JP3603112B2 - Low temperature production of alumina crystalline thin film - Google Patents
Low temperature production of alumina crystalline thin film Download PDFInfo
- Publication number
- JP3603112B2 JP3603112B2 JP2000163218A JP2000163218A JP3603112B2 JP 3603112 B2 JP3603112 B2 JP 3603112B2 JP 2000163218 A JP2000163218 A JP 2000163218A JP 2000163218 A JP2000163218 A JP 2000163218A JP 3603112 B2 JP3603112 B2 JP 3603112B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- alumina
- temperature
- crystalline thin
- target
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Physical Vapour Deposition (AREA)
- Formation Of Insulating Films (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、アルミナ結晶質薄膜の低温製法に関するものであり、さらに詳しくは、機械産業、半導体産業などにおける耐摩耗、保護を目的とするアルミナハードコーティング、又は安価で且つ高質のアルミナ基板を提供するためのアルミナ結晶質薄膜の低温形成技術に関するものであり、特に、最も特性が優れ、且つ安定性のよいα相アルミナ薄膜の低温形成技術に関するものである。
【0002】
【従来の技術】
従来、CVD法(化学蒸気堆積法)によるα相アルミナ薄膜の形成には、通常、基板を1000℃程度の高温にする必要があるため、被膜される母材の種類が大きく限られていた。近年、アルミナ薄膜の形成温度を下げるために幾つかのPVD法(物理蒸気堆積法)が開発されているが、たとえ、工業化に適切であるパルス直流マグネトロンスパッタ法によるα相アルミナ薄膜形成においても、最低760℃の基板温度が不可欠である〔 1)O. Zywitzky,G.Hoetsch,F.Fietzke,and K.Goedicke:Surface and Coatings Technology,Vol.82,(1995)169 〕。これと類似な方法として、低温形成を目的に開発されたイオン化マグネトロンスパッタ法によるアルミナ結晶質薄膜の形成について、基板温度が500℃まで下がったと報告されているが、形成物の結晶相は、α相ではなく、準安定相であるκ相アルミナである〔 2)J.Schneider,W.Sproul,A.Voevodin,and A.Matthews:J.Vac.Sci.Technol.,A15,(1997)1 〕。
上記のように、従来、CVD法によるα相アルミナ薄膜の形成に1000℃、また、PVDスパッタ法によるα相アルミナ薄膜形成に760℃という高温が必要とされているため、アルミナ結晶質薄膜の応用範囲が大きく限られていた。
【0003】
【発明が解決しようとする課題】
このような状況の中で、本発明者は、アルミナ薄膜の低温製法を開発することを目標として、工業生産に適切であるスパッタ法を用いて鋭意研究を積み重ねた結果、酸化クロム結晶質薄膜をあらかじめ基板や被膜される母材に形成し、その上にアルミナ結晶質薄膜を形成することにより所期の目的を達成し得ることを見出し、本発明を完成するに至った。
すなわち、本発明は、アルミナ結晶質薄膜のスパッタ法による新規低温製法を提供することを目的とする。
【0004】
【課題を解決するための手段】
上記課題を解決するために、本発明では、以下のような構成が採用される。
(1)アルミナ結晶質薄膜の低温製法であって、スパッタ法によりあらかじめ酸化クロム(Cr 2 O 3 )結晶質薄膜を下地薄膜として多結晶あるいは単結晶基板や母材に200℃程度から600℃の範囲で形成し、その上にスパッタ法によりα相アルミナ(Al2 O3 )結晶質薄膜を当該温度範囲で形成することを特徴とするアルミナ結晶質薄膜の低温製法。
(2)酸化クロムターゲット、及びアルミナ(Al2 O3 )ターゲットを不活性ガス中にスパッタすることを特徴とする前記(1)記載のアルミナ結晶質薄膜の低温製法。
(3)クロム(Cr)金属ターゲット、及びアルミニウム(Al)金属ターゲットを酸素を含む放電ガス中に反応性スパッタすることを特徴とする前記(1)記載のアルミナ結晶質薄膜の低温製法。
(4)ターゲットを酸素と不活性ガスの比率を精密に制御した酸素を含む不活性ガス中に反応性スパッタすることを特徴とする前記(3)記載のアルミナ結晶薄膜の低温製法。
【0005】
【発明の実施の形態】
続いて、本発明についてさらに詳細に説明する。
本発明は、前記のように、酸化クロム結晶質薄膜をあらかじめ基板や被膜される母材に形成し、その上にアルミナ結晶質薄膜を低温で製造する方法に関するものである。また、本発明は、酸化クロム及びアルミナのような化合物ターゲットを用いて、不活性ガスのみでスパッタすること、あるいはクロム(Cr)及びアルミニウム(Al)金属ターゲットを用いて酸素を含む不活性ガス中に反応性スパッタすることによりアルミナ結晶質薄膜を低温で製造する方法に関するものである。さらに、本発明は、上述の方法により、アルミナ結晶相の中で、最も安定で、且つ特性の最も優れるα相アルミナ薄膜を製造する方法に関するものである。
【0006】
上記のスパッタ方法により、酸化クロム(Cr2 O3 )結晶相薄膜が200℃程度から600℃の範囲で形成される。下地薄膜としてのCr2
O3 結晶は、αアルミナと同じ結晶構造を持ち、かつ格子常数の差がわずか数パーセントであることから、酸化クロム下地薄膜を基板や母材に形成することにより、結晶学的にはその上にアルミナ結晶質薄膜、特にα相アルミナ薄膜の形成が容易になるという効果が得られる。また、酸化クロム結晶は、硬度、耐摩耗特性などの機械的特性がアルミナと類似していることや、下地薄膜としてわずかの厚さしかないことから、アルミナ結晶質薄膜の全体的特性に大きな影響がない利点がある。
【0007】
上記の方法の中で、酸化クロム及びアルミナ化合物ターゲットを用いて不活性ガスのみでRFスパッタする方法の場合は、操作は極めて簡単である上、形成された薄膜は、ターゲット組成とほとんど一致したストイキオメトリックな酸化クロム及びアルミナとなる。ただし、化合物ターゲットを用いたRFスパッタでは、成膜率がやや低いということがある。それをより改善するために、クロム及びアルミニウム金属ターゲットを用いて酸素を含む不活性ガス中に反応性直流あるいはRFスパッタする方法が採用される。この方法では、Cr2 O3 結晶及びアルミナ結晶を形成できるようにプロセスを最適化する必要があり、特に酸素と不活性ガスの比率を精密に制御することが、所望の薄膜材料を製造する上で最も重要である。
本発明の方法において、多結晶あるいは単結晶基板、その他の母材が使用されるが、それらの種類は特に制限されない。
【0008】
上記の薄膜作製には、汎用のスパッタ装置が用いられるが、本発明で最も重要なポイントは、酸化クロムを下地薄膜としたアルミナ結晶質薄膜の低温製法であって、上記の方法が実施できる装置であれば、その種類を問わず使用することが可能であり、装置については、特に限定されるものではない。
【0009】
上記の薄膜作製には、酸化クロム下地薄膜として、例えば、結晶形態のCr2O3 が用いられるが、その他、CrO、Cr3 O4 、CrO2 、Cr2 O5 、CrO3 などを用いることが可能であり、本発明において、酸化クロム下地薄膜は、いかなる酸化クロム化合物であってもよく、その種類は、特に限定されるものではない。
また、上記の薄膜作製には、下地化合物ターゲットに、例えば、Cr2 O3 が使われるが、その他、CrO、Cr3 O4 、CrO2 、Cr2 O5 、CrO3 などを用いることが可能であり、本発明において、下地化合物ターゲットは、酸化クロム化合物ターゲットであればよく、その種類は、特に限定されるものではない。
さらに、上記の薄膜作製には、金属ターゲットに、例えば、純粋なクロム(Cr)金属が使われるが、他の金属(例えば、アルミニウム)と合金化されたものを用いることが可能であり、本発明において、クロム金属ターゲットは、純粋なクロム金属だけでなく、クロムを主成分とするいかなる合金ターゲットであってもよく、その種類は特に限定されるものではない。
【0010】
上記方法によるアルミナ結晶質薄膜の低温製法は、次のような特徴を有する。
(1)約200℃の基板温度付近からα相アルミナ薄膜の形成が認められる。
(2)緻密な構造を持つα相アルミナ薄膜が形成される。
【0011】
【実施例】
続いて、本発明を実施例に基づいて具体的に説明する。
実施例1
(1)方法
本実施例では、薄膜作製に汎用型マグネトロンスパッタ装置を用いた。当該装置には、カソード3基まで配置でき、それぞれに高周波電源又は直流電源で任意に電力制御ができる。基板が回転でき、基板温度が室温から800℃まで精密に設定される。カソードの一基に市販の酸化クロムターゲット(Cr2 O3 、φ50mm、純度99.9%)、もう一基に市販のアルミナターゲット(Al2 O3、φ50mm、純度99.99%)を設置した。真空系を2.5x10−6Pa以下に排気した後、アルゴンガスのみを導入して、全圧0.1Paで30分プレスパッタ後、成膜を行った。基板温度を室温から800℃までの範囲に設定し、基板としてガラス、シリコン単結晶、サファイア、などを使用した。
【0012】
すなわち、まず酸化クロムターゲットに高周波電力150Wを加えて厚さ約200nmのCr2 O3 薄膜を基板上に形成した。X線回折法によって各温度で形成された酸化クロム薄膜を分析した。
【0013】
さらに、酸化クロム結晶質薄膜をあらかじめ200nm程度コーティングしてから、アルミナターゲットに同じく150Wの高周波電力を加えてスパッタを行い、アルミナ薄膜を厚さ300nm程度形成した。形成された多層構造を持つ薄膜をX線回折法により結晶相の同定を行った。
【0014】
(2)結果
上記の方法によりシリコン基板上に形成された酸化クロム薄膜のX線回折パターンを図1に示す。室温から600℃までCr2 O3 結晶質薄膜の形成が確認された。
また、上記の方法でシリコン基板上に作成された酸化クロム/アルミナ多層薄膜のX線回折パターンを図2に示す。図1と比べるとわかるように、200℃程度から酸化クロム以外の回折ピークがみられ、JCPDS標準と照合した結果から、生成物は、αアルミナ薄膜であることが明らかである。
また、クロム金属ターゲット及びアルミニウム金属ターゲットを酸素を含む不活性ガス中に反応性スパッタして、同様に分析した結果、同様の結果が得られた。
【0015】
比較例1
上記実施例1において、酸化クロム下地薄膜を使わずに、アルミナターゲットに同じく150Wの高周波電力を加えて直接にシリコン基板上にアルミナ薄膜を厚さ300nm程度形成した。室温から700℃まで各温度で形成されたアルミナ薄膜のX線回折パターンを図3に示す。いずれも鮮明な回折ピークが見られず、700℃までアルミナ結晶相の形成が見られなかった。
【0016】
以上、本発明を実施例に基づいて説明したが、本発明は前記した実施例に限定されるものではなく、特許請求の範囲に記載した構成を変更しない限りどのようにでも実施することができる。
【0017】
【発明の効果】
以上詳述したように、本発明は、室温から結晶相が形成でき、且つアルミナ結晶と極めて類似な結晶構造を持つ酸化クロムをあらかじめ基板上に被膜し、その上にアルミナ薄膜を形成するアルミナ結晶質薄膜の新規低温製法に係るものであり、本発明により、1)従来の方法よりもはるかに低温でアルミナ結晶質薄膜、特に一番安定で且つ特性の優れたα相アルミナ薄膜が形成できる、2)形成温度の低温下により、選択できる基板や母材の種類は大きく広がる、3)それにより、機械産業、半導体産業などにおける耐摩耗、保護を目的とするアルミナハードコーティング、又は安価で、且つ高質のアルミナ基板を提供するなど、産業界への応用が大きく期待される、という効果が奏される。
【図面の簡単な説明】
【図1】シリコン基板上に各温度で形成された酸化クロム薄膜のX線回折パターンを示す。
【図2】シリコン基板上に各温度で形成された酸化クロム/アルミナ多層薄膜のX線回折パターンを示す。
【図3】シリコン基板上に各温度で形成されたアルミナ薄膜のX線回折パターンを示す。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a low-temperature process for producing an alumina crystalline thin film. More specifically, the present invention provides an alumina hard coating for abrasion resistance and protection in a machine industry, a semiconductor industry, or the like, or an inexpensive and high-quality alumina substrate. In particular, the present invention relates to a low-temperature formation technique of an α-phase alumina thin film having the best characteristics and good stability.
[0002]
[Prior art]
Conventionally, the formation of an α-phase alumina thin film by the CVD method (chemical vapor deposition method) usually requires the substrate to be heated to a high temperature of about 1000 ° C., so that the type of base material to be coated has been greatly limited. In recent years, several PVD methods (physical vapor deposition methods) have been developed to lower the formation temperature of alumina thin films. For example, even in the formation of α-phase alumina thin films by pulsed DC magnetron sputtering, which is suitable for industrialization, A substrate temperature of at least 760 ° C. is essential. Zywitzky, G .; Hoetsch, F .; Fietzke, and K.W. Goedicke: Surface and Coatings Technology, Vol. 82, (1995) 169]. As a similar method, it has been reported that the substrate temperature was lowered to 500 ° C. in the formation of an alumina crystalline thin film by an ionized magnetron sputtering method developed for low-temperature formation, but the crystal phase of the formed product was α. Phase is a κ-phase alumina which is a metastable phase, not a phase. Schneider, W.C. Sproul, A .; Voevodin, and A. Matthews: J. Vac. Sci. Technol. , A15, (1997) 1].
As described above, conventionally, a high temperature of 1000 ° C. is required for forming an α-phase alumina thin film by the CVD method, and 760 ° C. is required for forming an α-phase alumina thin film by the PVD sputtering method. The range was largely limited.
[0003]
[Problems to be solved by the invention]
Under such circumstances, the present inventor has conducted intensive studies using a sputtering method suitable for industrial production with the aim of developing a low-temperature manufacturing method of an alumina thin film. The inventor has found that the intended purpose can be achieved by forming in advance a substrate or a base material to be coated and then forming an alumina crystalline thin film thereon, thereby completing the present invention.
That is, an object of the present invention is to provide a novel low-temperature production method by sputtering an alumina crystalline thin film.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the present invention employs the following configuration.
(1) A low-temperature production method of an alumina crystalline thin film, which is prepared in advance by a sputtering method using chromium oxide (Cr 2 O 3 ) A crystalline thin film is formed as a base thin film on a polycrystalline or single crystal substrate or a base material at a temperature in the range of about 200 ° C to 600 ° C, and an α-phase alumina (Al 2 O 3 ) crystalline thin film is formed thereon by sputtering. A low-temperature production method of an alumina crystalline thin film, which is formed in a temperature range.
(2) The method for producing an alumina crystalline thin film at a low temperature according to the above (1), wherein a chromium oxide target and an alumina (Al 2 O 3 ) target are sputtered in an inert gas.
(3) The method for producing an alumina crystalline thin film according to the above (1), wherein the chromium (Cr) metal target and the aluminum (Al) metal target are reactively sputtered into a discharge gas containing oxygen.
(4) The method for producing an alumina crystal thin film at a low temperature according to (3), wherein the target is subjected to reactive sputtering in an inert gas containing oxygen in which the ratio of oxygen to the inert gas is precisely controlled.
[0005]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, the present invention will be described in more detail.
The present invention relates to a method of forming a crystalline chromium oxide thin film in advance on a substrate or a base material to be coated and manufacturing an alumina crystalline thin film thereon at a low temperature as described above. Also, the present invention provides a method of sputtering using an inert gas alone using a compound target such as chromium oxide and alumina, or a method using an inert gas containing oxygen using a chromium (Cr) and aluminum (Al) metal target. For producing an alumina crystalline thin film at a low temperature by reactive sputtering. Furthermore, the present invention relates to a method for producing an α-phase alumina thin film having the most stable and most excellent properties among alumina crystal phases by the above-mentioned method.
[0006]
The above sputtering method, chromium oxide (C r 2 O 3) crystal phase thin film is formed in the range of about 200 ° C. for 6 00 ° C.. Cr 2 as underlying film
O 3 crystal has the same crystal structure as α-alumina and the difference in lattice constant is only a few percent. Therefore, by forming a chromium oxide base thin film on a substrate or a base material, In addition, an effect of easily forming an alumina crystalline thin film, particularly an α-phase alumina thin film, can be obtained. In addition, the mechanical properties such as hardness and abrasion resistance of chromium oxide crystals are similar to those of alumina, and they have only a small thickness as a base thin film. There are no advantages.
[0007]
Among the above methods, in the case of the RF sputtering method using only an inert gas using a chromium oxide and alumina compound target, the operation is extremely simple, and the formed thin film has a strike almost matching the target composition. It becomes chromium oxide and alumina which are ichometric. However, in the RF sputtering using the compound target, the film formation rate may be slightly lower. In order to further improve this, a method of performing reactive direct current or RF sputtering in an inert gas containing oxygen using a chromium and aluminum metal target is adopted. In this method, it is necessary to optimize the process so that the Cr 2 O 3 crystal and the alumina crystal can be formed. In particular, precise control of the ratio of oxygen to inert gas is necessary for producing a desired thin film material. The most important.
In the method of the present invention, a polycrystalline or single crystal substrate and other base materials are used, but their types are not particularly limited.
[0008]
A general-purpose sputtering apparatus is used for the above-mentioned thin film production. The most important point in the present invention is a low-temperature production method of an alumina crystalline thin film using chromium oxide as a base thin film, and an apparatus capable of performing the above method. If it is, it can be used irrespective of its type, and the device is not particularly limited.
[0009]
In the above-mentioned thin film production, for example, Cr 2 O 3 in a crystalline form is used as a chromium oxide base thin film, but other than that, CrO, Cr 3 O 4 , CrO 2 , Cr 2 O 5 , CrO 3 and the like are used. In the present invention, the chromium oxide base thin film may be any chromium oxide compound, and the type thereof is not particularly limited.
In the above-mentioned thin film production, for example, Cr 2 O 3 is used as a base compound target. In addition, CrO, Cr 3 O 4 , CrO 2 , Cr 2 O 5 , CrO 3 and the like can be used. In the present invention, the underlying compound target may be a chromium oxide compound target, and the type thereof is not particularly limited.
Further, in the above-mentioned thin film production, for example, pure chromium (Cr) metal is used as the metal target, but a metal alloyed with another metal (eg, aluminum) can be used. In the present invention, the chromium metal target may be not only pure chromium metal but also any alloy target containing chromium as a main component, and the type thereof is not particularly limited.
[0010]
The method for producing an alumina crystalline thin film at a low temperature by the above method has the following features.
(1) The formation of an α-phase alumina thin film is observed around a substrate temperature of about 200 ° C.
(2) An α-phase alumina thin film having a dense structure is formed.
[0011]
【Example】
Subsequently, the present invention will be specifically described based on examples.
Example 1
(1) Method In this example, a general-purpose magnetron sputtering apparatus was used for thin film production. In this device, up to three cathodes can be arranged, and power can be arbitrarily controlled with a high-frequency power supply or a DC power supply, respectively. The substrate can be rotated, and the substrate temperature is precisely set from room temperature to 800 ° C. A commercially available chromium oxide target (Cr 2 O 3 , φ50 mm, purity 99.9%) was installed on one of the cathodes, and a commercially available alumina target (Al 2 O 3 , φ50 mm, purity 99.99%) on the other. . After evacuation of the vacuum system to 2.5 × 10 −6 Pa or less, only argon gas was introduced, and pre-sputtering was performed at a total pressure of 0.1 Pa for 30 minutes, and then a film was formed. The substrate temperature was set in a range from room temperature to 800 ° C., and glass, silicon single crystal, sapphire, or the like was used as the substrate.
[0012]
That is, first, a high-frequency power of 150 W was applied to a chromium oxide target to form a Cr 2 O 3 thin film having a thickness of about 200 nm on a substrate. The chromium oxide thin film formed at each temperature was analyzed by X-ray diffraction.
[0013]
Further, a chromium oxide crystalline thin film was previously coated to a thickness of about 200 nm, and then a high-frequency power of 150 W was applied to the alumina target to perform sputtering to form an alumina thin film having a thickness of about 300 nm. The crystal phase of the formed thin film having a multilayer structure was identified by an X-ray diffraction method.
[0014]
(2) Results FIG. 1 shows an X-ray diffraction pattern of the chromium oxide thin film formed on the silicon substrate by the above method. From room temperature to 600 ° C., formation of a Cr 2 O 3 crystalline thin film was confirmed.
FIG. 2 shows an X-ray diffraction pattern of the chromium oxide / alumina multilayer thin film formed on the silicon substrate by the above method. As can be seen from comparison with FIG. 1, diffraction peaks other than chromium oxide are observed at about 200 ° C., and the result of comparison with the JCPDS standard clearly indicates that the product is an α-alumina thin film.
In addition, the chromium metal target and the aluminum metal target were reactively sputtered into an inert gas containing oxygen, and analyzed in the same manner. As a result, similar results were obtained.
[0015]
Comparative Example 1
In the first embodiment, an alumina thin film having a thickness of about 300 nm was formed directly on a silicon substrate by applying a high-frequency power of 150 W to an alumina target without using a chromium oxide base thin film. FIG. 3 shows an X-ray diffraction pattern of the alumina thin film formed at each temperature from room temperature to 700 ° C. In each case, no clear diffraction peak was observed, and formation of an alumina crystal phase was not observed up to 700 ° C.
[0016]
As described above, the present invention has been described based on the embodiments. However, the present invention is not limited to the above-described embodiments, and can be implemented in any manner unless the configuration described in the claims is changed. .
[0017]
【The invention's effect】
As described in detail above, the present invention provides an alumina crystal in which a crystal phase can be formed at room temperature and chromium oxide having a crystal structure very similar to alumina crystal is previously coated on a substrate, and an alumina thin film is formed thereon. The present invention relates to a novel low-temperature production method of a porous thin film. According to the present invention, 1) an alumina crystalline thin film, particularly an α-phase alumina thin film having the most stable and excellent characteristics can be formed at a much lower temperature than the conventional method. 2) The types of substrates and base materials that can be selected are greatly expanded due to the low forming temperature. 3) Accordingly, alumina hard coating for wear resistance and protection in the machine industry, semiconductor industry, or the like, or inexpensive and It is expected that application to the industrial world is greatly expected, such as providing a high-quality alumina substrate.
[Brief description of the drawings]
FIG. 1 shows X-ray diffraction patterns of a chromium oxide thin film formed at various temperatures on a silicon substrate.
FIG. 2 shows an X-ray diffraction pattern of a chromium oxide / alumina multilayer thin film formed at various temperatures on a silicon substrate.
FIG. 3 shows an X-ray diffraction pattern of an alumina thin film formed at various temperatures on a silicon substrate.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000163218A JP3603112B2 (en) | 2000-05-31 | 2000-05-31 | Low temperature production of alumina crystalline thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000163218A JP3603112B2 (en) | 2000-05-31 | 2000-05-31 | Low temperature production of alumina crystalline thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001342556A JP2001342556A (en) | 2001-12-14 |
JP3603112B2 true JP3603112B2 (en) | 2004-12-22 |
Family
ID=18667011
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000163218A Expired - Lifetime JP3603112B2 (en) | 2000-05-31 | 2000-05-31 | Low temperature production of alumina crystalline thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3603112B2 (en) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7967957B2 (en) | 2002-08-09 | 2011-06-28 | Kobe Steel, Ltd. | Method for preparing alumna coating film having alpha-type crystal structure as primary structure |
JP4173762B2 (en) * | 2003-04-04 | 2008-10-29 | 株式会社神戸製鋼所 | Method for producing alumina film mainly composed of α-type crystal structure and method for producing laminated film-coated member |
JP4427271B2 (en) * | 2003-04-30 | 2010-03-03 | 株式会社神戸製鋼所 | Alumina protective film and method for producing the same |
US10633740B2 (en) | 2018-03-19 | 2020-04-28 | Applied Materials, Inc. | Methods for depositing coatings on aerospace components |
EP3784815A4 (en) | 2018-04-27 | 2021-11-03 | Applied Materials, Inc. | Protection of components from corrosion |
US11009339B2 (en) | 2018-08-23 | 2021-05-18 | Applied Materials, Inc. | Measurement of thickness of thermal barrier coatings using 3D imaging and surface subtraction methods for objects with complex geometries |
WO2020219332A1 (en) | 2019-04-26 | 2020-10-29 | Applied Materials, Inc. | Methods of protecting aerospace components against corrosion and oxidation |
US11794382B2 (en) | 2019-05-16 | 2023-10-24 | Applied Materials, Inc. | Methods for depositing anti-coking protective coatings on aerospace components |
US11697879B2 (en) | 2019-06-14 | 2023-07-11 | Applied Materials, Inc. | Methods for depositing sacrificial coatings on aerospace components |
US11466364B2 (en) * | 2019-09-06 | 2022-10-11 | Applied Materials, Inc. | Methods for forming protective coatings containing crystallized aluminum oxide |
US11519066B2 (en) | 2020-05-21 | 2022-12-06 | Applied Materials, Inc. | Nitride protective coatings on aerospace components and methods for making the same |
WO2022005696A1 (en) | 2020-07-03 | 2022-01-06 | Applied Materials, Inc. | Methods for refurbishing aerospace components |
CN113684457A (en) * | 2021-07-06 | 2021-11-23 | 华南理工大学 | Gold-based mosaic structure alpha-alumina film and preparation method and application thereof |
-
2000
- 2000-05-31 JP JP2000163218A patent/JP3603112B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001342556A (en) | 2001-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3603112B2 (en) | Low temperature production of alumina crystalline thin film | |
JP3027502B2 (en) | Abrasion-resistant amorphous hard film and method for producing the same | |
KR20100017702A (en) | Method for producing pvd coatings | |
CN107620033A (en) | A kind of preparation method of high-purity strong fine and close MAX phases coating | |
KR20150053959A (en) | Method for manufacturing a metal-borocarbide layer on a substrate | |
CN108611613B (en) | Preparation method of nano multilayer structure carbon-based film | |
Zhou et al. | Deposition of nanostructured crystalline alumina thin film by twin targets reactive high power impulse magnetron sputtering | |
CN113174571B (en) | Ultra-microcrystalline titanium diboride composite coating and preparation method and application thereof | |
JP2003158307A (en) | Method for producing superconducting material | |
CN115044867A (en) | TiAlWN coating and preparation method and application thereof | |
JP2022507087A (en) | Al-rich cubic AlTiN coating deposited from a ceramic target | |
JP2003147508A (en) | Carbon film, method of depositing carbon film, and carbon film-coated member | |
Kusano et al. | Preparation of TiC films by alternate deposition of Ti and C layers using a dual magnetron sputtering source | |
Cheng et al. | Development of texture in TiN films deposited by filtered cathodic vacuum arc | |
JP3971336B2 (en) | Method for producing alumina film mainly composed of α-type crystal structure and method for producing member coated with alumina film mainly composed of α-type crystal structure | |
JP2001335917A (en) | Method for producing crystalline alumina thin film at low temperature | |
CN1924084A (en) | Preparation method of TiN/AlON nano multilayer coating reaction magnetron sputtering for cutting tool | |
Figueroa et al. | Production of AlN films: ion nitriding versus PVD coating | |
JP2741814B2 (en) | Method for producing tantalum metal thin film | |
CN108193178B (en) | A kind of crystalline state WC hard alloy film and its buffer layer technique room temperature growth method | |
JP4142370B2 (en) | Method for producing alumina film mainly composed of α-type crystal structure | |
Yue et al. | Structure of nanometer-size crystalline Ti film | |
JP2004332005A (en) | METHOD OF PRODUCING ALUMINA FILM CONSISTING MAINLY OF alpha TYPE CRYSTAL STRUCTURE, MEMBER COATED WITH ALUMINA FILM CONSISTING MAINLY OF alpha TYPE CRYSTAL STRUCTURE, AND ITS PRODUCTION METHOD | |
JP2001332514A (en) | Method of forming oriented metal thin film and function device therewith | |
JP2004230515A (en) | Tool for highly functional processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040827 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3603112 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |