Nothing Special   »   [go: up one dir, main page]

JP3696966B2 - Rear focus zoom lens - Google Patents

Rear focus zoom lens Download PDF

Info

Publication number
JP3696966B2
JP3696966B2 JP08661696A JP8661696A JP3696966B2 JP 3696966 B2 JP3696966 B2 JP 3696966B2 JP 08661696 A JP08661696 A JP 08661696A JP 8661696 A JP8661696 A JP 8661696A JP 3696966 B2 JP3696966 B2 JP 3696966B2
Authority
JP
Japan
Prior art keywords
lens
lens group
group
positive
refractive power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08661696A
Other languages
Japanese (ja)
Other versions
JPH09281390A (en
Inventor
仁志 向谷
昭永 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP08661696A priority Critical patent/JP3696966B2/en
Priority to US08/831,730 priority patent/US6226130B1/en
Publication of JPH09281390A publication Critical patent/JPH09281390A/en
Priority to US09/227,343 priority patent/US6178049B1/en
Application granted granted Critical
Publication of JP3696966B2 publication Critical patent/JP3696966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リアフォーカス式のズームレンズに関し、特にレンズとCCDとの間に色分解プリズムが入るような長いバックフォーカスを確保しつつ、高変倍比でしかも前玉径が小さく、大口径なリアフォーカス式のズームレンズに関する。
【0002】
【従来の技術】
最近、ホームビデオカメラ等の小型軽量化に伴い、撮像用ズームレンズの小型化にもめざましい進歩が見られ、特に全長の短縮化や前玉径の小型化、構成の簡略化に力が注がれている。
【0003】
これらの目的を達成するひとつの手段として、物体側の第1レンズ群以外のレンズ群を移動させてフォーカスを行う、所謂リアフォーカス式のズームレンズが知られている。
【0004】
一般にリアフォーカス式のズームレンズは、第1レンズ群を移動させてフォーカスを行うズームレンズに比べて、第1レンズ群の有効径が小さくなり、レンズ系全体の小型化が容易になる。又近接撮影、特に極近接撮影が可能となり、更に比較的小型軽量のレンズ群を移動させているので、レンズ群の駆動力が小さくてすみ迅速な焦点合わせができる。
【0005】
この様なリアフォーカス式のズームレンズとして例えば、特開昭62−206516号公報、特開昭62−215225号公報、特開昭62−24213号公報等では物体側より順に正の第1レンズ群、負の第2レンズ群、正の第3レンズ群、正の第4レンズ群を有し、第2レンズ群を移動させて変倍を行い、第4レンズ群で変倍に伴う像面変動を補正すると共に、フォーカシングを行うズームレンズを開示している。
【0006】
また、特開平4−43311号公報、特開平4−153615号公報、特開平5−19165号公報、特開平5−27167号公報、および特開平5−60973号公報では、第4レンズ群を凸レンズ1枚または、凸レンズ2枚で構成された例が開示されている。また、特開平5−60974号公報では第4レンズ群が凹凸の2枚で構成されたズームレンズが開示されている。
【0007】
更に、特開昭55−62419号公報、特開昭62−24213号公報、特開昭62−215225号公報、特開昭56−114920号公報、特開平3−200113号公報、特開平4−242707号公報、特開平4−343313号公報、特開平5−297275号公報等の公報ではその実施例中に第3群、第4群がそれぞれが、正レンズ、負レンズの2枚構成でなることを開示している。
【0008】
また、ビデオデッキの高性能化(デジタル化)に伴いビデオカメラの高画質化が進んできている。その1つの方法として色分解光学系による画像の分解により高画質を達成している。そして、それに適したレンズとして、特開平5−72474号公報、特開平6−51199号公報、特開平6−337353号公報、特開平6−347697号公報、特開平7−199069号公報、特開平7−270684号公報等の公報がある。
【0009】
【発明が解決しようとしている課題】
以上述べたように、一般にズームレンズにおいて、前玉径・全系の小型化を達成するには、第1レンズ群による距離合わせよりも、所謂リアフォーカス方式の方が適している。
【0010】
しかしながら、特開平4−026811号公報および特開平4−88309号公報では、その構成において色分解プリズムを配置するのが困難であった。
【0011】
また、特開平4−43311号公報、特開平4−153615号公報、特開平5−19165号公報、特開平5−27167号公報、および特開平5−60973号公報で開示されているこれらのズームレンズではズーム比が6倍から8倍程度でありこれ以上の高倍ズームレンズになると色収差の変倍による変動が大きくなりすぎて補正しきれず充分な光学性能を発揮させることは困難であった。また、特開平5−60974号公報で開示されている例でも、ズーム比が8倍クラスとやはり充分な高倍化が達成されていなかった。
【0012】
更に、特開昭55−62419号公報、特開昭56−114920号公報、特開平3−200113号公報で開示されている例では、第1群または、第3群も変倍に伴って移動するため鏡筒構造が複雑になり小型化を達成するためには不向きであった。また、特開平4−242707号公報及び特開平4−343313号公報、特開平5−297275号公報に開示されている例では第3群が大きな空気間隔を持つ構成となっておりさらに第3群中の負レンズの屈折力が弱いため高変倍ズームレンズに適用するためには第3群で発生する色収差を充分に補正できるタイプとはならない。更には、特開平5−297275号公報で提案されている例では第3群中の凹メニスカスレンズが像面側に強い凹面を向けた構成となっているためテレフォト化には有効であるが凸レンズで発生した高次のフレアー成分を凹レンズで受けるには不向きな構成であるため大口径、高変倍ズームレンズには不利なタイプである。
【0013】
また、特開平5−72474号公報、特開平6−51199号公報、特開平6−337353号公報、特開平6−347697号公報、特開平7−199069号公報、特開平7−270684号公報等の公報で開示されている例でも、その実施例はいずれもズーム比が10〜12倍程度とやはり充分な高倍化が達成されていなかった。
【0014】
本発明の目的は、上記従来例の欠点を改善し、特に本出願人提案の特開平7−270684号公報の改良に関し、色分解用プリズム等の光学素子やズームレンズ部の保護を目的とした光学素子が入るバックフォーカス空間を充分に確保し、全ズーム域・全物体距離にわたって良好な光学性能を維持しつつ大口径で16倍程度の高変倍を図ったリアフォーカス式のズームレンズを提供し、合わせて該ズームレンズの着脱可能なビデオカメラを提供することを目的とする。
【0015】
【課題を解決するための手段】
本発明はかかる目的のもとで、物体側より順に、正の屈折力を有する第1レンズ群、負の屈折力を有する第2レンズ群、正の屈折力を有する第3レンズ群、正の屈折力を有する第4レンズ群で構成され、前記第2レンズ群と前記第4レンズ群を移動させてズーミングを行い前記第4レンズ群を移動させてフォーカスを行うリアフォーカス式ズームレンズであって、前記第3レンズ群は、最も物体側に物体側へ凹面を向けた負レンズを有し、広角端無限遠物体における該ズームレンズの最終面から像面までの距離を空気に換算した時の長さをBF、広角端における全系の焦点距離Fナンバー、半画角を各々f,FNW,ω、前記負レンズの物体側のレンズ面の曲率半径をR 31f 、前記負レンズと前記第3レンズ群の焦点距離を各々f 31f ,f とするとき、
【0016】
【外2】

Figure 0003696966
−0.60<R 31f /f <−0.10
0.30<R 31f /f 31f <0.90
なる条件式を満足させている。
【0017】
すなわち、第2レンズ群にて発散された光束を略アフォーカルとするための第3レンズ群を負レンズが先行するレトロタイプとし、又、面形状を特定することで、第3群の主点間隔を第2群から遠ざけるように配置することにより第2レンズ群と該第3レンズ群との主点間隔をより開き第3レンズ群に入射する軸上光線高さをより高くする。従って全系の焦点距離を所定量とするための第4群の焦点距離を長くすることができワーキングディスタンスとしてのバックフォーカスを長くするものである。すなわち第3レンズ群をでる光束が略アフォーカルであるためバックフォーカスの長さは主点系で計算するとほぼ第4レンズ群の焦点距離と同じとなる。従って全系の焦点距離を固定して第4レンズ群の焦点距離を長くするためには図19で示される如く第3レンズ群での軸上光高さhを高くしてやれば良いことが分かる。
【0019】
更なる特徴は、以下の説明に記載されている。
【0020】
【発明の実施の形態】
次に、本発明の実施例を用いて具体的に説明する。
【0021】
図1〜図9は本発明のリアフォーカス式のズームレンズの後述する数値実施例1〜9のレンズ断面図、図10〜図18は各実施例の諸収差図を各々示す。各収差図においてAは広角端における収差図、Bは中間における収差図、Cは望遠端における諸収差図を示す。
【0022】
図中L1は正の屈折力の第1レンズ群、L2は負の屈折力の第2レンズ群、L3は正の屈折力の第3レンズ群、L4は正の屈折力の第4レンズ群である。SPは開口絞りであり、第3レンズ群L3の直前に配置している。GAは、ズームレンズの保護を目的とした保護ガラスであり、GBは色分解プリズムやCCDのフェースプレートやローパスフィルター等のガラスブロックである。L1からGAまでがズームレンズ部であり、マウント部材Cを介してカメラ本体に着装されている。したがってGB以降像面側はカメラ本体に含まれる。
【0023】
本実施例では広角端から望遠端への変倍に際して矢印のように第2レンズ群を像面側へ移動させると共に、変倍に伴う像面変動を第4レンズ群を移動させて補正している。又、第4レンズ群を光軸上移動させてフォーカスを行うリアフォーカス式を採用している。特に図1の曲線4a,4bに示すように広角端から望遠端への変倍に際して物体側へ凸状の軌跡を有するように移動させている。これにより第3レンズ群と第4レンズ群との空間の有効利用を図りレンズ全長の短縮化を効果的に達成している。同図に示す第4レンズ群の実線の曲線4aと点線の曲線4bは各々無限遠距離物体と近距離物体にフォーカスしているときの広角端から望遠端への変倍に伴う際の像面変動を補正する為の移動軌跡を示している。尚、第1レンズ群と第3レンズ群は変倍及びフォーカスの際固定である。
【0024】
数値実施例1〜3、9においては、第3レンズ群は、負、正からなる負の屈折力の接合レンズと、正、負からなる正の屈折力の接合レンズで構成され全体としてレトロタイプの正レンズ群を構成している。そして、負の屈折力の接合レンズは、物体側のレンズ面が物体側に凹面を向けている。こうして、第3レンズ群の主点位置を第2レンズ群から遠ざける役割を与えバックフォーカスを長くすることに貢献している。特に像側に比べて物体側に強い負のパワー(曲率半径が短い)を与えて主点位置をより後方に位置させている。
【0025】
一方前記正の屈折力の接合レンズは、像面側のレンズ面が該接合レンズの物体側の面に比べ強い屈折面(曲率半径が短い)を有し、この接合レンズも同様に第3レンズ群の主点位置を第2レンズ群から遠ざける役割を担っており、第4レンズ群の焦点距離を長くし、従ってバックフォーカスを長くすることに貢献している。
【0026】
数値実施例4〜8においては、第3レンズ群は負の単レンズと、正の単レンズで構成され、同様に、全体としてレトロタイプの正レンズ群を構成している。さらに前記負の単レンズは物体側の面が強い凹面であり第3群の主点位置を第2群から遠ざける役割を担っており、第4群の焦点距離を長くし従ってバックフォーカスを長くすることに貢献している。
【0027】
一方前記正の単レンズは、像面側の面が物体側の面に比べ強い屈折面(曲率半径が短い)を有し第3レンズ群の主点位置を第2レンズ群から遠ざける役割を担っており、第4レンズ群の焦点距離を長くし従ってバックフォーカスを長くすることに貢献している。
【0028】
このように、本実施例では、第3レンズ群の最も物体側に負レンズを配置し、この負レンズの物体側のレンズ面を物体側に凹面として主点位置を後方に配置し、後方に色分解プリズムを配置できる程のバックフォーカスを確保している。
【0029】
そして、バックフォーカスを確保するとともに良好な収差を維持するために、広角端の無限遠物体における該レンズの最終面から像面までの距離を空気に換算した時の長さをBF、広角端における全系の焦点距離と開放Fナンバー、半画角を各々f,FNW,ω、第3レンズ群の最も物体側のレンズ面の曲率半径をR 31f 、第3レンズ群の最も物体側に位置する負レンズの焦点距離をf 31f 、第3レンズ群の焦点距離をf とするとき、
【0030】
【外3】
Figure 0003696966
−0.60<R 31f /f <−0.10 …(2)
0.30<R 31f /f 31f <0.90 …(3)
なる条件式を満足させている。
【0031】
条件式(1)の下限値を越えてFナンバーを明るくすると高次の球面収差、コマ収差が発生し、補正するのが困難になる。
【0032】
条件式(1)の上限値を越えて、Fナンバーが暗くなると軸上光線束が細くなり、これによって、該レンズの最終面と像面との間に配置される色分解プリズムを小型化することが可能になる。すなわち、バックフォーカスを長くする必要がないにもかかわらず、長くしなければならず、該レンズ全長の長大化をまねく。
条件式(2),(3)ともに第3群の最も像面側の面の曲率を制限するためのもので、上限を越えると凹面の曲率並びに焦点距離がゆるくなり本発明の目的であるバックフォーカスを充分に長く保つことが困難となり、下限を越えると広角端において第2群から発散してくる光線束が第3群に入射する際に発生する高次の球面収差を補正することが困難となって高性能化を達成できなくなる。
【0033】
以上の構成で、本発明の目的はとり合えず達成することが可能であるが、更に望ましくは下記の条件を満足することが望ましい。
【0036】
(i)前記第3レンズ群の最も像面側に正レンズ(接合レンズを含む)を配置し、該正レンズの物体側と像面側のレンズ面の曲率半径を各々R31r,R32r,該正レンズそして前記第3レンズ群の焦点距離を各々f32,fとした時、
1.0<|R31r/R32r|<5.0 …(4)
1.5<f/f32<5.0 …(5)
なる条件式を満足することである。
【0037】
条件式(4)、(5)ともに第3レンズ群の最も像面側の面の曲率を制限するためのもので、下限を越えると本発明の目的であるバックフォーカスを充分に長く保つことが困難となり、上限を越えると第3レンズ群を射出しフォーカス機能を有する第4レンズ群に入射する際に発生する高次の球面収差を補正することが困難となって高性能化を達成できなくなる。
【0038】
(ii)又、第1レンズ群から第2レンズ群、そして第2レンズ群から第3レンズ群までので空気間隔和をL、広角端における半画角をω、広角端、望遠端そして前記第4レンズ群の焦点距離を各々、f,f,f、望遠端での無限遠物体に対する前記第3レンズ群と第4レンズ群の空気間隔をDとした時、
0.66<L/(f・tanω)<1.17 …(6)
4.00<f4/f<7.00 …(7)
0.10<D/f<0.30 …(8)
なる条件である。
【0039】
条件式(6)は第2レンズ群の変倍のための移動空間をズーム比の関係を最適化するもので、上限値を超えると変倍に対する移動のための空間が広すぎ全長の長大化をまねき、下限値を超えると第2レンズ群の変倍負担量を稼ぐため負の屈折力を強くせねば成らなくなり、像面湾曲を示す負のペッツバール和が増大し好ましくない。
【0040】
条件式(7)はバックフォーカスの長さを最適化するもので上限値を超えるとバックフォーカスが必要以上に長くなり全長の長大化をまねき、下限値を超えると充分に長いバックフォーカスを確保することが困難となる。
【0041】
条件式(8)はフォーカスのための第4群の移動可能な空間と望遠端の焦点距離の関係を最適化するもので、上限値を超えるほどDを大きくとると全長の長大化をまねき好ましくなく、下限値を超えるとフォーカスのための充分な空間を確保できなくなり、ズームレンズの操作性に支障がでてくる。
【0042】
さて、望遠端の色収差を充分に補正するために第2群は、少なくとも2枚の負レンズと少なくとも1枚の正レンズで構成されていればよいが、本実施例では前述のように第2レンズ群と第3レンズ群の主点間隔を拡大するため該第2レンズ群の最も像面側に負レンズを配置してさらにバックフォーカスを長くすることに貢献している。
【0043】
また更に良好な収差補正、特に色収差を良好に補正するためには、第1〜3、第9実施例に示す如く第3群に少なくとも1つの接合レンズを有することである。先にも述べたように、ビデオカメラの高画質化にともない、従来あまり問題にならなかった色収差、特に倍率色収差が問題となりこれを良好に補正している。
【0044】
又、本実施例では、第1レンズ群の像を小さくするために開口絞りを第3レンズ群直前に配置したが、この位置に限ることなく、第3レンズ群と第4レンズ群との間でも、、又、第34レンズ群中の負レンズと正レンズとの間でもさしつかえない。
【0045】
尚、本実施例では、第3レンズ群を順に負、正として、射出瞳を長くし、ズームレンズを射出する光線の状態か略テレセントリックとなるようにして、その後方に配置された色分解プリズムに入射する光線の角度を緩くすることにより、色分解系の波長による反射特性変化を解消し、色分解を忠実に行い画像の色再現性を非常に良くしている。
【0046】
また、本レンズのように高倍率のレンズでは、テレ端の焦点距離が非常に長くなり、テレ端およびその付近の性能が該第2群に大きく影響されてくる。そして、この第2レンズ群に非球面を導入すれば光学性能を上げることが可能になる。
【0047】
なお、非球面は、基本的に球面収差の補正を目的としているため、レンズの周辺部にいくにしたがって正の屈折力が弱くなる形状となることが望ましい。
【0048】
更に、良好な収差補正、特に色収差を良好に補正するためには、第4群中の少なくとも1つの正レンズは、
νd >64.0
を満足するガラスで構成することである。ただし、νd はガラスのアッベ数である。
【0049】
この条件式は、倍率色収差を良好に補正するための条件で、条件式の下限値を越えてアッベ数を小さくすると、倍率色収差がアンダーになり好ましくない。
【0050】
以下に、本発明の実施例を記載する。
【0051】
数値実施例において、Riは物体側より順に第i番目のレンズ面の曲率半径、Diは、物体側より順に第i番目のレンズ厚及び空気間隔、Niとνiはそれぞれ物体側より順に第i番目のレンズのガラスの屈折率とアッベ数である。
【0052】
また、数値実施例1におけるR28〜R29、数値実施例2、3、9におけるR26〜R27、数値実施例4〜8におけるR24〜R25等は保護ガラス部、数値実施例1におけるR30〜R33、数値実施例2、3、9におけるR28〜R31数値実施例4〜8におけるR26〜R29等は、色分解プリズム、光学フィルター、フェースプレート等のガラスブロックを示す。
【0053】
又、前述の各条件式と数値実施例における諸数値との関係を表−1に示す。
【0054】
非球面形状は、光軸方向にX軸、光軸と垂直方向H軸、光の進行方向を正とし、Rを近軸曲率半径、各球面係数をK,B,C,D,Eとしたとき、
【0055】
【外4】
Figure 0003696966
なる式で表している。
【0056】
また例えば「e−0X 」の表示は「10-X」を意味する。
【0057】
【表1】
Figure 0003696966
【0058】
【外5】
Figure 0003696966
【0059】
【外6】
Figure 0003696966
【0060】
【外7】
Figure 0003696966
【0061】
【外8】
Figure 0003696966
【0062】
【外9】
Figure 0003696966
【0063】
【外10】
Figure 0003696966
【0064】
【外11】
Figure 0003696966
【0065】
【外12】
Figure 0003696966
【0066】
【外13】
Figure 0003696966
【0067】
【発明の効果】
以上説明したように構成することにより、変倍比15以上と高変倍でFNo.1.6程度と大口径を確保しながらも、色分解用プリズム等の光学素子やズームレンズ部の保護を目的とした光学素子が入るバックフォーカス空間を充分に確保しつつ全ズーム域・全物体距離にわたって良好な性能を有するリアフォーカス式のズームレンズの提供が可能になり、このズームレンズを用いて小型軽量高性能なレンズ着脱式ビデオカメラを実現することができる。
【図面の簡単な説明】
【図1】本発明に関する数値実施例1のレンズ断面図。
【図2】本発明に関する数値実施例2のレンズ断面図。
【図3】本発明に関する数値実施例3のレンズ断面図。
【図4】本発明に関する数値実施例4のレンズ断面図。
【図5】本発明に関する数値実施例5のレンズ断面図。
【図6】本発明に関する数値実施例6のレンズ断面図。
【図7】本発明に関する数値実施例7のレンズ断面図。
【図8】本発明に関する数値実施例8のレンズ断面図。
【図9】本発明に関する数値実施例9のレンズ断面図。
【図10】本発明に関する数値実施例1の諸収差図。
【図11】本発明に関する数値実施例2の諸収差図。
【図12】本発明に関する数値実施例3の諸収差図。
【図13】本発明に関する数値実施例4の諸収差図。
【図14】本発明に関する数値実施例5の諸収差図。
【図15】本発明に関する数値実施例6の諸収差図。
【図16】本発明に関する数値実施例7の諸収差図。
【図17】本発明に関する数値実施例8の諸収差図。
【図18】本発明に関する数値実施例9の諸収差図。
【図19】本発明に関するズームレンズの原理図。
【符号の説明】
L1 第1レンズ群
L2 第2レンズ群
L3 第3レンズ群
L4 第4レンズ群
g g線
d d線
ΔM メリディオナル像面
ΔS サジタル像面[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a rear focus type zoom lens, and in particular, while ensuring a long back focus in which a color separation prism is inserted between the lens and a CCD, the zoom lens has a high zoom ratio, a small front lens diameter, and a large aperture. The present invention relates to a rear focus type zoom lens.
[0002]
[Prior art]
Recently, with the reduction in size and weight of home video cameras and the like, remarkable progress has been made in reducing the size of the zoom lens for image pickup, particularly focusing on shortening the overall length, reducing the front lens diameter, and simplifying the configuration. It is.
[0003]
As one means for achieving these objects, a so-called rear focus type zoom lens that performs focusing by moving a lens group other than the first lens group on the object side is known.
[0004]
In general, a rear focus type zoom lens has a smaller effective diameter of the first lens group than a zoom lens that focuses by moving the first lens group, and the entire lens system can be easily downsized. In addition, close-up photography, particularly close-up photography is possible, and the relatively small and light lens group is moved, so that the driving force of the lens group is small and quick focusing is possible.
[0005]
As such a rear focus type zoom lens, for example, in Japanese Patent Laid-Open Nos. 62-206516, 62-215225, and 62-24213, a positive first lens group in order from the object side is used. , A negative second lens group, a positive third lens group, and a positive fourth lens group, and the second lens group is moved to perform zooming, and the fourth lens group changes the image plane due to zooming. A zoom lens that corrects the image and performs focusing is disclosed.
[0006]
In JP-A-4-43311, JP-A-4-153615, JP-A-5-19165, JP-A-5-27167, and JP-A-5-60973, the fourth lens group is a convex lens. An example of a single lens or two convex lenses is disclosed. Japanese Patent Laid-Open No. 5-60974 discloses a zoom lens in which the fourth lens group is composed of two concave and convex elements.
[0007]
Furthermore, JP-A-55-62419, JP-A-62-24213, JP-A-62-215225, JP-A-56-114920, JP-A-3-200113, JP-A-4-214 In the publications such as Japanese Patent No. 242707, Japanese Patent Laid-Open No. 4-343313, Japanese Patent Laid-Open No. 5-297275, etc., each of the third group and the fourth group is composed of two lenses, a positive lens and a negative lens. It is disclosed.
[0008]
In addition, video cameras have been improved in image quality with the improvement in performance (digitalization) of video decks. As one of the methods, high image quality is achieved by image decomposition using a color separation optical system. As lenses suitable for this, JP-A-5-72474, JP-A-6-51199, JP-A-6-337353, JP-A-6-347697, JP-A-7-199069, JP There are publications such as 7-270684 publication.
[0009]
[Problems to be solved by the invention]
As described above, in general, in a zoom lens, the so-called rear focus method is more suitable than the distance adjustment by the first lens group in order to achieve a reduction in the front lens diameter and the entire system.
[0010]
However, in Japanese Patent Application Laid-Open Nos. Hei 4-026811 and Hei 4-88309, it is difficult to arrange the color separation prism in the configuration.
[0011]
Further, these zooms disclosed in JP-A-4-43311, JP-A-4-153615, JP-A-5-19165, JP-A-5-27167, and JP-A-5-60973. With a lens, the zoom ratio is about 6 to 8 times, and if the zoom lens is higher than this, the variation due to chromatic aberration magnification becomes too large to be corrected and it is difficult to exhibit sufficient optical performance. Further, even in the example disclosed in Japanese Patent Application Laid-Open No. 5-60974, the zoom ratio has not been achieved sufficiently high at an 8 × class.
[0012]
Further, in the examples disclosed in Japanese Patent Laid-Open Nos. 55-62419, 56-114920, and 3-200113, the first group or the third group also moves with zooming. For this reason, the lens barrel structure becomes complicated and is not suitable for achieving downsizing. In the examples disclosed in JP-A-4-242707, JP-A-4-343313, and JP-A-5-297275, the third group has a large air interval, and further the third group. Since the refractive power of the negative lens in the middle is weak, it cannot be a type that can sufficiently correct the chromatic aberration generated in the third group in order to apply it to a high-magnification zoom lens. Furthermore, in the example proposed in Japanese Patent Application Laid-Open No. 5-297275, the concave meniscus lens in the third lens group is configured with a strong concave surface facing the image surface side. This configuration is unsuitable for receiving a high-order flare component generated by the concave lens with a concave lens, and is therefore disadvantageous for a large-aperture, high-magnification zoom lens.
[0013]
JP-A-5-72474, JP-A-6-51199, JP-A-6-337353, JP-A-6-347697, JP-A-7-199069, JP-A-7-270684, etc. Even in the examples disclosed in the above publication, the zoom ratio in each of the examples was about 10 to 12 times, and a sufficiently high magnification was not achieved.
[0014]
The object of the present invention is to improve the drawbacks of the above-mentioned conventional example, and particularly to the improvement of Japanese Patent Application Laid-Open No. 7-270684 proposed by the present applicant, for the purpose of protecting optical elements such as color separation prisms and zoom lens portions. Provide a rear focus zoom lens that secures a sufficient back focus space for optical elements and maintains high optical performance over the entire zoom range and the entire object distance while achieving a high zoom ratio of about 16 times with a large aperture. In addition, an object of the present invention is to provide a video camera to which the zoom lens can be attached and detached.
[0015]
[Means for Solving the Problems]
For this purpose, the present invention, in order from the object side, a first lens group having a positive refractive power, a second lens group having a negative refractive power, a third lens group having a positive refractive power, and a fourth lens group having a refractive power, there in said second lens group by moving the fourth lens group performs the zooming, the fourth by moving the lens group rear-focusing type zoom lens that performs focus The third lens group has a negative lens with the concave surface facing the object side closest to the object side, and the distance from the final surface of the zoom lens to the image plane in an infinite object at the wide angle end is converted to air. The length of time is BF, the focal length of the entire system at the wide-angle end , the F number, and the half angle of view are f w , F NW , ω , the radius of curvature of the object side lens surface of the negative lens is R 31f , and the negative The focal length of the lens and the third lens group 々_F 31f, when the f 3,
[0016]
[Outside 2]
Figure 0003696966
−0.60 <R 31f / f 3 <−0.10
0.30 <R 31f / f 31f <0.90
The following conditional expression is satisfied.
[0017]
That is, the third lens group for making the luminous flux diverged from the second lens group substantially afocal is a retro type preceded by a negative lens, and the surface shape is specified so that the principal point of the third group By disposing the distance away from the second group, the principal point distance between the second lens group and the third lens group is further increased, and the height of the on-axis ray incident on the third lens group is increased. Accordingly, the focal length of the fourth group for setting the focal length of the entire system to a predetermined amount can be lengthened, and the back focus as a working distance is lengthened. In other words, since the light beam coming out of the third lens group is substantially afocal, the length of the back focus is almost the same as the focal length of the fourth lens group when calculated in the principal point system. Accordingly, it can be seen that in order to increase the focal length of the fourth lens unit while fixing the focal length of the entire system, it is sufficient to increase the axial light height h in the third lens unit as shown in FIG.
[0019]
Additional features are described in the description below.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Next, it demonstrates concretely using the Example of this invention.
[0021]
1 to 9 are lens sectional views of numerical examples 1 to 9 to be described later of the rear focus type zoom lens of the present invention, and FIGS. 10 to 18 show various aberration diagrams of the examples. In each aberration diagram, A is an aberration diagram at the wide-angle end, B is an aberration diagram at the middle, and C is various aberration diagrams at the telephoto end.
[0022]
In the figure, L1 is a first lens group having a positive refractive power, L2 is a second lens group having a negative refractive power, L3 is a third lens group having a positive refractive power, and L4 is a fourth lens group having a positive refractive power. is there. SP is an aperture stop, which is disposed immediately before the third lens unit L3. GA is a protective glass for the purpose of protecting the zoom lens, and GB is a glass block such as a color separation prism, a CCD face plate, and a low-pass filter. The zoom lens unit from L1 to GA is mounted on the camera body via the mount member C. Therefore, the image plane side after GB is included in the camera body.
[0023]
In this embodiment, when zooming from the wide angle end to the telephoto end, the second lens unit is moved to the image plane side as indicated by an arrow, and the image plane variation accompanying zooming is corrected by moving the fourth lens unit. Yes. Further, a rear focus type is employed in which focusing is performed by moving the fourth lens group on the optical axis. In particular, as shown by the curves 4a and 4b in FIG. 1, the zoom lens is moved so as to have a convex locus toward the object side upon zooming from the wide-angle end to the telephoto end. As a result, the space between the third lens group and the fourth lens group is effectively used to effectively shorten the entire lens length. The solid line curve 4a and the dotted line curve 4b of the fourth lens group shown in the figure are the image planes accompanying the zooming from the wide-angle end to the telephoto end when focusing on the object at infinity and the object at short distance, respectively. The movement locus for correcting the fluctuation is shown. The first lens group and the third lens group are fixed during zooming and focusing.
[0024]
In Numerical Examples 1 to 3, the third lens group is composed of a negative lens and a negative cemented lens having a positive refractive power and a positive lens having a positive refractive power and a retro type as a whole. Positive lens group. In the cemented lens having negative refractive power, the lens surface on the object side has a concave surface facing the object side. Thus, the main lens position of the third lens group is moved away from the second lens group, which contributes to increasing the back focus. In particular, the main point position is located further rearward by giving a stronger negative power (shorter radius of curvature) to the object side than to the image side.
[0025]
On the other hand, in the cemented lens having the positive refractive power, the lens surface on the image plane side has a strong refracting surface (the curvature radius is short) compared to the object side surface of the cemented lens, and this cemented lens is also the third lens. It plays the role of moving the principal point position of the group away from the second lens group, and contributes to increasing the focal length of the fourth lens group and thus increasing the back focus.
[0026]
In Numerical Examples 4 to 8, the third lens group includes a negative single lens and a positive single lens, and similarly forms a retro type positive lens group as a whole. Further, the negative single lens has a strong concave surface on the object side, and plays a role of moving the principal point position of the third group away from the second group, thereby increasing the focal length of the fourth group and thus increasing the back focus. Contributing to that.
[0027]
On the other hand, the positive single lens has a refracting surface whose surface on the image side is stronger than the surface on the object side (having a short radius of curvature), and plays a role of moving the principal point position of the third lens group away from the second lens group. This contributes to increasing the focal length of the fourth lens group and thus increasing the back focus.
[0028]
Thus, in the present embodiment, the negative lens is disposed on the most object side of the third lens group, the lens surface on the object side of this negative lens is concave on the object side, and the principal point position is disposed on the rear side. The back focus is secured so that the color separation prism can be arranged.
[0029]
In order to secure the back focus and maintain good aberrations, the distance when the distance from the final surface of the lens to the image plane of the object at infinity at the wide-angle end is converted to air is BF, and at the wide-angle end. The focal length of the entire system, the open F number, and the half angle of view are f w , F NW , ω , the radius of curvature of the lens surface closest to the object side of the third lens group is R 31f , and the object side of the third lens group is closest to the object side. When the focal length of the negative lens located is f 31f and the focal length of the third lens group is f 3 ,
[0030]
[Outside 3]
Figure 0003696966
−0.60 <R 31f / f 3 <−0.10 (2)
0.30 <R 31f / f 31f <0.90 (3)
The following conditional expression is satisfied.
[0031]
If the F-number is increased beyond the lower limit value of conditional expression (1), higher-order spherical aberration and coma aberration are generated and it becomes difficult to correct.
[0032]
When the upper limit of conditional expression (1) is exceeded and the F-number becomes dark, the on-axis beam bundle becomes thin, thereby reducing the size of the color separation prism disposed between the final surface of the lens and the image plane. It becomes possible. That is, although it is not necessary to lengthen the back focus, it must be lengthened, leading to an increase in the total length of the lens.
Conditional expressions (2) and (3) are both for limiting the curvature of the surface closest to the image plane in the third group. If the upper limit is exceeded, the curvature of the concave surface and the focal length become loose, which is the object of the present invention. It is difficult to keep the focus sufficiently long, and if the lower limit is exceeded, it is difficult to correct high-order spherical aberration that occurs when the light beam diverging from the second group at the wide-angle end enters the third group. It becomes impossible to achieve high performance.
[0033]
With the above configuration, the object of the present invention can be achieved for the time being, but it is more desirable to satisfy the following conditions.
[0036]
(I) A positive lens (including a cemented lens) is disposed closest to the image plane side of the third lens group, and the curvature radii of the object side and image plane side lens surfaces of the positive lens are R 31r , R 32r , respectively. When the focal lengths of the positive lens and the third lens group are f 32 and f 3 respectively,
1.0 <| R 31r / R 32r | <5.0 (4)
1.5 <f 3 / f 32 <5.0 (5)
The following conditional expression is satisfied.
[0037]
Conditional expressions (4) and (5) are both for limiting the curvature of the surface closest to the image plane of the third lens group. When the lower limit is exceeded, the back focus, which is the object of the present invention, can be kept sufficiently long. When the upper limit is exceeded, it becomes difficult to correct high-order spherical aberration that occurs when the third lens group is emitted and incident on the fourth lens group having a focusing function, and high performance cannot be achieved. .
[0038]
(Ii) The second lens group from the first lens group, and because the second lens group to the third lens group the sum of the air gap L, and a half view angle omega, wide-angle end and the telephoto end and the When the focal length of the fourth lens group is f w , f t , f 4 , respectively, and the air distance between the third lens group and the fourth lens group with respect to an infinite object at the telephoto end is D,
0.66 <L / (f t · tanω) <1.17 ... (6)
4.00 <f4 / f w <7.00 ... (7)
0.10 <D / ft <0.30 (8)
It is a condition.
[0039]
Conditional expression (6) optimizes the relationship of the zoom ratio in the moving space for zooming of the second lens group. If the upper limit is exceeded, the space for shifting with respect to zooming is too wide and the total length becomes long. If the lower limit is exceeded, the amount of magnification change in the second lens group is increased, so that the negative refractive power must be increased, and the negative Petzval sum indicating field curvature increases, which is not preferable.
[0040]
Conditional expression (7) optimizes the length of the back focus. If the upper limit is exceeded, the back focus becomes longer than necessary, leading to an increase in the overall length, and if the lower limit is exceeded, a sufficiently long back focus is secured. It becomes difficult.
[0041]
Conditional expression (8) optimizes the relationship between the fourth group movable space for focusing and the focal length of the telephoto end. If D is increased as the upper limit is exceeded, it is preferable to increase the total length. If the lower limit is exceeded, a sufficient space for focusing cannot be secured, and the operability of the zoom lens is hindered.
[0042]
Now, in order to sufficiently correct the chromatic aberration at the telephoto end, the second group may be composed of at least two negative lenses and at least one positive lens. In this embodiment, the second group is as described above. In order to enlarge the distance between the principal points of the lens group and the third lens group, a negative lens is arranged on the most image surface side of the second lens group, which contributes to further increasing the back focus.
[0043]
In order to further correct aberration correction, particularly chromatic aberration, it is necessary to have at least one cemented lens in the third group as shown in the first to third and ninth embodiments. As described above, along with the improvement in the image quality of a video camera, chromatic aberration, which has not been a problem in the past, particularly lateral chromatic aberration, has become a problem and is corrected well.
[0044]
In this embodiment, the aperture stop is disposed immediately before the third lens group in order to reduce the image of the first lens group. However, the present invention is not limited to this position, and is not limited to the position between the third lens group and the fourth lens group. However, there is no problem even between the negative lens and the positive lens in the 34th lens group.
[0045]
In this embodiment, the third lens group is set to negative and positive in this order, the exit pupil is lengthened, and the state of the light beam exiting the zoom lens is made substantially telecentric, and is arranged behind the color separation prism. By relaxing the angle of the light beam incident on the lens, the change in the reflection characteristics due to the wavelength of the color separation system is eliminated, and the color separation is faithfully performed, and the color reproducibility of the image is greatly improved.
[0046]
In addition, in a high-magnification lens such as this lens, the focal length at the tele end is very long, and the performance at and around the tele end is greatly influenced by the second group. If an aspheric surface is introduced into the second lens group, the optical performance can be improved.
[0047]
Since the aspherical surface is basically intended to correct spherical aberration, it is desirable that the aspherical surface has a shape in which the positive refractive power becomes weaker toward the periphery of the lens.
[0048]
Furthermore, for good aberration correction, in particular to correct chromatic aberration, at least one positive lens in the fourth group is
ν d > 64.0
It is made of glass that satisfies the above. Where ν d is the Abbe number of the glass.
[0049]
This conditional expression is a condition for satisfactorily correcting the chromatic aberration of magnification. If the Abbe number is decreased beyond the lower limit value of the conditional expression, the chromatic aberration of magnification becomes unfavorable.
[0050]
Examples of the present invention will be described below.
[0051]
In the numerical example, Ri is the radius of curvature of the i-th lens surface in order from the object side, Di is the i-th lens thickness and air spacing in order from the object side, and Ni and νi are i-th in order from the object side. The refractive index and Abbe number of the glass of the lens.
[0052]
Further, R28 to R29 in Numerical Example 1, R26 to R27 in Numerical Examples 2, 3, and 9, R24 to R25 in Numerical Examples 4 to 8, and the like are protective glass parts, R30 to R33 in Numerical Example 1, and numerical values. R28 to R31 in Examples 2, 3, and 9 R26 to R29 in Examples 4 to 8 indicate glass blocks such as a color separation prism, an optical filter, and a face plate.
[0053]
Table 1 shows the relationship between the above-described conditional expressions and numerical values in the numerical examples.
[0054]
The aspherical shape is the X axis in the optical axis direction, the H axis perpendicular to the optical axis, the light traveling direction is positive, R is the paraxial radius of curvature, and each spherical coefficient is K, B, C, D, E. When
[0055]
[Outside 4]
Figure 0003696966
It is expressed by the following formula.
[0056]
For example, the display of “e-0 X ” means “10 −X ”.
[0057]
[Table 1]
Figure 0003696966
[0058]
[Outside 5]
Figure 0003696966
[0059]
[Outside 6]
Figure 0003696966
[0060]
[Outside 7]
Figure 0003696966
[0061]
[Outside 8]
Figure 0003696966
[0062]
[Outside 9]
Figure 0003696966
[0063]
[Outside 10]
Figure 0003696966
[0064]
[Outside 11]
Figure 0003696966
[0065]
[Outside 12]
Figure 0003696966
[0066]
[Outside 13]
Figure 0003696966
[0067]
【The invention's effect】
By configuring as described above, the FNo. While ensuring a large aperture of about 1.6, all zoom range and all objects while ensuring sufficient back focus space for optical elements such as color separation prisms and optical elements to protect the zoom lens It becomes possible to provide a rear focus type zoom lens having good performance over a distance, and a small, light and high performance lens detachable video camera can be realized using this zoom lens.
[Brief description of the drawings]
FIG. 1 is a lens cross-sectional view of Numerical Example 1 according to the present invention.
FIG. 2 is a lens cross-sectional view of Numerical Example 2 according to the present invention.
FIG. 3 is a lens cross-sectional view of Numerical Example 3 relating to the present invention.
FIG. 4 is a lens cross-sectional view of Numerical Example 4 relating to the present invention.
FIG. 5 is a lens cross-sectional view of Numerical Example 5 relating to the present invention.
FIG. 6 is a lens cross-sectional view of Numerical Example 6 relating to the present invention.
7 is a lens cross-sectional view of Numerical Example 7 according to the present invention. FIG.
FIG. 8 is a lens cross-sectional view of Numerical Example 8 according to the present invention.
FIG. 9 is a lens cross-sectional view of Numerical Example 9 according to the present invention.
FIG. 10 is a diagram illustrating all aberrations of Numerical Example 1 according to the present invention.
FIG. 11 is a diagram illustrating all aberrations of Numerical Example 2 according to the present invention.
FIG. 12 is a diagram illustrating various aberrations of Numerical Example 3 according to the present invention.
FIG. 13 is a diagram illustrating various aberrations of Numerical Example 4 according to the present invention.
FIG. 14 is a diagram illustrating all aberrations of Numerical Example 5 according to the present invention.
FIG. 15 is a diagram illustrating various aberrations of Numerical Example 6 according to the present invention.
FIG. 16 is a diagram illustrating all aberrations of Numerical Example 7 according to the present invention.
FIG. 17 is a diagram illustrating all aberrations of Numerical Example 8 according to the present invention.
FIG. 18 is a diagram illustrating all aberrations of Numerical Example 9 according to the present invention.
FIG. 19 is a principle diagram of a zoom lens according to the present invention.
[Explanation of symbols]
L1 1st lens group L2 2nd lens group L3 3rd lens group L4 4th lens group g g line d d line ΔM meridional image plane ΔS sagittal image plane

Claims (5)

物体側より順に、正の屈折力を有する第1レンズ群、負の屈折力を有する第2レンズ群、正の屈折力を有する第3レンズ群、正の屈折力を有する第4レンズ群から成り
前記第2レンズ群と前記第4レンズ群を移動させてズーミングを行い前記第4レンズ群を移動させてフォーカスを行うリアフォーカス式ズームレンズであって、前記第3レンズ群は、最も物体側に物体側へ凹面を向けた負レンズを有し、
広角端での無限遠物体合焦時の該ズームレンズの最終面から像面までの距離を空気に換算した時の長さをBF、広角端における全系の焦点距離Fナンバー、半画角を各々f,FNW,ω、前記負レンズの物体側のレンズ面の曲率半径をR 31f 、前記負レンズと前記第3レンズ群の焦点距離を各々f 31f ,f とするとき、
【外1】
Figure 0003696966
−0.60<R 31f /f <−0.10
0.30<R 31f /f 31f <0.90
なる条件式を満足することを特徴とするリアフォーカス式のズームレンズ。
In order from the object side, a first lens group having positive refractive power, a second lens group having negative refractive power, a third lens group having positive refractive power, and a fourth lens group having positive refractive power ,
Moving the fourth lens group and the second lens group performs zooming, the fourth lens group is moved to a rear-focusing type zoom lens that performs focusing, the third lens group, the most object side to have a negative lens having a concave surface directed toward the object side,
The distance when the distance from the final surface of the zoom lens to the image plane when focusing on an object at infinity at the wide-angle end is converted to air is BF, the focal length of the entire system at the wide-angle end , F-number, half angle of view each f w, F NW, ω, the negative lens of the lens surface on the object side of the curvature radius R 31f, the negative lens and the third lens group having a focal length of each f 31f, when the f 3,
[Outside 1]
Figure 0003696966
−0.60 <R 31f / f 3 <−0.10
0.30 <R 31f / f 31f <0.90
A rear focus zoom lens characterized by satisfying the following conditional expression:
前記第3レンズ群は、最も像面側に、屈折力の接合レンズ又は正レンズを有することを特徴とする請求項1のリアフォーカス式のズームレンズ。The third lens group is closest to the image plane side, a positive cemented lens of refractive power or the rear-focusing type zoom lens according to claim 1, characterized in that it comprises a positive lens. 前記第3レンズ群の最も像面側に配置された正の屈折力の接合レンズ又は正レンズの物体側と像面側のレンズ面の曲率半径を各々R31r,R32r、前記接合レンズ又は正レンズの焦点距離をf32とするとき、
1.0<|R31r/R32r|<5.0
1.5<f/f32<5.0
なる条件式を満足することを特徴とする請求項2のリアフォーカス式のズームレンズ。
R 31r , R 32r , the cemented lens or the positive radius of curvature of the cemented lens having the positive refractive power disposed on the most image side of the third lens group or the object side and the image side lens surface of the positive lens, respectively. when the focal length of the lens and f 32,
1.0 <| R 31r / R 32r | <5.0
1.5 <f 3 / f 32 <5.0
The rear focus zoom lens according to claim 2, wherein the following conditional expression is satisfied.
前記第1レンズ群から第2レンズ群、そして前記第2レンズ群から第3レンズ群までの空気間隔の和をL、望遠端における全系の焦点距離をf、前記第4レンズ群の焦点距離をf、望遠端での無限遠物体合焦時の前記第3レンズ群と第4レンズ群の空気間隔をDとするとき、
0.66<L/(f・tanω)<1.17
4.00<f/f<7.00
0.10<D/f<0.30
なる条件式を満足することを特徴とする請求項1のリアフォーカス式のズームレンズ。
The first lens the second lens group from the group, and wherein the sum of the air gap L from the second lens group to the third lens group, the focal length of the entire system at the telephoto end f t, the focal point of the fourth lens group When the distance is f 4 and the air distance between the third lens group and the fourth lens group at the time of focusing on an object at infinity at the telephoto end is D,
0.66 <L / (f t · tanω) <1.17
4.00 <f 4 / f w <7.00
0.10 <D / ft <0.30
The rear focus zoom lens according to claim 1, wherein the following conditional expression is satisfied.
請求項1〜4いずれかのリアフォーカス式のズームレンズと、該ズームレンズからの光を受光する撮像素子とを有するカメラ。  A camera comprising the rear focus zoom lens according to any one of claims 1 to 4 and an image sensor that receives light from the zoom lens.
JP08661696A 1996-04-09 1996-04-09 Rear focus zoom lens Expired - Fee Related JP3696966B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP08661696A JP3696966B2 (en) 1996-04-09 1996-04-09 Rear focus zoom lens
US08/831,730 US6226130B1 (en) 1996-04-09 1997-04-01 Zoom lens
US09/227,343 US6178049B1 (en) 1996-04-09 1999-01-08 Zoom lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08661696A JP3696966B2 (en) 1996-04-09 1996-04-09 Rear focus zoom lens

Publications (2)

Publication Number Publication Date
JPH09281390A JPH09281390A (en) 1997-10-31
JP3696966B2 true JP3696966B2 (en) 2005-09-21

Family

ID=13891965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08661696A Expired - Fee Related JP3696966B2 (en) 1996-04-09 1996-04-09 Rear focus zoom lens

Country Status (1)

Country Link
JP (1) JP3696966B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6751028B1 (en) 1998-03-10 2004-06-15 Canon Kabushiki Kaisha Zoom lens and optical apparatus using the same
JP4240950B2 (en) * 2002-08-19 2009-03-18 キヤノン株式会社 Zoom lens and optical apparatus having the same
JP4612795B2 (en) 2004-01-30 2011-01-12 キヤノン株式会社 Zoom lens and imaging apparatus using the same
JP4650676B2 (en) 2005-03-03 2011-03-16 ソニー株式会社 Zoom lens and imaging device
JP5020695B2 (en) 2007-04-25 2012-09-05 キヤノン株式会社 Zoom lens and imaging apparatus having the same
JP5305177B2 (en) * 2010-12-07 2013-10-02 株式会社ニコン Zoom lens, imaging apparatus, and zoom lens manufacturing method
JP5783840B2 (en) * 2011-08-04 2015-09-24 キヤノン株式会社 Zoom lens and imaging apparatus having the same
CN110262023B (en) * 2019-07-17 2022-03-22 成都优视光电技术有限公司 Quadruple continuous zooming 4K high-definition optical system

Also Published As

Publication number Publication date
JPH09281390A (en) 1997-10-31

Similar Documents

Publication Publication Date Title
JP3503941B2 (en) 3-group zoom lens
JP2984469B2 (en) Rear focus zoom lens
JPH11305124A (en) Zoom lens and optical instrument using the zoom lens
JP3119403B2 (en) Small variable power lens
JPH08201695A (en) Rear focus type zoom lens
JP3710261B2 (en) Rear focus zoom lens and imaging apparatus using the same
JP3352264B2 (en) Retrofocus type lens and camera having the same
JP3184581B2 (en) Zoom lens
JP3696966B2 (en) Rear focus zoom lens
JPH09281391A (en) Rear focus type zoom lens
JP4564625B2 (en) Zoom lens and optical apparatus using the same
US5579160A (en) Optical system capable of correcting image position
JPH0560971A (en) Rear focus zoom lens
JP4072276B2 (en) Zoom lens
JP3679502B2 (en) Rear focus zoom lens
JP4171942B2 (en) Zoom lens
JP3593400B2 (en) Rear focus zoom lens
JP3423508B2 (en) Rear focus zoom lens
JP4379957B2 (en) Rear focus zoom lens and optical apparatus using the same
JP2707766B2 (en) Zoom lens
JP4789349B2 (en) Zoom lens and optical apparatus having the same
JP3919301B2 (en) Rear focus zoom lens and imaging apparatus using the same
JP2744328B2 (en) Rear focus zoom lens
JP2000206407A (en) Rear focus type zoom lens and optical equipment using the same
JP3368106B2 (en) Rear focus zoom lens

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees