Nothing Special   »   [go: up one dir, main page]

JP3582424B2 - 半導体レーザ装置 - Google Patents

半導体レーザ装置 Download PDF

Info

Publication number
JP3582424B2
JP3582424B2 JP30786199A JP30786199A JP3582424B2 JP 3582424 B2 JP3582424 B2 JP 3582424B2 JP 30786199 A JP30786199 A JP 30786199A JP 30786199 A JP30786199 A JP 30786199A JP 3582424 B2 JP3582424 B2 JP 3582424B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor laser
type
laser device
contact layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30786199A
Other languages
English (en)
Other versions
JP2001127382A (ja
Inventor
雅之 妹尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP30786199A priority Critical patent/JP3582424B2/ja
Publication of JP2001127382A publication Critical patent/JP2001127382A/ja
Application granted granted Critical
Publication of JP3582424B2 publication Critical patent/JP3582424B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、半導体レーザ素子と、前記半導体レーザ素子からの光出力を検出する検出器と、前記検出器によって検出された光出力に応じて前記半導体レーザ素子を駆動する駆動回路から構成される半導体レーザ装置に関し、特に半導体レーザの光出力を安定させることのできる半導体レーザ装置、半導体レーザパッケージおよび半導体レーザ素子の製造方法に関する。
【0002】
【従来技術】
従来の半導体レーザ装置として、前記半導体レーザ素子からの光出力を検出する検出器と、前記検出器によって検出された光出力に応じて前記半導体レーザ素子を駆動することによって、レーザ光の光出力を安定させる半導体レーザ装置がある。
【0003】
【発明が解決しようとする課題】
近年、窒化物半導体であるInAlGa1−x−yN(x≧0、y≧0、x+y≦1)を含む活性層を有する半導体からなる高輝度紫色、青色、緑色等の発光ダイオード(LED)が商品化されており、さらにこれらの色の波長域あるいは近紫外域、すなわち近紫外の発光波長300nmから緑色の発光波長550nmを有するレーザ装置の開発が望まれている。
【0004】
たとえば、短波長である近紫外から青色といった波長域のレーザ装置においては、従来の赤色半導体レーザと比較して、光記録装置の記憶密度を大きく高密度化できるという利点を有する。また、銀塩写真の印画紙等にレーザ光を照射する銀塩写真現像技術においては、光の3原色である青色、緑色、赤色の高輝度なレーザ装置が必要とされている。
【0005】
本願出願人は、すでに、窒化物半導体であるInAlGa1−x−yN(x≧0、y≧0、x+y≦1)を含む活性層を有する紫色半導体レーザを発表しているが、窒化物半導体であるInAlGa1−x−yN(x≧0、y≧0、x+y≦1)を含む活性層を有する半導体レーザ装置は、検出器によって検出された光出力に応じて前記半導体レーザ素子を駆動しているにもかかわらず、レーザ光の光出力のバラツキが存在した。
【0006】
こうしたバラツキは、特に光に対して高感度な対象に露光を行う技術に対して問題となる。たとえば、銀塩写真の印画紙等にレーザ光を照射するデジタル銀塩写真現像技術や、高速コピー機あるいはプリンターに用いられる感光ドラムにレーザ光を照射するデジタル電子写真技術においては、その画像が劣化するといった重大な問題となる。これら技術は高画質化の追求によって、単位面積当たりに露光するレーザ光の露光量が細かく多値化されており、レーザ光の光出力のバラツキによる影響が特に大きいからである。
【0007】
また、書き込み可能な光記録装置等ではレーザ光を熱エネルギーに変換して書き込みの制御を行うことから、レーザ光源を紫外から青色のレーザとした場合、レーザ光のスポット径が小さく、しかもレーザ光のエネルギーも高くなるため、バラツキに対する単位面積当たりの熱エネルギー変化が大きくなる。このことから、光記録装置等に用いる近紫外から青色(発光波長300nm〜460nm)のレーザ光源においてもレーザ光の光出力を高精度に安定させることが不可欠である。
【0008】
したがって、本発明の目的は、レーザ光の光出力が極めて安定な半導体レーザ装置を提供することである。
【0009】
【課題を解決するための手段】
上記のバラツキは半導体レーザ素子のクラッド層から光が漏れ、その光がコンタクト層から自然光として放出されることにより検出器が誤動作することによって生じるものである。活性層で発生した光の一部はクラッド層を通過し、クラッド層と基板との間に積層されている材料、例えば窒化ガリウムGaNからなるコンタクト層で導波される。このコンタクト層で導波され、コンタクト層の外面から放出される光は、主に膜厚の大きいn型コンタクト層で問題となる。従って、レーザ光の光出力を安定にするためには、n型コンタクト層外面からの不要な光を極力制御する必要がある。
【0010】
上記目的を達成するために、本発明の半導体レーザ装置は以下のように構成される。半導体レーザ素子と、前記半導体レーザ素子からの光出力を検出する検出器と、前記検出器によって検出された光出力に応じて前記半導体レーザ素子を駆動する駆動回路から構成される半導体レーザ装置であって、前記半導体レーザ素子は、基板の同一面側に、少なくともn型コンタクト層、n型クラッド層、n型ガイド層、活性層、p型ガイド層、p型クラッド層、p型コンタクト層が順に積層され、前記p型コンタクト層及びn型コンタクト層に電極が形成されてなり、前記半導体レーザ素子の共振面全面と、前記n型コンタクト層の電極が形成されてなる面上及び当該面から上方の素子側面とに絶縁膜が形成され、前記n型コンタクト層又はn型クラッド層より下方の絶縁膜を含む外面全面が、金属膜からなる非透過膜によって覆われることにより、前記半導体レーザ素子周囲から放出される自然光の前記検出器への入射が抑制される。
【0011】
上記構成によって、半導体レーザ素子周囲からの自然光の放出による検出器の誤動作を防止することにより、レーザ光の光出力が極めて安定な半導体レーザ装置が得られる。
【0012】
さらに、前記非透過膜として金属膜を用いるとした場合、ダイボンディングの前処理を不要とすることができる。
【0013】
さらに、前記金属膜として用いる金属がCrまたはTiまたはPtのうち少なくとも1種類を含むとすることは、ダイボンディングの結着性上好ましい。また、n型コンタクト層は、バッファ層よりも高温で成長させた単結晶層からなる下層部を有することが好ましく、n型コンタクト層よりもn型不純物濃度が少ない層若しくはn型不純物をドープしない層であることが好ましい。また、n型コンタクト層の下層部は、0.1μm以上20μm以下が好ましい。
【0014】
また、半導体レーザ素子が、光出力が大きくかつ自然光成分が大きいInAlGa1−x−yN(x≧0、y≧0、x+y≦1)を含む活性層を有する半導体レーザ素子である場合は効果が高い。
【0015】
さらに、本発明は、バラツキにによる単位面積当たりの熱エネルギー変化が大きい紫外から青色のレーザ光を出力する半導体レーザ素子に対しては特に効果が高い。
【0016】
基板上に、少なくともn型コンタクト層、n型クラッド層、n型ガイド層、活性層、p型ガイド層、p型クラッド層、p型コンタクト層が順に積層された半導体レーザ素子であって、n型ガイド層より上方の外面の全面が覆われるよう粘着シート又はくぼみを形成した固定台で固定し、非透過膜を成膜する半導体レーザ素子の製造方法によって、レーザ光の光出力が極めて安定な半導体レーザ装置にを用いることができる半導体レーザ素子を、従来の製造方法を大きく変更することなく提供することができる。
【0017】
【発明の実施の形態】
以下に本発明の実施の形態を説明する。
【0018】
図1に半導体レーザ装置の概念図を示す。半導体レーザ装置は、たとえば、半導体レーザ素子1と検出器の一例であるフォトダイオード2を含むレーザパッケージ10、駆動回路として機能する出力信号供給部3,バイアス供給部4および光出力検出部5から構成される。ここで、半導体レーザ素子1は、後述するように、n型クラッド層103より下方の外面の全面が非透過膜133によって覆われている。また、n型コンタクト層102より下方の外面の全面が非透過膜133によって覆われているものであってもよい。
【0019】
半導体レーザ素子1から出力されたレーザ光の一部はフォトダイオード2によって電流に変換される。光検出部5はフォトダイオード2によって変換された電流からレーザ光の光出力を検出し、検出結果に応じて半導体レーザ素子1からのレーザ光の光出力が安定化するように、供給すべきバイアスに関する信号をバイアス供給部4に出力する。バイアス供給部4は光検出部5から入力された信号に基づいて半導体レーザ素子1にバイアスを印加する。出力信号供給部3は入力信号に応じて、たとえばON/OFFによって半導体レーザ素子1の駆動を行う。
【0020】
上記構成では、バイアス供給部4による半導体レーザ素子1への印加バイアスを制御することによって、半導体レーザ素子1からのレーザ光の光出力を安定化する構成としたが、このレーザ光の光出力の安定化は出力信号供給部3から駆動バイアスを直接半導体レーザ素子1に供給し、制御する構成としても達成できる。また、デジタル銀塩写真現像技術やデジタル電子写真技術等で用いられるレーザ光の光出力の強度を多値化して制御を行うレーザ装置においては、本発明のレーザパッケージ10はレーザ光の光出力が極めて安定であるため、1階調当たりのレーザ光の光出力の差分内にレーザ光の光出力のバラツキを設定することを可能とし、特に効果的である。また、書き込み可能な光記録装置等に用いるレーザ光源を紫外から青色のレーザとした場合、レーザ光のスポット径が小さく、しかもレーザ光のエネルギーも高くなるため、バラツキに対する単位面積当たりの熱エネルギー変化が大きくなることから、レーザ光の光出力を高精度に安定させることが不可欠である。このため、本発明は紫外から青色のレーザに対して特に効果が高い。
【0021】
次に、図2に半導体レーザ素子1の共振面と平行な面に対する断面の概略図を一例として示す。半導体レーザ素子1は、基板101上に、n型コンタクト層102、n型クラッド層103、n型ガイド層104、活性層105、p型ガイド層106、p型クラッド層107、p型コンタクト層108が順に積層され、さらにn型コンタクト層102およびp型コンタクト層108にはそれぞれ電極が形成されている。そして、n型コンタクト層102の電極が形成されている面上から上方の外面の全面に絶縁膜131がコートされており、さらにその上からn型クラッド層103より下方すなわち基板101方向の外面全面に非透過膜133がコートされている。
【0022】
レーザ光は、自然発光で生じた光が活性層105とガイド層104内で反射/往復して増幅され、誘導放出光として共振面から外へ放出される。ここで、光は、増幅し活性層105中を導波しているとき、散乱し活性層105およびガイド層104,106以外の層を導波するものがある。このような光の散乱を防止し発光効率を向上させるために、上記の半導体レーザ素子1は、活性層105内で発生し誘導された光を閉じ込めるための層、光閉じ込め層(クラッド層)が活性層105を挟むようにn側とp側に設けられている。クラッド層は、その層を構成する物質の光屈折率が活性層105物質のそれより小さく設計され、それによって光を閉じ込める作用を示す。
【0023】
しかしながら、散乱された光の一部はクラッド層を通過し、コンタクト層へと入射する。コンタクト層は比較的屈折率の大きい物質から構成されており、クラッド層またはサファイア基板101面で反射され、コンタクト層外面から放出される。そして、コンタクト層で導波され外面から放出される自然光は、半導体レーザ素子1から出射されるレーザ光の単一スポットに対して影響を与える。このコンタクト層からの自然光による影響は、半導体レーザ素子1から出力されたレーザ光の光出力の一部を電流に変換するフォトダイオード2を近傍に配置している半導体レーザパッケージ10においてより大きい。このコンタクト層外面から放出される自然光のフォトダイオード2への影響を抑制するために、非透過膜133がコートされている。この非透過膜133は、自然光のフォトダイオード2への影響を最小限に抑えるよう、n型クラッド層103より下方の外面の全面、つまりn型クラッド層103より下方の共振面および側面と底面等の半導体レーザ素子1が外部に面している面がコートされている。また、非透過膜133をコートする面をn型コンタクト層102の下方の全面としても同様の機能が達成できる。以上に限らず、非透過膜133をコートする面は少なくともn型コンタクト層102の下方の全面であればよい。
【0024】
図3は半導体レーザ素子1の側面から見た断面、つまり、共振方向と平行でかつ基板101に垂直な面に対する断面の概略図を一例として示す。共振面には反射膜132が形成されている。図3には両端の共振面の全面に反射膜132が形成されている例を示したが、共振面の一方、あるいは共振面の活性層105の部分に反射膜132を形成してもよい。反射膜132は半導体レーザ素子1外面に接して形成されることが好ましく、また接して形成される場合は絶縁体の反射膜132が好ましい。反射膜132を形成すると、共振器損失が少なく、活性層105内で光が増幅するための反射/往復が良好に起こり、発光効率が向上するので好ましい。
【0025】
以下に半導体レーザ素子1の一実施例を説明する。
【0026】
基板101にはC面を主面とするサファイアの他、R面、A面を主面とするサファイア、その他、スピネル(MgA1)のような絶縁性の基板101の他、SiC(6H、4H、3Cを含む)、ZnS、ZnO、GaAs、GaN等の半導体基板101を用いることができる。
【0027】
基板101とn型コンタクト層102との間には、例えばAlN、GaN、AlGaN、InGaN等のバッファ層を設けてもよい。バッファ層は900℃以下の温度で成長させて、膜厚数十Å〜数百Åに形成される。このバッファ層は、基板101と窒化物半導体(InAlGa1−x−yN、x≧0、y≧0、x+y≦1)との格子定数不正を緩和するために形成されるものである。
【0028】
n型コンタクト層102は、n型不純物がドープされた窒化物半導体から構成され、0.2μm以上、4μm以下に調整されることが望ましい。このn型コンタクト層102の窒化物半導体にドープするn型不純物の範囲は1×1017/cm〜1×1021/cmの範囲に調整される。また、n型コンタクト層102の下層部を、バッファ層よりも高温で成長させた単結晶の窒化物半導体よりなる層で構成してもよい。このn型コンタクト層102下層部は、n型コンタクト層102よりもn型不純物濃度が少ない層とするか、若しくはn型不純物をドープしない窒化物半導体層、好ましくはGaN層とすると、n型不純物がドープされた窒化物半導体から構成された層の結晶性が良くなる。
【0029】
このn型コンタクト層102下層部の膜厚は、0.1μm以上、さらに好ましくは0.5μm以上、最も好ましくは1μm以上、20μm以下に調整することが望ましい。n型コンタクト層102下層部が0.1μmよりも薄いと、不純物濃度の大きいn型コンタクト層102を厚く成長させなければならず、n型コンタクト層102の結晶性の向上があまり望めない傾向にある。また20μmよりも厚いと、n型コンタクト層102下層部自体に結晶欠陥が多くなりやすい傾向にある。またn型コンタクト層102下層部を厚く成長させる利点として、放熱性の向上が挙げられる。つまり半導体レーザ素子1を作製した場合に、n型コンタクト層102下層部で熱が広がりやすく半導体レーザ素子1の寿命が向上する。
【0030】
n型コンタクト層102は、n電極121とオーミック接触を実現させる層である。n型窒化物半導体と好ましいオーミックが得られるn電極の材料としてはAl、Ti、W、Si、Zn、Sn、In等の金属若しくは合金が挙げられる。なお、n型コンタクト層102は、基板101にGaN、SiC、ZnO等の導電性基板101を使用し基板101裏面側に負電極を設ける場合には基板101と窒化物半導体との格子定数不整合を緩和する層として作用する。
【0031】
n型コンタクト層102とn型クラッド層103との間にクラック防止層を配置してもよい。このクラック防止層は、例えば、Siを5×1018/cmドープしたIn0.1Ga0.9Nからなり、例えば、500Åの膜厚を有する。
【0032】
n型クラッド層103は、キャリア閉じ込め層、及び光閉じ込め層として作用する。n型クラッド層103は、例えばSiを5×1018/cmドープしたn型Al0.2Ga0.8Nからなり20Åの膜厚を有する層、及びノンドープのGaNよりなり20Åの膜厚を有する第2の層とが交互に積層された超格子層より構成され、全体で例えば0.5μmの膜厚を有する。このn型クラッド層103は単一の窒化物半導体で成長させることもできるが、超格子層とすることがクラックのない結晶性のよいキャリア閉じ込め層が形成できる。
【0033】
n型ガイド層104は、その層を構成する物質の光屈折率は活性層と同程度に設計され、活性層と併せて光の導波を行う層としての作用を示す。n型ガイド層104は、GaN、InGaNを成長させて形成することが望ましく、通常100Å〜5μm、さらに好ましくは200Å〜1μmの膜厚で成長させることが望ましい。なお、このn型ガイド層も超格子層にすることができる。
【0034】
活性層105は、例えば、Siを8×1018/cmでドープしたIn0.2Ga0.8Nよりなる25Åの膜厚を有する井戸層と、Siを8×1018/cmドープしたIn0.05Ga0.95Nよりなる50Åの膜厚を有する障壁層とを交互に積層することにより、所定の膜厚を有する多重量子井戸構造(MQW)で構成する。
【0035】
また、活性層105とp型ガイド層106との間にp型キャップ層を設けてもよい。p型キャップ層は、例えば、Mgを1×1020/cmドープしたp型Al0.3Ga0.7Nよりなり、例えば、200Åの膜厚を有する。
【0036】
p型ガイド層106は、例えば、ノンドープGaN、InGaNよりなり、0.1μmの膜厚を有する。このp型ガイド層106は、n型ガイド層と同様、活性層105の光ガイド層として作用する。また、この層はp型クラッド層107を成長させる際のバッファ層としても作用し、100Å〜5μm、さらに好ましくは200Å〜1μmの膜厚で成長させることにより、好ましいガイド層として作用する。このp型光ガイド層はMg等のp型不純物をドープしてp型の導電型としても良い。
【0037】
p型クラッド層107は、例えば、Mgを1×1020/cmドープしたp型Al0.2Ga0.8Nよりなる20Åの膜厚を有する層と、例えばMgを1×1020/cmドープしたp型GaNよりなる20Åの膜厚を有する層とが交互に積層された超格子層からなる。このp型クラッド層107は、n型クラッド層103と同じくキャリア閉じ込め層として作用し、特にp型層の抵抗率を低下させるための層として作用する。このp型クラッド層107の膜厚も特に限定しないが、100Å以上、2μm以下、さらに好ましくは500Å以上、1μm以下で形成することが望ましい。
【0038】
p型コンタクト層108は、p型クラッド層107の上に、例えば、Mgを2×1020/cmドープしたp型GaNよりなり、例えば、150Åの膜厚を有する。このp型コンタクト層108はp型のInAlGa1−x−yN(x≧0、y≧0、x+y≦1)で構成することができ、好ましくは、上述のようにMgをドープしたGaNとすれば、p電極123と最も好ましいオーミック接触が得られる。
【0039】
p電極123としては、たとえばNi、Pd、Ni/Auが用いられる。ここでNi/AuはNiおよびAuの積層または合金である。
【0040】
絶縁膜131としては、たとえばSiOが用いられる。
【0041】
非透過膜133は、光を吸収するか光を反射させるような、光を透過させない膜である。本発明で用いることのできる非透過膜133としては、例えば光吸収膜、金属膜等である。膜厚は50Å以上、好ましくは500〜2000Åである。具体的な非透過膜133としては、例えば光吸収膜であるTiO、SiO等あるい金属膜であるCr、Ti/Pt、Ti、Ni、Al、Ag等を挙げることができる。非透過膜133は、窒化物半導体の共振面に接して形成してもよく、また絶縁体の膜(例えば絶縁体の反射膜132等)を形成した後に絶縁体膜上に形成してもよい。さらに、非透過膜133を金属膜とした場合、ダイボンディングの前処理を不要にできる。さらに、金属膜としてCr、Ti/Pt、Ti等を用いることが、ダイボンディングの結着性上好ましい。
【0042】
本発明に用いることのできる反射膜132は、例えば誘電体多層膜が挙げられ、その具体例としては、以下のものを挙げることができる。
【0043】
誘電体多層膜は基本的に互いに反射率の異なる無機材料を交互に積層してなり、例えばλ/4n(λ:波長、n:屈折率)の厚さで交互に積層することにより反射率を変化させることができる。誘電体多層膜の各薄膜の種類、厚さ等は発振させようとする半導体レーザ素子1の波長に応じてそれらの無機材料を適宜選択することにより設計可能である。例えばその無機材料には、高屈折率側の薄膜材料としてTiO、ZrO、HfO、Sc、Y、MgO、Al、Si、ThOの内の少なくとも一種類が選択でき、低屈折率側の薄膜材料としてSiO、ThF、LaF、MgF、LiF、NaF、NaAlFの内の少なくとも一種類が選択でき、これら高屈折率側の薄膜材料と、低屈折率側の薄膜材料とを適宜組み合わせ、発振する波長に応じて数十Å〜数μmの厚さで数層〜数十層積層することにより誘電体多層膜を形成することができる。
【0044】
また、窒化物半導体で近紫外から青色に発振する半導体レーザ素子1である場合、その光共振面に形成する誘電体多層膜は、特にSiO、TiO、ZrOより選択された少なくとも2種類以上が最も適している。なぜなら前記3種類の酸化物は360nm〜460nmの範囲で光吸収が少なく、窒化物半導体と非常に良く密着して剥がれることもない。さらに前記波長の光が連続的に長時間照射されても劣化することがなく、さらに好ましいことに半導体レーザ素子1の発熱に対して非常に耐熱性に優れているからである。誘電体多層膜は例えば、蒸着、スパッタ等の気相製膜技術を用いて形成することができる。
【0045】
このようにレーザ素子を構成することによって、室温において紫色の発光波長400nmのレーザ発振が得られた。活性層105の各層はこれらに限らずInAlGa1−x−yN(x≧0、y≧0、x+y≦1)として構成することができる。x、yの混晶比を適宜選択することによって近紫外の発光波長300nmから緑色の発光波長550nmが選択できる。また、井戸層の組成についてはInGa1−xN(0≦x≦1)の3元混晶とすることが結晶性上好ましい。ここでは、窒化物半導体InAlGa1−x−yN(x≧0、y≧0、x+y≦1)の発光波長が、近紫外の発光波長300nmから緑色の発光波長550nmについて述べたが、本発明の構成は黄色等のより長波長のレーザ装置にも適用可能である。
【0046】
次に、図4に非透過膜133の形成方法の概略図を示す。基板101上に、n型コンタクト層102、n型クラッド層103、n型ガイド層104、活性層105、p型ガイド層106、p型クラッド層107、p型コンタクト層108が順に積層され、n型コンタクト層102およびp型コンタクト層108にはそれぞれ電極が形成され、絶縁膜131がコートされた半導体レーザ素子1は、真空中で保持できる粘着シート7に半導体レーザ素子1の上方面(この場合電極面)をシート面に向けて固定する。そして、たとえば非透過膜133としてTiOをn型クラッド層103より下方すなわち基板101方向の外面全面にスパッタリングにより成膜する。そして、スパッタ装置にセットし、たとえば非透過膜133としてTiOをn型クラッド層103より下方すなわち基板101方向の外面全面にスパッタリングにより成膜する。また粘着シート7の代わりに、半導体レーザ素子1のn型ガイド層104より上方の形状に合わせたくぼみを形成した固定台に半導体レーザ素子1を固定し、同様にスパッタリングを行ってもよい。成膜方法としては蒸着法を用いてもよい。
【0047】
図5に半導体レーザパッケージ10の斜視図を示す。フランジ11上にウィンドゥ14を有するカバー13が取り付けられており、このカバー13内部に半導体レーザ素子1とフォトダイオード2が設置されている。リード15は半導体レーザ素子1を駆動させるバイアスやフォトダイオード2の電圧等を入出力する端子である。
【0048】
図6に半導体レーザパッケージ10の断面概略図を示す。フランジ11上にステー12が取り付けられており、半導体レーザ素子11はステー12にAu/SnあるいはAu/Siなどのはんだ材によってダイボンディングされる。ここでサファイア等からなる半導体レーザ素子1の基板101とAu/SnあるいAu/Siとは結着性がよくないために、ダイボンディングの前処理として基板101とAu/SnおよびAu/Siの双方に結着性がよいCr、Ti/Pt、Ti等の金属を基板101の底面にバックメタルとして用いる。そこで、非透過膜133にCr、Ti/Pt、Ti等の金属を用いることによって、ダイボンディングの前処理を省略することができる。さらにその上にAuを成膜しておくことが、Au/SnおよびAu/Siとの結着性上より好ましい。
【0049】
【発明の効果】
半導体レーザ素子1周囲からの自然光の放出による検出器の誤動作を防止することにより、レーザ光の光出力が極めて安定な半導体レーザ装置が得られる。特に、紫外から青色の発光を行うInAlGa1−x−yN(x≧0、y≧0、x+y≦1)系半導体に対しては、その材料の持つ特性上レーザ光成分中の自然光成分の占める割合が大きく、より効果的である。
【図面の簡単な説明】
【図1】本発明に係る半導体レーザ装置の概念図
【図2】本発明に係る半導体レーザ素子1の共振面と平行な面に対する断面の概略図
【図3】本発明に係る半導体レーザ素子1の側面から見た断面の概略図
【図4】本発明に係る半導体レーザ素子1への非透過膜133の形成方法概略図
【図5】本発明に係る半導体レーザパッケージ10の斜視図
【図6】本発明に係る半導体レーザパッケージ10断面の概略図
【符号の説明】
1・・・・半導体レーザ素子
2・・・・フォトダイオード
3・・・・出力信号供給部
4・・・・バイアス供給部
5・・・・光出力検出部
7・・・・粘着シート
10・・・・半導体レーザパッケージ
11・・・・フランジ
12・・・・ステー
13・・・・カバー
14・・・・ウィンドゥ
15・・・・リード
101・・・・基板
102・・・・n型コンタクト層
103・・・・n型クラッド層
104・・・・n型ガイド層
105・・・・活性層
106・・・・p型ガイド層
107・・・・p型クラッド層
108・・・・p型コンタクト層
121・・・・n電極
123・・・・p電極
131・・・・絶縁膜
132・・・・反射膜
133・・・・非透過膜

Claims (5)

  1. 半導体レーザ素子と、前記半導体レーザ素子からの光出力を検出する検出器と、前記検出器によって検出された光出力に応じて前記半導体レーザ素子を駆動する駆動回路から構成される半導体レーザ装置であって、
    前記半導体レーザ素子は、基板の同一面側に、少なくともn型コンタクト層、n型クラッド層、n型ガイド層、活性層、p型ガイド層、p型クラッド層、p型コンタクト層が順に積層され、前記p型コンタクト層及びn型コンタクト層に電極が形成されてなり、
    前記半導体レーザ素子の共振面全面と、前記n型コンタクト層の電極が形成されてなる面上及び当該面から上方の素子側面とに絶縁膜が形成され、
    前記n型コンタクト層又はn型クラッド層より下方の絶縁膜を含む外面全面が、金属膜からなる非透過膜によって覆われることにより、前記半導体レーザ素子周囲から放出される自然光の前記検出器への入射が抑制されたことを特徴とする半導体レーザ装置。
  2. 前記金属膜として用いる金属がCrまたはTiまたはPtのうち少なくとも1種類を含むことを特徴とする請求項1記載の半導体レーザ装置。
  3. 前記基板と前記n型コンタクト層との間に、900℃以下で成長されたバッファ層が形成され、前記n型コンタクト層は、前記バッファ層よりも高温で成長させた単結晶層からなる下層部を有することを特徴とする請求項1記載の半導体レーザ装置。
  4. 前記n型コンタクト層の下層部は、前記n型コンタクト層よりもn型不純物濃度が少ない層若しくはn型不純物をドープしない層である請求項3記載の半導体レーザ装置。
  5. 前記n型コンタクト層の下層部は、0.1μm以上20μm以下である請求項3記載の半導体レーザ装置。
JP30786199A 1999-10-29 1999-10-29 半導体レーザ装置 Expired - Fee Related JP3582424B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30786199A JP3582424B2 (ja) 1999-10-29 1999-10-29 半導体レーザ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30786199A JP3582424B2 (ja) 1999-10-29 1999-10-29 半導体レーザ装置

Publications (2)

Publication Number Publication Date
JP2001127382A JP2001127382A (ja) 2001-05-11
JP3582424B2 true JP3582424B2 (ja) 2004-10-27

Family

ID=17974060

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30786199A Expired - Fee Related JP3582424B2 (ja) 1999-10-29 1999-10-29 半導体レーザ装置

Country Status (1)

Country Link
JP (1) JP3582424B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081181A (ja) * 2005-09-15 2007-03-29 Matsushita Electric Ind Co Ltd 半導体発光素子
US7863623B2 (en) 2005-09-15 2011-01-04 Panasonic Corporation Semiconductor light emitting device
JP2007081182A (ja) * 2005-09-15 2007-03-29 Matsushita Electric Ind Co Ltd 半導体発光素子
JP2007081183A (ja) * 2005-09-15 2007-03-29 Matsushita Electric Ind Co Ltd 半導体発光素子
JP5411491B2 (ja) * 2008-12-11 2014-02-12 シャープ株式会社 発光素子
US8867582B2 (en) 2012-04-04 2014-10-21 Osram Opto Semiconductors Gmbh Laser diode assembly
DE102012103160A1 (de) * 2012-04-12 2013-10-17 Osram Opto Semiconductors Gmbh Laserdiodenvorrichtung
JP2020129653A (ja) * 2019-02-08 2020-08-27 シャープ株式会社 発光素子及びその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63153876A (ja) * 1986-12-18 1988-06-27 Toshiba Corp 半導体レ−ザの端面処理方法及びそれに使用する治具
JPH02119284A (ja) * 1988-10-28 1990-05-07 Nec Corp 半導体レーザー端面保護膜形成方法
BE1007661A3 (nl) * 1993-10-18 1995-09-05 Philips Electronics Nv Werkwijze ter vervaardiging van een straling-emitterende halfgeleiderdiode.
JP3333356B2 (ja) * 1995-07-12 2002-10-15 株式会社東芝 半導体装置
JP3087831B2 (ja) * 1996-11-27 2000-09-11 日亜化学工業株式会社 窒化物半導体素子
JPH10303460A (ja) * 1997-02-27 1998-11-13 Toshiba Corp 半導体素子およびその製造方法
JP3375042B2 (ja) * 1997-08-27 2003-02-10 日亜化学工業株式会社 窒化物半導体レーザ素子
JP3647236B2 (ja) * 1997-12-22 2005-05-11 日亜化学工業株式会社 窒化物半導体レーザ素子

Also Published As

Publication number Publication date
JP2001127382A (ja) 2001-05-11

Similar Documents

Publication Publication Date Title
US20060088072A1 (en) Semiconductor laser apparatus
JP2002353563A (ja) 半導体発光素子およびその製法
WO2011078196A1 (en) Optical device capable of minimizing output variation due to feedback light, optical scanning apparatus, and image forming apparatus
JP2008258270A (ja) 半導体発光装置
JP3582424B2 (ja) 半導体レーザ装置
KR100763424B1 (ko) 반도체 발광 장치
JP3375042B2 (ja) 窒化物半導体レーザ素子
JP2003110138A (ja) 窒化物半導体発光ダイオード
US6560264B1 (en) Stripe type semiconductor light emitting element having InGaN active layer, combined with optical resonator including wavelength selection element
US20100289047A1 (en) Light Emitting Element and Illumination Device
EP0724300B1 (en) Semiconductor device having reflecting layer
JPH0888441A (ja) 窒化ガリウム系化合物半導体レーザ素子及びその製造方法
JP2001267686A (ja) レーザ素子
JP7268972B2 (ja) 発光サイリスタ、発光サイリスタアレイ、露光ヘッド、および画像形成装置
JP2001028457A (ja) GaN系半導体発光素子
JP2002111058A (ja) 発光ダイオードおよび露光システム
JP3712686B2 (ja) 面型光半導体装置
JP2006032857A (ja) 発光素子
JP2004119756A (ja) 発光ダイオード
US11973307B2 (en) Surface-emitting laser device
US6888165B2 (en) Light-emitting diode
JPH08236807A (ja) 半導体発光素子及び半導体発光素子アレイチップ
JP2005166881A (ja) 窒化物半導体レーザ素子
JP4127269B2 (ja) レーザ素子
JP3879619B2 (ja) 窒化物半導体レーザ素子

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040329

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040719

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070806

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080806

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090806

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100806

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110806

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120806

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees