JP3724096B2 - Oxygen generating electrode and manufacturing method thereof - Google Patents
Oxygen generating electrode and manufacturing method thereof Download PDFInfo
- Publication number
- JP3724096B2 JP3724096B2 JP03351397A JP3351397A JP3724096B2 JP 3724096 B2 JP3724096 B2 JP 3724096B2 JP 03351397 A JP03351397 A JP 03351397A JP 3351397 A JP3351397 A JP 3351397A JP 3724096 B2 JP3724096 B2 JP 3724096B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- oxide
- conductive
- oxygen
- salt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Electrodes For Compound Or Non-Metal Manufacture (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、海水をはじめとする塩素イオン含有水溶液の電解にカソードとして使用し、塩素の発生を抑えて酸素を発生するための電極に関する。
【0002】
【従来の技術】
海水を電解すると、通常はアノードで水素と水酸化ナトリウムとが発生し、アノードで塩素が発生して、この水酸化ナトリウムと塩素とから次亜塩素酸ナトリウムが生成する。 この場合のアノードは、耐食金属であるチタンの表面を白金族金属の酸化物で被覆した電極が、高性能の電極として使用されている。
【0003】
次亜塩素酸は、海水中の生物が水中構造物に付着して生育することを防ぐ効果があるので、このような海水電解を意図的に行なうこともあったが、近年は塩素による海水汚染は避けるべきものとして、あまり行なわれない。
【0004】
一方、通常の水電解と同様に、海水から水素と酸素とを分離して得る電解が試みられている。 この場合は、カソードで水素を発生し、アノードでは酸素のみを発生させなければならないから、それを可能にする電極が必要になる。
【0005】
海水中では、酸素発生の平衡電位は塩素発生の平衡電位より約0.6V低く、熱力学的には、酸素が容易に発生するはずである。 ところが、塩素の発生が単純な電極反応2Cl→Cl2 +2eであって、電解電位も平衡電位に近いのに対し、酸素の発生は何段階もの素反応からなる複雑な反応を経て起るため、電解電位は容易に塩素発生の平衡電位を超えてしまう。 従って、酸素の発生をみるときには多量の塩素も発生してしまい、所望の結果が得られない。
【0006】
本発明者らは、この問題を克服し、塩素発生には不活性であるが酸素発生には高度に活性であるようなアノードを提供することを意図して研究し、耐食金属であるTiを導電性材料として使用し、その表面をMnの酸化物で被覆した電極が、酸素発生効率約70%を実現することを知った。 ここで、「酸素発生効率」の語は、通電電流に対する酸素発生に利用された電流の割合として定義される。
【0007】
その後の研究の結果、Wの酸化物およびMoの酸化物の一方または両方を(両方の場合は合計量で)0.2〜20モル%含有し、残部を実質上Mnの酸化物が占める導電性被覆を、導電性材料の基体表面に形成してなる電極が、いっそう高い酸素発生効率を示すことを見出して、すでに提案した(特願平8−64539号)。
【0008】
上記の海水電解のための酸素発生用電極の製造方法は、基本的には、Mnの塩に加えて、Wの塩およびMoの塩の一方または両方を溶解または分散させた液を導電性材料の基体上に塗布し、乾燥の後、加熱して塩を分解することにより、導電性基体上にWの酸化物およびMoの酸化物の一方または両方を0.2〜20モル%含有し、残部を実質上Mnの酸化物が占める導電性被覆を形成することからなる。 ここで、「Mn(W,Mo)の塩」とは、これら金属がカチオンとして存在するものに限らず、アニオンを形成しているものであってもよく、要するにMn(W,Mo)を含有する水溶性の塩を指す。
【0009】
上記の塩の熱分解は、大気中で400〜500℃の温度に数分間〜数時間加熱することにより実施でき、この操作自体は簡単であるが、1回に形成できる層の厚さが薄く、多数回繰り返して行なわなければならず、労力を要するのが難点である。
【0010】
そこでさらに研究を重ね、上記の電極活物質を構成する金属酸化物が陽極析出法により効果的に導電性基体表面に形成できることを見出した。
【0011】
【発明が解決しようとする課題】
本発明の目的は、上記の新しい知見を利用し、海水を代表とする塩素イオンを含有する水溶液の電解に使用したときに、塩素の発生を抑えて酸素を発生させることのできる電極、すなわち酸素発生効率の高い電極を提供すること、およびそのような電極の製造方法を提供することにある。
【0012】
【課題を解決するための手段】
本発明の酸素発生用電極は、Wの酸化物およびMoの酸化物の一方または両方を(両方の場合は合計量で)0.2〜20モル%含有し、残部を実質上Mnの酸化物が占める混合酸化物の導電性被覆を、導電性材料の基体表面に陽極析出法により形成してなる、塩素イオン含有水溶液を電解するための酸素発生用電極である。
【0013】
この酸素発生用電極を与える本発明の製造方法は、Mnの塩に加えて、Wの塩およびMoの塩の一方または両方を溶解した液中で導電性材料の基体を陽極として電解を行なうことにより、導電性基体上にWの酸化物およびMoの酸化物の一方または両方を0.2〜20モル%含有し残部を実質上Mnの酸化物が占める導電性被覆を形成することからなる。
【0014】
【作用】
さきの発明に関して述べたように、Wの酸化物もMoの酸化物も、それ自体ではアノード材料として高い酸素発生活性を示すものではないが、Mnの酸化物に適量配合することにより、高い酸素発生効率が得られる。 この効果は、Mnの酸化物中へのWの酸化物またはMoの酸化物の固溶によるものか、または酸化物間の化合物を形成するためと考えられる。
【0015】
配合の効果は0.2モル%程度から認められ、10〜15モル%で最も高いレベルに達し、15%を超える領域では飽和する。 経済性も考え合わせると、20モル%を超える配合は不利となる。
【0016】
導電性基体は、本発明においてもTiまたはその合金が適切である。 Ti合金の具体例としては、TiとZr,Nb,Taなどの合金、またTi−Pd合金が挙げられる。 これを使用するときは、電極形成作業に伴うTi表面の不働態化(TiO2 被膜の形成)で絶縁性被膜の形成を避けるため、あらかじめTi基体の表面を酸化イリジウムで被覆する処理を施しておくことが好ましい。 この処理は、塩化イリジウム酸の有機溶媒溶液を塗布し、乾燥後、焼成する熱分解法により、容易に実施できる。 酸化物被覆形成後の熱処理は、被覆を基体金属に密着させるための処理であって、大気中で400〜500℃の温度に数分間〜数時間加熱することによって実施すればよい。
【0017】
陽極析出は、Mnの可溶性塩、代表的にはMnSO4 に加えて、Wの可溶性塩、代表的にはNa2WO4とMoの可溶性塩、代表的にはNa2MoO4の一方または両方を溶解含有する水溶液のpHを、硫酸などの添加によって酸性にし(pHにして0.5〜1.5付近が好適)、温めた(温度60〜90℃が適切)ものを電解液として使用し、上記導電性材料の基体を陽極として電解を行なうことにより実施する。 通常、電流密度3〜20A/dm2 程度で2.5〜12分間の電解を行なえば、十分な厚さの陽極活物質が析出し、Mn−W混合酸化物電極、Mn−Mo混合酸化物電極、Mn−W−Mo混合酸化物電極が得られる。
【0018】
【実施例】
Tiの基材上に塩化イリジウム−ブタノール溶液をハケ塗りして乾燥させたのち、大気中で450℃に加熱して塩化イリジウムを酸化イリジウムに変える作業を数回繰り返し、最後に450℃で1時間焼成して、IrO2 被覆したTi電極下地材を用意した。
【0019】
[実施例1]
MnSO4 を0.2M、Na2 WO4 を0.02Mの割合で含有する溶液に硫酸を加えてpHを1に調整し、90℃に温めた。 この溶液中で、上記の導電性下地材を陽極として電流密度3A/dm2 で10分間の電解を行ない、Mn−W混合酸化物電極を得た。 この電極の電極活物質中のWの濃度は、EPMA分析によれば8モル%であった。
【0020】
上記の電極を陽極として、pHを8に調整した0.5M−NaCl水溶液1リットル中、30℃において、電流密度2A/dm2 で電解を行なった。 通電量1000クーロンの電解ののち、液中に溶存している次亜塩素酸の量をヨウ素滴定法により定量し、塩素発生に消費された電気量を算出することにより酸素発生効率を算出したところ、98.2%という高い値を得た。
【0021】
[実施例2]
MnSO4 とNa2 WO4 とを種々の割合で含む水溶液を酸性にして90℃に温め、実施例1と同様に、IrO2 で被覆した導電性下地材を陽極として、電流密度30mA/dm2 で10分間の電解を行なって、MnとWとを種々の割合で含有するMn−W混合酸化物電極を得た。
【0022】
これらの電極を陽極として使用し、pHを8に調整した0.5M−NaCl水溶液1リットル中、30℃において、電流密度2A/dm2 で電解を行なった。
【0023】
通電密度1000クーロンの電解ののち、実施例1と同様、ヨウ素滴定による次亜塩素酸の定量にもとづいて酸素発生効率を算出した。 その結果を、電極活物質中のW含有量とともに、下に示す。
【0024】
最下段は、比較のため使用したMn酸化物電極で得た値。
【0025】
[実施例3]
実施例2のNa2 WO4 に代えてNa2 MoO4 を使用し、実施例2と同じ操作を繰り返した。 ただし、陽極を形成するための電解に当って、陽極室と陰極室とを分離するガラスフィルターを使用した。
【0026】
得られた電極の電極活物質中のMoの含有量と、その電極を用いたときの酸素発生効率とを、下に示す。
【0027】
最下段は比較例。
【0028】
[実施例4]
MnSO4 に加えてNa2 MoO4 とNa2 WO4 との両方を使用し、実施例3を繰り返した。 得られた電極の電極活物質中のMoおよびWの含有量と、その電極を用いたときの酸素発生効率とを、下の表に示す。
【0029】
【0030】
【発明の効果】
本発明に従って、陽極析出法により金属酸化物を生成させ、導電性基体の表面を被覆するMn酸化物中にWの酸化物およびMoの酸化物の一方または両方を適量存在させた電極は、海水を電解して塩素の発生を避けつつ発生させるための電極として、高い効率を示す。 陽極析出法は、多大の労力および時間を要することなく必要量の電極活物質を形成することができ、有利である。 電極下地材としてTiまたはその合金を使用し、陽極活物質である上記金属酸化物の析出に先立って表面にIrO2 被膜を施した好ましい態様においては、TiO2 の生成による絶縁層が形成されることなく、電極の寿命が長い。
【0031】
本発明は、海水の電解に止まらず、その他の塩素イオンを含有する水溶液、具体的には、塩化ナトリウム水溶液、塩化カリウム水溶液、地下カン水、ゴミ焼却場廃塩水、塩酸洗淨中和廃液など、各種の産業廃水の電解処理に適用して、その効果を発揮することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode that is used as a cathode for electrolysis of a chlorine ion-containing aqueous solution such as seawater and generates oxygen while suppressing generation of chlorine.
[0002]
[Prior art]
When seawater is electrolyzed, hydrogen and sodium hydroxide are usually generated at the anode, and chlorine is generated at the anode, and sodium hypochlorite is generated from the sodium hydroxide and chlorine. As the anode in this case, an electrode in which the surface of titanium, which is a corrosion-resistant metal, is coated with an oxide of a platinum group metal is used as a high-performance electrode.
[0003]
Hypochlorous acid has the effect of preventing organisms in seawater from growing on adhering structures in the water, so this seawater electrolysis has been intentionally performed. Is not done very much as something to avoid.
[0004]
On the other hand, as with normal water electrolysis, electrolysis obtained by separating hydrogen and oxygen from seawater has been attempted. In this case, hydrogen must be generated at the cathode, and only oxygen must be generated at the anode, so an electrode that enables this is required.
[0005]
In seawater, the equilibrium potential for oxygen generation is about 0.6 V lower than the equilibrium potential for chlorine generation, and oxygen should be easily generated thermodynamically. However, since the generation of chlorine is a simple electrode reaction 2Cl → Cl 2 + 2e and the electrolytic potential is close to the equilibrium potential, the generation of oxygen occurs through a complex reaction consisting of multiple elementary reactions. The electrolytic potential easily exceeds the equilibrium potential for chlorine generation. Therefore, when the generation of oxygen is observed, a large amount of chlorine is also generated, and a desired result cannot be obtained.
[0006]
The inventors have researched with the intention of overcoming this problem to provide an anode that is inert to chlorine evolution but highly active in oxygen evolution, and has developed a corrosion resistant metal, Ti. It has been found that an electrode which is used as a conductive material and whose surface is coated with an oxide of Mn achieves an oxygen generation efficiency of about 70%. Here, the term “oxygen generation efficiency” is defined as the ratio of the current used for oxygen generation to the energization current.
[0007]
As a result of subsequent studies, it was found that 0.2 to 20 mol% of one or both of oxides of W and Mo (in both cases, in the total amount) is contained, and the balance is substantially occupied by the oxide of Mn. It has already been proposed that an electrode formed with a conductive coating on the surface of a conductive material substrate shows higher oxygen generation efficiency (Japanese Patent Application No. 8-64539).
[0008]
The above-described method for producing an electrode for oxygen generation for seawater electrolysis basically includes a conductive material obtained by dissolving or dispersing one or both of a W salt and a Mo salt in addition to a Mn salt. And, after drying, heating and decomposing the salt, the conductive substrate contains 0.2 to 20 mol% of one or both of W oxide and Mo oxide, And forming a conductive coating substantially occupying the remainder of the Mn oxide. Here, the “salt of Mn (W, Mo)” is not limited to those in which these metals are present as cations, and may be those forming anions, in short, containing Mn (W, Mo). Refers to a water-soluble salt.
[0009]
The thermal decomposition of the salt can be carried out by heating in the atmosphere at a temperature of 400 to 500 ° C. for several minutes to several hours. This operation itself is simple, but the thickness of the layer that can be formed at one time is thin. However, it has to be repeated many times and is laborious.
[0010]
Therefore, further research was conducted and it was found that the metal oxide constituting the electrode active material can be effectively formed on the surface of the conductive substrate by the anodic deposition method.
[0011]
[Problems to be solved by the invention]
An object of the present invention is to utilize the above-mentioned new knowledge and, when used for electrolysis of an aqueous solution containing chlorine ions typified by seawater, an electrode capable of generating oxygen while suppressing generation of chlorine, that is, oxygen It is to provide an electrode with high generation efficiency and to provide a method for manufacturing such an electrode.
[0012]
[Means for Solving the Problems]
The electrode for oxygen generation of the present invention contains 0.2 to 20 mol% of one or both of oxides of W and Mo (in both cases, in the total amount), and the balance is substantially an oxide of Mn. An electrode for oxygen generation for electrolyzing a chlorine ion-containing aqueous solution, in which a conductive coating of mixed oxide occupying is formed on the surface of a conductive material substrate by anodic deposition.
[0013]
In the manufacturing method of the present invention for providing this electrode for oxygen generation, electrolysis is performed using a conductive material substrate as an anode in a solution in which one or both of W salt and Mo salt are dissolved in addition to Mn salt. Thus, a conductive coating containing 0.2 to 20 mol% of one or both of W oxide and Mo oxide on the conductive substrate and the balance being substantially occupied by the Mn oxide is formed.
[0014]
[Action]
As described with respect to the previous invention, neither the oxide of W nor the oxide of Mo itself exhibits high oxygen generation activity as an anode material. Generation efficiency is obtained. This effect is considered to be due to the solid solution of the oxide of W or the oxide of Mo in the oxide of Mn, or to form a compound between the oxides.
[0015]
The effect of blending is recognized from about 0.2 mol%, reaches the highest level at 10 to 15 mol%, and saturates in the region exceeding 15%. Considering the economic efficiency, blending exceeding 20 mol% is disadvantageous.
[0016]
In the present invention, Ti or an alloy thereof is suitable for the conductive substrate. Specific examples of the Ti alloy include Ti and alloys such as Zr, Nb, and Ta, and Ti—Pd alloys. When this is used, in order to avoid the formation of an insulating film due to passivation of the Ti surface (formation of TiO 2 film) accompanying the electrode forming operation, a treatment for covering the surface of the Ti substrate with iridium oxide is performed in advance. It is preferable to keep it. This treatment can be easily carried out by a thermal decomposition method in which an organic solvent solution of chloroiridic acid is applied, dried and then fired. The heat treatment after the oxide coating is formed is a treatment for bringing the coating into close contact with the base metal, and may be performed by heating to a temperature of 400 to 500 ° C. for several minutes to several hours in the atmosphere.
[0017]
Anodic deposition is performed in addition to a soluble salt of Mn, typically MnSO 4 , a soluble salt of W, typically a soluble salt of Na 2 WO 4 and Mo, typically one or both of Na 2 MoO 4. The pH of the aqueous solution containing the acid is acidified by adding sulfuric acid or the like (preferably around 0.5 to 1.5 in terms of pH), and warmed (appropriately 60 to 90 ° C.) is used as the electrolyte. The electrolysis is performed by using the base of the conductive material as an anode. Usually, when electrolysis is performed at a current density of about 3 to 20 A / dm 2 for 2.5 to 12 minutes, an anode active material having a sufficient thickness is deposited, and a Mn—W mixed oxide electrode or a Mn—Mo mixed oxide is obtained. An electrode and a Mn—W—Mo mixed oxide electrode are obtained.
[0018]
【Example】
After brushing and drying the iridium chloride-butanol solution on the Ti substrate, heating to 450 ° C. in the air and changing iridium chloride to iridium oxide was repeated several times, and finally at 450 ° C. for 1 hour. The Ti electrode base material which baked and was covered with IrO 2 was prepared.
[0019]
[Example 1]
Sulfuric acid was added to a solution containing 0.2M MnSO 4 and 0.02M Na 2 WO 4 to adjust the pH to 1 and warmed to 90 ° C. In this solution, electrolysis was performed for 10 minutes at a current density of 3 A / dm 2 using the conductive base material as an anode to obtain a Mn—W mixed oxide electrode. The concentration of W in the electrode active material of this electrode was 8 mol% according to EPMA analysis.
[0020]
Electrolysis was performed at a current density of 2 A / dm 2 at 30 ° C. in 1 liter of 0.5 M NaCl aqueous solution adjusted to pH 8 with the above electrode as an anode. After electrolysis at a current of 1000 coulombs, the amount of hypochlorous acid dissolved in the liquid was quantified by the iodometric titration method, and the amount of electricity consumed for chlorine generation was calculated to calculate the oxygen generation efficiency. A high value of 98.2% was obtained.
[0021]
[Example 2]
An aqueous solution containing MnSO 4 and Na 2 WO 4 in various proportions is acidified and heated to 90 ° C., and in the same manner as in Example 1, using a conductive base material coated with IrO 2 as an anode, a current density of 30 mA / dm 2 Was conducted for 10 minutes to obtain Mn—W mixed oxide electrodes containing Mn and W in various proportions.
[0022]
Using these electrodes as anodes, electrolysis was carried out at 30 ° C. at a current density of 2 A / dm 2 in 1 liter of 0.5 M NaCl aqueous solution adjusted to pH 8.
[0023]
After electrolysis at a current density of 1000 coulombs, the oxygen generation efficiency was calculated based on the quantification of hypochlorous acid by iodometric titration as in Example 1. The results are shown below together with the W content in the electrode active material.
[0024]
The bottom row is the value obtained with the Mn oxide electrode used for comparison.
[0025]
[Example 3]
The same operation as in Example 2 was repeated using Na 2 MoO 4 instead of Na 2 WO 4 in Example 2. However, in the electrolysis for forming the anode, a glass filter that separates the anode chamber and the cathode chamber was used.
[0026]
The content of Mo in the electrode active material of the obtained electrode and the oxygen generation efficiency when the electrode is used are shown below.
[0027]
The bottom row is a comparative example.
[0028]
[Example 4]
Using both the Na 2 MoO 4 and Na 2 WO 4 in addition to the MnSO 4, Example 3 was repeated. The contents of Mo and W in the electrode active material of the obtained electrode and the oxygen generation efficiency when using the electrode are shown in the table below.
[0029]
[0030]
【The invention's effect】
According to the present invention, an electrode in which a metal oxide is generated by an anodic deposition method and an appropriate amount of one or both of W oxide and Mo oxide is present in Mn oxide covering the surface of a conductive substrate is High efficiency as an electrode for electrolyzing and generating chlorine while avoiding generation of chlorine. The anodic deposition method is advantageous because it can form a necessary amount of the electrode active material without requiring much labor and time. In a preferred embodiment in which Ti or an alloy thereof is used as an electrode base material and an IrO 2 film is applied to the surface prior to the deposition of the metal oxide as an anode active material, an insulating layer is formed by the generation of TiO 2. Without a long life of the electrode.
[0031]
The present invention is not limited to electrolysis of seawater, other aqueous solutions containing chlorine ions, specifically sodium chloride aqueous solution, potassium chloride aqueous solution, underground canned water, waste incineration wastewater, hydrochloric acid washing neutralization wastewater, etc. It can be applied to the electrolytic treatment of various industrial wastewaters to exert its effect.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03351397A JP3724096B2 (en) | 1997-02-17 | 1997-02-18 | Oxygen generating electrode and manufacturing method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9-31806 | 1997-02-17 | ||
JP3180697 | 1997-02-17 | ||
JP03351397A JP3724096B2 (en) | 1997-02-17 | 1997-02-18 | Oxygen generating electrode and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10287991A JPH10287991A (en) | 1998-10-27 |
JP3724096B2 true JP3724096B2 (en) | 2005-12-07 |
Family
ID=26370317
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03351397A Expired - Fee Related JP3724096B2 (en) | 1997-02-17 | 1997-02-18 | Oxygen generating electrode and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3724096B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006077319A (en) * | 2004-09-13 | 2006-03-23 | Koji Hashimoto | Oxygen generation type electrode and its production method |
JP4752287B2 (en) * | 2005-02-25 | 2011-08-17 | アタカ大機株式会社 | Oxygen generating electrode and manufacturing method thereof |
JP4992229B2 (en) * | 2005-11-18 | 2012-08-08 | 功二 橋本 | Method for producing oxygen generating electrode |
JP4972991B2 (en) * | 2006-05-09 | 2012-07-11 | アタカ大機株式会社 | Oxygen generating electrode |
JP5309813B2 (en) * | 2008-09-05 | 2013-10-09 | アタカ大機株式会社 | Oxygen generating electrode |
US7780840B2 (en) * | 2008-10-30 | 2010-08-24 | Trevor Pearson | Process for plating chromium from a trivalent chromium plating bath |
-
1997
- 1997-02-18 JP JP03351397A patent/JP3724096B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10287991A (en) | 1998-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5777707B2 (en) | Electrochlorination electrode | |
JPS6318672B2 (en) | ||
KR20070012721A (en) | Anode for oxygen evolution | |
JPH05148676A (en) | Electrode, preparation thereof, electrolytic cell having said electrode and method of electrolysis | |
JP2007538152A5 (en) | ||
JP4972991B2 (en) | Oxygen generating electrode | |
CA3168177A1 (en) | Electrode having polarity capable of being reversed and use thereof | |
JP4975271B2 (en) | Electrolytic water treatment electrode | |
US4213843A (en) | Electrolysis electrodes and method of making same | |
EP0955395B1 (en) | Electrolyzing electrode and process for the production thereof | |
JP3724096B2 (en) | Oxygen generating electrode and manufacturing method thereof | |
EA019626B1 (en) | Cathode member and bipolar plate of electrochemical cell for hypochlorite production and method for manufacturing same | |
EP0015943A1 (en) | Electrodes for electrolytic processes, especially metal electrowinning | |
JP4793086B2 (en) | Oxygen generating electrode | |
JP2596821B2 (en) | Anode for oxygen generation | |
JP2024502947A (en) | Electrolytic cells and self-cleaning electrochlorination systems for electrochlorination methods | |
JP2006322056A (en) | Electrode for electrolysis and manufacturing method therefor | |
JP5309813B2 (en) | Oxygen generating electrode | |
JPS6134519B2 (en) | ||
JP3677856B2 (en) | Oxygen generating electrode | |
JP4193390B2 (en) | Oxygen generating electrode | |
JP3658823B2 (en) | Electrode for electrolysis and method for producing the same | |
JPH0238672B2 (en) | ||
JP3236653B2 (en) | Electrode for electrolysis | |
JP5359133B2 (en) | Oxygen generating electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040203 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040802 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050426 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050830 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050912 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110930 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140930 Year of fee payment: 9 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |