JP3690820B2 - Nutritional composition for infants - Google Patents
Nutritional composition for infants Download PDFInfo
- Publication number
- JP3690820B2 JP3690820B2 JP22962093A JP22962093A JP3690820B2 JP 3690820 B2 JP3690820 B2 JP 3690820B2 JP 22962093 A JP22962093 A JP 22962093A JP 22962093 A JP22962093 A JP 22962093A JP 3690820 B2 JP3690820 B2 JP 3690820B2
- Authority
- JP
- Japan
- Prior art keywords
- protein
- polyamine
- spermine
- infants
- milk
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、蛋白質含量が 13 g /100 g固形以下になるように調製し、これにポリアミンを配合した、蛋白質利用効率が高まることによって良好な発育、健康状態を保ち、食物アレルギーを予防することのできる乳児用栄養組成物、特に乳児用調製粉乳に関する。
本発明におけるポリアミンとしてはスペルミンが特に有効である。
【0002】
【従来の技術】
母乳栄養児の蛋白質所要量は、一般に生後1ヶ月の乳児で体重1kgあたり2.5g/日、さらに生後6ヶ月以降の離乳期となると1.5gとされている。しかし、人工栄養児の場合には、摂取される蛋白質の種類が母乳と異なり、アミノ酸バランスが母乳に比べて劣るため、蛋白質所要量を多くしなければならない。その結果、蛋白質摂取量が多いと、必要量以上無駄に摂取するアミノ酸の代謝が必要になり、乳児に多大な負担を課すことになり、発熱、昏睡、下痢、浮腫、代謝性アシドーシスなどの障害がみられるようになる。さらに、血液中の尿素値が上昇したり、尿中へのフェノール誘導体の排泄が多くなったり、乳児の生理代謝が異常をきたすことがある。そこで、乳児用調製粉乳の蛋白質含量を、できるだけ母乳のレベルに下げる試みがなされるようになっている。しかし、その結果、人工栄養児の体重増加が母乳栄養児を下回ったという報告もあり、現在市販されている乳児用調製粉乳の蛋白質含量は限界に達していることが示唆されている。厚生省が報告している日本人の栄養所要量では、人工栄養児のための蛋白質所要量は、2ヶ月までは 3.3±0.1g/kg体重/日、2〜5ヶ月で 2.5±0.1g/kg体重/日、6〜12ヶ月で 3.0±0.1g/kg体重/日とされている。しかしながら、欧米では日本の基準よりも低く、それぞれ2.2g/kg体重/日、2.2g/kg体重/日、2.0g/kg体重/日であり、乳児用調製粉乳に配合されている蛋白質含量(1.5g/100ml以下)は、国内の製品よりも少ない。この理由としては、欧米では蛋白質摂取量の算定基準として、あくまでも母乳栄養児の摂取量を採用しているためである。しかし、実際に母乳(成熟乳)の平均蛋白質濃度は、 1.35g/100ml(最低 1.1〜最高1.7g/100ml) であることから、乳児用調製粉乳の蛋白質濃度を現在の1.7g/100ml前後からさらに下げることが、母乳を理想とした乳児用調製粉乳の設計上必要であると考えられている。Loennerdalらは、蛋白質濃度が1.3g/100mlの人工乳で哺育しても、乳児の体重増加に問題がないことを報告している(Acta Pediatr. Scand.,
79, 257, 1990)。
【0003】
このように、母乳は乳児用調製粉乳に比べて蛋白質含量が低いにもかかわらず、母乳栄養児は良好な発育を示す。これは、ただ単に蛋白質の質が良いこと、すなわちアミノ酸組成がヒトの成長に適していることに依存するだけではないことが予想される。
【0004】
一方、最近、アレルギー性疾患の罹患率が高くなり、患者の増加とともに社会問題にまで発展している。特に、乳児から小児期に多い食物アレルギーは、アトピー性皮膚炎や小児喘息などの疾患と相まって、多くの関心がよせられている。食物アレルギー発症のメカニズムは様々だが、主に乳児の未発達な消化管粘膜から、抗原性をもったアレルゲン(抗原)が体内に侵入するためにおこると考えられている。こうした食物アレルギーを予防、あるいは治療するためには、アレルゲン物質を摂取しないようにする食事制限が、最も一般的に行なわれている。しかしながら、こうしたアレルゲン性のある食事成分には、卵や牛乳などの良質な蛋白質が多く、成長期にこうした食事制限をした場合、栄養失調により正常な発育が妨げられることが明らかとなった。最近では、こうしたアレルゲン性のある蛋白質であっても、摂取量を少なくしてうまく摂取すれば、アレルギー反応が起こらないことも示唆されている。したがって、消化管を早期に成熟化させることと、蛋白質摂取量を低く抑えることによってアレルギーを予防できることが予想される。
【0005】
【発明が解決しようとする課題】
本発明者らは、乳児が必要とする窒素量やエネルギーを、蛋白質の消化吸収率をふまえて考えると、母乳の蛋白質含量では計算上明らかに限界があり、母乳中に存在する非蛋白態窒素が蛋白質の消化吸収に影響を与えていると想定した。そして、この想定の下に母乳中の種々の非蛋白態窒素成分と蛋白質の消化吸収との関係について検討したところ、母乳中のポリアミンが蛋白質の消化吸収を促進していることを見出して本発明をなすに至った。さらに、本発明者らは、ポリアミンの生理効果を鋭意検討したところ、ポリアミンの中のスペルミンが活性中心成分であり、スペルミン単独であってもポリアミンとしての効果をいちじるしく高められることを見出した。
【0006】
ポリアミンは、プトレッシン、カダベリン、スペルミジン、スペルミンなど、第一級アミノ基を2個以上もつ直鎖の脂肪族炭化水素であり、母乳には通常 100〜 400μg/100ml の濃度で含まれている。ポリアミンには、細胞の増殖や分化を促進する効果が知られており、特に経口摂取したポリアミンは、消化管粘膜の成熟化を促進することが報告されている(Grant, A. L. et al., J. Anim. Sci., 68, 363-371,1990; Dufour, C. et al., Gastroenterology, 95, 112-116,1988)。しかし、蛋白質含量が 13 g /100 g固形以下になるように調製した乳児用調製粉乳等にポリアミンを添加すると、その中に含有される蛋白質の消化吸収を促進したという報告はなく、本発明者らが初めて見出したものである。母乳の代替品である乳児用調製粉乳のポリアミン含量は低く、 100mlあたり50μg 以下であり、製品によっては全く含有されないものもある。この理由は、調製粉乳の製造工程において、原料のホエーを脱塩する際にポリアミンも同時に除去されることによると考えられる。
従って、蛋白質含量が 13 g /100 g固形以下になるように調製した乳児用調製粉乳等にポリアミンを添加して増量することによって、非蛋白態窒素成分として栄養学的に窒素源を供給するだけでなく、ポリアミン独自の生理効果を付加することによって、人工栄養における蛋白質含量の問題を解決することができる。
【0007】
上記ポリアミンのうちスペルミン[N, N'−ビス(3−アミノプロピル)−1,4 −ジアミノブタン](NH2(CH2)3NH(CH2)4NH(CH2)3NH2) は第一級アミノ基を2個持つ直鎖の脂肪族炭化水素であり、母乳には通常50〜200 μg/100ml の濃度で含まれている。しかし、母乳の代替物である乳児用調製粉乳のスペルミン含量は低く、100ml あたり8μg 以下であり、製品によっては全く含有されないものもある。
従って、ポリアミンのうち特にスペルミンを乳児用調製粉乳に添加して増量することによってスペルミン独自の生理効果を付加し、人工栄養における蛋白質含量の問題を解決することができる。
【0008】
すなわち、本発明の課題は、蛋白質の利用効率を高め、消化管の発育を促進することのできる乳児用栄養組成物からなり、これを摂取した際に、蛋白質の吸収を高めて良好な発育や健康を維持することができ、さらに消化管の発達により摂取食物によって引き起こされるアレルギーを予防することのできる乳児用栄養組成物を提供することにある。
【0009】
【課題を解決するための手段】
本発明は、前記した課題を解決するためになされたものであって、蛋白質含量が 13 g /100 g固形以下になるように調製し、これにポリアミンを配合した、蛋白質の利用効率が高まることにより良好な発育、健康状態を保ち、食物アレルギーを予防することのできる、乳児用栄養組成物に関する。
さらに、本発明は、ポリアミンのうち特に、スペルミンを有効成分とする乳児用栄養組成物に関する。
前述のように、ポリアミンには非蛋白態窒素成分として、乳児に必要な窒素源を供給する栄養学的な作用が予想されている。本発明の特徴は、従来知られているこのような作用とは異なる効果で、蛋白質含量が低くても、有効に蛋白質が消化吸収され、良好な成長が得られる乳児用栄養組成物に関するものである。
【0010】
本発明におけるポリアミンは、第1級アミノ基を2つ以上もつ直鎖の脂肪族炭化水素の総称であって、プトレッシン、カダベリン、スペルミジン、スペルミン、1,3−ジアミノプロパン、カルジン、ホモスペルミジン、3−アミノプロピルカダベリン、ノルスペルミン、テルモスペルミン、カルドペンタミン等がある。これらは、生物体内に普遍的に存在する生体アミンであるが、本発明では特にプトレッシンNH2(CH2)4NH2、スペルミジンNH2(CH2)4NH(CH2)3NH2、スペルミンNH2(CH2)3NH(CH2)4NH(CH2)3NH2を用いることが好ましく、特にスペルミンを用いるとその効果が大である。
本発明におけるポリアミンとしては、ポリアミンを精製してスペルミンのみから構成されるものあるいはスペルミンとプトレッシンやスペルミジンのようなその他のポリアミンとの混合物であっても使用可能である。
【0011】
これらは、化学物質そのままあるいはリン酸などの塩が結合した状態で用いてもよいし、また牛乳等の乳からチーズを製造する際の副産物から得ることもできる。すなわち、副産物のチーズホエーを限外濾過してホエー蛋白濃縮物(WPC)を得る際の限外濾過透過画分を陽イオン交換樹脂と接触させてポリアミンを陽イオン交換樹脂に吸着させ、これを酸あるいは塩溶液で溶出し、溶出液を中和後電気透析して脱塩を行うことによって、ポリアミン溶液を得、これをそのまま、あるいは噴霧乾燥等の乾燥手段を施して用いることができる。このようにするとポリアミンの用途が拡大されるばかりでなく、乳を高度に利用することができ、工業上有用である。さらに、魚類の精液などからも同様の方法で抽出することができる。
【0012】
本発明における蛋白質吸収剤は、ポリアミンを単独で用いてもよいが、さらに必要な場合は、これにビタミン、ミネラル、乳糖等を配合して用いてもよい。剤型は、液状、粉状、顆粒状、その他適宜な状態とし食品、栄養剤等に適当量添加される。
【0013】
また栄養組成物は、このようなポリアミンを配合して得ることができる。
栄養組成物としては、母乳代替食品、病態食、離乳食、栄養ドリンク、経腸栄養剤等があるが、特に乳児用調製乳製造時原料に添加し、ポリアミン配合調製粉乳を得ることが望ましい。調製粉乳は、前述のようにポリアミン含量が低くポリアミンを添加することによって乳児の蛋白質の消化吸収を促進し、また食物摂取に起因するアレルギーを防止することができる。
【0014】
すなわち、本発明では、後の試験例及び実施例に示すように、ポリアミンを経口的に摂取することによって、蛋白質の利用効率が高められ、蛋白質含量が低い食事でも良好な発育が得られることを明らかにした。そのメカニズムとしては、ポリアミンが消化管粘膜を分化・成熟させることによって、粘膜に存在するペプチダーゼ活性が上昇し、消化液に含まれるペプシンやトリプシンなどで分解された食事性蛋白質が、さらにアミノ酸やオリゴペプチドにまで分解されるようになり、吸収され易くなることが本発明によって確認された。ポリアミンの添加で単に窒素源が増えたために体重が増加したのではないことは、試験例2に示されるように、スペルミンの添加量が蛋白質量の1/50,000以下という微量であるにもかかわらず、体重がいちじるしく増加しており、このことからも容易に推察できる。さらに、蛋白質含量が低い食事の場合、摂取蛋白質量1gあたりスペルミンと20%以上含有するポリアミンを最低40μg、特にスペルミンの場合は最低8μg が含まれていれば効果のあることが明らかとなった。現在市販されている乳児用調製粉乳で最もポリアミン含量の高い製品においても、蛋白質1gあたりポリアミンが30μg 、そのうちスペルミンが4μg しか含まれておらず、本発明で現す効果を得るには不十分である。
【0015】
また、アレルギー予防効果については、ポリアミン、特にスペルミンを投与することによって体内へのアレルゲンの侵入を阻止し、アレルギー反応の一つである抗体の産生が抑制されることが明らかになった。この理由については、消化管粘膜の成熟化によって、アレルゲンが体内に侵入しなくなるというメカニズムが予想される。
添加するポリアミンの原料としては、ウシ、ヤギ、ヒツジなどの哺乳類の乳に由来する様々な乳関連素材や魚類の精液などが利用できる。特に、乳清蛋白質濃縮物(WPC)を限外濾過膜あるいはイオン交換樹脂などで製造する際の残余画分、および乳糖画分などに多く含まれる。こうしたポリアミンに富む原料を利用して、ポリアミンを含む乳児用調製粉乳などを製造することが可能である。特に、スペルミンに富む原料を利用して、蛋白質1gあたり8μg 以上のスペルミンを含む乳児用調製粉乳などを製造することも可能である。
【0016】
次に本発明をなすに至った試験例及び実施例を示す。
【試験例1】
母乳および乳児用調製粉乳のポリアミン量の測定
母乳および市販されている乳児用調製粉乳のポリアミン含量を、MartonとLee の方法(Clin. Chem., 21, 1721-1724, 1975)に従い、Dionex HPIC-PAC イオン交換カラムを用いた高速液体クロマトグラフィー(HPLC)法で測定した。測定結果を表1に示す。
【0017】
【表1】
乳児用調製乳のポリアミン濃度は、標準調乳濃度で調乳した際に測定した。
このように、調製乳は、母乳に比べてポリアミン、特にスペルミンの含量が低いことがわかる。
【0018】
【試験例2】
低蛋白食摂取と体重増加:
Wistar系ラット(雄、4週令)を5匹ずつ、標準食(ミルクカゼイン20%)群、低蛋白食(ミルクカゼイン10%)群、低蛋白食+スペルミン(40μg 添加群、80μg 添加群、 120μg 添加群)に分けて28日間飼育した。実験開始時の体重と28日後の体重を比較したところ、低蛋白食にスペルミンを80μg 以上添加した群の体重増加率が顕著であることが確認された。この結果を表2に示す。
【0019】
【表2】
【0020】
【試験例3】
低蛋白食摂取と腸管重量の増加:
試験例2のラットを一晩餌及び水を与えずに飼育し、翌日解剖して小腸を摘出した。
小腸全体の湿重量と長さを測定した後、 105℃に設定したオーブンで18時間乾燥して、小腸の乾燥重量を測定した。その結果、スペルミンを80μg 以上添加した群において、有意に体重あたりの小腸重量が多かった。このことは小腸粘膜組織が有意に成長し成熟化したことを意味する。表3に測定結果を示す。
【0021】
【表3】
【0022】
【試験例4】
腸管粘膜ペプチダーゼ活性の上昇:
試験例2のラットの小腸を摘出し、KawakamiとLoennerdalの方法(Am. J. Physiol., 261, G841, 1991)に従って小腸刷子縁膜画分を調製した。アミノ酸のカルボシル基にアミド結合で7アミノ4メチルクマリン(AMC)を結合させたペプチド基質(メチルクマリンアミド:MCA)であるLys-Ala-MCA((株)ペプチド研究所製)を用いて、先に調製した小腸刷子縁膜画分のジペプチジルアミノペプチダーゼ活性を測定した。酵素反応により遊離したAMCを蛍光光度計を用いて測定した(励起波長:380nm ;蛍光波長:440nm)。測定結果を表4に示す。測定値は、低蛋白食群ラットの小腸刷子縁膜の活性を1とした場合の相対値で示した。その結果、スペルミンを80μg以上添加した群の酵素活性が、有意に高いことが明らかになった。
【0023】
【表4】
【0024】
【試験例5】
アレルゲン侵入阻止効果:
乳児期のWistar系ラット(14日令、10匹)を対照群とスペルミン投与群に分けた。どちらの群も早期離乳させて粉末状の標準食(ミルクカゼイン20%)で飼育した。スペルミン投与群は、14〜20日目に毎日スペルミン溶液(1mg/ml)をマイクロピペットを使って10μl 経口投与した。21日目にβラクトグロブリン(βLg)溶液(10mg/ml)を 100μl 経口投与し、1時間後と2週間後に血液を採取した。一方、βLg溶液とFreund完全アジュバンドを混合して乳化させ、3ヶ月令のウサギ(白色和種、雄、北山ラベス)の皮下3ヶ所(両背側部および臀部)に注射して抗βLg血清を得た。この抗血清を一次抗体とし、西洋ワサビパーオキシダーゼ(PO)を標識した二次抗体とのサンドイッチELISA法で、1時間後の血液を使って血中βLg量を測定した。また、2週間後の血液中の抗βLgIgEは、βLgとPO標識した抗ラットIgE抗体(ノルディック社製) を使ってELISA法で測定した。その結果を表5に示すようにスペルミン投与群は対照群に比べて血中βLg及びまた抗βLgIgEの含量がいちじるしく低く、抗体の産生が抑制され、アレルギーを抑制できることが判明した。
【0025】
【表5】
【0026】
【実施例1】
(1)ポリアミンの調製
未脱塩のチーズホエーを限外濾過(UF)膜で濃縮して製造するホエー蛋白質濃縮物(WPC)を得る過程において、UF膜を透過する画分 500リットルを得た。この溶液を陽イオン交換樹脂Dowex50-x8(H+ 型)を充填したカラムに通し、ポリアミンを吸着させた。 0.7M食塩水で樹脂を充分洗浄して塩基性アミノ酸などの不純物を除いた後、6N塩酸でポリアミンを溶出した。溶出液に30%水酸化ナトリウム溶液を加えて中和した後、電気透析(ED)装置で脱塩し、ポリアミン溶液を得た。この溶液を噴霧乾燥してポリアミン素材 0.5gを得た。このポリアミン素材にはスペルミンが200mg 含有していた。上記操作を再度実施し同様にポリアミン素材 0.5gを得た。この素材を蛋白質吸収促進剤とした。
【0027】
(2)ポリアミン配合乳児用調製粉乳の調製
前記(1)において得られたポリアミン素材 1gをカゼイン 6.8kg、ホエー粉70.6kg、ビタミンおよびミネラル成分 1kgとともに水 700kgに溶解した。さらに、植物油 23.9kg を混合して均質化した後、殺菌・濃縮・乾燥工程を経て、粉乳100kg を得た。得られた粉乳 100g中の蛋白質含量は13.0gで、ポリアミン含量は 800μg であった。
【0028】
【実施例2】
スペルミン配合乳児用調製粉乳の調製
スペルミン・2りん酸塩 (C10H26N4・2H3PO4; Sigma社製、S-4513)0.4gをカゼイン 6.0kg、ホエー粉 71.4kg 、ビタミンおよびミネラル成分 1kgとともに水700kg に溶解した。
さらに、植物油23.9kgを混合して均質化した後、殺菌・濃縮・乾燥工程を経て粉乳 100kgを得た。得られた粉乳 100g中の蛋白質含量は12.5gで、スペルミン含量は 130μg であった。
【0029】
【発明の効果】
本発明の効果を示すと次のとおりである。
1)蛋白質含量の低い栄養組成物であっても、良好な発育(体重増加)が得られる。
2)蛋白質含量が母乳と同じ乳児用調製粉乳をつくることによって、乳児の代謝における負荷を低減させることができる。
3)アレルゲンの体内への侵入を防ぐことで、アレルギーを予防することができる。
4)アレルギー予防のため、アレルゲンとなる蛋白質含量を低下させても、良好な発育(体重増加)が得られる。[0001]
[Industrial application fields]
The present invention prepares a protein content to be 13 g / 100 g solid or less, and blends it with a polyamine , thereby improving protein utilization efficiency to maintain good growth and health and prevent food allergies. The present invention relates to an infant nutrition composition, particularly an infant formula.
Spermine is particularly effective as the polyamine in the present invention.
[0002]
[Prior art]
The protein requirement for breastfeeding infants is generally 2.5 g / kg of body weight for 1 month old infants and 1.5 g for the weaning period after 6 months of age. However, in the case of an artificial nutrition child, the type of protein taken is different from that of breast milk, and the amino acid balance is inferior to that of breast milk, so the amount of protein required must be increased. As a result, if protein intake is high, metabolism of amino acids consumed more than necessary is required, imposes a heavy burden on infants, and disorders such as fever, coma, diarrhea, edema, metabolic acidosis, etc. Will be seen. Furthermore, urea levels in the blood may increase, urinary phenol derivatives may be excreted, and infants' physiological metabolism may be abnormal. Thus, attempts have been made to lower the protein content of infant formula to the level of breast milk as much as possible. However, as a result, there has been a report that the weight gain of artificially fed infants was lower than that of breastfeeding infants, suggesting that the protein content of infant formulas currently on the market has reached its limit. According to the Japanese nutritional requirements reported by the Ministry of Health and Welfare, protein requirements for artificially fed children are 3.3 ± 0.1 g / kg body weight / day for up to 2 months and 2.5 ± 0.1 g / kg for 2-5 months Body weight / day, 3.0 ± 0.1 g / kg body weight / day in 6-12 months. However, in Europe and the United States, they are lower than Japanese standards, and are 2.2 g / kg body weight / day, 2.2 g / kg body weight / day, and 2.0 g / kg body weight / day, respectively, and the protein content contained in infant formula ( 1.5g / 100ml or less) is less than domestic products. This is because the intake of breastfeeding infants is adopted as a standard for calculating protein intake in the West. However, since the average protein concentration of breast milk (mature milk) is 1.35 g / 100 ml (minimum 1.1 to maximum 1.7 g / 100 ml), the protein concentration of infant formula is now around 1.7 g / 100 ml. Further reduction is considered necessary in the design of infant formulas ideal for breast milk. Loennerdal et al. Reported that there was no problem in weight gain of infants even when breastfeeding with an artificial milk with a protein concentration of 1.3 g / 100 ml (Acta Pediatr. Scand.,
79, 257, 1990).
[0003]
Thus, although breast milk has a lower protein content than infant formula, breast-feeding infants show good growth. It is expected that this is not simply dependent on the quality of the protein, ie the amino acid composition is suitable for human growth.
[0004]
On the other hand, the prevalence of allergic diseases has increased recently, and it has developed into a social problem as the number of patients increases. In particular, food allergies that are common from infants to childhood are attracting a lot of attention, coupled with diseases such as atopic dermatitis and childhood asthma. The mechanism of the development of food allergies varies, but it is thought to occur mainly due to the entry of antigenic allergens (antigens) into the body from the undeveloped gastrointestinal mucosa of infants. In order to prevent or treat such food allergies, dietary restrictions that prevent intake of allergen substances are most commonly performed. However, these allergenic dietary components are rich in high-quality proteins such as eggs and milk, and it has been clarified that malnutrition hinders normal growth when such dietary restrictions are made during the growing season. Recently, it has also been suggested that even if these allergenic proteins are consumed well with low intake, no allergic reaction will occur. Therefore, it is expected that allergies can be prevented by early maturation of the digestive tract and low protein intake.
[0005]
[Problems to be solved by the invention]
When considering the amount of nitrogen and energy required by infants based on the digestibility of protein, the protein content of breast milk is clearly limited in calculation, and non-protein nitrogen present in breast milk. Were affected by the digestion and absorption of proteins. Based on this assumption, the relationship between various non-protein nitrogen components in breast milk and digestion and absorption of proteins was examined, and it was found that polyamines in breast milk promoted digestion and absorption of proteins. It came to make. Furthermore, the present inventors diligently examined the physiological effect of polyamine, and found that spermine in the polyamine is an active center component, and even if spermine alone is used, the effect as a polyamine is remarkably enhanced.
[0006]
Polyamines are linear aliphatic hydrocarbons having two or more primary amino groups such as putrescine, cadaverine, spermidine, spermine, and are usually contained in breast milk at a concentration of 100 to 400 μg / 100 ml. Polyamines are known to have an effect of promoting cell proliferation and differentiation. In particular, polyamines taken orally have been reported to promote maturation of the gastrointestinal mucosa (Grant, AL et al., J Anim. Sci., 68, 363-371, 1990; Dufour, C. et al., Gastroenterology, 95, 112-116, 1988). However, there is no report that the addition of polyamine to infant formula prepared so that the protein content is 13 g / 100 g solid or less promoted digestion and absorption of the protein contained therein, the present inventor For the first time. Infant formula, which is an alternative to breast milk, has a low polyamine content, less than 50 µg per 100 ml, and some products may not contain any. The reason for this is considered to be that polyamine is also removed at the same time when desalting the raw material whey in the manufacturing process of the formula.
Thus, supplied by increase in the polyamine protein content 13 g / 100 g solids was prepared to be less than the infant formula or the like added pressure, a nutritionally nitrogen source as a non protein nitrogen component In addition, the problem of protein content in artificial nutrition can be solved by adding a physiological effect unique to polyamines.
[0007]
Of the above polyamines, spermine [N, N′-bis (3-aminopropyl) -1,4-diaminobutane] (NH 2 (CH 2 ) 3 NH (CH 2 ) 4 NH (CH 2 ) 3 NH 2 ) is It is a straight-chain aliphatic hydrocarbon having two primary amino groups, and is usually contained in breast milk at a concentration of 50 to 200 μg / 100 ml. However, infant formula, which is an alternative to breast milk, has a low spermine content, less than 8 μg per 100 ml, and some products may not contain it at all.
Therefore, by adding spermine among the polyamines to infant formulas and increasing the amount, it is possible to add a physiological effect unique to spermine and solve the problem of protein content in artificial nutrition.
[0008]
That is, an object of the present invention is to provide a nutritional composition for infants that can increase the efficiency of protein utilization and promote the development of the gastrointestinal tract. An object of the present invention is to provide a nutritional composition for infants that can maintain health and can prevent allergies caused by food intake due to development of the digestive tract.
[0009]
[Means for Solving the Problems]
The present invention has been made to solve the above-mentioned problems, and is prepared so that the protein content is 13 g / 100 g solid or less, and the polyamine is added to the protein content, so that the protein utilization efficiency is increased. It is related with the nutrition composition for infants which can maintain a favorable growth and a healthy state by this, and can prevent food allergy.
Furthermore, this invention relates to the nutrition composition for infants which contains spermine as an active ingredient especially among polyamines.
As described above, polyamine is expected to have a nutritional action as a non-protein nitrogen component to supply a nitrogen source necessary for infants. The feature of the present invention relates to a nutritional composition for infants, which is different from the conventionally known action and can effectively digest and absorb the protein even if the protein content is low, thereby obtaining good growth. is there.
[0010]
The polyamine in the present invention is a general term for linear aliphatic hydrocarbons having two or more primary amino groups, and is putrescine, cadaverine, spermidine, spermine, 1,3-diaminopropane, cardine, homospermidine, 3 -Aminopropyl cadaverine, norspermine, thermospermine, cardopentamine and the like. These are biogenic amines that exist universally in living organisms, but in the present invention, putrescine NH 2 (CH 2 ) 4 NH 2 , spermidine NH 2 (CH 2 ) 4 NH (CH 2 ) 3 NH 2 , spermine NH 2 (CH 2 ) 3 NH (CH 2 ) 4 NH (CH 2 ) 3 NH 2 is preferably used, and spermine is particularly effective when spermine is used.
As the polyamine in the present invention, it can be used even if it is composed of only spermine by purifying the polyamine, or a mixture of spermine and other polyamines such as putrescine and spermidine.
[0011]
These may be used as chemical substances or in a state in which a salt such as phosphoric acid is bound, or may be obtained from a by-product when cheese is produced from milk such as milk. That is, ultrafiltration of the by-product cheese whey is ultrafiltered to obtain a whey protein concentrate (WPC), and the ultrafiltration permeate is brought into contact with the cation exchange resin to adsorb the polyamine to the cation exchange resin. The polyamine solution is obtained by elution with an acid or salt solution, neutralization of the eluate and electrodialysis for desalting, and the polyamine solution can be used as it is or after being subjected to drying means such as spray drying. In this way, not only is the use of polyamine expanded, but milk can be used at a high level, which is industrially useful. Further, it can be extracted from fish semen by the same method.
[0012]
As the protein absorbent in the present invention, a polyamine may be used alone, but if necessary, vitamins, minerals, lactose and the like may be used in combination. The dosage form is liquid, powdery, granular, or other appropriate state, and is added to foods, nutrients, and the like in appropriate amounts.
[0013]
The nutritional composition can be obtained by blending such a polyamine.
Examples of nutritional compositions include breast milk substitute foods, pathological foods, baby foods, nutritional drinks, enteral nutrients, and the like, and it is particularly desirable to add them to raw materials when preparing infant formulas to obtain polyamine-compounded formula milks. As described above, the prepared milk powder has a low polyamine content and can be used to promote digestion and absorption of protein in infants and prevent allergies caused by food intake.
[0014]
That is, in the present invention, as shown in the following test examples and examples, by ingesting polyamine orally, the utilization efficiency of the protein is increased, and good growth can be obtained even in a meal with a low protein content. Revealed. The mechanism is that polyamines differentiate and mature the gastrointestinal mucosa, increasing the peptidase activity present in the mucosa, and the dietary protein decomposed by pepsin and trypsin contained in the digestive fluid is further converted into amino acids and oligos. It has been confirmed by the present invention that the peptide is decomposed into peptides and is easily absorbed. The fact that the body weight did not increase because the nitrogen source simply increased with the addition of the polyamine, as shown in Test Example 2, although the amount of spermine added was as small as 1 / 50,000 or less of the protein mass. The weight has increased remarkably, and it can be easily inferred from this. Furthermore, it has been clarified that a meal with a low protein content is effective if it contains at least 40 μg of spermine and a polyamine containing 20% or more per gram of ingested protein, particularly at least 8 μg of spermine. Even the product with the highest polyamine content in infant formulas currently on the market contains only 30 μg of polyamine per gram of protein, of which only 4 μg of spermine is contained, which is insufficient to obtain the effect of the present invention. .
[0015]
Regarding the allergy prevention effect, it has been clarified that administration of polyamines, particularly spermine, inhibits the entry of allergens into the body and suppresses the production of antibodies which are one of allergic reactions. For this reason, a mechanism that allergens do not enter the body due to maturation of the gastrointestinal mucosa is expected.
As raw materials for the polyamine to be added, various milk-related materials derived from milk of mammals such as cows, goats and sheep, and semen of fish can be used. In particular, the whey protein concentrate (WPC) is abundantly contained in the residual fraction and the lactose fraction when the ultrafiltration membrane or ion exchange resin is produced. It is possible to produce infant formulas containing polyamines using such polyamine-rich raw materials. In particular, infant formulas containing 8 μg or more of spermine per gram of protein can be produced using raw materials rich in spermine.
[0016]
Next, test examples and examples leading to the present invention will be shown.
[Test Example 1]
Determination of polyamine content in breast milk and infant formula The polyamine content of breast milk and commercially available infant formula was determined according to the method of Marton and Lee (Clin. Chem., 21, 1721-1724, 1975) according to Dionex HPIC- It was measured by a high performance liquid chromatography (HPLC) method using a PAC ion exchange column. The measurement results are shown in Table 1.
[0017]
[Table 1]
The polyamine concentration of infant formula was measured when formulating with a standard formula concentration.
Thus, it can be seen that the prepared milk has a lower content of polyamine, particularly spermine, than breast milk.
[0018]
[Test Example 2]
Low protein diet and weight gain:
5 Wistar rats (male, 4 weeks old), standard diet (milk casein 20%) group, low protein diet (milk casein 10%) group, low protein diet + spermine (40μg added group, 80μg added group, The mice were reared for 28 days in groups of 120 μg. Comparison of the body weight at the start of the experiment with the body weight after 28 days confirmed that the weight gain rate of the group in which 80 μg or more of spermine was added to the low protein diet was remarkable. The results are shown in Table 2.
[0019]
[Table 2]
[0020]
[Test Example 3]
Low protein diet intake and increased intestinal weight:
The rats of Test Example 2 were raised overnight without food and water, dissected the next day, and the small intestine was removed.
After measuring the wet weight and length of the entire small intestine, it was dried in an oven set at 105 ° C. for 18 hours to measure the dry weight of the small intestine. As a result, the weight of small intestine per body weight was significantly higher in the group to which spermine was added in an amount of 80 μg or more. This means that the small intestinal mucosa tissue has grown significantly and matured. Table 3 shows the measurement results.
[0021]
[Table 3]
[0022]
[Test Example 4]
Increased intestinal mucosal peptidase activity:
The rat small intestine of Test Example 2 was excised and a small intestine brush border membrane fraction was prepared according to the method of Kawakami and Loennerdal (Am. J. Physiol., 261, G841, 1991). Using Lys-Ala-MCA (manufactured by Peptide Institute, Inc.), which is a peptide substrate (methylcoumarinamide: MCA) in which 7-amino 4-methylcoumarin (AMC) is bonded to the carbosyl group of an amino acid by an amide bond, The dipeptidyl aminopeptidase activity of the small intestinal brush border membrane fraction prepared in the above was measured. AMC released by the enzyme reaction was measured using a fluorometer (excitation wavelength: 380 nm; fluorescence wavelength: 440 nm). Table 4 shows the measurement results. The measured value was expressed as a relative value when the activity of the small intestine brush border membrane of the low protein diet group rat was taken as 1. As a result, it was revealed that the enzyme activity of the group to which 80 μg or more of spermine was added was significantly high.
[0023]
[Table 4]
[0024]
[Test Example 5]
Allergen intrusion prevention effect:
Infant Wistar rats (14 days old, 10 animals) were divided into a control group and a spermine administration group. Both groups were weaned early and reared on a powdered standard diet (milk casein 20%). In the spermine administration group, 10 μl of spermine solution (1 mg / ml) was orally administered daily on days 14 to 20 using a micropipette. On day 21, 100 μl of β-lactoglobulin (βLg) solution (10 mg / ml) was orally administered, and blood was collected after 1 hour and 2 weeks. On the other hand, βLg solution and Freund complete adjuvant are mixed and emulsified, and injected into three subcutaneous sites (both dorsal side and buttocks) of a 3-month-old rabbit (white Japanese breed, male, Kitayama Labes). Got. This antiserum was used as the primary antibody, and the amount of βLg in the blood was measured using the blood after 1 hour by sandwich ELISA with a secondary antibody labeled with horseradish peroxidase (PO). Further, anti-βLgIgE in blood after 2 weeks was measured by ELISA using anti-rat IgE antibody (manufactured by Nordic) labeled with βLg and PO. As shown in Table 5, it was found that the spermine-administered group had a significantly lower blood βLg and / or anti-βLgIgE content than the control group, and the production of antibodies was suppressed and allergy could be suppressed.
[0025]
[Table 5]
[0026]
[Example 1]
(1) Preparation of polyamine In the process of obtaining a whey protein concentrate (WPC) produced by concentrating undesalted cheese whey with an ultrafiltration (UF) membrane, a fraction of 500 liters permeating the UF membrane was obtained. . This solution was passed through a column packed with cation exchange resin Dowex 50-x8 (H + type) to adsorb polyamine. The resin was sufficiently washed with 0.7 M saline to remove impurities such as basic amino acids, and then polyamine was eluted with 6N hydrochloric acid. The eluate was neutralized with a 30% sodium hydroxide solution, and then desalted with an electrodialysis (ED) device to obtain a polyamine solution. This solution was spray-dried to obtain 0.5 g of a polyamine material. This polyamine material contained 200 mg of spermine. The above operation was performed again to obtain 0.5 g of a polyamine material. This material was used as a protein absorption accelerator.
[0027]
(2) Preparation of infant formula for polyamine-containing infant 1 g of the polyamine material obtained in (1) above was dissolved in 700 kg of water together with 6.8 kg of casein, 70.6 kg of whey powder, 1 kg of vitamins and mineral components. Furthermore, 23.9 kg of vegetable oil was mixed and homogenized, and then sterilized, concentrated and dried to obtain 100 kg of milk powder. In 100 g of the obtained milk powder, the protein content was 13.0 g and the polyamine content was 800 μg.
[0028]
[Example 2]
Preparation of infant formula milk containing spermine Spermine diphosphate (C 10 H 26 N 4 2H 3 PO 4 ; Sigma, S-4513) 0.4 g casein 6.0 kg whey powder 71.4 kg vitamins and minerals Dissolved in 700 kg of water along with 1 kg of ingredients.
Furthermore, 23.9 kg of vegetable oil was mixed and homogenized, and then 100 kg of milk powder was obtained through sterilization, concentration and drying processes. In 100 g of the obtained milk powder, the protein content was 12.5 g and the spermine content was 130 μg.
[0029]
【The invention's effect】
The effects of the present invention are as follows.
1) Good growth (weight gain) can be obtained even with a nutritional composition having a low protein content.
2) By creating an infant formula that has the same protein content as breast milk, the burden on the infant's metabolism can be reduced.
3) Allergy can be prevented by preventing allergens from entering the body.
4) To prevent allergies, good growth (weight gain) can be obtained even if the protein content of allergen is reduced.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22962093A JP3690820B2 (en) | 1993-02-25 | 1993-08-24 | Nutritional composition for infants |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5-61141 | 1993-02-25 | ||
JP6114193 | 1993-02-25 | ||
JP22962093A JP3690820B2 (en) | 1993-02-25 | 1993-08-24 | Nutritional composition for infants |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06305956A JPH06305956A (en) | 1994-11-01 |
JP3690820B2 true JP3690820B2 (en) | 2005-08-31 |
Family
ID=26402175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22962093A Expired - Fee Related JP3690820B2 (en) | 1993-02-25 | 1993-08-24 | Nutritional composition for infants |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3690820B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3411965B2 (en) * | 1999-06-30 | 2003-06-03 | 雪印乳業株式会社 | Method for producing polyamine-containing composition |
NL1014380C2 (en) * | 2000-02-14 | 2001-08-15 | Friesland Brands Bv | Intestinal wall-strengthening food. |
US6479684B1 (en) | 2001-03-06 | 2002-11-12 | Kraft Foods Holdings, Inc. | Process for structuring lipids and the structured products thereof |
US6428461B1 (en) | 2001-04-24 | 2002-08-06 | Kraft Foods Holdings, Inc. | Method for inhibiting oxidation of polyunsaturated lipids |
TWI239247B (en) | 2001-06-14 | 2005-09-11 | Otsuka Pharma Co Ltd | Pharmaceutical composition |
ITMI20031570A1 (en) * | 2003-07-31 | 2005-02-01 | Giuliani Spa | COMPOSITION FOR DIETARY, PHARMACEUTICAL OR COSMETIC USE |
JP5620650B2 (en) * | 2009-05-13 | 2014-11-05 | 株式会社ロッテ | Process for producing food and drink containing polyamine |
CN114786502A (en) * | 2020-04-03 | 2022-07-22 | 三菱瓦斯化学株式会社 | Muscle-building agent |
-
1993
- 1993-08-24 JP JP22962093A patent/JP3690820B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06305956A (en) | 1994-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Keri Marshall | Therapeutic applications of whey protein | |
US20130078313A1 (en) | Milk derived composition and use to enhance muscle mass or muscle strength | |
KR100509681B1 (en) | Food composition for stimulating growth comprising fraction isolated from mammalian colostrum or milk whey | |
JP2012530067A (en) | Glycomacropeptide medical food for nutritional management of phenylketonuria and other metabolic disorders | |
WO2006112012A1 (en) | Nutrient composition | |
EP1593312A1 (en) | Antiobesity or antihyperlipidemic food, feeding stuff or supplement containing lysine | |
EP2246060A1 (en) | Liver function-protecting agent | |
JP3690820B2 (en) | Nutritional composition for infants | |
EP1951064B2 (en) | Oral tolerance promotion with glycated proteins | |
US9480717B2 (en) | Composition of whey growth factor extract for reducing muscle inflammation | |
US20240299490A1 (en) | Liquid nutritional composition suitable for muscle function | |
JP3979543B2 (en) | Antiallergic agent and method for producing the same | |
Sarriá et al. | Protein nutritive utilization in rats fed powder and liquid infant formulas/Utilización nutritiva de la proteína en ratas alimentadas con formulas infantiles en polvo y líquidas | |
CN102960603A (en) | Nutrient protein powder with high digestive absorption function | |
ES2260500T3 (en) | MODIFIED MENTIONINE FOOD PRODUCTS AND PROCESSES FOR MANUFACTURING. | |
JPS595111A (en) | Prepared nutritious substance for infant with phenylketonuria | |
JPH11103788A (en) | Feed for domestic animal | |
EP3037100A1 (en) | Muscle-atrophy-preventing agent | |
AU2006289665B2 (en) | Milk derived composition and use to enhance muscle mass or muscle strength | |
CN116490081A (en) | Natural whey protein compositions for improving gastrointestinal tolerance | |
AU2006289666B2 (en) | Composition of whey growth factor extract for reducing muscle inflammation | |
WO2006059397A1 (en) | Antistress food | |
JP2002167331A (en) | Digestion and absorption accelator | |
Hassan et al. | Annals of Agric. Sc. Moshtohor. I ol. 33/2): 745-758, 1995 | |
JP2001103910A (en) | Method for increasing intake of feed |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040121 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040322 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20040412 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040611 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20040729 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040916 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20041115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050608 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050614 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080624 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090624 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100624 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100624 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110624 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110624 Year of fee payment: 6 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120624 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120624 Year of fee payment: 7 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120624 Year of fee payment: 7 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120624 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130624 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |