Nothing Special   »   [go: up one dir, main page]

JP3583323B2 - Blast furnace slag fine aggregate, method for producing the same, and fine aggregate for concrete or mortar - Google Patents

Blast furnace slag fine aggregate, method for producing the same, and fine aggregate for concrete or mortar Download PDF

Info

Publication number
JP3583323B2
JP3583323B2 JP23336799A JP23336799A JP3583323B2 JP 3583323 B2 JP3583323 B2 JP 3583323B2 JP 23336799 A JP23336799 A JP 23336799A JP 23336799 A JP23336799 A JP 23336799A JP 3583323 B2 JP3583323 B2 JP 3583323B2
Authority
JP
Japan
Prior art keywords
fine aggregate
concrete
blast furnace
water
granulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23336799A
Other languages
Japanese (ja)
Other versions
JP2001058861A (en
Inventor
哲治 茨城
祐治 遠田
正人 真沢
直昭 小柳
淳 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Nippon Steel Corp
Original Assignee
Taiheiyo Cement Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Nippon Steel Corp filed Critical Taiheiyo Cement Corp
Priority to JP23336799A priority Critical patent/JP3583323B2/en
Publication of JP2001058861A publication Critical patent/JP2001058861A/en
Application granted granted Critical
Publication of JP3583323B2 publication Critical patent/JP3583323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • C21B2400/024Methods of cooling or quenching molten slag with the direct use of steam or liquid coolants, e.g. water
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/062Jet nozzles or pressurised fluids for cooling, fragmenting or atomising slag
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Manufacture Of Iron (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高炉から排出される溶融スラグを吹製して製造した水砕を破砕して高炉スラグ細骨材を製造する方法、その高炉スラグ細骨材、並びにコンクリート又はモルタル用細骨材に関するものである。
【0002】
【従来の技術】
高炉から排出される溶融スラグの処理方法としては、溶融状態のままヤードやドライピットに流して徐冷する方法と、溶融スラグを落下させたところに加圧水を当てて粉砕、急速冷却、いわゆる吹製する方法とがある。このうち、吹製された溶融スラグは約5mm以下の粒径のガラス質となり、水砕と呼ばれる。水砕は、非常に細かく破砕して高炉セメント原料とする用途があるとともに、無加工若しくは破砕して、天然砂代替の土木建築用の原料としても利用されている。この土木建築用の用途の一つにコンクリート又はモルタル用細骨材がある。特に、近年は海砂の採取規制や陸砂開発に伴う環境破壊の問題も発生しており、天然資源の保全が重要な社会問題となっている。この問題を解決するために、工業製造工程の副産物を使用するリサイクルの推進が求められており、高炉スラグの細骨材は重要なリサイクル材料としての需要が高まっている。
【0003】
高炉スラグ細骨材は、高炉セメントの原料に用いられる水砕とは異なり、JIS A5011に規定されているように、比較的比重が大きく、吸水率の少ないことが要求されている。従来、例えば特開昭55−136151号公報や特公昭59−121140号公報に記載の方法のように、比較的冷却の強い条件で製造されている。
【0004】
【発明が解決しようとする課題】
従来より、例えば特開昭55−136151号公報や特公昭59−121140号公報に記載されているような冷却方法の改善で、JIS A5011に規定の絶乾比重や単位容積質量、吸水率等の性能を満足させる細骨材を製造することは可能であった。しかしながら、絶乾比重や単位容積質量、吸水率等の性能がJIS A5011に規定の範囲に入っていても、細骨材として必ずしも良い性能が発揮できるわけではないという課題があった。
【0005】
具体的には、水砕は形状が角張っており、また、針状のものが混入しているので、粒子形状が悪いことに起因して集合体としての流動性が悪いという問題があった。つまり、このまま細骨材として用いた場合、生コンクリートの流動性に悪影響を与えるという問題があったことから、高炉スラグ細骨材の普及が遅れていた。
【0006】
さらに、天然砂と混合する場合でも、天然砂と均一に混合することが困難で、全体に不均一なコンクリートとなってしまい、生コンクリートの流動性が悪化し、また発現強度が不均一になるという問題があった。
【0007】
このように、従来法によって製造された高炉スラグを原料とする細骨材は、生コンクリートの流動性を確保するための性能が不十分で、これを使用した生コンクリートでは、生コンクリート施工用のポンプ詰まりを起こしやすいといった問題や、生コンクリートの流動性を確保するために、セメントと水の使用量が増加して、コンクリート製造費用が増加するといった問題が生じていた。したがって、流動性の高い生コンクリートを製造できる高炉スラグ細骨材が求められていた。
【0008】
【課題を解決するための手段】
本発明は、以下の(1)及び(2)の通りである。
【0009】
(1)高炉から排出される溶融スラグを、該溶融スラグの8倍以上の水量でかつ毎秒8〜17mの速度の水流にあてて吹製した水砕の水分を12%以下とした後、インパクトクラッシャー又はハンマークラッシャーで破砕し、1.2mmのふるいを通過し、かつ、0.3mmのふるい上に残る粒子の実積率が48%以上で、かつ絶乾比重が2.5以上2.8以下としたことを特徴とする高炉スラグ細骨材。
【0011】
(2)率が58%以上となるように請求項1記載の高炉スラグ細骨材と他の細骨材とを混合したことを特徴とするコンクリート又はモルタル用細骨材。
【0013】
【発明の実施の形態】
水砕の細骨材としての性能を向上させるために、従来から、吹製後の水砕を破砕することが行われていたが、従来は、水砕形状と細骨材としての性能の関係が未解明であった。そこで、水砕の形状と、それを細骨材に用いたコンクリートの性状について詳細に調査した。その結果、生コンクリートの流動性に大きな影響を与えているのは、水砕の角張った形状と水砕中に含まれる針状の水砕であることが判明した。さらに粒度別に調査した結果、1.2mmのふるい(JIS Z 8801に規定の呼び寸法1.18mmの網ふるい)を通過し、かつ、0.3mmのふるい(JIS Z 8801に規定の呼び寸法297mmの網ふるい)上に残る粒子の形状が生コンクリートの流動性に大きく寄与しており、特に、この粒度範囲に針状の形状のものが多く存在すると、生コンクリートの流動性を著しく阻害することを知見した。また、この範囲の粒度の実率が48%以上あることが、コンクリート細骨材として用いるために重要な条件であることが明らかとなった。ここで、実率はJIS A 1104に規定された方法で測定したものである。
【0014】
ところで、水砕はそのブリージング特性等から、通常天然の砂などの他の細骨材と混合して使用される。生コンクリートの流動性は、セメントや骨材が均一に混ざりあうことで実現する。一般のコンクリートに使用されている天然の骨材の比重は2.65程度である。水砕を細骨材に使用したコンクリート中の水砕の分布を調査した結果、天然の骨材との比重差が0.15超であるとコンクリート中の水砕の分布に偏りがみられ、生コンクリートの流動性を著しく悪化させることがわかった。したがって、1.2mmのふるいを通過し、かつ、0.3mmのふるい上に残る粒子の実率が48%以上で、かつ絶乾比重を2.5以上2.8以下とした水砕は、従来の水砕を用いた場合に比較し、コンクリートの流動性を著しく向上させることができる。
【0015】
一方、最近は単独で細骨材に適した粒度分布をもつ天然砂が減少し、異なった産地の砂やフェロニッケルスラグ等のリサイクル材を混合して使用されることが一般的となった。水砕は製造条件で粒度をある程度制御できるため、単独では使用に耐えない天然砂の粒度補完用として最適である。また、水砕は元来水硬性をもっているため、細骨材として用いると強度が向上するという利点がある。そこで、さまざまな粒度分布をもった天然砂と水砕を混合した場合のコンクリート練り試験を行った。その結果、他の細骨材と混合使用する場合、実率58%以上となるように前述の条件を満たす水砕と混合すれば、理想的粒度分布をもった天然砂を細骨材に用いた生コンクリートと同等の流動性をもつコンクリートを製造することができた。
【0017】
図1に、本発明により水砕を安定的にかつ低コストで製造する過程の一例を示す。
【0018】
細骨材用の水砕スラグとしては、前述したように、1.2mmのふるいを通過し、かつ、0.3mmのふるい上に残る粒子の実積率を48%以上とする必要がある。このため吹製した水砕を機械的に破砕する必要があり、破砕前の水砕は、極力大きな粒子とすることが必要である。当然、針状の粒子の少ないものを吹製することも重要である。また、同時に絶乾比重が2.5以上2.8以下となるようにする必要がある。
【0019】
まず吹製の条件であるが、水砕の絶乾比重は、溶融スラグが冷却される過程で発生し、水砕粒子の中に残存する気泡の量で決まる。したがって、吹製水の量と速度を最適にすることが重要である。具体的には、吹製水の水量が少ないと水砕粒子は大きくなるが、冷却が遅くなり、気泡を多く含み吸水率の大きなコンクリート細骨材には適さない軽質な水砕となる。実験の結果、吹製水の量は、吹製するスラグの量の少なくとも8倍以上、できれば10〜15倍に制御することが好ましいことが判明した。このとき、吹製水の流速(吹製水量/吹製ノズル断面積)は、毎秒8m以上17m以下とする必要がある。毎秒8m未満では、十分に溶融スラグを微細化することはできず、大きな気泡を多く含む塊となる。また毎秒17m超となると、絶乾比重が大きくなりすぎるだけでなく、針状の水砕が多く発生し、コンクリート細骨材として適さないものとなる。好ましくは毎秒8〜10mに制御する。
【0020】
このようにして吹製した水砕を例えば3日間程度ヤードに山積みすることで、含水率を12%以下にする。この水切りが不十分であると、次の破砕工程で0.3〜1.2mmの針状の水砕を十分破砕できない。次に、インパクトクラッシャーやハンマークラッシャーで水砕を破砕する。クラッシャーの回転ハンマーの周速を遅くし、何度もクラッシャーにかけた方が0.3mm〜1.2mmの粒子の実積率の増加は大きい。特に、粗粒率2.6以上の大きな粒子の水砕を製造しようとする場合は、回転ハンマーの周速を毎秒15m以下とし、数回程度破砕することが好ましい。一方、粗粒率2.3程度の小さな粒子の水砕を製造する場合は、回転ハンマーの周速を毎秒40m程度として1回で破砕することが経済的である。
【0021】
【実施例】
表1に、吹製水量をスラグ量の15倍、吹製水速度を毎秒10mに制御し、吹製した水砕を3日間ヤードで山積みし、含水率を8%とした後、インパクトクラッシャーで破砕した水砕のコンクリート試験結果を示す。
【0022】
【表1】

Figure 0003583323
【0023】
比較例1は、天然砂のみでコンクリート試験したものであり、実施例1は、コンクリートの流動性の指標であるスランプ値においてこの比較例1とほとんど差はない。
【0024】
実施例2はハンマークラッシャーを用いて粗粒率2.3まで破砕した水砕の例を示す。実施例1と同様に天然砂と同等の流動性を示している。
【0025】
実施例3は実施例1の水砕に、実施例4は実施例2の水砕に天然砂を50%混合したもので、コンクリート流動性は天然砂と同一の流動性を示している。
【0026】
比較例2、3、実施例5は、1.2mmのふるいを通過し、かつ、0.3mmのふるい上に残る粒子の形状の指針である実率を変化させてコンクリート流動性の指標であるスランプ値を示したものである。比較例2、3では、水砕の実率が48%未満であり、スランプ値が低くなっている。
【0027】
比較例4、5、実施例6、7は、絶乾比重を変化させたもので、比較例4、5は絶乾比重が過小あるいは過大で、やはりスランプ値が小さい。
【0028】
比較例6、7は天然砂と水砕スラグとの混合物であり、実率が58%未満なので、スランプ値が小さい。
【0030】
【発明の効果】
本発明の細骨材を用いたコンクリートは、天然砂を細骨材として用いた場合と同等な流動性もつ。また、天然砂の粒度補間用の細骨材として最適であるばかりか、長期強度に優れるコンクリートを製造することが可能となり、その経済的効果は大きい。
【図面の簡単な説明】
【図1】本発明の高炉スラグ細骨材の製造過程を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
TECHNICAL FIELD The present invention relates to a method for producing blast furnace slag fine aggregate by crushing water granules produced by blowing molten slag discharged from a blast furnace, the blast furnace slag fine aggregate, and fine aggregate for concrete or mortar. Things.
[0002]
[Prior art]
There are two methods of treating molten slag discharged from the blast furnace: a method in which the molten slag is dropped into a yard or a dry pit while being melted, and a method in which the molten slag is dropped. There is a way to do it. Among these, the blown molten slag becomes glassy having a particle size of about 5 mm or less, and is called water granulation. Water granulation is used as a raw material for blast furnace cement by crushing it very finely, and is also used as a raw material for civil engineering construction as a substitute for natural sand without processing or crushing. One of the applications for civil engineering is fine aggregate for concrete or mortar. In particular, in recent years, there has been a problem of environmental destruction caused by sea sand extraction regulations and land sand development, and conservation of natural resources has become an important social problem. In order to solve this problem, it is required to promote recycling using by-products of the industrial manufacturing process, and fine aggregate of blast furnace slag is increasing in demand as an important recycled material.
[0003]
Blast furnace slag fine aggregate is required to have a relatively large specific gravity and a small water absorption rate, as specified in JIS A5011, unlike water granulation used as a raw material for blast furnace cement. Conventionally, as in the methods described in, for example, JP-A-55-136151 and JP-B-59-121140, they are manufactured under relatively strong cooling conditions.
[0004]
[Problems to be solved by the invention]
Conventionally, by improving the cooling method described in, for example, JP-A-55-136151 and JP-B-59-121140, the absolute dry gravity, unit volume, water absorption and the like specified in JIS A5011 have been improved. It was possible to produce fine aggregate satisfying the performance. However, even if the properties such as the absolute dry specific gravity, the unit volume mass, and the water absorption are within the ranges specified in JIS A5011, there is a problem that good performance cannot always be exhibited as fine aggregate.
[0005]
Specifically, the granulated granules have a square shape, and needle-like granules are mixed therein, so that there is a problem that the fluidity of the aggregate is poor due to the poor particle shape. In other words, the spread of the blast furnace slag fine aggregate has been delayed due to the problem that when used as it is as it is, the fluidity of the ready-mixed concrete is adversely affected.
[0006]
Furthermore, even when mixed with natural sand, it is difficult to mix uniformly with natural sand, resulting in non-uniform concrete as a whole, deteriorating the flowability of ready-mixed concrete, and resulting in non-uniform expression strength. There was a problem.
[0007]
Thus, fine aggregate made from blast furnace slag manufactured by the conventional method has insufficient performance to ensure the fluidity of ready-mixed concrete. Problems such as easy clogging of the pump and problems such as an increase in the amount of cement and water used to secure the fluidity of the ready-mixed concrete and an increase in the cost of concrete production have occurred. Therefore, a blast furnace slag fine aggregate capable of producing ready-mixed concrete with high fluidity has been demanded.
[0008]
[Means for Solving the Problems]
The present invention is as follows (1) and (2) .
[0009]
(1) The molten slag discharged from the blast furnace was exposed to a water flow of 8 times or more of the molten slag and at a flow rate of 8 to 17 m / sec to reduce the water content of the granulated slag to 12% or less. Crushed with a crusher or hammer crusher, passed through a 1.2 mm sieve, and had an actual volume fraction of particles of 48% or more remaining on a 0.3 mm sieve, and an absolute dry specific gravity of 2.5 or more 2.8. A blast furnace slag fine aggregate characterized by the following.
[0011]
(2) A fine aggregate for concrete or mortar, wherein the fine aggregate of blast furnace slag according to claim 1 is mixed with another fine aggregate so that the actual product ratio is 58% or more.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to improve the performance of granulated fine aggregate, the granulation after blowing has been conventionally crushed.However, the relationship between the granulated shape and the performance as fine aggregate has been conventionally used. Was unclear. Therefore, the shape of the water granulation and the properties of concrete using it as fine aggregate were investigated in detail. As a result, it was found that the sharpness of the granulation and the needle-like granulation included in the granulation greatly affected the fluidity of the ready-mixed concrete. Furthermore, as a result of examination by particle size, it passed through a 1.2 mm sieve (mesh sieve having a nominal size of 1.18 mm specified in JIS Z 8801) and a sieve of 0.3 mm (a nominal size of 297 mm specified in JIS Z 8801). The shape of the particles remaining on the mesh sieve greatly contributes to the flowability of the ready-mixed concrete, especially if there are many needle-shaped ones in this particle size range, the flowability of the ready-mixed concrete will be significantly impaired. Was found. Moreover, the actual moment of the particle size in this range is 48% or higher, was found to be an important condition for use as concrete fine aggregate. Here, the actual product rate is measured by the method prescribed in JIS A 1104.
[0014]
By the way, water granulation is usually used by mixing with other fine aggregates such as natural sand due to its breathing characteristics and the like. The fluidity of ready-mixed concrete is achieved by the uniform mixing of cement and aggregate. The specific gravity of natural aggregate used for general concrete is about 2.65. As a result of investigating the distribution of granulation in concrete using granulation as fine aggregate, if the specific gravity difference with natural aggregate is more than 0.15, the distribution of granulation in concrete is biased, It was found that the fluidity of ready-mixed concrete deteriorated significantly. Therefore, granulation that passes through a 1.2 mm sieve and has an actual volume ratio of particles remaining on the 0.3 mm sieve of 48% or more and an absolute dry specific gravity of 2.5 or more and 2.8 or less The fluidity of concrete can be remarkably improved as compared with the case where conventional granulation is used.
[0015]
On the other hand, recently, natural sands having a particle size distribution suitable for fine aggregate have been reduced alone, and it has become common to use sand from different production areas and recycled materials such as ferronickel slag. Granulation can control the particle size to some extent depending on the production conditions, and is therefore optimal for supplementing the particle size of natural sand that cannot be used alone. In addition, since water granulation has hydraulic properties by nature, there is an advantage that the strength is improved when used as fine aggregate. Therefore, a concrete mixing test was conducted in a case where natural sand having various particle size distributions and water granulation were mixed. As a result, when used as a mixture with other fine aggregate, if mixed with satisfying water-granulated described above so that the actual volume of 58% or more, the natural sand having an ideal particle distribution fine aggregate The concrete with the same fluidity as the fresh concrete used could be manufactured.
[0017]
FIG. 1 shows an example of a process for producing water granulation stably and at low cost according to the present invention.
[0018]
As described above, the granulated slag for fine aggregate needs to pass through a 1.2 mm sieve and have an actual volume ratio of particles remaining on the 0.3 mm sieve of 48% or more. It must be mechanically crushed Therefore吹製water-granulated, granulated before crushing is required to be as much as possible large particles. Naturally, it is also important to blow out a material having a small number of needle-like particles. At the same time, it is necessary to set the absolute dry specific gravity to be 2.5 or more and 2.8 or less.
[0019]
First of all, under the blowing condition, the absolute specific gravity of water granulation is determined by the amount of bubbles generated in the process of cooling the molten slag and remaining in the granulated particles. Therefore, it is important to optimize the volume and speed of the blowing water. Specifically, if the amount of blowing water is small, the granulated particles become large, but the cooling becomes slow, and light granulation that is not suitable for fine concrete aggregate containing a large amount of air bubbles and having a high water absorption is obtained. As a result of the experiment, it has been found that it is preferable to control the amount of blowing water to be at least 8 times or more, preferably 10 to 15 times the amount of slag to be blown. At this time, the flow rate of blowing water (blowing water amount / blowing nozzle cross-sectional area) needs to be 8 m or more and 17 m or less per second. If it is less than 8 m / s, the molten slag cannot be sufficiently refined, and becomes a lump containing many large bubbles. On the other hand, if it exceeds 17 m / s, not only the absolute dry specific gravity becomes too large, but also acicular water granulation often occurs, making the concrete unsuitable as fine aggregate. Preferably, it is controlled at 8 to 10 m per second.
[0020]
The granules thus blown are piled up in yards for, for example, about three days to reduce the water content to 12% or less. If the drainage is insufficient, it is not possible to sufficiently crush 0.3 to 1.2 mm needle-like water in the next crushing step. Next, the water granulation is crushed with an impact crusher or a hammer crusher. When the peripheral speed of the rotary hammer of the crusher is reduced and the crusher is repeatedly subjected to the crusher, the increase in the actual volume ratio of particles of 0.3 mm to 1.2 mm is larger. In particular, when attempting to produce water granulation of large particles having a coarse particle ratio of 2.6 or more, it is preferable to set the peripheral speed of the rotary hammer to 15 m or less per second and crush several times. On the other hand, in the case of producing water granulation of small particles having a coarse particle ratio of about 2.3, it is economical to crush once by setting the peripheral speed of the rotary hammer to about 40 m per second.
[0021]
【Example】
In Table 1, the blowing water volume is controlled to 15 times the slag volume, the blowing water speed is controlled to 10 m / s, the blown water granules are piled up in a yard for 3 days, the water content is set to 8%, and then the impact crusher is used. 4 shows concrete test results of crushed water granulation.
[0022]
[Table 1]
Figure 0003583323
[0023]
Comparative Example 1 is a concrete test using only natural sand, and Example 1 has almost no difference from Comparative Example 1 in the slump value which is an index of the fluidity of concrete.
[0024]
Example 2 shows an example of water granulation crushed using a hammer crusher to a coarse particle ratio of 2.3. As in Example 1, it shows fluidity equivalent to that of natural sand.
[0025]
Example 3 is obtained by mixing 50% of natural sand with the water granulation of Example 1 and Example 4 is obtained by mixing 50% of natural sand with the water granulation of Example 2. The fluidity of concrete is the same as that of natural sand.
[0026]
Comparative Examples 2 and 3 and Example 5 were used as indicators of concrete fluidity by changing the actual product ratio, which is an indicator of the shape of particles passing through a 1.2 mm sieve and remaining on a 0.3 mm sieve. It shows a certain slump value. In Comparative Examples 2 and 3, the actual product of the water-granulated is less than 48%, the slump value is low.
[0027]
Comparative Examples 4 and 5, and Examples 6 and 7 have different absolute dry specific gravities. Comparative Examples 4 and 5 have too low or too high absolute dry densities, and also have small slump values.
[0028]
Comparative Examples 6 and 7 are mixtures of natural sand and granulated slag, and have a small slump value because the actual product ratio is less than 58%.
[0030]
【The invention's effect】
The concrete using the fine aggregate of the present invention has the same fluidity as the case where natural sand is used as the fine aggregate. In addition, it is not only optimal as fine aggregate for particle size interpolation of natural sand, but also makes it possible to produce concrete excellent in long-term strength, and its economic effect is great.
[Brief description of the drawings]
FIG. 1 is a view showing a process for producing a blast furnace slag fine aggregate of the present invention.

Claims (2)

高炉から排出される溶融スラグを、該溶融スラグの8倍以上の水量でかつ毎秒8〜17mの速度の水流にあてて吹製した水砕の水分を12%以下とした後、インパクトクラッシャー又はハンマークラッシャーで破砕し、1.2mmのふるいを通過し、かつ、0.3mmのふるい上に残る粒子の実積率が48%以上で、かつ絶乾比重が2.5以上2.8以下としたことを特徴とする高炉スラグ細骨材。The molten slag discharged from the blast furnace is exposed to a water flow of 8 times or more of the molten slag and a water stream at a speed of 8 to 17 m per second to reduce the water content of the granulated blast to 12% or less. crushed with a crusher, passed through a 1.2mm sieve, and a real factor of particles remaining on the sieve of 0.3mm is 48% or more, and the absolute dry specific gravity of 2.5 or more 2.8 or less under Blast furnace slag fine aggregate characterized by having done. 率が58%以上となるように請求項1記載の高炉スラグ細骨材と他の細骨材とを混合したことを特徴とするコンクリート又はモルタル用細骨材。A fine aggregate for concrete or mortar, characterized in that the blast furnace slag fine aggregate according to claim 1 and another fine aggregate are mixed so that the actual volume ratio is 58% or more.
JP23336799A 1999-08-20 1999-08-20 Blast furnace slag fine aggregate, method for producing the same, and fine aggregate for concrete or mortar Expired - Fee Related JP3583323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23336799A JP3583323B2 (en) 1999-08-20 1999-08-20 Blast furnace slag fine aggregate, method for producing the same, and fine aggregate for concrete or mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23336799A JP3583323B2 (en) 1999-08-20 1999-08-20 Blast furnace slag fine aggregate, method for producing the same, and fine aggregate for concrete or mortar

Publications (2)

Publication Number Publication Date
JP2001058861A JP2001058861A (en) 2001-03-06
JP3583323B2 true JP3583323B2 (en) 2004-11-04

Family

ID=16954032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23336799A Expired - Fee Related JP3583323B2 (en) 1999-08-20 1999-08-20 Blast furnace slag fine aggregate, method for producing the same, and fine aggregate for concrete or mortar

Country Status (1)

Country Link
JP (1) JP3583323B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100497318B1 (en) * 2002-11-07 2005-06-28 삼영플랜트주식회사 Manufacturing method and apparatus for recycle sand exploiting construction waste concrete
JP2007022869A (en) * 2005-07-19 2007-02-01 Okumura Corp Settable composition

Also Published As

Publication number Publication date
JP2001058861A (en) 2001-03-06

Similar Documents

Publication Publication Date Title
US10233116B1 (en) Activitation of natural pozzolans
Jaturapitakkul et al. Development of bottom ash as pozzolanic material
US7537655B2 (en) Slag concrete manufactured aggregate
CN105645895A (en) Ferronickel slag ultrahigh-strength concrete and preparation method thereof
CN104529312B (en) Large dosage high-strength nickel slag brick and preparation method thereof
CN114656234B (en) Red mud/coal gangue-based cementing material road base layer formula and preparation process
US11746048B2 (en) Cement-SCM compositions and methods and systems for their manufacture
US5478392A (en) Porous granulated steel slag composition and use of such as aggregate or cement replacement in building materials, road building and embankment
US4662941A (en) Mineral wool waste cement
WO2014167874A1 (en) Method for producing hydrated solidified body, and hydrated solidified body
JPH09165244A (en) Production of gypsum board
CN108439907A (en) A kind of preparation process of cement base dregs concrete
CN104844051B (en) A kind of cement grinding aid and preparation method thereof
JP3583323B2 (en) Blast furnace slag fine aggregate, method for producing the same, and fine aggregate for concrete or mortar
KR102008742B1 (en) Wet Concrete Secondary Products Using Recycled Aggregate Recycling Waste Electric Pole And Manufacturing Method Thereof
CN110054460A (en) A kind of high strength steel dreg concrete
KR102030627B1 (en) A method of manufacturing concrete agent using ferronickel slag and granulated rock mixture
JP3619389B2 (en) Method for producing blast furnace slag fine aggregate
KR101322911B1 (en) Concrete compound using granulated slag-water cooled and manufacturing method thereof
CN113929331A (en) Modified limestone powder, cementing material and preparation method
JP6315063B2 (en) Method for producing hydrated solid body
KR102434664B1 (en) Recycling method of FeNi air cooled slag
CN117447109B (en) Anti-segregation agent for waste recycled concrete and preparation method thereof
JP2011006311A (en) Method of producing aggregate
JP2005219958A (en) Blast furnace slag fine aggregate, method of producing the same and fine aggregate for cement concrete or mortar

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040623

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040728

R151 Written notification of patent or utility model registration

Ref document number: 3583323

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees