量%を越えると、特に高速切削での耐摩耗性が急激に低下するようになることから、その含有量を1〜4重量%と定めた。
【0008】
(3) ()スパッタ蒸着皮膜の平均膜厚
その平均膜厚が1μm未満では、所望の耐摩耗性を確保することができず、一方その平均膜厚が10μmを越えると、切刃部にチッピングが発生し易くなることから、その平均膜厚を1〜10μmと定めた。
【0009】
【発明の実施の態様】
つぎに、この発明の超硬エンドミルを実施例により具体的に説明する。
原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C粉末、同1.8μmのCo粉末、および同1.2μmの炭素(C)粉末を用意し、これら原料粉末をそれぞれ表1、2に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、1ton/cm2の圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、0.05Torrの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種のエンドミル本体形成用丸棒焼結体、並びにいずれも直径:100mm×厚さ:16mmの寸法をもったスパッタ蒸着皮膜形成用ターゲットa〜hをそれぞれ形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表1に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法をもち、かついずれも図1に示される形状をもったエンドミル本体A〜Hを製造した。
【0010】
ついで、この結果得られたエンドミル本体A〜Hおよびターゲットa〜hを、それぞれ表3に示される組合せで、図2に示される構造のスパッタリング装置に装着し(この場合前記エンドミル本体は装置内の基板に装着される)、まず、装置内を排気して1×10−5Torrの真空に保持しながら、ヒーターで装置内を450℃に加熱した後、Arガス、(Ar+5容量%Xe)ガス、および(Ar+1容量%CH4)ガスのうちのいずれかを装置内に導入して圧力:1×10-3Torrの雰囲気とし、この状態で前記基板(エンドミル本体)に−1000Vのバイアス電圧を印加して、前記エンドミル本体の表面をボンバード洗浄し、引き続いて装置内を圧力:3×10-3TorrのAr雰囲気とすると共に、前記基板(エンドミル本体)には−100V、前記ターゲットには−800Vのバイアス電圧を印加して、前記ターゲットa〜hを構成する超硬合金のスパッタ蒸着皮膜を、同じく表3に示される目標膜厚で前記エンドミル本体A〜Hの表面全体に形成することにより本発明超硬エンドミル1〜8をそれぞれ製造した。
【0011】
また、比較の目的で、表4に示される通り、上記のエンドミル本体A〜Hをそれぞれ従来超硬エンドミル1〜8とした。
さらに、比較の目的で、上記のエンドミル本体A〜Hの表面全体に、通常の化学蒸着装置を用い、表5に示される条件(表中、l−TiCNは、例えば特開平6−8010号公報に記載される縦長成長結晶組織をもったTiCN層に相当するものであり、これ以外の条件で形成された層はいずれも粒状結晶組織をもつものである。また、α−Al23層はα型結晶構造をもつもの、β−Al23層はβ型結晶構造をもつものを示す)にて、表6に示される組成および目標層厚のセラミック硬質皮膜を形成することにより従来被覆超硬エンドミル1〜8をそれぞれ製造した。
なお、上記の本発明超硬エンドミル1〜8を構成するエンドミル本体およびスパッタ蒸着皮膜のCo含有量およびWC粒の平均粒径、さらにスパッタ蒸着皮膜のC含有量をオージェ分析装置および走査型電子顕微鏡を用いての断面組織観察により測定したところ、表3に示される結果を示し、また従来超硬エンドミル1〜8については、表4に示される通り、前記本発明超硬エンドミル1〜8のエンドミル本体と実質的に同じCo含有量およびWC粒平均粒径を示し、さらに本発明超硬エンドミル1〜8のスパッタ蒸着皮膜および従来被覆超硬エンドミル1〜8のセラミック硬質皮膜の膜厚を測定したところ、それぞれ表3おとび表6に示される目標層厚と実質的に同じ平均層厚を示した。
【0012】
この結果得られた各種の超硬エンドミルについて、表7に示される切削条件にて切削試験を行い、先端面切刃部の直径が使用寿命の目安とされる0.2mm減少するまでの切削長を測定した。これらの測定結果を表3、表4、および表6にそれぞれ示した。
【0013】
【表1】

Figure 0003858256
【0014】
【表2】
Figure 0003858256
【0015】
【表3】
Figure 0003858256
【0016】
【表4】
Figure 0003858256
【0017】
【表5】
Figure 0003858256
【0018】
【表6】
Figure 0003858256
【0019】
【表7】
Figure 0003858256
【0020】
【発明の効果】
表3〜6に示される結果から、本発明超硬エンドミル1〜8は、いずれもエンドミル本体へのすぐれた密着性が超硬合金の1〜4重量%含有のCo含有量によって確保され、かつこの低いCo含有量と平均粒径で0.05μm以下の超微粒WC粒で相対的に高い硬さ(強度)を具備するようになるスパッタ蒸着皮膜によって、高速切削にもかかわらず、切刃部にチッピングの発生なく、すぐれた耐摩耗性(長い超切削長)を発揮するのに対して、従来超硬エンドミル1〜8は速い摩耗進行、従来被覆超硬エンドミル1〜8はセラミック硬質皮膜の剥離によるチッピング発生がそれぞれ原因で相対的に短い切削長しか示さないことが明らかである。
上述のように、この発明の超硬エンドミルは、自体の「たわみ」や「ねじれ」が大きくなる高速切削ですぐれた耐摩耗性と耐チッピング性を発揮するものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応することができるものである。
【図面の簡単な説明】
【図1】(a)は超硬エンドミルを例示する概略正面図、(b)は同切刃部の概略横断面図である。
【図2】スパッタリング装置を例示する概略説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cemented carbide end mill (hereinafter referred to as a cemented carbide end mill) that exhibits excellent wear resistance and chipping resistance, particularly in high-speed cutting.
[0002]
[Prior art]
In general, a carbide end mill is formed with a shank portion and an outer peripheral blade as shown in, for example, a schematic front view in FIG. 1A and a schematic cross-sectional view with respect to the end mill center line of the cutting edge portion in FIG. The outer peripheral blade is composed of a flank face and a rake face, and a cutting edge ridge where these both surfaces intersect, and this tungsten carbide base cemented carbide containing Co: 5 to 16% by weight as a binder phase forming component It is well known that it is made of a sintered body (hereinafter simply referred to as a cemented carbide).
In addition, the above carbide end mill is a WC powder having a predetermined average particle size in the range of 0.5 to 6 μm, (Ti, W) C powder, (Ti, W) CN powder, (Ta, Nb) C powder, TaC powder, NbC powder, ZrC powder, VC powder, Cr 3 C 2 powder, Co powder, Cr powder, etc., these raw material powders are blended into a predetermined blending composition and wet mixed And dried, and then press-molded into a round bar green compact having a predetermined diameter, and the round bar green compact was heated to 5-10 ° C./min in a vacuum atmosphere of 10 −2 to 10 −1 Torr. The temperature is raised to 1370 to 1470 ° C. at a rate, and held at this elevated temperature for 1 to 2 hours, followed by sintering under furnace cooling conditions to impart Co as a binder phase forming component to sinterability and toughness (strength) For the purpose of forming a round bar sintered body material composed of cemented carbide containing 5-16% by weight And it is also known to be produced by grinding from the round rod sintered body material into a shape shown in FIG.
Further, a carbide end mill composed entirely of a sintered body is used as an end mill body, and a Ti carbide (hereinafter referred to as TiC) layer and nitride (hereinafter referred to as TiN) are formed on at least the surface of the cutting edge of the end mill body. Layer, carbonitride (hereinafter referred to as TiCN) layer, carbonate (hereinafter referred to as TiCO) layer, nitride oxide (hereinafter referred to as TiNO) layer, and carbonitride oxide (hereinafter referred to as TiCNO) 1) An average of 1 to 10 μm of a ceramic hard film composed of one single layer or two or more layers of a Ti compound layer and an aluminum oxide (hereinafter referred to as Al 2 O 3 ) layer. Also known are coated carbide end mills made by chemical vapor deposition and / or physical vapor deposition with a film thickness.
[0003]
[Problems to be solved by the invention]
On the other hand, in recent years, there is a strong demand for labor saving, energy saving, and cost reduction of cutting, and along with this, cutting tends to be forced to perform high-speed cutting. In an end mill, when this is used for high-speed cutting, the former is composed of a cemented carbide with excellent toughness in the former, so there is no chipping (microchips) on the cutting edge and excellent chipping resistance is exhibited. However, due to the lack of hardness, the wear progresses very quickly.In general, in the case of an end mill, the higher the cutting speed, the greater the “twist” and “deflection”. Since the adhesion to the end mill body is not sufficient, the ceramic is caused by the large “twist” and “deflection” generated in the end mill itself. Click the hard film becomes a cause of chipping occurred peeling becomes likely state occurs, in this result former wear, the latter at present, leading to respectively a relatively short time using life chipping caused.
[0004]
[Means for Solving the Problems]
In view of the above, the present inventors have studied to develop a cemented carbide end mill with excellent wear resistance and chipping resistance. As a result, a general sputtering apparatus such as FIG. The conventional carbide end mill is mounted on a substrate as an end mill main body, and the content of Co, which is a binder phase forming component, is relatively smaller than that of the end mill main body. The substrate is heated to 300 to 600 ° C. with a heater using a cemented carbide having a weight of ˜4 wt%, and the substrate is, for example, −100 V in an Ar reaction atmosphere at a pressure of 2 to 5 × 10 −3 Torr. A bias voltage of −800 V, for example, is applied to the target to generate plasma between the substrate and the target, so that at least the end mill body On the surface of the blade portion, to form a hard metal and substantially sputter deposition film having the same composition constituting the target with an average thickness of 1 to 10 [mu] m, in end mills of this result,
(A) Since the sputter vapor-deposited film is made of the same kind of cemented carbide as the end mill main body, it has high adhesion and does not peel off due to large “twist” or “deflection” that occurs during high-speed cutting. The occurrence of chipping is greatly suppressed.
(B) Since the content of Co as a binder phase forming component in the sputter vapor-deposited film is relatively low at 1 to 4% by weight, it has a high surface hardness, so that wear is suppressed. On the other hand, since the content of Co as a binder phase forming component in the end mill body is relatively high at 5 to 16% by weight, the end mill itself has excellent toughness.
(C) In general, a cemented carbide sintered body uses a fine WC powder having an average particle diameter of 1 μm or less as a raw material powder, and Cr 3 C 2 powder or Cr for the purpose of suppressing WC grain growth or WC grain refinement Even if the powder is blended, it is extremely difficult to make the average particle size of the WC particles 0.5 μm or less by observing the cross-sectional structure with a scanning electron microscope. With a very fine particle size of 0.05 μm or less, which leads to a significant improvement in wear resistance.
The research result that the characteristics shown in (a) to (c) are achieved has been obtained.
[0005]
The present invention has been made based on the above research results, and comprises a cemented carbide sintered body comprising a cutting edge portion and a shank portion and containing Co: 5 to 16% by weight as a binder phase forming component. On the surface of at least the cutting edge portion of the end mill body constituted by the above, a sputter deposition film of cemented carbide containing Co: 1 to 4 wt% as a binder phase forming component is formed with an average film thickness of 1 to 10 μm. It is characterized by a carbide end mill with excellent wear resistance and chipping resistance.
[0006]
Hereinafter, in the cemented carbide end mill of the present invention, the reason why the Co content of the end mill body and the sputter deposited film constituting the end mill and the average film thickness of the sputter deposited film are limited as described above will be described.
(1) () Co content of the end mill body If the content is less than 5% by weight, the desired strength and toughness cannot be ensured. In high-speed cutting, breakage is unavoidable. On the other hand, if its content exceeds 16% by weight, thermoplastic cutting tends to occur particularly at the cutting edge, which causes uneven wear. It was defined as ˜16% by weight.
[0007]
(2) () Co content of sputter-deposited film If its content is less than 1% by weight, not only the adhesion to the surface of the end mill body is insufficient, but sufficient film strength cannot be obtained, while its content When the amount exceeds 4% by weight, the wear resistance particularly at high-speed cutting is rapidly reduced, so the content was determined to be 1 to 4% by weight.
[0008]
(3) () Average film thickness of sputter-deposited film If the average film thickness is less than 1 μm, the desired wear resistance cannot be ensured. On the other hand, if the average film thickness exceeds 10 μm, the cutting edge is chipped. Therefore, the average film thickness was determined to be 1 to 10 μm.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the carbide end mill of the present invention will be described in detail by way of examples.
As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C powder, 1.8 μm Co powder, and 1.2 μm carbon ( C) Prepare powders, mix these raw material powders with the composition shown in Tables 1 and 2, add wax, ball mill in acetone for 24 hours, dry under reduced pressure, and then pressure of 1 ton / cm 2 Were pressed into various green compacts of a predetermined shape, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a heating rate of 7 ° C./min in a vacuum atmosphere of 0.05 Torr. Temperature rise, hold at this temperature for 1 hour, then furnace cooling conditions Three types of end mill body-forming round bar sintered bodies having a diameter of 8 mm, 13 mm, and 26 mm, and a sputter-deposited film-forming target a having a diameter of 100 mm × thickness: 16 mm -H are formed, and further, the diameter x length of the cutting edge portion is 6 mm x 13 mm, 10 mm x 22 mm, respectively, in the combination shown in Table 1 by grinding from the above three kinds of round bar sintered bodies End mill main bodies A to H having dimensions of 20 mm × 45 mm and having the shapes shown in FIG. 1 were manufactured.
[0010]
Next, the end mill bodies A to H and the targets a to h obtained as a result are mounted on the sputtering apparatus having the structure shown in FIG. 2 in the combinations shown in Table 3 (in this case, the end mill body is in the apparatus). First, after the inside of the apparatus is evacuated and kept at a vacuum of 1 × 10 −5 Torr while the inside of the apparatus is heated to 450 ° C. with a heater, Ar gas, (Ar + 5 vol% Xe) gas, And (Ar + 1 volume% CH 4 ) gas is introduced into the apparatus to create an atmosphere of pressure: 1 × 10 −3 Torr, and a bias voltage of −1000 V is applied to the substrate (end mill body) in this state. to the end mill the surface of the body was washed bombardment, followed by pressure in the apparatus: with the Ar atmosphere at 3 × 10 -3 Torr, the substrate (mill body A bias voltage of −100 V is applied to the target and −800 V is applied to the target, and the sputter vapor-deposited film of the cemented carbide constituting the targets a to h is applied to the end mill body A with the target film thickness shown in Table 3 as well. The carbide end mills 1 to 8 of the present invention were produced by forming the entire surface of ~ H.
[0011]
For comparison purposes, as shown in Table 4, the above-described end mill bodies A to H are conventional carbide end mills 1 to 8, respectively.
Furthermore, for the purpose of comparison, an ordinary chemical vapor deposition apparatus was used on the entire surface of the end mill main bodies A to H, and the conditions shown in Table 5 (in the table, l-TiCN is, for example, JP-A-6-8010). The layer formed under the conditions other than this has a granular crystal structure, and corresponds to the TiCN layer having the vertically grown crystal structure described in 1. In addition, the α-Al 2 O 3 layer Is the one having an α-type crystal structure, and the β-Al 2 O 3 layer is one having a β-type crystal structure), and a conventional ceramic hard film having the composition and target layer thickness shown in Table 6 is formed. Coated carbide end mills 1 to 8 were produced, respectively.
Note that the Co content and average particle size of the WC grains of the end mill main body and the sputter deposited film constituting the above-described carbide end mills 1 to 8 of the present invention, and the C content of the sputter deposited film were further determined by an Auger analyzer and a scanning electron microscope. As shown in Table 4, the results of the conventional carbide end mills 1-8 are shown in Table 4, and the end mills of the present invention carbide end mills 1-8 are shown in Table 4. The Co content and WC grain average particle diameter were substantially the same as the main body, and the film thicknesses of the sputter vapor-deposited film of the present carbide end mills 1 to 8 and the ceramic hard film of the conventional coated carbide end mills 1 to 8 were measured. However, the average layer thicknesses substantially the same as the target layer thicknesses shown in Table 3 and Table 6 were shown.
[0012]
With respect to the various carbide end mills obtained as a result, a cutting test was performed under the cutting conditions shown in Table 7, and the cutting length until the diameter of the cutting edge on the tip surface decreased by 0.2 mm, which is a guide for the service life. Was measured. The measurement results are shown in Table 3, Table 4, and Table 6, respectively.
[0013]
[Table 1]
Figure 0003858256
[0014]
[Table 2]
Figure 0003858256
[0015]
[Table 3]
Figure 0003858256
[0016]
[Table 4]
Figure 0003858256
[0017]
[Table 5]
Figure 0003858256
[0018]
[Table 6]
Figure 0003858256
[0019]
[Table 7]
Figure 0003858256
[0020]
【The invention's effect】
From the results shown in Tables 3 to 6, the cemented carbide end mills 1 to 8 of the present invention all have excellent adhesion to the end mill body, and are ensured by the Co content of 1 to 4% by weight of the cemented carbide, and The sputter-deposited film that has a relatively high hardness (strength) with ultra-fine WC grains having a low Co content and an average grain diameter of 0.05 μm or less, the cutting edge portion despite high-speed cutting. In contrast, the conventional carbide end mills 1 to 8 exhibit rapid wear progress and the conventional coated carbide end mills 1 to 8 are ceramic hard coatings, while exhibiting excellent wear resistance (long super cutting length) without occurrence of chipping. It is clear that only relatively short cutting lengths are shown due to the occurrence of chipping due to peeling.
As described above, the cemented carbide end mill of the present invention exhibits excellent wear resistance and chipping resistance in high-speed cutting in which its own “deflection” and “twist” become large. It can cope with energy saving and cost reduction sufficiently satisfactorily.
[Brief description of the drawings]
FIG. 1A is a schematic front view illustrating a carbide end mill, and FIG. 1B is a schematic cross-sectional view of the cutting edge portion.
FIG. 2 is a schematic explanatory view illustrating a sputtering apparatus.

Claims (1)

切刃部とシャンク部からなり、かつ結合相形成成分としてCo:5〜16重量%を含有する炭化タングステン基超硬合金の焼結体で構成されたエンドミル本体の少なくとも切刃部の表面に、結合相形成成分としてCo:1〜4重量%を含有する炭化タングステン基超硬合金のスパッタ蒸着皮膜を1〜10μmの平均膜厚で形成してなる、耐摩耗性および耐チッピング性のすぐれた超硬合金製エンドミル。On the surface of at least the cutting edge portion of the end mill body composed of a sintered body of a tungsten carbide-based cemented carbide comprising a cutting edge portion and a shank portion and containing Co: 5 to 16% by weight as a binder phase forming component, Ultra-high wear resistance and chipping resistance formed by forming a sputter-deposited film of tungsten carbide-based cemented carbide containing Co: 1 to 4 wt% as a binder phase forming component with an average film thickness of 1 to 10 μm Hard alloy end mill.
JP24297799A 1999-08-30 1999-08-30 Cemented carbide end mill with excellent wear resistance and chipping resistance Expired - Fee Related JP3858256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24297799A JP3858256B2 (en) 1999-08-30 1999-08-30 Cemented carbide end mill with excellent wear resistance and chipping resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24297799A JP3858256B2 (en) 1999-08-30 1999-08-30 Cemented carbide end mill with excellent wear resistance and chipping resistance

Publications (2)

Publication Number Publication Date
JP2001062623A JP2001062623A (en) 2001-03-13
JP3858256B2 true JP3858256B2 (en) 2006-12-13

Family

ID=17097064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24297799A Expired - Fee Related JP3858256B2 (en) 1999-08-30 1999-08-30 Cemented carbide end mill with excellent wear resistance and chipping resistance

Country Status (1)

Country Link
JP (1) JP3858256B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6267604B2 (en) 2014-03-03 2018-01-24 株式会社神戸製鋼所 Hard coating, method for forming the same, and die for hot forming of steel sheet
EP3054029B1 (en) 2014-03-26 2018-08-15 JX Nippon Mining & Metals Corporation Sputtering target comprising tungsten carbide or titanium carbide

Also Published As

Publication number Publication date
JP2001062623A (en) 2001-03-13

Similar Documents

Publication Publication Date Title
JPH1177445A (en) Surface coating cemented carbide made end mill having excellent adhesion in hard coating layer
JP3451877B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance
JP3858256B2 (en) Cemented carbide end mill with excellent wear resistance and chipping resistance
JP3451949B2 (en) Surface-coated cemented carbide end mill with high toughness of substrate
JP4058758B2 (en) Surface-coated cemented carbide end mill with excellent heat-resistant plastic deformation in high-speed cutting
JP3707195B2 (en) Surface coated cemented carbide end mill with excellent adhesion of hard coating layer
JP2002187004A (en) End mill made of surface-coated cemented carbide excellent in wear resistance in high speed cutting
JP3368794B2 (en) Surface-coated cermet throw-away type cutting insert with a hard coating layer with excellent fracture resistance
JP2001310212A (en) Surface covered cemented carbide made end mill on which head end surface cutting surface and outer peripheral blade display excellent heat resistant plastic deformation property
JP2000246507A (en) Cutting tool made of surface coated super hard alloy exhibiting excellent high temperature heat conductivity at its hard coated layer
JP3451950B2 (en) Surface-coated cemented carbide end mill with high toughness of substrate
JP3906476B2 (en) A surface-coated cemented carbide drill in which the surface coating layer is composed of a cemented carbide sputter-deposited film having an ultrafine grain structure and excellent adhesion
JP3899500B2 (en) Cutting tool made of surface-coated carbide material that exhibits excellent wear resistance in high heat generation cutting
JP3858259B2 (en) Miniature drill made of surface-coated cemented carbide with excellent adhesion with a surface coating layer of ultrafine structure
JP3899501B2 (en) Cutting tool made of surface-coated carbide material that exhibits excellent wear resistance in high heat generation cutting
JP2002254229A (en) Drill made of surface-coated cemented carbide and excellent in wear resistance in high speed cutting
JP3972775B2 (en) A surface-coated cemented carbide drill that exhibits excellent heat-resistant plastic deformation in high-speed drilling.
JP2002187008A (en) Cutting drill made of surface-coated cemented carbide excellent in wear resistance in high speed cutting
JPH111762A (en) Cutting tool made of surface coated cemented carbide, having hard coating layer excellent in wear resistance
JP2001049424A (en) End mill made of surface coated cemented carbide, excellent in wear resistance and chipping resistance
JP2002254228A (en) Drill made of surface-coated cemented carbide and excellent in wear resistance in high speed cutting
JP3463502B2 (en) Surface-coated cermet throw-away type cutting insert with a hard coating layer with excellent fracture resistance
JPH10286702A (en) Throwaway type cutting tip made of surface coating thermet having hard coating layer excellent in defect resistance
JP4510323B2 (en) Surface-coated cemented carbide cutting drill with excellent wear resistance in high-speed cutting
JP2000246506A (en) Cutting tool made of surface coated super head material exhibiting excellent high temperature heat conductivity at its hard coated layer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees