JP3734372B2 - Lead-free free-cutting copper alloy - Google Patents
Lead-free free-cutting copper alloy Download PDFInfo
- Publication number
- JP3734372B2 JP3734372B2 JP28859098A JP28859098A JP3734372B2 JP 3734372 B2 JP3734372 B2 JP 3734372B2 JP 28859098 A JP28859098 A JP 28859098A JP 28859098 A JP28859098 A JP 28859098A JP 3734372 B2 JP3734372 B2 JP 3734372B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- phase
- alloy
- free
- copper
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/04—Alloys based on copper with zinc as the next major constituent
Landscapes
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Powder Metallurgy (AREA)
- Conductive Materials (AREA)
- Adornments (AREA)
- Manufacture Of Alloys Or Alloy Compounds (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、鉛成分を含有しない快削性銅合金に関するものである。
【0002】
【従来の技術】
被削性に優れた銅合金として、一般に、JIS H5111 BC6等の青銅系合金やJIS H3250−C3604,C3771等の黄銅系合金が知られている。これらは1.0〜6.0重量%程度の鉛を含有することによって被削性を向上させたものであり、工業的に満足しうる被削性を確保したものである。
【0003】
鉛を含有する銅合金は、上記した如く被削性に優れるものであることから、従来からも種々の製品(例えば、上水道用配管の水栓金具,給排水金具,バルブ等)の構成材として重宝されている。しかし、鉛が人体や環境に悪影響を及ぼす有害物質であるところから、近時においては、その用途が大幅に制限される傾向にある。例えば、合金の溶解,鋳造等の高温作業時に発生する金属蒸気には鉛成分が含まれることになり、或いは飲料水等との接触により水栓金具や弁等から鉛成分が溶出する虞れがあり、人体や環境衛生上問題がある。
【0004】
【発明が解決しようとする課題】
そこで、近時、米国等の先進国においては銅合金における鉛含有量を大幅に制限する傾向にあり、わが国においても鉛含有量を可及的に低減した快削性銅合金の開発が強く要請されている。
【0005】
本発明は、かかる世界的な傾向及び要請に応えるべくなされたもので、鉛を含有することなく、工業的に満足しうる被削性を有する無鉛快削性銅合金を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明は、上記の目的を達成すべく、次のような無鉛快削性銅合金を提案する。
【0007】
すなわち、請求項1の発明においては、被削性に優れた無鉛快削性銅合金として、銅69〜79重量%及び珪素2.3〜4.0重量%を含有し、且つ残部が亜鉛からなる合金組成をなすと共に、γ相及びκ相の少なくとも一方を含む金属組織をなすことを特徴とする銅合金(以下「第1発明合金」という)を提案する。
【0008】
鉛はマトリックスに固溶せず、粒状をなして分散することによって、被削性を向上させるものである。一方、珪素は金属組織中にγ相(場合によってはκ相)を出現させること、即ちγ相及びκ層の少なくとも一方(以下、γ相等と云う)を出現させることにより、被削性を改善するものである。
このように、両者(鉛と珪素)は合金特性における機能を全く異にするものであるが、被削性を改善させる点では共通する。かかる点に着目して、第1発明合金にあっては、鉛に代えて珪素を添加することにより、工業的に満足しうる被削性を確保せんとする。すなわち、第1発明合金は、珪素の添加によるγ相等の形成により被削性を改善したものである。
【0009】
而して、珪素の添加量が2.0重量%未満では、工業的に満足しうる被削性を確保するに充分なγ相等の形成が行われないので、2.0重量%以上、好ましくは2.3重量%以上の添加量とするのが望ましい。また、被削性は珪素添加量の増大に伴って向上するが、4.0重量%を超えて添加しても、その添加量に見合う被削性改善効果はない。ところで、珪素は融点が高く比重が小さいため又酸化し易いため、合金溶融時に珪素単体で炉内に装入すると、当該珪素が湯面に浮くと共に、溶融時に酸化されて珪素酸化物ないし酸化珪素となり、珪素含有銅合金の製造が困難となる。したがって、珪素含有銅合金の鋳塊製造にあっては、通常、珪素添加をCu−Si合金とした上で行うことになり、製造コストが高くなる。このような合金製造コストを考慮した場合にも、被削性改善効果が飽和状態となる量(4.0重量%)を超えて珪素を添加することは好ましくない。また、実験によれば、珪素を2.0〜4.0重量%添加したときにおいて、Cu−Zn系合金本来の特性を維持するためには、亜鉛含有量との関係をも考慮した場合、銅含有量は69〜79重量%の範囲としておくことが好ましいことが判明した。このような理由から、第1発明合金にあっては、銅及び珪素の含有量を夫々69〜79重量%及び2.3〜4.0重量%とした。なお、珪素の添加により、被削性が改善される他、鋳造時の湯流れ性,強度,耐摩耗性,耐応力腐蝕割れ性,耐高温酸化性も改善される。また、延性,耐脱亜鉛腐蝕性も或る程度改善される。
【0010】
また、請求項2の発明においては、同じく被削性に優れた無鉛快削性銅合金として、銅69〜79重量%と、珪素2.3〜4.0重量%と、ビスマス0.02〜0.4重量%、テルル0.02〜0.4重量%及びセレン0.02〜0.4重量%から選択された1種以上の元素とを含有し、且つ残部が亜鉛からなる合金組成をなすと共に、γ相及びκ相の少なくとも一方を含む金属組織をなすことを特徴とする銅合金(以下「第2発明合金」という)を提案する。
【0011】
すなわち、第2発明合金は、第1発明合金にビスマス0.02〜0.4重量%、テルル0.02〜0.4重量%及びセレン0.02〜0.4重量%の少なくとも1つを更に含有させた合金組成をなすものである。
【0012】
ビスマス、テルル又はセレンは、鉛と同様に、マトリックスに固溶せず、粒状をなして分散することによって、被削性を向上させる機能を発揮するものであり、珪素と異なった機能により被削性を改善させるものである。したがって、これらを珪素と共添させると、珪素の添加による被削性改善限度を超えて被削性を更に向上させることが可能となる。第2発明合金では、かかる点に着目して、第1発明合金における被削性を更に改善すべく、ビスマス、テルル及びセレンのうちの少なくとも1つを添加させることとした。特に、珪素に加えてビスマス、テルル又はセレンを添加することにより、複雑な形状を高速で切削加工する場合にも、高度の被削性を発揮する。しかし、ビスマス、テルル又はセレンの添加による被削性向上効果は、各々の添加量が0.02重量%未満では発揮されない。一方、これらは銅に比して高価なものであるから、0.4重量%を超えて添加しても、被削性は僅かながらも添加量の増加に応じて向上するものの、経済的に添加量に見合う程の効果は認められない。また、添加量が0.4重量%を超えると、熱間での加工性(例えば、鍛造性等)が悪くなり、冷間での加工性(延性)も低下する。また、ビスマス等の重金属について仮に鉛同様の問題が生じる可能性があったとしても、0.4重量%以下の微量添加であれば、格別の問題を生じる虞れもないと考えられる。これらの点から、第2発明合金では、ビスマス、テルル又はセレンの添加量を0.02〜0.4重量%とした。なお、ビスマス、テルル又はセレンは上記した如く珪素と異なる機能により被削性を向上させるものであるから、これらの添加により銅及び珪素の適正含有量は影響されない。したがって、銅及び珪素の含有量は第1発明合金と同一とした。
【0013】
また、請求項3の発明においては、同じく被削性に優れた無鉛快削性銅合金として、銅70〜80重量%と、珪素2.3〜3.5重量%と、錫0.3〜3.5重量%、アルミニウム1.0〜3.5重量%及び燐0.02〜0.25重量%から選択された1種以上の元素とを含有し、且つ残部が亜鉛からなる合金組成をなすと共に、γ相及びκ相の少なくとも一方を含む金属組織をなすことを特徴とする銅合金(以下「第3発明合金」という)を提案する。
【0014】
錫は、Cu−Zn系合金に添加した場合、珪素と同様に、γ相を形成して被削性を向上させるものである。例えば、錫は、58〜70重量%のCuを含有するCu−Zn系合金において1.8〜4.0重量%添加させることにより、珪素が添加されておらずとも、良好な被削性を示す。したがって、Cu−Si−Zn系合金に錫を添加させることにより、γ相の形成を促進させることができ、Cu−Si−Zn系合金の被削性を更に向上させることができる。錫によるγ相の形成は1.0重量%以上で行なわれ、3.5重量%に達すると飽和状態となる。なお、錫の添加量が3.5重量%を超えると、γ相の形成効果が飽和状態となるばかりでなく、却って延性が低下する。また、錫の添加量が1.0重量%未満ではγ相の形成効果が少ないものの、添加量が0.3重量%以上であれば、珪素により形成されるγ相を分散させて均一化させる効果があり、このようなγ相の分散効果によっても被削性が改善される。すなわち、錫の添加量が0.3重量%以上であれば、その添加により被削性が改善されることになる。
【0015】
また、アルミニウムも、錫と同様に、γ相形成を促進させる機能を有するものであり、錫と共に或いはこれに代えて添加することにより、Cu−Si−Zn系合金の被削性を更に向上させることができる。アルミニウムには、被削性の他、強度,耐摩耗性,耐高温酸化性を改善させる機能や合金比重を低下させる機能もあるが、被削性改善機能が発揮されるためには、少なくとも1.0重量%添加させる必要がある。しかし、3.5重量%を超えて添加しても、添加量に見合った被削性改善効果はみられないし、錫と同様に延性の低下を招来する。
【0016】
また、燐には、錫やアルミニウムのようなγ相の形成機能はないが、珪素の添加により又はこれと錫,アルミニウムの一方若しくは両方を共添させることにより生成したγ相を均一に分散して、γ相分布を良好なものとする機能があり、かかる機能によってγ相形成による被削性の更なる向上を図ることができる。また、燐の添加により、γ相の分散化と同時にマトリックスにおけるα相の結晶粒を微細化して、熱間加工性を向上させ、強度,耐応力腐蝕割れ性も向上させる。さらに、鋳造時の湯流れ性を著しく向上させる効果もある。このような燐添加による効果は0.02重量%未満の添加では発揮されない。一方、燐の添加量が0.25重量%を超えると、添加量に見合った被削性改善等の効果は得られないし、過剰添加により却って熱間鍛造性,押出性の低下を招来する。
【0017】
第3発明合金では、かかる点に着目して、Cu−Si−Zn系合金に、錫0.3〜3.5重量%、アルミニウム1.0〜3.5重量%及び燐0.02〜0.25重量%のうち少なくとも1つを添加させることより、被削性の更なる向上を図っている。
【0018】
ところで、錫、アルミニウム又は燐は、上記した如くγ相の形成機能又はγ相の分散機能により被削性を改善させるものであり、γ相による被削性改善を図る上で、珪素と密接な関係を有するものである。したがって、珪素に錫、アルミニウム又は燐を共添させた第3発明合金では、第1発明合金の珪素に置き換えて被削性を向上させる機能が発揮され、γ相とは関係なく被削性を改善させる機能(マトリックスに粒状をなして分散することにより被削性を向上させる機能)を発揮するビスマス、テルル又はセレンを添加した第2発明合金に比して、珪素の必要添加量が少なくなる。すなわち、珪素添加量が2.0重量%未満であっても、1.8重量%以上であれば、錫、アルミニウム又は燐の共添により、工業的に満足しうる被削性を得ることができる。しかし、より高い被削性を得る為には、珪素添加量を2.3重量%以上とするのが望ましく、また、珪素の添加量が4.0重量%以下であっても、3.5重量%を超えると、錫、アルミニウム又は燐を共添することにより、珪素添加による被削性改善効果は飽和状態となる。かかる点から、第3発明合金では、珪素の添加量を2.3〜3.5重量%とした。また、かかる珪素の添加量との関係及び錫、アルミニウム又は燐を添加させることとの関係から、銅配合量の上下限値は第2発明合金より若干大きくして、その好ましい含有量を70〜80重量%とした。
【0019】
また、請求項4の発明においては、同じく被削性に優れた無鉛快削性銅合金として、銅70〜80重量%と、珪素2.2〜3.5重量%と、錫0.3〜3.5重量%、アルミニウム1.0〜3.5重量%及び燐0.02〜0.25重量%から選択された1種以上の元素と、ビスマス0.02〜0.4重量%、テルル0.02〜0.4重量%及びセレン0.02〜0.4重量%から選択された1種以上の元素とを含有し、且つ残部が亜鉛からなる合金組成をなすと共に、γ相及びκ相の少なくとも一方を含む金属組織をなすことを特徴とする銅合金(以下「第4発明合金」という)を提案する。
【0020】
すなわち、第4発明合金は、第3発明合金に略近い銅合金にビスマス0.02〜0.4重量%、テルル0.02〜0.4重量%及びセレン0.02〜0.4重量%の少なくとも1つを更に含有させた合金組成をなすものであり、これらを添加させる理由及び添加量の決定理由は第2発明合金について述べたと同様である。
【0021】
また、請求項5の発明においては、被削性に加えて耐蝕性にも優れた無鉛快削性銅合金として、銅69〜79重量%と、珪素2.2〜4.0重量%と、錫0.3〜3.5重量%、燐0.02〜0.25重量%、アンチモン0.02〜0.15重量%及び砒素0.02〜0.15重量%から選択された1種以上の元素とを含有し、且つ残部が亜鉛からなる合金組成をなすと共に、γ相及びκ相の少なくとも一方を含む金属組織をなすことを特徴とする銅合金(以下「第5発明合金」という)を提案する。
【0022】
すなわち、第5発明合金は、第1発明合金に略近い銅合金に錫0.3〜3.5重量%、燐0.02〜0.25重量%、アンチモン0.02〜0.15重量%及び砒素0.02〜0.15重量%の少なくとも1つを更に含有させた合金組成をなすものである。
【0023】
錫には、被削性改善機能の他、耐蝕性(耐脱亜鉛腐蝕性,耐漬食性)及び鍛造性を向上させる機能がある。すなわち、α相マトリックスの耐蝕性を向上させ、γ相の分散化により耐蝕性、鍛造性及び耐応力腐蝕割れ性の改善を図ることができる。第5発明合金では、錫のかかる機能により耐蝕性の改善を図り、被削性の改善は主として珪素添加効果により図っている。したがって、珪素及び銅の含有量は第1発明合金と同一としてある。一方、耐蝕性,鍛造性の改善機能を発揮させるためには、錫の添加量を少なくとも0.3重量%とする必要がある。しかし、錫添加による耐蝕性,鍛造性の改善機能は、3.5重量%を超えて添加しても、添加量に見合うだけの効果が得られず、経済的にも無駄である。
【0024】
また、燐は、上記した如くγ相を均一分散化させる共にマトリックスにおけるα相の結晶粒を細分化させることにより、被削性改善機能の他、耐蝕性(耐脱亜鉛腐食性,耐漬食性)、鍛造性、耐応力腐蝕割れ性及び機械的強度を向上させる機能を発揮するものである。第5発明合金では、燐のかかる機能により耐蝕性等の改善を図り、被削性の改善は主として珪素添加効果により図っている。燐添加による耐蝕性等の改善効果は、微量の燐添加により発揮されるものであり、0.02重量%以上の添加で発揮される。しかし、0.25重量%を超えて添加しても、添加量に見合った効果が得られないばかりか、熱間鍛造性,押出性が却って低下する。
【0025】
また、アンチモン及び砒素も、燐と同様に、微量(0.02重量%以上)で耐脱亜鉛腐食性等を向上させるものである。しかし、0.15重量%を超えて添加しても、添加量に見合う効果が得られないばかりか、燐の過剰添加と同様に、熱間鍛造性,押出性が却って低下する。
【0026】
これらのことから、第5発明合金では、第1発明合金におけると同量の銅及び珪素に加えて、耐蝕性向上元素として錫、燐、アンチモン及び砒素の少なくとも1つを上記した範囲内で添加させることにより、被削性のみならず、耐蝕性等をも向上させることができるのである。なお、第5発明合金にあっては、錫及び燐は、主として、アンチモン及び砒素と同様の耐蝕性改善元素として機能するため、珪素以外に被削性改善元素を添加しない第1発明合金と略同様に、銅及び珪素の配合量は、夫々、69〜79重量%及び2.2〜4.0重量%としてある。
【0027】
また、請求項6の発明においては、同じく被削性及び耐蝕性に優れた無鉛快削性銅合金として、銅69〜79重量%と、珪素2.2〜4.0重量%と、錫0.3〜3.5重量%、燐0.02〜0.25重量%、アンチモン0.02〜0.15重量%及び砒素0.02〜0.15重量%から選択された1種以上の元素と、ビスマス0.02〜0.4重量%、テルル0.02〜0.4重量%及びセレン0.02〜0.4重量%から選択された1種以上の元素とを含有し、且つ残部が亜鉛からなる合金組成をなすと共に、γ相及びκ相の少なくとも一方を含む金属組織をなすことを特徴とする銅合金(以下「第6発明合金」という)を提案する。
【0028】
すなわち、第6発明合金は、第5発明合金にビスマス0.02〜0.4重量%、テルル0.02〜0.4重量%及びセレン0.02〜0.4重量%の少なくとも1つを更に含有させた合金組成をなすものであり、第2発明合金と同様に、珪素並びにビスマス、テルル及びセレンのうちから選択した少なくとも1つを添加することにより被削性を改善すると共に、第5発明合金と同様に、錫、燐、アンチモン及び砒素のうちから選択した少なくとも1つを添加することにより耐蝕性等を改善したものである。したがって、銅、珪素、ビスマス、テルル及びセレンの添加量については第2発明合金と同一とし、錫、燐、アンチモン及び砒素の添加量については第5発明合金と同一とした。
【0029】
また、請求項7の発明においては、被削性に加えて高力性,耐摩耗性に優れた無鉛快削性銅合金として、銅62〜78重量%と、珪素2.5〜4.5重量%と、錫0.3〜3.0重量%、アルミニウム0.2〜2.5重量%及び燐0.02〜0.25重量%から選択された1種以上の元素と、マンガン0.7〜3.5重量%及びニッケル0.7〜3.5重量%から選択された1種以上の元素とを含有し、且つ残部が亜鉛からなる合金組成をなすと共に、γ相及びκ相の少なくとも一方を含む金属組織をなすことを特徴とする銅合金(以下「第7発明合金」という)を提案する。
【0030】
マンガン又はニッケルは、珪素と結合してMnX SiY 又はNiX SiY の微細金属間化合物を形成して、マトリックスに均一に析出し、それにより耐摩耗性,強度を向上させる。したがって、マンガン及びニッケルの一方又は両方を添加することにより、高力性,耐摩耗性が改善される。かかる効果は、マンガン及びニッケルを夫々0.7重量%以上添加することに発揮される。しかし、3.5重量%を超えて添加しても、効果が飽和状態となり、添加量に見合う効果が得られない。珪素は、マンガン又はニッケルの添加に伴い、これらとの金属間化合物形成に要する消費量を考慮して、2.5〜4.5重量%を添加させることとした。
【0031】
また、錫、アルミニウム及び燐の添加により、マトリックスのα相が強化され、被削性も改善される。錫及び燐は、α相,γ相の分散により強度,耐摩耗性を向上させ、被削性も向上させる。錫は、0.3重量%以上の添加により強度及び被削性を向上させるが、3.0重量%を超えて添加すると延性が低下する。したがって、高力性,耐摩耗性の改善を図る第7発明合金においては、被削性改善効果も考慮して、錫の添加量を0.3〜3.0重量%とした。また、アルミニウムは、耐摩耗性改善に寄与し、マトリックスの強化機能は0.2重量%以上の添加により発揮される。しかし、2.5重量%を超えて添加すると、延性が低下する。したがって、被削性改善効果も考慮して、アルミニウムの添加量は0.2〜2.5重量%とした。また、燐の添加により、γ相の分散化と同時にマトリックスにおけるα相の結晶粒を微細化して、熱間加工性を向上させ、強度,耐摩耗性も向上させる。しかも、鋳造時の湯流れ性を著しく向上させる効果もある。このような効果は、燐を0.02〜0.25重量%の範囲で添加することにより奏せられる。なお、銅の配合量については、珪素添加量との関係及びマンガン,ニッケルが珪素と結合する関係から、62〜78重量%とした。
【0032】
また、請求項8の発明においては、同じく被削性及び高力性,耐摩耗性に優れた無鉛快削性銅合金として、銅62〜78重量%と、珪素2.5〜4.5重量%と、錫0.3〜3.0重量%、アルミニウム1.0〜2.5重量%及び燐0.02〜0.25重量%から選択された1種以上の元素と、マンガン0.7〜3.5重量%及びニッケル0.7〜3.5重量%から選択された1種以上の元素と、ビスマス0.02〜0.4重量%、テルル0.02〜0.4重量%及びセレン0.02〜0.4重量%から選択された1種以上の元素とを含有し、且つ残部が亜鉛からなる合金組成をなすと共に、γ相及びκ相の少なくとも一方を含む金属組織をなすことを特徴とする銅合金(以下「第8発明合金」という)を提案する。
【0033】
すなわち、第8発明合金は、第7発明合金にビスマス0.02〜0.4重量%、テルル0.02〜0.4重量%及びセレン0.02〜0.4重量%の少なくとも1つを更に含有させた合金組成をなすものであり、前記した如く珪素と異なる機能により被削性を改善する元素であるビスマス等を添加することにより、第7発明合金と同様の高力性,耐摩耗性を確保しつつ、被削性の更なる改善を図ったものである。ビスマス等の被削性改善元素についての添加理由及び添加量決定理由は、第2発明合金、第4発明合金又は第6発明合金と同様である。その他の元素(銅,亜鉛,錫,マンガン,ニッケル)についての添加理由及び添加量決定理由は、第7発明合金と同様である。
【0034】
さらに、請求項9の発明においては、被削性に加えて耐高温酸化性に優れた無鉛快削性銅合金として、銅69〜79重量%、珪素2.3〜4.0重量%、アルミニウム0.1〜1.5重量%及び燐0.02〜0.25重量%を含有し、且つ残部が亜鉛からなる合金組成をなすと共に、γ相及びκ相の少なくとも一方を含む金属組織をなすことを特徴とする銅合金(以下「第9発明合金」という)を提案する。
【0035】
アルミニウムは、強度,被削性,耐摩耗性を改善させる他、耐高温酸化性を改善させる元素である。また、珪素も、上記した如く、被削性,強度,耐摩耗性,耐応力腐蝕割れ性を改善させる他、耐高温酸化性を改善する機能を発揮する。アルミニウムによる耐高温酸化性の改善は、珪素との共添によって、0.1重量%以上の添加で行なわれる。しかし、アルミニウムを1.5重量%を超えて添加しても、添加量に見合う耐高温酸化性改善効果はみられない。かかる点から、アルミニウムの添加量は0.1〜1.5重量%とした。
【0036】
燐は、合金鋳造時における湯流れ性を向上させるために添加される。また、燐は、かかる湯流れ性の他、上記した被削性,耐脱亜鉛腐蝕性に加えて、耐高温酸化性をも改善する。このような燐の添加効果は0.02重量%以上で発揮される。しかし、0.25重量%を超えて添加しても、添加量に見合う効果はみられず、却って合金の脆性化を招くことになる。かかる点から、燐の添加量は、0.02〜0.25重量%とした。
【0037】
また、珪素は、上記した如く被削性を改善させるために添加されるものであるが、燐と同様に湯流れ性を向上させる機能も有するものである。珪素による湯流れ性の向上は2.0重量%以上、望ましくは2.3重量%以上の添加により発揮され、被削性を向上させるに必要な添加範囲と重複する。したがって、珪素の添加量は、被削性の改善を考慮して、2.3〜4.0重量%とした。
【0038】
また、請求項10の発明においては、同じく被削性及び耐高温酸化性に優れた無鉛快削性銅合金として、銅69〜79重量%と、珪素2.2〜4.0重量%と、アルミニウム0.1〜1.5重量%と、燐0.02〜0.25重量%と、クロム0.02〜0.4重量%及びチタン0.02〜0.4重量%から選択された1種以上の元素とを含有し、且つ残部が亜鉛からなる合金組成をなすと共に、γ相及びκ相の少なくとも一方を含む金属組織をなすことを特徴とする銅合金(以下「第10発明合金」という)を提案する。
【0039】
クロム及びチタンは耐高温酸化性を向上させる機能を有するものであり、その機能は、特に、アルミニウムとの共添による相乗効果によって顕著に発揮される。かかる機能は、これらを単独添加すると共添するとに拘わらず、夫々、0.02重量%以上で発揮され、0.4重量%で飽和状態となる。このような点から、第10発明合金においては、第9発明合金に略近い銅合金にクロム0.02〜0.4重量%及びチタン0.02〜0.4重量%の少なくとも1つを更に含有させた合金組成をなすものとして、第9発明合金の耐高温酸化性を更に向上させるよう図っている。
【0040】
また、請求項11の発明においては、同じく被削性及び耐高温酸化性に優れた無鉛快削性銅合金として、銅69〜79重量%と、珪素2.4〜4.0重量%と、アルミニウム0.1〜1.5重量%と、燐0.02〜0.25重量%と、ビスマス0.02〜0.4重量%、テルル0.02〜0.4重量%及びセレン0.02〜0.4重量%から選択された1種以上の元素とを含有し、且つ残部が亜鉛からなる合金組成をなすと共に、γ相及びκ相の少なくとも一方を含む金属組織をなすことを特徴とする銅合金(以下「第11発明合金」という)を提案する。
【0041】
すなわち、第11発明合金は、第9発明合金に略近い銅合金にビスマス0.02〜0.4重量%、テルル0.02〜0.4重量%及びセレン0.02〜0.4重量%の少なくとも1つを更に含有させた合金組成をなすものであり、前記した如く珪素と異なる機能により被削性を改善する元素であるビスマス等を添加することにより、第9発明合金と同様の耐高温酸化性を確保しつつ、被削性の更なる改善を図ったものである。
【0042】
また、請求項12の発明においては、同じく被削性及び耐高温酸化性に優れた無鉛快削性銅合金として、銅69〜79重量%と、珪素2.5〜4.0重量%と、アルミニウム0.1〜1.5重量%と、燐0.02〜0.25重量%と、クロム0.02〜0.4重量%及びチタン0.02〜0.4重量%から選択された1種以上の元素と、ビスマス0.02〜0.4重量%、テルル0.02〜0.4重量%及びセレン0.02〜0.4重量%から選択された1種以上の元素とを含有し、且つ残部が亜鉛からなる合金組成をなすと共に、γ相及びκ相の少なくとも一方を含む金属組織をなすことを特徴とする銅合金(以下「第12発明合金」という)を提案する。
【0043】
すなわち、第12発明合金は、第10発明合金に略近い銅合金にビスマス0.02〜0.4重量%、テルル0.02〜0.4重量%及びセレン0.02〜0.4重量%の少なくとも1つを更に含有させた合金組成をなすものであり、前記した如く珪素と異なる機能により被削性を改善する元素であるビスマス等を添加することにより、第10発明合金と同様の耐高温酸化性を確保しつつ、被削性の更なる改善を図ったものである。
【0044】
また、請求項13の発明においては、上記した各発明合金に400〜600℃で30分〜5時間の熱処理を施してγ相を微細にに分散析出させ、その被削性を更に改善した無鉛快削性銅合金(以下「第13発明合金」という)を提案する。
【0045】
第1〜第12発明合金は珪素等の被削性改善元素を添加したものであり、かかる元素の添加により優れた被削性を有するものであるが、特に、銅濃度が高く、α,β,γ,δ及びこれ以外の相(主としてκ相)が多い場合には、熱処理により、κ相がγ相に相変化して、γ相が微細に分散析出することにより、被削性が更に改善されることがある。例えば、銅濃度が高いものでは、マトリックスの延性が高くγ相の絶対量が少ないことから、冷間加工性に優れるが、カシメ等の冷間加工と切削加工が必要な場合、上記した熱処理が極めて有効となる。すなわち、第1〜第12 発明合金における銅濃度が高いものであって、γ相が少なく且つκ相が多いもの(以下「高銅濃度合金」という)については、熱処理によりκ相がγ相に変化して、γ相が微細に分散析出することにより、被削性が更に改善される。また、実際の鋳物,展伸材,熱間鍛造品の製造を想定した場合、鋳造条件や熱間加工(熱間押出,熱間鍛造等)後の生産性,作業環境等の条件によって、それらの材料が強制空冷,水冷される場合がある。かかる場合、第1〜第12発明において、銅濃度が低いもの(以下「低銅濃度合金」という)では、γ相が若干少なく且つβ相を含んでいるが、熱処理を施すと、これによりβ相がγ相に変化すると共にγ相が微細に分散析出することになり、被削性が改善される。実験により確認したところでは、銅及び珪素と他の添加元素(亜鉛を除く)Aとの配合比が67≦Cu−3Si+aAとなるような組成の高銅濃度合金又は64≧Cu−3Si+aAとなるような組成の低銅濃度合金において、熱処理による効果が特に著しい。なお、aは添加元素Aによって異なる係数であり、例えば、錫:a=−0.5、アルミニウム:a=−2、燐:a=−3、アンチモン:a=0、砒素:a=0、マンガン:a=+2.5、ニッケル:a=+2.5である。
【0046】
しかし、何れの場合においても、熱処理温度が400℃未満であれば、上記した相変化速度が遅くなり、熱処理に極めて長時間を要するため、経済的にも実用できない。逆に、600℃を超えると、却ってκ相が増大し或いはβ相が出現するため、被削性の改善効果が得られない。したがって、実用性をも考慮した場合、被削性改善のためには、400〜600℃の条件で30分〜5時間の熱処理を行なうことが好ましい。
【0047】
【実施例】
実施例として、表1〜表35に示す組成の鋳塊(外径100mm,長さ150mmの円柱形状のもの)を熱間(750℃)で外径15mmの丸棒状に押出加工して、第1発明合金No.1001〜No.1008、第2発明合金No.2001〜No.2011、第3発明合金No.3001〜No.3012、第4発明合金No.4001〜No.4049、第5発明合金No.5001〜No.5020、第6発明合金No.6001〜No.6105、第7発明合金No.7001〜No.7030、第8発明合金No.8001〜No.8147、第9発明合金No.9001〜No.9005、第10発明合金No.10001〜No.10008、第11発明合金No.11001〜No.11007及び第12発明合金No.12001〜No.12021を得た。また、表36に示す組成の鋳塊(外径100mm,長さ150mmの円柱形状のもの)を熱間(750℃)で外径15mmの丸棒状に押出加工した上、その押出材を表36に示す条件で熱処理して、第13発明合金No.13001〜No.13006を得た。すなわち、No.13001は第1発明合金No.1005と同一組成をなす押出材を580℃,30分の条件で熱処理したものであり、No.13002はNo.13001と同一組成をなす押出材を450℃,2時間の条件で熱処理したものであり、No.13003は第1発明合金No.1007と同一組成をなす押出材をNo.13001と同一条件(580℃,30分)で熱処理したものであり、No.13004はNo.1007と同一組成をなす押出材をNo.13002と同一条件(450℃,2時間)で熱処理したものであり、No.13005は第1発明合金No.1008と同一組成をなす押出材をNo.13001と同一条件(580℃,30分)で熱処理したものであり、No.13006はNo.1008と同一組成をなす押出材をNo.13002と同一条件(450℃,2時間)で熱処理したものである。尚、第 1 乃至第 12 発明合金の組成を示す表 1 乃至表35の中で、珪素の含有量が請求項 1 乃至請求項12に記載の珪素含有量の範囲外である銅合金は、参考例として記載されているものである。
【0048】
また、比較例として、表37に示す組成の鋳塊(外径100mm,長さ150mmの円柱形状のもの)を熱間(750℃)で押出加工して、外径15mmの丸棒状押出材(以下「従来合金」という)No.14001〜No.14006を得た。なお、No.14001は「JIS C3604」に相当するものであり、No.14002は「CDA C36000」に相当するものであり、No.14003は「JIS C3771」に相当するものであり、No.14004は「CDA C69800」に相当するものである。また、No.14005は「JIS C6191」に相当するものであり、JISに規定される伸銅品の中で強度,耐磨耗性に最も優れるアルミニウム青銅である。また、No.14006は「JIS C4622」に相当するものであり、JISに規定される伸銅品の中で耐蝕性に最も優れるネーバル黄銅である。
【0049】
【表1】
【0050】
【表2】
【0051】
【表3】
【0052】
【表4】
【0053】
【表5】
【0054】
【表6】
【0055】
【表7】
【0056】
【表8】
【0057】
【表9】
【0058】
【表10】
【0059】
【表11】
【0060】
【表12】
【0061】
【表13】
【0062】
【表14】
【0063】
【表15】
【0064】
【表16】
【0065】
【表17】
【0066】
【表18】
【0067】
【表19】
【0068】
【表20】
【0069】
【表21】
【0070】
【表22】
【0071】
【表23】
【0072】
【表24】
【0073】
【表25】
【0074】
【表26】
【0075】
【表27】
【0076】
【表28】
【0077】
【表29】
【0078】
【表30】
【0079】
【表31】
【0080】
【表32】
【0081】
【表33】
【0082】
【表34】
【0083】
【表35】
【0084】
【表36】
【0085】
【表37】
【0086】
そして、第1〜第13発明合金の被削性を従来合金との比較において確認すべく、次のような切削試験を行い、切削主分力、切屑状態及び切削表面形態を判定した。
【0087】
すなわち、上記の如くして得られた各押出材の外周面を、真剣バイト(すくい角:−8°)を取り付けた旋盤により、切削速度:50m/分,切込み深さ(切削代):1.5mm,送り量:0.11mm/rev.の条件で切削し、バイトに取り付けた3分力動力計からの信号を重歪測定器により電圧信号に変換してレコーダで記録し、これを切削抵抗に換算した。ところで、切削抵抗の大小は3分力つまり主分力、送り分力及び背分力によって判断されるが、ここでは、3分力のうち最も大きな値を示す主分力(N)をもって切削抵抗の大小を判断することとした。その結果は、表38〜表66に示す通りであった。
【0088】
また、切削により生成した切屑の状態を観察し、その形状によって図1(A)〜(D)に示す如く4つに分類して、表1〜表37に示した。ところで、切屑が、(D)図に示す如く、3巻以上の螺旋形状をなしている場合には、切屑の処理(切屑の回収や再利用等)が困難となる上、切屑がバイトに絡み付いたり、切削表面を損傷させる等のトラブルが発生して、良好な切削加工を行なうことができない。また、切屑が、(C)図に示す如く、半巻程度の円弧形状から2巻程度の螺旋形状をなしている場合には、3巻以上の螺旋形状をなす場合のような大きなトラブルは生じないものの、やはり切屑の処理が容易ではなく、連続切削加工を行う場合等にあってはバイトへの絡み付きや切削表面の損傷等を生じる虞れがある。しかし、切屑が、(A)の如き微細な針形状片や(B)の如き扇形状片又は円弧形状片に剪断される場合には、上記のようなトラブルが生じることがなく、(C)図や(D)図に示すもののように嵩張らないことから、切屑の処理も容易である。但し、切屑が(A)図のような微細形状に剪断される場合には、旋盤等の工作機械の摺動面に潜り込んで機械的障害を発生したり、作業者の手指,目に刺さる等の危険を伴うことがある。したがって、被削性を判断する上では、(B)図に示すものが最良であり、(A)図に示すものがこれに続き、(C)図や(D)図に示すものは不適当とするのが相当である。表38〜表66においては、(B)に示す最良の切屑状態が観察されたものを「◎」で、(A)図に示すやや良好な切屑状態が観察されたものを「○」で、(C)図に示す不良な切屑状態が観察されたものを「△」で、(D)に示す最悪の切屑状態が観察されたものを「×」で示した。
【0089】
また、切削後において、切削表面の良否を表面粗さにより判定した。その結果は、表38〜表66に示す通りであった。ところで、表面粗さの基準としては最大高さ(Rmax )が使用されることが多く、黄銅製品の用途にもよるが、一般に、Rmax <10μmであれば極めて被削性に優れると判断することができ、10μm≦Rmax <15μmであれば工業的に満足しうる被削性を得ることができたものと判断でき、Rmax ≧15μmの場合には被削性に劣るものと判断できる。表38〜表65においては、Rmax <10μmの場合を「○」で、10μm≦Rmax <15μmの場合を「△」で、Rmax ≧15μmの場合を「×」で示した。
【0090】
表38〜表66に示す切削試験の結果から明らかなように、第1発明合金No.1001〜No.1008、第2発明合金No.2001〜No.2011、第3発明合金No.3001〜No.3012、第4発明合金No.4001〜No.4049、第5発明合金No.5001〜No.5020、第6発明合金No.6001〜No.6105、第7発明合金No.7001〜No.7030、第8発明合金No.8001〜No.8147、第9発明合金No.9001〜No.9005、第10発明合金No.10001〜No.10008、第11発明合金No.11001〜No.11007及び第12発明合金No.12001〜No.12021は、その何れにおいても、鉛を大量に含有する従来合金No.14001〜No.14003と同等の被削性を有するものである。特に、切屑の生成状態に限っては、鉛含有量が0.1重量%以下である従来合金No.14004〜No.14006に比しては勿論、鉛を大量に含有する従来合金No.14001〜No.14003に比しても、良好な被削性を有する。
【0091】
また、表38及び表65から明らかなように、第13発明合金No.13001〜No.13006は、これらと同一組成をなす第1発明合金No.1005、No.1007及びNo.1008に比して被削性が向上しており、適当な熱処理を施すことにより被削性を更に向上させ得ることが確認された。
【0092】
次に、第1〜第13発明合金の熱間加工性及び機械的性質を、従来合金との比較において確認すべく、次のような熱間圧縮試験及び引張試験を行った。
【0093】
すなわち、上記の如くして得られた各押出材から同一形状(外径15mm,長さ25mm)の第1及び第2試験片を切り出した。そして、熱間圧縮試験においては、各第1試験片を700℃に加熱して30分間保持した上、軸線方向に70%の圧縮率で圧縮(第1試験片の高さ(長さ)が25mmから7.5mmになるまで圧縮)して、圧縮後の表面形態(700℃変形能)を目視判定した。その結果は、表38〜表66に示す通りであった。変形能の判定は試験片側面におけるクラックの状態から目視により行い、表38〜表66においては、クラックが全く生じなかったものを「○」で、小さなクラックが生じたものを「△」で、大きなクラックが生じたものを「×」で示した。また、各第2試験片を使用して、常法による引張試験を行ない、引張強さ(N/mm2 )及び伸び(%)を測定した。
【0094】
表38〜表66に示す熱間圧縮試験及び引張試験の結果から、第1〜第13発明合金は、従来合金No.14001〜No.14004及びNo.14006と同等若しくはそれ以上の熱間加工性及び機械的性質を有するものであり、工業的に好適に使用できるものであることが確認された。特に、第7及び第8発明合金については、JISに規定される伸銅品の中で強度に最も優れるアルミニウム青銅である従来合金No.14005と同等の機械的性質を有するものであり、高力性に優れることが理解される。
【0095】
また、第1〜第6発明合金及び第9〜第13発明合金の耐蝕性及び耐応力腐蝕割れ性を、従来合金との比較において確認すべく、「ISO 6509」に定める方法による脱亜鉛腐蝕試験及び「JIS H3250」に規定される応力腐蝕割れ試験を行った。
【0096】
すなわち、「ISO 6509」の脱亜鉛腐蝕試験においては、各押出材から採取した試料を、暴露試料表面が当該押出材の押出し方向に対して直角となるようにしてフェノール樹脂材に埋込み、試料表面をエメリー紙により1200番まで研磨した後、これを純水中で超音波洗浄して乾燥した。かくして得られた被腐蝕試験試料を、1.0%の塩化第2銅2水和塩(CuCl2 ・2H2O)の水溶液(12.7g/l)中に浸漬し、75℃の温度条件下で24時間保持した後、水溶液中から取出して、その脱亜鉛腐蝕深さの最大値(最大脱亜鉛腐蝕深さ)を測定した。その結果は、表38〜表50及び表61〜表66に示す通りであった。
【0097】
表38〜表50及び表61〜表66に示す脱亜鉛腐蝕試験の結果から理解されるように、第1〜第4発明合金及び第9〜第13発明合金は、大量の鉛を含有する従来合金No.14001〜No.14003に比して優れた耐蝕性を有し、特に、被削性と共に耐蝕性の向上を図った第5及び第6発明合金については、JISに規定される伸銅品の中で耐蝕性に最も優れるネーバル黄銅である従来合金No.14006に比しても極めて優れた耐蝕性を有することが確認された。
【0098】
また、「JIS H3250」の応力腐蝕割れ試験においては、各押出材から長さ150mmの試料を切り出し、各試料を、その中央部を半径40mmの円弧状治具に当てた状態で、その一端部が他端部に対して45°となるように折曲させて、試験片とした。このようにして引張残留応力を付加された各試験片を脱脂,乾燥処理した上、12.5%のアンモニア水(アンモニアを等量の純水で薄めたもの)を入れたデシケータ内のアンモニア雰囲気(25℃)中に保持させた。すなわち、各試験片をデシケータ内におけるアンモニア水面から約80mm上方の位置に保持する。そして、試験片のアンモニア雰囲気中における保持時間が、2時間,8時間,24時間を経過した時点で、試験片をデシケータから取り出して、10%の硫酸で洗浄した上、当該試験片の割れの有無を拡大鏡(倍率:10倍)で視認した。その結果は、表38〜表50及び表61〜表66に示す通りであった。これらの表においては、アンモニア雰囲気中での保持時間が2時間である場合に明瞭な割れが認められたものについては「××」で、2時間経過時においては割れが認められなかったが、8時間経過時においては明瞭な割れが認められたものについては「×」で、8時間経過時においては割れが認められなかったが、24時間経過時においては明瞭な割れが認められたものについては「△」で、24時間経過時においても割れが全く認められなかったものについては「○」で示した。
【0099】
表38〜表50及び表61〜表66に示す応力腐蝕割れ試験の結果から理解されるように、被削性と共に耐蝕性の向上を図った第5及び第6発明合金については勿論、耐蝕性については格別の配慮をしていない第1〜第4発明合金及び第9〜第13発明合金についても、亜鉛を含まないアルミニウム青銅である従来合金14005と同等の耐応力腐蝕割れ性を有し、JISに規定される伸銅品の中で耐蝕性に最も優れるネーバル黄銅である従来合金No.14006より優れた耐応力腐蝕割れ性を有することが確認された。
【0100】
また、第9〜第12発明合金の耐高温酸化性を、従来合金との比較において確認すべく、次のような酸化試験を行った。
【0101】
すなわち、各押出材No.9001〜No.9005、No.10001〜No.10008、No.11001〜No.11007、No.12001〜No.12021及びNo.14001〜14006から、外径が14mmとなるように表面研削され且つ長さ30mmに切断された丸棒状の試験片を得て、各試験片の重量(以下「酸化前重量」という)を測定した。しかる後、各試験片を、磁性坩堝に収納した状態で、500℃に保持された電気炉内に放置した。そして、放置時間が100時間を経過した時点で電気炉から取り出して、各試験片の重量(以下「酸化後重量」という)を測定した上、酸化前重量と酸化後重量とから酸化増量を算出した。ここに、酸化増量とは、試験片の表面積10cm2 当たりの酸化による増加重量(mg)の程度を示すものであり、「酸化増量(mg/10cm2 )=(酸化後重量(mg)−酸化前重量(mg))×(10cm2 /試験片の表面積(cm2 )」の式から算出されたものである。すなわち、各試験片の酸化後重量は酸化前重量より増加しているが、これは高温酸化によるものである。つまり、高温に晒されると、酸素と銅,亜鉛,珪素とが結合してCu2O,ZnO,SiO2 となり、その酸素増分により重量が増加するのである。したがって、この増加重量の程度(酸化増量)が小さい程、耐高温酸化性に優れているということができ、表61〜表64及び表66に示す結果となった。
【0102】
表61〜表64及び表66に示す酸化試験の結果から明らかなように、第9〜第12発明合金の酸化増量は、JISに規定される伸銅品の中でも高度の耐高温酸化性を有するアルミニウム青銅である従来合金No.14005と同等であり、他の従来合金よりは極めて小さくなっている。したがって、第9〜第12発明合金が、被削性に加えて、耐高温酸化性にも極めて優れたものであることが確認された。
【0103】
【表38】
【0104】
【表39】
【0105】
【表40】
【0106】
【表41】
【0107】
【表42】
【0108】
【表43】
【0109】
【表44】
【0110】
【表45】
【0111】
【表46】
【0112】
【表47】
【0113】
【表48】
【0114】
【表49】
【0115】
【表50】
【0116】
【表51】
【0117】
【表52】
【0118】
【表53】
【0119】
【表54】
【0120】
【表55】
【0121】
【表56】
【0122】
【表57】
【0123】
【表58】
【0124】
【表59】
【0125】
【表60】
【0126】
【表61】
【0127】
【表62】
【0128】
【表63】
【0129】
【表64】
【0130】
【表65】
【0131】
【表66】
【0132】
また、第2の実施例として、表14〜表31に示す組成の鋳塊(外径100mm,長さ200mmの円柱形状のもの)を熱間(700℃)で外径35mmの丸棒状に押出加工して、第7発明合金No.7001a〜No.7030a及び第8発明合金No.8001a〜No.8147aを得た。また、第2の比較例として、表37に示す組成の鋳塊(外径100mm,長さ200mmの円柱形状のもの)を熱間(700℃)で押出加工して、外径35mmの丸棒状押出材(以下「従来合金」という)No.14001a〜No.14006aを得た。なお、No.7001a〜No.7030a、No.8001a〜No.8147a及びNo.14001a〜No.14006aは、夫々、前記した銅合金No.7001〜No.7030、No.8001〜No.8147及びNo.14001〜No.14006と同一の合金組成をなすものである。
【0133】
そして、第7発明合金No.7001a〜No.7030a及び第8発明合金No.8001a〜No.8147aの耐摩耗性を、従来合金No.14001a〜No.14006aとの比較において確認すべく、次のような摩耗試験を行った。
【0134】
すなわち、上記の如くして得られた各押出材から、その外周面を切削した上、穴明け加工及び切断加工を施すことにより、外径32mm,厚さ(軸線方向長さ)10mmのリング状試験片を得た上、各試験片を回転自在な軸に嵌合固定して、これと軸線を平行とする外径48mmのSUS304製ロールに50kgの荷重を掛けて押圧接触させた状態に保持させる。しかる後、SUS304製ロール及びこれに転接する試験片を、当該試験片の外周面にマルチオイルを滴下しつつ、同一回転数(209r.p.m.)で回転駆動させる。そして、当該試験片の回転数が10万回に達した時点で、SUS304製ロール及び試験片の回転を停止して、各試験片の回転前後における重量差つまり摩耗減量(mg)を測定した。かかる摩耗減量が少ない程、耐摩耗性に優れた銅合金ということができるが、その結果は、表67〜表77に示す通りであった。
【0135】
表67〜表77に示す摩耗試験の結果から明らかなように、第7発明合金No.7001a〜No.7030a及び第8発明合金No.8001a〜No.8147aは、従来合金No.14001〜No.14004及びNo.14005に比しては勿論、JISに規定される伸銅品の中で耐磨耗性に最も優れるアルミニウム青銅である従来合金No.14005に比しても、耐摩耗性が優れることが確認された。したがって、上記した引張試験の結果をも考慮して総合的に判断した場合、第7及び第8発明合金は、被削性に加えて、JISに規定される伸銅品の中で耐磨耗性に最も優れるアルミニウム青銅と同等以上の高力性,耐摩耗性を有するものであるということができる。
【0136】
【表67】
【0137】
【表68】
【0138】
【表69】
【0139】
【表70】
【0140】
【表71】
【0141】
【表72】
【0142】
【表73】
【0143】
【表74】
【0144】
【表75】
【0145】
【表76】
【0146】
【表77】
【0147】
【発明の効果】
以上の説明から容易に理解されるように、第1〜第13発明合金は、被削性改善元素である鉛成分を全く含まないにも拘わらず、極めて被削性に富むものであり、鉛を大量に含有する従来の快削性銅合金の代替材料として安全に使用できるものであり、切屑の再利用等を含めて環境衛生上の問題が全くなく、鉛含有製品が規制されつつある近時の傾向に充分対応することができる。
【0148】
さらに、第5及び第6発明合金は、被削性に加えて耐蝕性にも優れるものであり、耐蝕性を必要とする切削加工品,鍛造品,鋳物製品等(例えば、給水栓,っ給排水金具,バルブ,ステム,給湯配管部品,シャフト,熱交換器部品等)の構成材として好適に使用することができるものであり、その実用的価値極めて大なるものである。
【0149】
また、第7及び第8発明合金は、被削性に加えて高力性,耐摩耗性にも優れるものであり、高力性,耐摩耗性を必要とする切削加工品,鍛造品,鋳物製品等(例えば、軸受,ボルト,ナット,ブッシュ,歯車,ミシン部品,油圧部品等)の構成材として好適に使用することができるものであり、その実用的価値極めて大なるものである。
【0150】
また、第9〜第12発明合金は、被削性に加えて耐高温酸化性にも優れるものであり、耐高温酸化性を必要とする切削加工品,鍛造品,鋳物製品等(例えば、石油・ガス温風ヒータ用ノズル,バーナヘッド,給湯器用ガスノズル等)の構成材として好適に使用することができるものであり、その実用的価値極めて大なるものである。
【図面の簡単な説明】
【図1】切屑の形態を示す斜視図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a free-cutting copper alloy containing no lead component.
[0002]
[Prior art]
In general, bronze alloys such as JIS H5111 BC6 and brass alloys such as JIS H3250-C3604 and C3771 are known as copper alloys having excellent machinability. These have improved machinability by containing about 1.0 to 6.0% by weight of lead and ensure industrially satisfactory machinability.
[0003]
Since copper alloys containing lead are excellent in machinability as described above, they have been useful as a constituent material of various products (for example, faucet fittings for water supply pipes, water supply / drainage fittings, valves, etc.). Has been. However, since lead is a harmful substance that adversely affects the human body and the environment, its use has recently been greatly limited. For example, the metal vapor generated during high-temperature work such as melting or casting of an alloy may contain lead components, or lead components may be eluted from faucet fittings or valves due to contact with drinking water or the like. Yes, there are human and environmental health problems.
[0004]
[Problems to be solved by the invention]
Therefore, recently, in developed countries such as the United States, there is a tendency to significantly limit the lead content in copper alloys, and in Japan too, there is a strong demand for the development of free-cutting copper alloys with as low a lead content as possible. Has been.
[0005]
The present invention has been made to respond to such global trends and demands, and aims to provide a lead-free free-cutting copper alloy that has industrially satisfactory machinability without containing lead. To do.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention proposes the following lead-free free-cutting copper alloy.
[0007]
That is,Claim 1In the present invention, as a lead-free free-cutting copper alloy having excellent machinability, 69 to 79% by weight of copper and silicon2.3An alloy composition containing ~ 4.0% by weight and the balance being zincAnd forming a metal structure including at least one of γ phase and κ phase.A copper alloy (hereinafter referred to as “first invention alloy”) is proposed.
[0008]
Lead does not dissolve in the matrix, but is dispersed in a granular form to improve machinability. On the other hand, silicon causes a γ phase (in some cases, a κ phase) to appear in the metal structure.That is, at least one of the γ phase and the κ layer (hereinafter referred to as the γ phase) appears.Thus, the machinability is improved.
Thus, both(Lead and silicon)Although they have completely different functions in alloy properties, they are common in terms of improving machinability. Focusing on this point, in the first invention alloy, by adding silicon instead of lead, industrially satisfactory machinability is secured. That is, the first invention alloy is a γ phase by adding silicon.Etc.The machinability is improved by forming.
[0009]
Thus, if the amount of silicon added is less than 2.0% by weight, the γ phase is sufficient to ensure industrially satisfactory machinability.etcNo formationTherefore, it is desirable that the addition amount is 2.0% by weight or more, preferably 2.3% by weight or more.In addition, machinability improves with an increase in the amount of silicon added, but even if it exceeds 4.0% by weight, there is no machinability improving effect commensurate with the amount added. By the way, since silicon has a high melting point and a low specific gravity, it is easy to oxidize. Therefore, when silicon is charged into the furnace as a single element when the alloy is melted, the silicon floats on the molten metal surface and is oxidized at the time of melting to form silicon oxide or silicon oxide. Thus, it becomes difficult to produce a silicon-containing copper alloy. Therefore, in the production of an ingot of a silicon-containing copper alloy, it is usually performed after adding silicon to a Cu—Si alloy, and the production cost is increased. Even in consideration of such an alloy manufacturing cost, it is not preferable to add silicon beyond the amount (4.0 wt%) at which the machinability improving effect becomes saturated. Also, according to experiments, when 2.0 to 4.0% by weight of silicon is added, in order to maintain the original characteristics of the Cu—Zn alloy, when the relationship with the zinc content is also considered, It has been found that the copper content is preferably in the range of 69 to 79% by weight. For these reasons, in the first invention alloy, the contents of copper and silicon are 69 to 79% by weight and2.3It was set to -4.0 weight%. In addition to the improvement of machinability, the addition of silicon improves the flowability, strength, wear resistance, stress corrosion cracking resistance, and high temperature oxidation resistance during casting. In addition, ductility and dezincification corrosion resistance are improved to some extent.
[0010]
Also,Claim 2In the invention, as a lead-free free-cutting copper alloy having excellent machinability, 69 to 79% by weight of copper, silicon2.34.0% by weight and one or more elements selected from bismuth 0.02 to 0.4% by weight, tellurium 0.02 to 0.4% by weight and selenium 0.02 to 0.4% by weight; And an alloy composition with the balance being zincAnd forming a metal structure including at least one of γ phase and κ phase.A copper alloy (hereinafter referred to as “second invention alloy”) is proposed.
[0011]
That is, the second invention alloy contains at least one of bismuth 0.02 to 0.4 wt%, tellurium 0.02 to 0.4 wt% and selenium 0.02 to 0.4 wt% to the first invention alloy. Further, the alloy composition is included.
[0012]
Bismuth, tellurium, or selenium, like lead, does not dissolve in the matrix, but exhibits a function of improving machinability by being dispersed in a granular form. It improves the sex. Therefore, when these are co-added with silicon, it becomes possible to further improve the machinability beyond the machinability improvement limit by the addition of silicon. In the second invention alloy, focusing on this point, at least one of bismuth, tellurium and selenium is added in order to further improve the machinability of the first invention alloy. In particular, by adding bismuth, tellurium or selenium in addition to silicon, a high degree of machinability is exhibited even when a complicated shape is cut at a high speed. However, the machinability improving effect due to the addition of bismuth, tellurium or selenium is not exhibited when the addition amount is less than 0.02% by weight. On the other hand, since these are expensive compared to copper, even if added in excess of 0.4% by weight, the machinability is slightly improved as the added amount increases, but economically. The effect corresponding to the amount added is not recognized. On the other hand, when the added amount exceeds 0.4% by weight, hot workability (for example, forgeability) is deteriorated, and cold workability (ductility) is also lowered. Further, even if there is a possibility that a problem similar to lead may occur for a heavy metal such as bismuth, if it is added in a trace amount of 0.4% by weight or less, it is considered that there is no possibility of causing a particular problem. From these points, in the second invention alloy, the addition amount of bismuth, tellurium or selenium was set to 0.02 to 0.4% by weight. In addition, since bismuth, tellurium, or selenium improves machinability by a function different from silicon as described above, the appropriate content of copper and silicon is not affected by the addition of these. Therefore, the contents of copper and silicon were the same as those of the first invention alloy.
[0013]
Also,Claim 3In the present invention, as a lead-free free-cutting copper alloy that is also excellent in machinability, 70 to 80% by weight of copper, silicon2.3-3.5 wt% and one or more elements selected from tin 0.3-3.5 wt%, aluminum 1.0-3.5 wt% and phosphorus 0.02-0.25 wt% And an alloy composition with the balance being zincAnd forming a metal structure including at least one of γ phase and κ phase.A copper alloy (hereinafter referred to as “third invention alloy”) is proposed.
[0014]
Tin, when added to a Cu—Zn-based alloy, forms a γ phase and improves machinability, similar to silicon. For example, tin is added to 1.8 to 4.0 wt% in a Cu-Zn alloy containing 58 to 70 wt% of Cu, so that good machinability can be obtained even if silicon is not added. Show. Therefore, by adding tin to the Cu—Si—Zn alloy, the formation of the γ phase can be promoted, and the machinability of the Cu—Si—Zn alloy can be further improved. Formation of the γ phase with tin is carried out at 1.0% by weight or more, and when it reaches 3.5% by weight, it becomes saturated. If the added amount of tin exceeds 3.5% by weight, not only the effect of forming the γ phase becomes saturated, but also the ductility decreases. Further, if the addition amount of tin is less than 1.0% by weight, the effect of forming the γ phase is small, but if the addition amount is 0.3% by weight or more, the γ phase formed by silicon is dispersed and homogenized. There is an effect, and the machinability is also improved by the dispersion effect of the γ phase. That is, if the addition amount of tin is 0.3% by weight or more, the machinability is improved by the addition.
[0015]
Aluminum, like tin, has a function of promoting the formation of the γ phase, and is added together with or instead of tin to further improve the machinability of the Cu—Si—Zn alloy. be able to. In addition to machinability, aluminum has the ability to improve strength, wear resistance, and high temperature oxidation resistance, and to reduce alloy specific gravityMoaHowever, in order to exhibit the machinability improving function, it is necessary to add at least 1.0% by weight. However, even if added over 3.5% by weight, the machinability improving effect commensurate with the added amount is not observed, and the ductility is lowered similarly to tin.
[0016]
Phosphorus does not have the function of forming a γ phase like tin or aluminum, but uniformly disperses the γ phase generated by adding silicon or by co-adding one or both of tin and aluminum. Thus, there is a function of improving the γ phase distribution, and this function can further improve the machinability by forming the γ phase. Addition of phosphorus also makes it possible to refine the α phase crystal grains in the matrix simultaneously with the dispersion of the γ phase, improve the hot workability, and improve the strength and stress corrosion resistance. Furthermore, there is also an effect of remarkably improving the hot water flow during casting. Such an effect due to the addition of phosphorus is not exhibited when the addition is less than 0.02% by weight. On the other hand, if the addition amount of phosphorus exceeds 0.25% by weight, effects such as improvement of machinability corresponding to the addition amount cannot be obtained, and excessive addition causes a decrease in hot forgeability and extrudability.
[0017]
In the third invention alloy, paying attention to this point, the Cu-Si-Zn alloy includes 0.3 to 3.5 wt% tin, 1.0 to 3.5 wt% aluminum, and 0.02 to 0 phosphorus. The machinability is further improved by adding at least one of 25 wt%.
[0018]
By the way, tin, aluminum, or phosphorus improves the machinability by the function of forming the γ phase or the function of dispersing the γ phase as described above. In order to improve the machinability by the γ phase, it is close to silicon. It has a relationship. Therefore, in the third invention alloy in which tin, aluminum or phosphorus is co-added to silicon, the machinability is improved by replacing the silicon of the first invention alloy with the machinability irrespective of the γ phase. Compared with the second invention alloy to which bismuth, tellurium or selenium is added which exhibits the function of improving (the function of improving the machinability by dispersing in the form of particles in the matrix), the required addition amount of silicon is reduced. . That is, even if the silicon addition amount is less than 2.0% by weight, if it is 1.8% by weight or more, industrially satisfactory machinability can be obtained by co-addition of tin, aluminum or phosphorus. it can. But,In order to obtain higher machinability, the silicon addition amount is desirably 2.3% by weight or more.In addition, even if the amount of silicon added is 4.0% by weight or less, if it exceeds 3.5% by weight, the machinability improving effect by adding silicon is saturated by co-adding tin, aluminum or phosphorus. It becomes a state. From this point, in the third invention alloy, the amount of silicon added is2.3˜3.5 wt%. Further, from the relationship with the addition amount of silicon and the addition of tin, aluminum, or phosphorus, the upper and lower limit values of the copper blending amount are slightly larger than those of the second invention alloy, and the preferable content thereof is 70 to 70. 80% by weight.
[0019]
Also,Claim 4In the present invention, as a lead-free free-cutting copper alloy that is also excellent in machinability, 70 to 80% by weight of copper, silicon2.2-3.5 wt% and one or more elements selected from tin 0.3-3.5 wt%, aluminum 1.0-3.5 wt% and phosphorus 0.02-0.25 wt% One or more elements selected from 0.02 to 0.4% by weight of bismuth, 0.02 to 0.4% by weight of tellurium and 0.02 to 0.4% by weight of selenium, and the balance being Zinc alloy compositionAnd forming a metal structure including at least one of γ phase and κ phase.A copper alloy (hereinafter referred to as “fourth invention alloy”) is proposed.
[0020]
That is, the fourth invention alloy is changed to the third invention alloy.Nearly close copper alloyBismuth 0.02 to 0.4 wt%, tellurium 0.02 to 0.4 wt% and selenium 0.02 to 0.4 wt% at least one alloy composition, The reason for adding these and the reason for determining the addition amount are the same as those described for the second invention alloy.
[0021]
Also,Claim 5In the present invention, as a lead-free free-cutting copper alloy excellent in corrosion resistance in addition to machinability, 69 to 79% by weight of copper, silicon2.2-4.0 wt%, tin 0.3-3.5 wt%, phosphorus 0.02-0.25 wt%, antimony 0.02-0.15 wt% and arsenic 0.02-0.15 wt% 1 or more elements selected from the group consisting of zinc and the balance consisting of zincAnd forming a metal structure including at least one of γ phase and κ phase.A copper alloy (hereinafter referred to as “fifth invention alloy”) is proposed.
[0022]
That is, the fifth invention alloy is changed to the first invention alloy.Nearly close copper alloyAnd at least one of 0.3 to 3.5% by weight of tin, 0.02 to 0.25% by weight of phosphorus, 0.02 to 0.15% by weight of antimony and 0.02 to 0.15% by weight of arsenic. The alloy composition is included.
[0023]
In addition to the machinability improving function, tin has a function of improving corrosion resistance (dezincing corrosion resistance, pickling resistance) and forgeability. That is, the corrosion resistance of the α phase matrix can be improved, and the dispersion of the γ phase can improve the corrosion resistance, forgeability, and stress corrosion cracking resistance. In the fifth invention alloy, the corrosion resistance is improved by the function of tin, and the machinability is improved mainly by the effect of silicon addition. Therefore, the contents of silicon and copper are the same as those of the first invention alloy. On the other hand, in order to exert the function of improving the corrosion resistance and forgeability, the amount of tin added needs to be at least 0.3% by weight. However, the function of improving corrosion resistance and forgeability due to the addition of tin does not provide an effect commensurate with the amount added even if it exceeds 3.5% by weight, and is economically wasteful.
[0024]
Phosphorus, as described above, uniformly disperses the γ phase and subdivides the α phase crystal grains in the matrix to improve the machinability as well as the corrosion resistance (dezincification corrosion resistance, pickling resistance). ), Exhibiting the function of improving forgeability, stress corrosion cracking resistance and mechanical strength. In the fifth invention alloy, the corrosion resistance and the like are improved by the function of phosphorus, and the machinability is improved mainly by the silicon addition effect. The effect of improving the corrosion resistance and the like by adding phosphorus is exhibited by adding a small amount of phosphorus, and is exhibited by adding 0.02% by weight or more. However, even if added over 0.25% by weight, not only an effect commensurate with the amount added is obtained, but also hot forgeability and extrudability are lowered.
[0025]
Antimony and arsenic also improve dezincification corrosion resistance and the like in a trace amount (0.02% by weight or more), similarly to phosphorus. However, even if added over 0.15% by weight, not only an effect commensurate with the amount added is obtained, but also hot forgeability and extrudability are lowered as in the case of excessive addition of phosphorus.
[0026]
Therefore, in the fifth invention alloy, in addition to the same amount of copper and silicon as in the first invention alloy, at least one of tin, phosphorus, antimony and arsenic is added within the above range as an anticorrosion element. By doing so, not only machinability but also corrosion resistance and the like can be improved. In the fifth invention alloy, tin and phosphorus mainly function as a corrosion resistance improving element similar to antimony and arsenic, and therefore the first invention alloy in which no machinability improving element other than silicon is added.AbbreviationSimilarly, the blending amounts of copper and silicon are 69 to 79% by weight and2.2~ 4.0 wt%.
[0027]
Also,Claim 6In the present invention, 69 to 79% by weight of copper, silicon as a lead-free free-cutting copper alloy having excellent machinability and corrosion resistance,2.2-4.0 wt%, tin 0.3-3.5 wt%, phosphorus 0.02-0.25 wt%, antimony 0.02-0.15 wt% and arsenic 0.02-0.15 wt% At least one element selected from the group consisting of 0.02 to 0.4% by weight of bismuth, 0.02 to 0.4% by weight of tellurium, and 0.02 to 0.4% by weight of selenium. An alloy composition containing the above elements and the balance being zincAnd forming a metal structure including at least one of γ phase and κ phase.A copper alloy (hereinafter referred to as “sixth invention alloy”) is proposed.
[0028]
That is, the sixth invention alloy contains at least one of bismuth 0.02 to 0.4 wt%, tellurium 0.02 to 0.4 wt% and selenium 0.02 to 0.4 wt% to the fifth invention alloy. Further, the alloy composition is included. Like the second invention alloy, machinability is improved by adding at least one selected from silicon and bismuth, tellurium and selenium. Similar to the invention alloy, the corrosion resistance and the like are improved by adding at least one selected from tin, phosphorus, antimony and arsenic. Therefore, the addition amount of copper, silicon, bismuth, tellurium and selenium was the same as that of the second invention alloy, and the addition amount of tin, phosphorus, antimony and arsenic was the same as that of the fifth invention alloy.
[0029]
Also,Claim 7In the invention of the present invention, as a lead-free free-cutting copper alloy excellent in high strength and wear resistance in addition to machinability, copper is 62 to 78% by weight, silicon is 2.5 to 4.5% by weight, tin One or more elements selected from 0.3 to 3.0% by weight, aluminum 0.2 to 2.5% by weight and phosphorus 0.02 to 0.25% by weight; manganese 0.7 to 3.5 And an alloy composition containing at least one element selected from 0.7% to 3.5% by weight of nickel and the balance of zinc.And forming a metal structure including at least one of γ phase and κ phase.A copper alloy (hereinafter referred to as “seventh invention alloy”) is proposed.
[0030]
Manganese or nickel combines with silicon to form MnXSiYOr NiXSiYThe fine intermetallic compound is formed and uniformly deposited on the matrix, thereby improving the wear resistance and strength. Therefore, high strength and wear resistance are improved by adding one or both of manganese and nickel. Such an effect is exhibited by adding 0.7% by weight or more of manganese and nickel, respectively. However, even if added over 3.5% by weight, the effect becomes saturated and an effect commensurate with the amount added cannot be obtained. With the addition of manganese or nickel, silicon was added in an amount of 2.5 to 4.5% by weight in consideration of the amount of consumption required for forming an intermetallic compound with these.
[0031]
Further, the addition of tin, aluminum and phosphorus enhances the α phase of the matrix and improves the machinability. Tin and phosphorus improve the strength and wear resistance by dispersing the α phase and γ phase, and also improve the machinability. Tin improves the strength and machinability by addition of 0.3% by weight or more, but if added over 3.0% by weight, ductility decreases. Therefore, in the 7th invention alloy which aims at improvement in high strength and abrasion resistance, the amount of tin added was set to 0.3 to 3.0% by weight in consideration of the machinability improving effect. Aluminum contributes to improvement of wear resistance, and the matrix strengthening function is exhibited by addition of 0.2% by weight or more. However, if it exceeds 2.5% by weight, the ductility decreases. Therefore, the amount of aluminum added is set to 0.2 to 2.5% by weight in consideration of the machinability improving effect. Further, the addition of phosphorus makes it possible to refine the α phase crystal grains in the matrix simultaneously with the dispersion of the γ phase, improve the hot workability, and improve the strength and wear resistance. In addition, there is an effect of remarkably improving the hot water flow during casting. Such an effect is exhibited by adding phosphorus in the range of 0.02 to 0.25% by weight. In addition, about the compounding quantity of copper, it was set to 62 to 78 weight% from the relationship with silicon addition amount, and the relationship from which manganese and nickel couple | bond with silicon.
[0032]
Also,Claim 8In the present invention, as a lead-free free-cutting copper alloy having excellent machinability, high strength, and wear resistance, copper 62 to 78% by weight, silicon 2.5 to 4.5% by weight, tin 0 One or more elements selected from 0.3 to 3.0% by weight, aluminum 1.0 to 2.5% by weight and phosphorus 0.02 to 0.25% by weight, and manganese 0.7 to 3.5% by weight % And one or more elements selected from 0.7 to 3.5 wt% nickel, 0.02 to 0.4 wt% bismuth, 0.02 to 0.4 wt% tellurium and 0.02 to selenium An alloy composition containing at least one element selected from 0.4% by weight and the balance being zincAnd forming a metal structure including at least one of γ phase and κ phase.A copper alloy (hereinafter referred to as “eighth invention alloy”) is proposed.
[0033]
That is, the eighth invention alloy contains at least one of bismuth 0.02 to 0.4 wt%, tellurium 0.02 to 0.4 wt% and selenium 0.02 to 0.4 wt% to the seventh invention alloy. Further, the alloy composition is included, and as described above, by adding bismuth or the like, which is an element that improves machinability by a function different from silicon, high strength and wear resistance similar to those of the seventh invention alloy are added. It is intended to further improve the machinability while securing the properties. The reason for addition and the reason for determining the addition amount of the machinability improving element such as bismuth are the same as those of the second invention alloy, the fourth invention alloy or the sixth invention alloy. The reason for addition and the reason for determining the amount of addition for other elements (copper, zinc, tin, manganese, nickel) are the same as in the seventh invention alloy.
[0034]
further, Claim 9In the present invention, as a lead-free free-cutting copper alloy excellent in high-temperature oxidation resistance in addition to machinability, copper is 69 to 79% by weight, silicon is 2.3 to 4.0% by weight, and aluminum is 0.1 to 1%. .5% by weight and phosphorous 0.02-0.25% by weight, the balance being zinc alloy compositionAnd forming a metal structure including at least one of γ phase and κ phase.A copper alloy (hereinafter referred to as “ninth invention alloy”) is proposed.
[0035]
Aluminum is an element that improves strength, machinability and wear resistance, as well as high-temperature oxidation resistance. In addition, as described above, silicon also improves machinability, strength, wear resistance, stress corrosion cracking resistance, and also functions to improve high-temperature oxidation resistance. Improvement of the high temperature oxidation resistance by aluminum is carried out by addition of 0.1% by weight or more by co-addition with silicon. However, even if aluminum is added in excess of 1.5% by weight, no effect of improving high-temperature oxidation resistance commensurate with the amount added is observed. From this point, the amount of aluminum added is 0.1 to 1.5% by weight.
[0036]
Phosphorus is added in order to improve the hot water flow during alloy casting. In addition to such hot metal flow, phosphorus improves high-temperature oxidation resistance in addition to the machinability and dezincification corrosion resistance described above. Such an effect of adding phosphorus is exhibited at 0.02% by weight or more. However, even if added over 0.25% by weight, an effect commensurate with the added amount is not observed, and the brittleness of the alloy is caused instead. From this point, the amount of phosphorus added is 0.02 to 0.25% by weight.
[0037]
Further, silicon is added to improve machinability as described above, and has a function of improving the hot water flowability similarly to phosphorus. Improvement of hot water flow by silicon is 2.0% by weight or more,Desirably 2.3% by weight or moreIs added and overlaps with the addition range necessary for improving the machinability. Therefore, the amount of silicon added is determined in consideration of machinability improvement.2.3It was set to -4.0 weight%.
[0038]
Also,Claim 10In the present invention, 69 to 79% by weight of copper, silicon as a lead-free free-cutting copper alloy having excellent machinability and high-temperature oxidation resistance,2.2-4.0 wt%, aluminum 0.1-1.5 wt%, phosphorus 0.02-0.25 wt%, chromium 0.02-0.4 wt% and titanium 0.02-0. An alloy composition containing at least one element selected from 4% by weight and the balance being zincAnd forming a metal structure including at least one of γ phase and κ phase.A copper alloy (hereinafter referred to as “tenth invention alloy”) is proposed.
[0039]
Chromium and titanium have a function of improving high-temperature oxidation resistance, and the function is remarkably exhibited particularly by a synergistic effect by co-addition with aluminum. Such functions are exhibited at 0.02% by weight or more, and become saturated at 0.4% by weight, regardless of whether these are added alone or together. From this point, in the tenth invention alloy, the ninth invention alloyTo a close copper alloyAs an alloy composition further containing at least one of 0.02 to 0.4% by weight of chromium and 0.02 to 0.4% by weight of titanium, the high temperature oxidation resistance of the ninth invention alloy is further improved. I am trying.
[0040]
Also,Claim 11In the present invention, 69 to 79% by weight of copper, silicon as a lead-free free-cutting copper alloy having excellent machinability and high-temperature oxidation resistance,2.4-4.0 wt%, aluminum 0.1-1.5 wt%, phosphorus 0.02-0.25 wt%, bismuth 0.02-0.4 wt%, tellurium 0.02-0. 4% by weight and one or more elements selected from 0.02 to 0.4% by weight of selenium, and an alloy composition in which the balance is made of zinc.And forming a metal structure including at least one of γ phase and κ phase.A copper alloy (hereinafter referred to as “11th invention alloy”) is proposed.
[0041]
That is, the eleventh invention alloy is changed to the ninth invention alloy.To a close copper alloyThe alloy composition further contains at least one of bismuth 0.02 to 0.4% by weight, tellurium 0.02 to 0.4% by weight and selenium 0.02 to 0.4% by weight, As described above, by adding bismuth or the like, which is an element that improves machinability by a function different from that of silicon, the machinability was further improved while ensuring high-temperature oxidation resistance similar to that of the ninth invention alloy. Is.
[0042]
Also,Claim 12In the present invention, 69 to 79% by weight of copper, silicon as a lead-free free-cutting copper alloy having excellent machinability and high-temperature oxidation resistance,2.5-4.0 wt%, aluminum 0.1-1.5 wt%, phosphorus 0.02-0.25 wt%, chromium 0.02-0.4 wt% and titanium 0.02-0. One or more elements selected from 4% by weight and selected from bismuth 0.02-0.4% by weight, tellurium 0.02-0.4% by weight and selenium 0.02-0.4% by weight An alloy composition containing one or more elements and the balance being zincAnd forming a metal structure including at least one of γ phase and κ phase.A copper alloy (hereinafter referred to as “twelfth invention alloy”) is proposed.
[0043]
That is, the twelfth invention alloy is changed to the tenth invention alloy.To a close copper alloyThe alloy composition further contains at least one of bismuth 0.02 to 0.4% by weight, tellurium 0.02 to 0.4% by weight and selenium 0.02 to 0.4% by weight, As described above, by adding bismuth or the like, which is an element that improves machinability by a function different from that of silicon, the machinability was further improved while ensuring high-temperature oxidation resistance similar to that of the tenth invention alloy. Is.
[0044]
Also,Claim 13In the present invention, lead-free free-cutting copper alloy in which each of the above-described alloys is heat-treated at 400 to 600 ° C. for 30 minutes to 5 hours to finely disperse and precipitate the γ phase, thereby further improving the machinability. (Hereinafter referred to as “the thirteenth invention alloy”).
[0045]
The alloys of the first to twelfth inventions are made by adding a machinability improving element such as silicon, and have excellent machinability by addition of such elements. In particular, the copper concentration is high, and α, β , Γ, δAnd thisWhen there are many other phases (mainly κ phase), the machinability may be further improved by heat-transforming the κ phase into a γ phase and finely dispersing and precipitating the γ phase. . For example, when the copper concentration is high, since the ductility of the matrix is high and the absolute amount of γ phase is small, it is excellent in cold workability, but when cold working such as caulking and cutting is required, the above heat treatment is performed. It becomes extremely effective. That is, in the first to the 12th invention alloys having a high copper concentration and a small γ phase and a large κ phase (hereinafter referred to as “high copper concentration alloy”), the κ phase is changed to the γ phase by heat treatment. By changing and the γ phase is finely dispersed and precipitated, the machinability is further improved. In addition, assuming the production of actual castings, wrought materials, and hot forgings, depending on conditions such as casting conditions, productivity after hot working (hot extrusion, hot forging, etc.), working environment, etc. The material may be forced air-cooled or water-cooled. In such a case, in the first to twelfth inventions, those having a low copper concentration (hereinafter referred to as “low copper concentration alloy”) contain a little γ phase and a β phase. The phase changes to the γ phase and the γ phase is finely dispersed and precipitated, thereby improving the machinability. As confirmed by experiments, a high copper concentration alloy having a composition ratio of copper and silicon and other additive elements (excluding zinc) A of 67 ≦ Cu-3Si + aA or 64 ≧ Cu-3Si + aA is obtained. The effect of heat treatment is particularly remarkable in a low-copper concentration alloy having a simple composition. Here, a is a coefficient that varies depending on the additive element A. For example, tin: a = −0.5, aluminum: a = −2, phosphorus: a = −3, antimony: a = 0, arsenic: a = 0, Manganese: a = + 2.5, nickel: a = + 2.5.
[0046]
However, in any case, if the heat treatment temperature is less than 400 ° C., the above-described phase change rate becomes slow, and the heat treatment takes an extremely long time, so that it cannot be used economically. On the other hand, when the temperature exceeds 600 ° C., the κ phase increases or the β phase appears, so that the machinability improving effect cannot be obtained. Therefore, considering practicality, it is preferable to perform heat treatment for 30 minutes to 5 hours under conditions of 400 to 600 ° C. in order to improve machinability.
[0047]
【Example】
As an example, an ingot having a composition shown in Tables 1 to 35 (a cylindrical shape having an outer diameter of 100 mm and a length of 150 mm) was hot-formed (750 ° C.) into a round bar shape having an outer diameter of 15 mm. 1 invention alloy no. 1001-No. 1008, second invention alloy no. 2001-No. 2011, third invention alloy no. 3001-No. 3012, 4th invention alloy no. 4001-No. 4049, fifth invention alloy no. 5001-No. 5020, 6th invention alloy no. 6001-No. 6105, seventh invention alloy no. 7001-No. 7030, 8th invention alloy no. 8001-No. No. 8147, 9th invention alloy no. 9001-No. 9005, 10th invention alloy no. 10001-No. 10008, 11th invention alloy no. 11001-No. 11007 and 12th invention alloy no. 12001-No. 12021 was obtained. Further, an ingot having a composition shown in Table 36 (a cylindrical shape having an outer diameter of 100 mm and a length of 150 mm) was extruded into a round bar shape having an outer diameter of 15 mm hot (750 ° C.). In the thirteenth invention alloy no. 13001-No. 13006 was obtained. That is, no. 13001 is the first invention alloy no. An extruded material having the same composition as that of No. 1005 is heat-treated at 580 ° C. for 30 minutes. No. 13002 is No. The extruded material having the same composition as 13001 is heat-treated at 450 ° C. for 2 hours. 13003 is the first invention alloy no. Extruded material having the same composition as that of No. 1007 is No. 1007. No. 13001 was heat-treated under the same conditions (580 ° C., 30 minutes). 13004 is No. Extruded material having the same composition as that of No. 1007 is No. 1007. No. 13002 was heat-treated under the same conditions (450 ° C., 2 hours). 13005 is 1st invention alloy No.1. An extruded material having the same composition as that of No. 1008 is designated as No. 1008. No. 13001 was heat-treated under the same conditions (580 ° C., 30 minutes). 13006 is No. An extruded material having the same composition as that of No. 1008 is designated as No. 1008. Heat-treated under the same conditions (450 ° C., 2 hours) as 13002.The first 1 Thru 12 Table showing composition of invention alloy 1 In Table 35, the content of silicon is claimed. 1 The copper alloy which is outside the range of the silicon content according to the thirteenth aspect is described as a reference example.
[0048]
Further, as a comparative example, an ingot having a composition shown in Table 37 (a cylindrical shape having an outer diameter of 100 mm and a length of 150 mm) was hot extruded (750 ° C.) to obtain a round bar-like extruded material having an outer diameter of 15 mm ( Hereinafter referred to as “conventional alloy”) 14001-No. 14006 was obtained. In addition, No. 14001 corresponds to “JIS C3604”. 14002 corresponds to “CDA C36000”. 14003 corresponds to “JIS C3771”. 14004 corresponds to “CDA C69800”. No. 14005 corresponds to “JIS C6191” and is the aluminum bronze that is the most excellent in strength and wear resistance among the copper products specified in JIS. No. 14006 corresponds to “JIS C4622” and is Naval brass which is the most excellent in corrosion resistance among the copper products specified in JIS.
[0049]
[Table 1]
[0050]
[Table 2]
[0051]
[Table 3]
[0052]
[Table 4]
[0053]
[Table 5]
[0054]
[Table 6]
[0055]
[Table 7]
[0056]
[Table 8]
[0057]
[Table 9]
[0058]
[Table 10]
[0059]
[Table 11]
[0060]
[Table 12]
[0061]
[Table 13]
[0062]
[Table 14]
[0063]
[Table 15]
[0064]
[Table 16]
[0065]
[Table 17]
[0066]
[Table 18]
[0067]
[Table 19]
[0068]
[Table 20]
[0069]
[Table 21]
[0070]
[Table 22]
[0071]
[Table 23]
[0072]
[Table 24]
[0073]
[Table 25]
[0074]
[Table 26]
[0075]
[Table 27]
[0076]
[Table 28]
[0077]
[Table 29]
[0078]
[Table 30]
[0079]
[Table 31]
[0080]
[Table 32]
[0081]
[Table 33]
[0082]
[Table 34]
[0083]
[Table 35]
[0084]
[Table 36]
[0085]
[Table 37]
[0086]
Then, in order to confirm the machinability of the first to thirteenth invention alloys in comparison with the conventional alloys, the following cutting test was performed, and the cutting main component force, the chip state and the cutting surface form were determined.
[0087]
That is, the outer peripheral surface of each extruded material obtained as described above was cut at a cutting speed of 50 m / min, cutting depth (cutting allowance): 1 with a lathe equipped with a serious tool (rake angle: −8 °). .5 mm, feed amount: 0.11 mm / rev. The signal from the three-component dynamometer attached to the cutting tool was converted into a voltage signal by a heavy strain measuring instrument and recorded by a recorder, and this was converted into cutting resistance. By the way, the magnitude of the cutting force is determined by the three component forces, that is, the main component force, the feed component force, and the back component force. Here, the cutting force has the main component force (N) showing the largest value among the three component forces. It was decided to judge the size. The results were as shown in Table 38 to Table 66.
[0088]
Moreover, the state of the chip | tip produced | generated by cutting was observed, and it classified into four as shown to FIG. 1 (A)-(D) according to the shape, and it showed in Tables 1-37. By the way, if the chip has a spiral shape of three or more turns as shown in FIG. (D), it becomes difficult to process the chip (chip collection and reuse, etc.), and the chip is entangled with the bite. Or troubles such as damage to the cutting surface occur, and good cutting cannot be performed. In addition, as shown in FIG. (C), when the chip has a spiral shape of about 2 turns from an arc shape of about half turns, a big trouble occurs when the spiral shape is made of 3 turns or more. Although there is not, processing of chips is still not easy, and there is a risk of entanglement of the cutting tool, damage to the cutting surface, etc. when continuous cutting is performed. However, when the chips are sheared into a fine needle-shaped piece such as (A) or a fan-shaped piece or arc-shaped piece such as (B), the above-described trouble does not occur, and (C) Since it is not bulky like what is shown to a figure and (D) figure, the process of a chip is also easy. However, when the chips are sheared into a fine shape as shown in FIG. (A), they may sink into the sliding surface of a machine tool such as a lathe to cause a mechanical failure or get stuck in the operator's fingers or eyes. May be accompanied by danger. Therefore, in determining machinability, the one shown in FIG. (B) is the best, the one shown in FIG. (A) follows, and the one shown in FIG. (C) and (D) is inappropriate. It is considerable. In Table 38 to Table 66, the best chip state shown in (B) was observed with “◎”, and (A) the slightly good chip state shown in FIG. (C) The case where the bad chip state shown in the figure was observed was indicated by “Δ”, and the case where the worst chip state shown in (D) was observed was indicated by “x”.
[0089]
Moreover, after cutting, the quality of the cut surface was determined by the surface roughness. The results were as shown in Table 38 to Table 66. By the way, the maximum height (Rmax) is often used as a standard for surface roughness, and although it depends on the application of the brass product, it is generally judged that if Rmax <10 μm, the machinability is extremely excellent. If it is 10 μm ≦ Rmax <15 μm, it can be judged that industrially satisfactory machinability could be obtained, and if Rmax ≧ 15 μm, it can be judged that the machinability is inferior. In Tables 38 to 65, the case of Rmax <10 μm is indicated by “◯”, the case of 10 μm ≦ Rmax <15 μm is indicated by “Δ”, and the case of Rmax ≧ 15 μm is indicated by “X”.
[0090]
As is apparent from the results of the cutting tests shown in Tables 38 to 66, the first invention alloy Nos. 1001-No. 1008, second invention alloy no. 2001-No. 2011, third invention alloy no. 3001-No. 3012, 4th invention alloy no. 4001-No. 4049, fifth invention alloy no. 5001-No. 5020, 6th invention alloy no. 6001-No. 6105, seventh invention alloy no. 7001-No. 7030, 8th invention alloy no. 8001-No. No. 8147, 9th invention alloy no. 9001-No. 9005, 10th invention alloy no. 10001-No. 10008, 11th invention alloy no. 11001-No. 11007 and 12th invention alloy no. 12001-No. No. 12021 is a conventional alloy No. 1202 containing a large amount of lead. 14001-No. It has machinability equivalent to 14003. In particular, as far as the chip generation state is concerned, the conventional alloy no. 14004-No. As a matter of course, the conventional alloy No. 14 containing a large amount of lead is used. 14001-No. Compared to 14003, it has good machinability.
[0091]
As apparent from Table 38 and Table 65, the thirteenth invention alloy No. 13001-No. No. 13006 is a first invention alloy No. having the same composition as these. 1005, no. 1007 and no. It was confirmed that the machinability was improved as compared to 1008, and that machinability could be further improved by performing an appropriate heat treatment.
[0092]
Next, in order to confirm the hot workability and mechanical properties of the first to thirteenth invention alloys in comparison with conventional alloys, the following hot compression test and tensile test were performed.
[0093]
That is, first and second test pieces having the same shape (outer diameter: 15 mm, length: 25 mm) were cut out from the extruded materials obtained as described above. In the hot compression test, each first test piece is heated to 700 ° C. and held for 30 minutes, and then compressed in the axial direction at a compression rate of 70% (the height (length) of the first test piece is The surface morphology after compression (700 ° C. deformability) was visually determined. The results were as shown in Table 38 to Table 66. Judgment of the deformability is made visually from the state of cracks on the side of the test piece. In Tables 38 to 66, “◯” indicates that no crack was generated, and “Δ” indicates that a small crack was generated. Those with large cracks are indicated by “x”. In addition, each second test piece was used to conduct a tensile test by a conventional method, and the tensile strength (N / mm2) And elongation (%).
[0094]
From the results of the hot compression test and the tensile test shown in Table 38 to Table 66, the first to thirteenth invention alloys are the conventional alloy Nos. 14001-No. 14004 and no. It has been confirmed that it has hot workability and mechanical properties equivalent to or higher than 14006 and can be used industrially. In particular, for the seventh and eighth invention alloys, the conventional alloy No. 1 which is aluminum bronze having the highest strength among the copper-drawn products defined in JIS. It is understood that it has mechanical properties equivalent to 14005 and is excellent in high strength.
[0095]
In addition, in order to confirm the corrosion resistance and stress corrosion cracking resistance of the first to sixth invention alloys and the ninth to thirteenth invention alloys in comparison with the conventional alloys, the dezincification corrosion test by the method defined in “ISO 6509”. And a stress corrosion cracking test specified in “JIS H3250”.
[0096]
That is, in the dezincification corrosion test of “ISO 6509”, a sample collected from each extruded material is embedded in a phenol resin material so that the exposed sample surface is perpendicular to the extrusion direction of the extruded material, and the sample surface Was polished to number 1200 with emery paper, and then this was ultrasonically washed in pure water and dried. The corrosion test sample thus obtained was added to 1.0% cupric chloride dihydrate (CuCl).2・ 2H2O) is immersed in an aqueous solution (12.7 g / l) and kept at a temperature of 75 ° C. for 24 hours, and then taken out from the aqueous solution to obtain a maximum dezincification depth (maximum dezincification depth). Measured). The results were as shown in Tables 38 to 50 and Tables 61 to 66.
[0097]
As can be understood from the results of the dezincification corrosion tests shown in Tables 38 to 50 and Tables 61 to 66, the first to fourth invention alloys and the ninth to thirteenth invention alloys conventionally contain a large amount of lead. Alloy No. 14001-No. Excellent corrosion resistance compared to 14003, especially the fifth and sixth invention alloys that have improved machinability as well as machinability. Conventional alloy No. which is the most excellent naval brass. It was confirmed that it has extremely excellent corrosion resistance even when compared with 14006.
[0098]
Further, in the stress corrosion cracking test of “JIS H3250”, a sample having a length of 150 mm is cut out from each extruded material, and each sample is placed at one end thereof in a state where its central portion is applied to an arc-shaped jig having a radius of 40 mm. Was bent at 45 ° with respect to the other end to obtain a test piece. Each test piece to which tensile residual stress was added in this manner was degreased and dried, and then the ammonia atmosphere in a desiccator containing 12.5% ammonia water (ammonia diluted with an equal amount of pure water). (25 ° C.). That is, each test piece is held at a position approximately 80 mm above the ammonia water surface in the desiccator. Then, when the holding time of the test piece in the ammonia atmosphere has passed 2 hours, 8 hours, and 24 hours, the test piece is taken out from the desiccator and washed with 10% sulfuric acid. The presence or absence was visually confirmed with a magnifying glass (magnification: 10 times). The results were as shown in Tables 38 to 50 and Tables 61 to 66. In these tables, when the retention time in the ammonia atmosphere was 2 hours, the crack was recognized as “XX”, and no crack was observed after 2 hours. For those where clear cracks were observed after 8 hours, the test was “x”. No cracks were observed after 8 hours, but clear cracks were observed after 24 hours. “△” indicates that no crack was observed even after 24 hours, and “◯” indicates.
[0099]
As understood from the results of the stress corrosion cracking tests shown in Tables 38 to 50 and Tables 61 to 66, the alloys of the fifth and sixth inventions aiming at improving the corrosion resistance as well as the machinability are of course corrosion resistance. For the first to fourth invention alloys and the ninth to thirteenth invention alloys that are not specially considered, has the same stress corrosion cracking resistance as the conventional alloy 14005 which is aluminum bronze containing no zinc, Conventional alloy No. is Naval brass which is the most excellent in corrosion resistance among the copper products specified in JIS. It was confirmed that the material has stress corrosion cracking resistance superior to 14006.
[0100]
Further, in order to confirm the high temperature oxidation resistance of the ninth to twelfth invention alloys in comparison with the conventional alloys, the following oxidation test was conducted.
[0101]
That is, each extruded material No. 9001-No. 9005, no. 10001-No. 10008, no. 11001-No. 11007, no. 12001-No. 12021 and no. From 14001 to 14006, round bar-shaped test pieces that were ground to have an outer diameter of 14 mm and cut to a length of 30 mm were obtained, and the weight of each test piece (hereinafter referred to as “pre-oxidation weight”) was measured. . Thereafter, each test piece was left in an electric furnace maintained at 500 ° C. while being stored in a magnetic crucible. Then, after the standing time has passed 100 hours, it is taken out from the electric furnace, the weight of each test piece (hereinafter referred to as “weight after oxidation”) is measured, and the increase in oxidation is calculated from the weight before oxidation and the weight after oxidation. did. Here, the increase in oxidation means a surface area of 10 cm of the test piece.2The degree of increase in weight (mg) due to oxidation per unit is shown, and “Oxidation increase (mg / 10 cm2) = (Weight after oxidation (mg) −weight before oxidation (mg)) × (10 cm2/ Surface area of specimen (cm2) ". That is, the weight after oxidation of each test piece is higher than the weight before oxidation, which is due to high temperature oxidation. In other words, when exposed to high temperatures, oxygen and copper, zinc and silicon combine to form Cu.2O, ZnO, SiO2Thus, the weight increases due to the increment of oxygen. Therefore, it can be said that the smaller the degree of weight increase (oxidation increase), the better the high-temperature oxidation resistance, and the results shown in Tables 61 to 64 and Table 66 were obtained.
[0102]
As is apparent from the results of the oxidation tests shown in Tables 61 to 64 and Table 66, the oxidation increase of the ninth to twelfth invention alloys has a high degree of high-temperature oxidation resistance among the copper products specified in JIS. Conventional alloy No. 1 which is aluminum bronze. It is equivalent to 14005 and is much smaller than other conventional alloys. Therefore, it was confirmed that the ninth to twelfth invention alloys are extremely excellent in high-temperature oxidation resistance in addition to machinability.
[0103]
[Table 38]
[0104]
[Table 39]
[0105]
[Table 40]
[0106]
[Table 41]
[0107]
[Table 42]
[0108]
[Table 43]
[0109]
[Table 44]
[0110]
[Table 45]
[0111]
[Table 46]
[0112]
[Table 47]
[0113]
[Table 48]
[0114]
[Table 49]
[0115]
[Table 50]
[0116]
[Table 51]
[0117]
[Table 52]
[0118]
[Table 53]
[0119]
[Table 54]
[0120]
[Table 55]
[0121]
[Table 56]
[0122]
[Table 57]
[0123]
[Table 58]
[0124]
[Table 59]
[0125]
[Table 60]
[0126]
[Table 61]
[0127]
[Table 62]
[0128]
[Table 63]
[0129]
[Table 64]
[0130]
[Table 65]
[0131]
[Table 66]
[0132]
Further, as a second example, an ingot having a composition shown in Tables 14 to 31 (a cylindrical shape having an outer diameter of 100 mm and a length of 200 mm) is hot (700 ° C.) extruded into a round bar shape having an outer diameter of 35 mm. The seventh invention alloy no. 7001a-No. 7030a and 8th invention alloy no. 8001a-No. 8147a was obtained. As a second comparative example, an ingot having a composition shown in Table 37 (a cylindrical shape having an outer diameter of 100 mm and a length of 200 mm) is extruded hot (700 ° C.) to form a round bar shape having an outer diameter of 35 mm. Extruded material (hereinafter referred to as “conventional alloy”) No. 14001a-No. 14006a was obtained. In addition, No. 7001a-No. 7030a, no. 8001a-No. 8147a and no. 14001a-No. 14006a is the above-described copper alloy no. 7001-No. 7030, no. 8001-No. 8147 and no. 14001-No. It has the same alloy composition as 14006.
[0133]
And, the seventh invention alloy No. 7001a-No. 7030a and 8th invention alloy no. 8001a-No. The wear resistance of 8147a is the same as that of the conventional alloy No. 8147a. 14001a-No. In order to confirm in comparison with 14006a, the following wear test was performed.
[0134]
That is, by cutting the outer peripheral surface of each extruded material obtained as described above, and performing drilling and cutting, a ring shape having an outer diameter of 32 mm and a thickness (length in the axial direction) of 10 mm. After obtaining the test pieces, each test piece was fitted and fixed to a rotatable shaft, and a 50-mm SUS304 roll having an outer diameter of 48 mm, which is parallel to the axis, was pressed and held in a pressed contact state. Let Thereafter, the roll made of SUS304 and the test piece that is in contact with the roll are rotated at the same rotational speed (209 rpm) while dropping multi-oil on the outer peripheral surface of the test piece. And when the rotation speed of the said test piece reached | attained 100,000 times, rotation of the roll made from SUS304 and a test piece was stopped, and the weight difference before the rotation of each test piece, ie, wear loss (mg), was measured. It can be said that the smaller the wear loss, the better the copper alloy, but the results are as shown in Table 67 to Table 77.
[0135]
As is apparent from the results of the wear tests shown in Tables 67 to 77, the seventh invention alloy No. 7001a-No. 7030a and 8th invention alloy no. 8001a-No. No. 8147a is a conventional alloy No. 8147a. 14001-No. 14004 and no. As a matter of course, the conventional alloy No. 14 which is aluminum bronze having the most excellent wear resistance among the copper products specified in JIS as compared with 14005. Even when compared with 14005, it was confirmed that the wear resistance was excellent. Therefore, when comprehensively considering the results of the tensile test described above, the alloys of the seventh and eighth inventions are wear resistant in the copper products defined in JIS in addition to machinability. It can be said that it has high strength and wear resistance equivalent to or better than aluminum bronze, which is the most excellent in performance.
[0136]
[Table 67]
[0137]
[Table 68]
[0138]
[Table 69]
[0139]
[Table 70]
[0140]
[Table 71]
[0141]
[Table 72]
[0142]
[Table 73]
[0143]
[Table 74]
[0144]
[Table 75]
[0145]
[Table 76]
[0146]
[Table 77]
[0147]
【The invention's effect】
As can be easily understood from the above description, the alloys of the first to thirteenth inventions are extremely machinable although they contain no lead component which is a machinability improving element. It can be safely used as an alternative to conventional free-cutting copper alloys containing large amounts of copper, and there are no environmental health problems including recycling of chips, and lead-containing products are being regulated. It can cope with the tendency of time enough.
[0148]
Further, the fifth and sixth invention alloys are excellent in corrosion resistance in addition to machinability, and are processed products, forged products, cast products, etc. that require corrosion resistance (for example, water taps, water supply drains) Metal fittings, valves, stems, hot water supply pipe parts, shafts, heat exchanger parts, etc.) can be used suitably, and their practical value is extremely great.
[0149]
The seventh and eighth invention alloys are excellent in high strength and wear resistance in addition to machinability, and are required to have high strength and wear resistance. It can be suitably used as a constituent material of products and the like (for example, bearings, bolts, nuts, bushes, gears, sewing machine parts, hydraulic parts, etc.), and its practical value is extremely great.
[0150]
The ninth to twelfth invention alloys are excellent in high temperature oxidation resistance in addition to machinability, and are processed products, forged products, cast products, etc. that require high temperature oxidation resistance (for example, petroleum -A gas warm air heater nozzle, burner head, water heater gas nozzle, etc.) can be suitably used as a constituent material, and its practical value is extremely large.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a form of chips.
Claims (13)
Priority Applications (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28859098A JP3734372B2 (en) | 1998-10-12 | 1998-10-12 | Lead-free free-cutting copper alloy |
DE69832097T DE69832097T2 (en) | 1998-10-12 | 1998-11-16 | LEAD-FREE AUTOMATIC COPPER ALLOY |
AU10541/99A AU744335B2 (en) | 1998-10-12 | 1998-11-16 | Leadless free-cutting copper alloy |
EP98953071A EP1045041B1 (en) | 1998-10-12 | 1998-11-16 | Leadless free-cutting copper alloy |
DE69838115T DE69838115T2 (en) | 1998-10-12 | 1998-11-16 | Lead-free vending copper alloy |
EP05017190A EP1600516B1 (en) | 1998-10-12 | 1998-11-16 | Lead-free, free-cutting copper alloys |
EP05017191A EP1600517B1 (en) | 1998-10-12 | 1998-11-16 | Lead-free, free-cutting copper alloys |
KR1020007006434A KR100352213B1 (en) | 1998-10-12 | 1998-11-16 | Leadless free-cutting copper alloy |
EP05075421.7A EP1559802B1 (en) | 1998-10-12 | 1998-11-16 | Lead-free, free-cutting copper alloys |
PCT/JP1998/005157 WO2000022182A1 (en) | 1998-10-12 | 1998-11-16 | Leadless free-cutting copper alloy |
DE69839830T DE69839830D1 (en) | 1998-10-12 | 1998-11-16 | Lead-free vending copper alloy |
CA002314144A CA2314144C (en) | 1998-10-12 | 1998-11-16 | Lead-free free-cutting copper alloys |
EP05017189A EP1600515B8 (en) | 1998-10-12 | 1998-11-16 | Lead-free, free-cutting copper alloys |
DE69840585T DE69840585D1 (en) | 1998-10-12 | 1998-11-16 | Lead-free vending copper alloy |
TW088103879A TW421674B (en) | 1998-10-12 | 1999-03-12 | Leadless free-cutting copper alloy |
US09/987,173 US6413330B1 (en) | 1998-10-12 | 2001-11-13 | Lead-free free-cutting copper alloys |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28859098A JP3734372B2 (en) | 1998-10-12 | 1998-10-12 | Lead-free free-cutting copper alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2000119775A JP2000119775A (en) | 2000-04-25 |
JP3734372B2 true JP3734372B2 (en) | 2006-01-11 |
Family
ID=17732235
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28859098A Expired - Lifetime JP3734372B2 (en) | 1998-10-12 | 1998-10-12 | Lead-free free-cutting copper alloy |
Country Status (8)
Country | Link |
---|---|
EP (5) | EP1600517B1 (en) |
JP (1) | JP3734372B2 (en) |
KR (1) | KR100352213B1 (en) |
AU (1) | AU744335B2 (en) |
CA (1) | CA2314144C (en) |
DE (4) | DE69832097T2 (en) |
TW (1) | TW421674B (en) |
WO (1) | WO2000022182A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010122960A1 (en) | 2009-04-24 | 2010-10-28 | サンエツ金属株式会社 | High-strength copper alloy |
KR101340487B1 (en) | 2011-09-30 | 2013-12-12 | 주식회사 풍산 | Leadless Free Cutting Copper Alloy and Process of Production Same |
WO2014069020A1 (en) | 2012-10-31 | 2014-05-08 | 株式会社キッツ | Brass alloy exhibiting excellent recyclability and corrosion resistance |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7056396B2 (en) | 1998-10-09 | 2006-06-06 | Sambo Copper Alloy Co., Ltd. | Copper/zinc alloys having low levels of lead and good machinability |
US8506730B2 (en) | 1998-10-09 | 2013-08-13 | Mitsubishi Shindoh Co., Ltd. | Copper/zinc alloys having low levels of lead and good machinability |
JP3459623B2 (en) * | 2000-08-08 | 2003-10-20 | 京和ブロンズ株式会社 | Lead-free bronze alloy |
JP4496662B2 (en) | 2001-04-20 | 2010-07-07 | 株式会社豊田自動織機 | Swash plate in swash plate compressor |
CN1284875C (en) * | 2002-09-09 | 2006-11-15 | 三宝伸铜工业株式会社 | High-strength copper alloy |
JP4522736B2 (en) * | 2004-03-30 | 2010-08-11 | 株式会社キッツ | Copper-base alloy for die casting and ingots and products using this alloy |
JP3964930B2 (en) | 2004-08-10 | 2007-08-22 | 三宝伸銅工業株式会社 | Copper-base alloy castings with refined crystal grains |
WO2006039951A1 (en) * | 2004-10-11 | 2006-04-20 | Diehl Metall Stiftung & Co. Kg | Copper/zinc/silicon alloy, use and production thereof |
KR100631041B1 (en) | 2005-03-04 | 2006-10-04 | 주식회사 풍산 | free cutting brass alloy having an improved of machinability and workability |
WO2007013428A1 (en) * | 2005-07-28 | 2007-02-01 | San-Etsu Metals Co., Ltd. | Copper alloy extruded material and method for producing same |
ATE376076T1 (en) | 2005-07-28 | 2007-11-15 | Kemper Gebr Gmbh & Co Kg | METHOD FOR PRODUCING WATER-CONDUCTING COPPER CASTINGS WITH REDUCED MIGRATION TENDENCE THROUGH ANNEALING |
MXPA06002911A (en) * | 2005-09-22 | 2007-04-12 | Sanbo Shindo Kogyo Kabushiki Kaisha | Free-cutting copper alloy containing very low lead. |
WO2007043101A1 (en) | 2005-09-30 | 2007-04-19 | Sanbo Shindo Kogyo Kabushiki Kaisha | Melted-solidified matter, copper alloy material for melting-solidification, and process for producing the same |
DE502005002181D1 (en) * | 2005-12-14 | 2008-01-17 | Kemper Gebr Gmbh & Co Kg | Use of a low-migration copper alloy and components made from this alloy |
ES2651345T3 (en) | 2005-12-22 | 2018-01-25 | Viega Technology Gmbh & Co. Kg | Low migration construction components made of a copper alloy for conduits that carry fluids or drinking water |
JP2008095918A (en) * | 2006-10-16 | 2008-04-24 | Yamaha Marine Co Ltd | Thermoelement and thermostat device using thermoelement thereof |
EP2014964B1 (en) | 2007-06-05 | 2011-11-23 | R. Nussbaum AG | Valve |
JP2009007657A (en) * | 2007-06-29 | 2009-01-15 | Joetsu Bronz1 Corp | Lead-free free-cutting copper alloy, and lead-free free-cutting copper alloy for continuous casting |
JP5320638B2 (en) * | 2008-01-08 | 2013-10-23 | 株式会社Shカッパープロダクツ | Rolled copper foil and method for producing the same |
CN101235448B (en) * | 2008-02-22 | 2010-10-13 | 中南大学 | Leadless free-cutting slicon graphite brass |
CN101440444B (en) * | 2008-12-02 | 2010-05-12 | 路达(厦门)工业有限公司 | Leadless free-cutting high-zinc silicon brass alloy and manufacturing method thereof |
DE102009015186A1 (en) * | 2009-03-31 | 2010-10-14 | Viega Gmbh & Co. Kg | Fitting for connection of a pipe |
EP2290114A1 (en) | 2009-08-04 | 2011-03-02 | Gebr. Kemper GmbH + Co. KG Metallwerke | Water-guiding component |
TWI398532B (en) | 2010-01-22 | 2013-06-11 | Modern Islands Co Ltd | Lead-free brass alloy |
CN101787461B (en) * | 2010-03-02 | 2014-11-19 | 路达(厦门)工业有限公司 | Environment-friendly manganese brass alloy and manufacturing method thereof |
JP2011214094A (en) * | 2010-03-31 | 2011-10-27 | Joetsu Bronz1 Corp | Lead-free free-machining brass alloy |
JP2011214095A (en) * | 2010-03-31 | 2011-10-27 | Joetsu Bronz1 Corp | Lead-free free-machining bronze casting alloy |
SG187792A1 (en) | 2010-09-10 | 2013-03-28 | Raufoss Water & Gas As | Improved brass alloy and a method of manufacturing thereof |
CN102321827B (en) * | 2011-09-25 | 2013-01-09 | 宁波市鄞州锡青铜带制品有限公司 | Preparation method for high-conductivity and low-tin bronze strip |
JP5763504B2 (en) * | 2011-11-11 | 2015-08-12 | 三菱伸銅株式会社 | Copper alloy rolling materials and rolled products |
DE102012013817A1 (en) | 2012-07-12 | 2014-01-16 | Wieland-Werke Ag | Molded parts made of corrosion-resistant copper alloys |
US8991787B2 (en) | 2012-10-02 | 2015-03-31 | Nibco Inc. | Lead-free high temperature/pressure piping components and methods of use |
JP5778736B2 (en) | 2013-10-04 | 2015-09-16 | ファナック株式会社 | Cooling pipe joint for cooling motor, and motor cooling device provided with cooling pipe joint |
EP2960350B1 (en) | 2014-06-27 | 2017-11-29 | Gebr. Kemper GmbH + Co. KG Metallwerke | Copper casting alloy |
JP6868761B2 (en) * | 2015-12-17 | 2021-05-12 | パナソニックIpマネジメント株式会社 | On-off valve for fluid and air conditioner using it |
TWI598452B (en) * | 2016-01-21 | 2017-09-11 | 慶堂工業股份有限公司 | Unleaded, free-cutting brass alloys with excellent castability, method for producing the same, and application thereof |
US11421301B2 (en) | 2016-08-15 | 2022-08-23 | Mitsubishi Materials Corporation | Free-cutting copper alloy casting and method for producing free-cutting copper alloy casting |
JP2018156771A (en) * | 2017-03-16 | 2018-10-04 | 住友電装株式会社 | Female terminal |
US11155909B2 (en) | 2017-08-15 | 2021-10-26 | Mitsubishi Materials Corporation | High-strength free-cutting copper alloy and method for producing high-strength free-cutting copper alloy |
KR101969010B1 (en) * | 2018-12-19 | 2019-04-15 | 주식회사 풍산 | Lead free cutting copper alloy with no lead and bismuth |
CN109930025A (en) * | 2019-03-22 | 2019-06-25 | 广东出入境检验检疫局检验检疫技术中心 | A kind of leadless environment-friendly free-cutting brass material |
JP7180488B2 (en) * | 2019-03-25 | 2022-11-30 | 三菱マテリアル株式会社 | Copper alloy round bar |
FI3872198T3 (en) | 2019-06-25 | 2023-03-23 | Mitsubishi Materials Corp | Free-cutting copper alloy and method for manufacturing free-cutting copper alloy |
WO2020261666A1 (en) | 2019-06-25 | 2020-12-30 | 三菱マテリアル株式会社 | Free-cutting copper alloy and method for producing free-cutting copper alloy |
CN113906150B (en) | 2019-06-25 | 2023-03-28 | 三菱综合材料株式会社 | Free-cutting copper alloy casting and method for manufacturing free-cutting copper alloy casting |
MX2022005128A (en) | 2019-12-11 | 2022-05-30 | Mitsubishi Materials Corp | Free-cutting copper alloy and method for manufacturing free-cutting copper alloy. |
CA3157545A1 (en) | 2019-12-11 | 2021-06-17 | Mitsubishi Materials Corporation | Free-cutting copper alloy and method for manufacturing free-cutting copper alloy |
DE102020127317A1 (en) | 2020-10-16 | 2022-04-21 | Diehl Metall Stiftung & Co. Kg | Lead-free copper alloy and use of lead-free copper alloy |
GB2614752B (en) | 2022-01-18 | 2024-07-31 | Conex Ipr Ltd | Components for drinking water pipes, and method for manufacturing same |
EP4394064A1 (en) | 2022-10-28 | 2024-07-03 | Ngk Insulators, Ltd. | Lead-free free-cutting beryllium copper alloy |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB352639A (en) * | 1930-02-13 | 1931-07-16 | Hirsch Kupfer & Messingwerke | Improvements in and relating to copper-silicon-zinc alloys |
US1954003A (en) * | 1930-03-31 | 1934-04-10 | Vaders Eugen | Copper alloy for chill and die casting |
CH148824A (en) * | 1930-03-31 | 1931-08-15 | Hirsch Kupfer & Messingwerke | Process for the production of chill moldings and injection molded parts. |
GB354966A (en) * | 1930-05-24 | 1931-08-20 | Hirsch Kupfer & Messingwerke | The method of manufacturing bells |
US2237774A (en) * | 1940-07-23 | 1941-04-08 | Chase Brass & Copper Co | Treating silicon copper-base alloys |
FR1031211A (en) * | 1951-01-19 | 1953-06-22 | Alloy usable in dentistry | |
DE1558470A1 (en) * | 1967-02-02 | 1970-03-19 | Dies Dr Ing Kurt | Extruded part |
US3736131A (en) * | 1970-12-23 | 1973-05-29 | Armco Steel Corp | Ferritic-austenitic stainless steel |
US3900349A (en) * | 1974-01-18 | 1975-08-19 | Anaconda Co | Silicon brass resistant to parting corrosion |
GB1443090A (en) * | 1974-03-25 | 1976-07-21 | Anaconda Co | Silicon brass resistant to partin corrosion- |
JPS5696040A (en) * | 1979-12-28 | 1981-08-03 | Seiko Epson Corp | Exterior decorative part material for casting |
JPS61133357A (en) * | 1984-12-03 | 1986-06-20 | Showa Alum Ind Kk | Cu base alloy for bearing superior in workability and seizure resistance |
JPS62297429A (en) * | 1986-06-17 | 1987-12-24 | Nippon Mining Co Ltd | Copper alloy having excellent corrosion resistance |
JPH0368731A (en) * | 1989-08-08 | 1991-03-25 | Nippon Mining Co Ltd | Manufacture of copper alloy and copper alloy material for radiator plate |
JPH09143598A (en) * | 1995-11-22 | 1997-06-03 | Chuetsu Gokin Chuko Kk | Brass alloy material for heating device |
JP3956322B2 (en) * | 1996-05-30 | 2007-08-08 | 中越合金鋳工株式会社 | One-way clutch end bearings and other sliding parts |
FR2765243B1 (en) * | 1997-06-30 | 1999-07-30 | Usinor | AUSTENOFERRITIC STAINLESS STEEL WITH VERY LOW NICKEL AND HAVING A STRONG ELONGATION IN TRACTION |
-
1998
- 1998-10-12 JP JP28859098A patent/JP3734372B2/en not_active Expired - Lifetime
- 1998-11-16 DE DE69832097T patent/DE69832097T2/en not_active Expired - Lifetime
- 1998-11-16 EP EP05017191A patent/EP1600517B1/en not_active Expired - Lifetime
- 1998-11-16 CA CA002314144A patent/CA2314144C/en not_active Expired - Lifetime
- 1998-11-16 WO PCT/JP1998/005157 patent/WO2000022182A1/en active IP Right Grant
- 1998-11-16 AU AU10541/99A patent/AU744335B2/en not_active Expired
- 1998-11-16 EP EP05075421.7A patent/EP1559802B1/en not_active Expired - Lifetime
- 1998-11-16 EP EP98953071A patent/EP1045041B1/en not_active Expired - Lifetime
- 1998-11-16 KR KR1020007006434A patent/KR100352213B1/en not_active IP Right Cessation
- 1998-11-16 DE DE69839830T patent/DE69839830D1/en not_active Expired - Lifetime
- 1998-11-16 DE DE69838115T patent/DE69838115T2/en not_active Expired - Lifetime
- 1998-11-16 EP EP05017189A patent/EP1600515B8/en not_active Expired - Lifetime
- 1998-11-16 EP EP05017190A patent/EP1600516B1/en not_active Expired - Lifetime
- 1998-11-16 DE DE69840585T patent/DE69840585D1/en not_active Expired - Lifetime
-
1999
- 1999-03-12 TW TW088103879A patent/TW421674B/en not_active IP Right Cessation
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010122960A1 (en) | 2009-04-24 | 2010-10-28 | サンエツ金属株式会社 | High-strength copper alloy |
KR101340487B1 (en) | 2011-09-30 | 2013-12-12 | 주식회사 풍산 | Leadless Free Cutting Copper Alloy and Process of Production Same |
US9840758B2 (en) | 2011-09-30 | 2017-12-12 | Poongsan Corporation | Leadless free-cutting copper alloy and method for producing the same |
WO2014069020A1 (en) | 2012-10-31 | 2014-05-08 | 株式会社キッツ | Brass alloy exhibiting excellent recyclability and corrosion resistance |
KR20150070345A (en) | 2012-10-31 | 2015-06-24 | 가부시키가이샤 기츠 | Brass alloy exhibiting excellent recyclability and corrosion resistance |
US10006106B2 (en) | 2012-10-31 | 2018-06-26 | Kitz Corporation | Brass alloy and processed part and wetted part |
Also Published As
Publication number | Publication date |
---|---|
EP1600515B1 (en) | 2008-07-30 |
EP1600515A2 (en) | 2005-11-30 |
AU1054199A (en) | 2000-05-01 |
EP1559802A1 (en) | 2005-08-03 |
CA2314144A1 (en) | 2000-04-20 |
AU744335B2 (en) | 2002-02-21 |
CA2314144C (en) | 2006-08-22 |
EP1045041A4 (en) | 2003-05-07 |
EP1600516B1 (en) | 2007-07-18 |
TW421674B (en) | 2001-02-11 |
DE69839830D1 (en) | 2008-09-11 |
DE69840585D1 (en) | 2009-04-02 |
KR20010033073A (en) | 2001-04-25 |
KR100352213B1 (en) | 2002-09-12 |
WO2000022182A1 (en) | 2000-04-20 |
EP1600515B8 (en) | 2008-10-15 |
DE69832097T2 (en) | 2006-07-06 |
DE69838115D1 (en) | 2007-08-30 |
JP2000119775A (en) | 2000-04-25 |
EP1600516A3 (en) | 2005-12-14 |
DE69838115T2 (en) | 2008-04-10 |
EP1600517A3 (en) | 2005-12-14 |
EP1559802B1 (en) | 2014-01-15 |
DE69832097D1 (en) | 2005-12-01 |
EP1045041B1 (en) | 2005-10-26 |
EP1600517A2 (en) | 2005-11-30 |
EP1600517B1 (en) | 2009-02-18 |
EP1600516A2 (en) | 2005-11-30 |
EP1600515A3 (en) | 2005-12-14 |
EP1045041A1 (en) | 2000-10-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3734372B2 (en) | Lead-free free-cutting copper alloy | |
JP3917304B2 (en) | Free-cutting copper alloy | |
US6413330B1 (en) | Lead-free free-cutting copper alloys | |
JP4951623B2 (en) | Free-cutting copper alloy with ultra-low lead content | |
JP3964930B2 (en) | Copper-base alloy castings with refined crystal grains | |
JP3335002B2 (en) | Lead-free free-cutting brass alloy with excellent hot workability | |
TWI700380B (en) | Free-cutting leadless copper alloy with no lead and bismuth | |
US20150044089A1 (en) | Copper/zinc alloys having low levels of lead and good machinability | |
US7056396B2 (en) | Copper/zinc alloys having low levels of lead and good machinability | |
JP3693994B2 (en) | Lead reduced free-cutting copper alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050805 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050805 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050909 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051018 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081028 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091028 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091028 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101028 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111028 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121028 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131028 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |