Nothing Special   »   [go: up one dir, main page]

JP3315523B2 - Dispersant for inorganic hydraulic composition, hydraulic composition and cured product thereof - Google Patents

Dispersant for inorganic hydraulic composition, hydraulic composition and cured product thereof

Info

Publication number
JP3315523B2
JP3315523B2 JP10319594A JP10319594A JP3315523B2 JP 3315523 B2 JP3315523 B2 JP 3315523B2 JP 10319594 A JP10319594 A JP 10319594A JP 10319594 A JP10319594 A JP 10319594A JP 3315523 B2 JP3315523 B2 JP 3315523B2
Authority
JP
Japan
Prior art keywords
hydraulic composition
dispersant
parts
sodium
curing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10319594A
Other languages
Japanese (ja)
Other versions
JPH07291691A (en
Inventor
義光 唐沢
泰男 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kayaku Co Ltd
Original Assignee
Nippon Kayaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kayaku Co Ltd filed Critical Nippon Kayaku Co Ltd
Priority to JP10319594A priority Critical patent/JP3315523B2/en
Publication of JPH07291691A publication Critical patent/JPH07291691A/en
Application granted granted Critical
Publication of JP3315523B2 publication Critical patent/JP3315523B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2664Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of ethylenically unsaturated dicarboxylic acid polymers, e.g. maleic anhydride copolymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/40Surface-active agents, dispersants
    • C04B2103/408Dispersants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、分散性能に優れた分散
剤、それを含有する水硬性組成物に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dispersant excellent in dispersibility and a hydraulic composition containing the same.

【0002】[0002]

【従来の技術】従来より、高炉水砕スラグ又は転炉スラ
グは産業副生物として、多量に産出されているが、その
用途は、セメント製造原料としたり、高炉セメントや骨
材を製造したりする程度であって、そのような有効利用
もなされないまま多くは埋立等に利用されていた。
2. Description of the Related Art Granulated blast furnace slag or converter slag has been conventionally produced in large quantities as an industrial by-product, but is used as a raw material for cement production, or for producing blast furnace cement or aggregate. Many were used for land reclamation without such effective use.

【0003】最近にいたり高炉水砕スラグに石膏や生石
灰、苛性アルカリ等の薬剤を添加し、その潜在水硬性を
活性化して、それ自体を水硬性セメントとすることが提
案されている。しかし高炉水砕スラグを流し込み、遠心
成形などに使用するには、流動性が悪く、また強度発現
が不十分であって、生成した硬化体は非常に脆く使用に
耐えないため、満足できるものは得られていない。
Recently, it has been proposed to add a chemical such as gypsum, quick lime, caustic alkali or the like to granulated blast furnace slag to activate its latent hydraulic property, thereby forming a hydraulic cement itself. However, when blast furnace granulated slag is poured and used for centrifugal molding, etc., the fluidity is poor, and the strength development is insufficient, and the resulting cured product is extremely brittle and cannot withstand use. Not obtained.

【0004】[0004]

【発明が解決しようとする課題】近年この高炉水砕スラ
グの混練組成物の流動性、硬化物の強度が弱いという点
を改良すべく、種々の検討がなされているが、その流動
性は、セメントモルタル、コンクリートより劣り、又強
度も実用に耐えなかった。
In recent years, various studies have been made to improve the fluidity of the kneaded composition of the granulated blast furnace slag and the point that the strength of the hardened product is weak. It was inferior to cement mortar and concrete, and the strength was not practical.

【0005】[0005]

【課題を解決するための手段】本発明は、この欠点を解
決することを目的とするものであり、高炉水砕スラグ等
の潜在水硬性物質に超微粉状物質、硬化刺激剤、アクリ
ル酸・マレイン酸(または無水マレイン酸、フマル酸)
を必須成分とする共重合物を添加する事により、普通ポ
ルトランドセメント以上の流動性、強度発現が可能とな
ることを見い出したものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks. The present invention is intended to solve the problem by adding ultrafine powdery substances, hardening stimulants, acrylic acid to latent hydraulic substances such as granulated blast furnace slag.・ Maleic acid (or maleic anhydride, fumaric acid)
It has been found that the addition of a copolymer containing as an essential component makes it possible to develop fluidity and strength higher than ordinary Portland cement.

【0006】即ち本発明者は、前記したような問題点の
ない組成物を得る方法について鋭意研究の結果、上記課
題を達成できる組成物を見出し本発明を完成させたもの
である。
That is, the present inventors have conducted intensive studies on a method for obtaining a composition having no problems as described above, and as a result, have found a composition which can achieve the above object and completed the present invention.

【0007】即ち、本発明は (1)アクリル酸と次の化合物群(a)から選ばれる1
種 (a)マレイン酸、無水マレイン酸、フマル酸 とを共重合してなる無機水硬性組成物用分散剤。 (2)アクリル酸と上記(1)記載の化合物群(a)か
ら選ばれる1種とこれらと共重合可能な他の単量体とを
共重合してなる無機水硬性組成物用分散剤。 (3)共重合可能な単量体がヒドロキシエチル(メタ)
アクリレート、Nービニルピロリドン、スチレンスルホ
ン酸ソーダ、(メタ)アリルスルホン酸ソーダ、スチレ
ン、酢酸ビニルから選ばれる1種以上である上記(2)
記載の分散剤、 (4)分子量が1000〜500,000である
(1)、(2)または(3)記載の分散剤、
That is, the present invention relates to (1) acrylic acid and a compound selected from the following compound group (a):
Species (a) A dispersant for an inorganic hydraulic composition obtained by copolymerizing maleic acid, maleic anhydride and fumaric acid. (2) A dispersant for an inorganic hydraulic composition obtained by copolymerizing acrylic acid, one selected from the compound group (a) described in (1) above, and another monomer copolymerizable therewith. (3) The copolymerizable monomer is hydroxyethyl (meth)
(2) which is at least one selected from acrylate, N-vinylpyrrolidone, sodium styrene sulfonate, sodium (meth) allyl sulfonate, styrene and vinyl acetate
(4) The dispersant according to (1), (2) or (3), which has a molecular weight of 1,000 to 500,000.

【0008】(5)潜在水硬性物質、超微粉状物質、硬
化刺激剤、上記(1)、(2)、(3)または(4)記
載の分散剤を含有して成る水硬性組成物、 (6)潜在水硬性物質が高炉水砕スラグ、転炉スラグ、
フライアッシュから選ばれる1種以上である上記(5)
記載の水硬性組成物、 (7)超微粉状物質がシリカフュームである上記(5)
または(6)記載の水硬性組成物。 (8)硬化刺激剤がアルカリ金属の水酸化物、炭酸塩、
珪酸塩から選ばれた一種以上である上記(5)、(6)
または(7)記載の水硬性組成物、 (9)硬化刺激剤が苛性ソーダ、炭酸ソーダ、苛性カ
リ、珪酸ソーダから選ばれる1種以上である上記
(5)、(6)、(7)または(8)記載の水硬性組成
物、 (10)上記(5)、(6)(7)、(8)または
(9)記載の水硬性組成物を水と混練した後、湿潤養生
してなる硬化物 に関する。
(5) A hydraulic composition comprising a latent hydraulic substance, an ultrafine powdery substance, a hardening stimulant, and the dispersant described in (1), (2), (3) or (4) above. (6) The latent hydraulic material is granulated blast furnace slag, converter slag,
The above (5), which is one or more kinds selected from fly ash
(7) The hydraulic composition according to (7), wherein the ultrafine powdery substance is silica fume.
Or the hydraulic composition according to (6). (8) the curing stimulant is an alkali metal hydroxide or carbonate;
(5) and (6) above which are at least one selected from silicates.
Or (7) the hydraulic composition according to (7), (9) the curing stimulant is at least one selected from the group consisting of caustic soda, sodium carbonate, caustic potash, and sodium silicate, (5), (6), (7) or (8). (10) A cured product obtained by kneading the hydraulic composition according to (5), (6), (7), (8) or (9) with water and then moist curing. About.

【0009】以下、本発明を詳細に説明する。本発明の
分散剤は、アクリル酸とマレイン酸、無水マレイン酸、
フマル酸から選ばれる1種の単量体とを共重合するか、
またはこれらと共重合可能な単量体とこれらとを共重合
して得られる。(以下において、上記のマレイン酸、無
水マレイン酸、フマル酸から選ばれる1種の単量体を特
に断りのない限り単量体(a)という。) アクリル酸及び単量体(a)と共重合可能な単量体の具
体例としてはヒドロキシエチル(メタ)アクリレート、
Nービニルピロリドン、スチレンスルホン酸ソーダ、ア
リルスルホン酸ソーダ、メタリルスルホン酸ソーダ、ス
チレン、酢酸ビニル、アクリル酸メチル、アクリル酸エ
チル、アクリル酸ブチル、アクリロニトリル、メタクリ
ル酸メチル、メタクリル酸、アクリルアマイド、メタク
リルアマイド、エチレン、プロピレン、イソブチレン等
が挙げられる。
Hereinafter, the present invention will be described in detail. Dispersant of the present invention, acrylic acid and maleic acid, maleic anhydride,
Copolymerizing with one kind of monomer selected from fumaric acid,
Alternatively, it can be obtained by copolymerizing a monomer copolymerizable therewith with a monomer. (Hereinafter, one type of monomer selected from maleic acid, maleic anhydride and fumaric acid is referred to as monomer (a) unless otherwise specified.) Both acrylic acid and monomer (a) are used. Specific examples of the polymerizable monomer include hydroxyethyl (meth) acrylate,
N-vinylpyrrolidone, sodium styrenesulfonate, sodium allylsulfonate, sodium methallylsulfonate, styrene, vinyl acetate, methyl acrylate, ethyl acrylate, butyl acrylate, acrylonitrile, methyl methacrylate, methacrylic acid, acrylic amide, Examples include methacrylamide, ethylene, propylene, and isobutylene.

【0010】本発明の分散剤は例えば、米国第3635
915号等に記載の公知の方法で製造することができ
る。また、本発明の分散剤は酸の形のままで使用するこ
ともできるが、例えば苛性ソ−ダ等で中和して塩の形で
使用するのが好ましい。即ち、アクリル酸・マレイン酸
共重合体のナトリウム塩、アクリル酸・マレイン酸・ア
リルスルホン酸ソーダの共重合体のナトリウム塩、アク
リル酸・無水マレイン酸・酢酸ビニル共重合体のナトリ
ウム塩、アクリル酸・無水マレイン酸・スチレンの共重
合体のナトリウム塩、アクリル酸・マレイン酸・スチレ
ンスルホン酸ソーダ・N−ビニルピロリドン共重合体の
ナトリウム塩等が本発明の分散剤の好ましい具体例とし
て挙げられる。
The dispersant of the present invention is described, for example, in US Pat.
No. 915 or the like. The dispersant of the present invention can be used as it is in the form of an acid. However, it is preferable to use the dispersant in the form of a salt after neutralization with, for example, caustic soda. That is, sodium salt of acrylic acid / maleic acid copolymer, sodium salt of acrylic acid / maleic acid / sodium allyl sulfonate copolymer, sodium salt of acrylic acid / maleic anhydride / vinyl acetate copolymer, acrylic acid Preferred examples of the dispersant of the present invention include sodium salts of a maleic anhydride / styrene copolymer and sodium salts of acrylic acid / maleic acid / sodium styrene sulfonate / N-vinylpyrrolidone copolymer.

【0011】次に本発明の水硬性組成物について詳細に
説明する。本発明の水硬性組成物は、潜在水硬性物質、
超微粉状物質、硬化刺激剤及び本発明の分散剤を含有す
ることを特徴とする。本発明で用いる潜在水硬性物質
は、ブレーン比表面積が2000cm2 /g以上のもの
が好ましく、特に3000cm2 /g以上のものが好ま
しい。潜在水硬性物質としては、水及び硬化刺激剤と混
練したときに硬化するものであれば特に限定されない
が、高炉水砕スラグ、転炉スラグ、フライアッシュが好
ましい。これら潜在水硬性物質は、単独でまたは2種以
上を混合して使用することができる。
Next, the hydraulic composition of the present invention will be described in detail. The hydraulic composition of the present invention is a latent hydraulic substance,
It is characterized by containing an ultrafine powdery substance, a curing stimulant and the dispersant of the present invention. The latent hydraulic substance used in the present invention preferably has a Blaine specific surface area of 2,000 cm 2 / g or more, particularly preferably 3,000 cm 2 / g or more. The latent hydraulic substance is not particularly limited as long as it cures when kneaded with water and a curing stimulant, but blast furnace granulated slag, converter slag, and fly ash are preferred. These latent hydraulic substances can be used alone or in combination of two or more.

【0012】本発明で用いる超微粉状物質としては、そ
の平均粒径が潜在水硬性物質の平均粒径より小さいも
の、好ましくは潜在水硬性物質の平均粒径よりも1オー
ダー以上小さいもの、より好ましくは2オーダー以上小
さいものを使用する。超微粉状物質の好ましい平均粒径
は10μm以下であり、より好ましくは0.01〜5μ
mであり、最も好ましくは0.05〜1μmである。超
微粉状物質の平均粒径は、潜在水硬性物質の平均粒径の
1/2〜1/1000であることが好ましい。
As the ultrafine powdery substance used in the present invention, those having an average particle diameter smaller than the average particle diameter of the latent hydraulic substance, preferably one or more smaller than the average particle diameter of the latent hydraulic substance, More preferably, a material smaller than two orders of magnitude is used. The preferred average particle size of the ultrafine powdery substance is 10 μm or less, more preferably 0.01 to 5 μm.
m, and most preferably 0.05 to 1 μm. The average particle size of the ultrafine powdery substance is preferably 1/2 to 1/1000 of the average particle diameter of the latent hydraulic substance.

【0013】使用し得る超微粉状物質の具体例として
は、例えばシリカフューム、フライアッシュ、珪砂、珪
石粉、クレー、タルク、カオリン、炭酸カルシウム、陶
磁器粉砕物、徐冷高炉スラグ粉砕物、チタニア、ジルコ
ニア、アルミナ、アエロジル、等が挙げられるが、流込
み成形時の流動性等が向上する他、養生硬化後の硬化体
の機械的強度向上の効果が顕著なことから、シリカフュ
ームを使用することが特に好ましい。この超微粉状物質
の使用量は、潜在水硬性物質の大きさ(粒径)や種類、
必要に応じて添加する他の種々の混和材の種類や量によ
っても異なるが、通常、潜在水硬性物質100重量部に
対して2〜50重量部が好ましく、特に好ましくは5〜
25重量部である。
Specific examples of the ultrafine powdery substance that can be used include, for example, silica fume, fly ash, quartz sand, quartzite powder, clay, talc, kaolin, calcium carbonate, crushed ceramics, crushed blast furnace slag, titania, Zirconia, alumina, aerosil, etc. are listed, but in addition to improving the flowability at the time of casting, and the effect of improving the mechanical strength of the cured body after curing and curing is remarkable, it is possible to use silica fume Particularly preferred. The amount of this ultrafine substance used depends on the size (particle size) and type of latent hydraulic substance,
Depending on the type and amount of other various admixtures to be added as necessary, it is usually preferably 2 to 50 parts by weight, particularly preferably 5 to 50 parts by weight, based on 100 parts by weight of the latent hydraulic substance.
25 parts by weight.

【0014】硬化刺激剤としては種々のアルカリ性物質
が使用できる。その具体例としては、例えば水酸化ナト
リウム、水酸化カリウム、水酸化リチウム等のアルカリ
金属水酸化物、炭酸ナトリウム、炭酸カリウム、炭酸リ
チウム等のアルカリ金属炭酸塩、更に水酸化カルシウ
ム、水酸化マグネシウム等のアルカリ土類金属の水酸化
物、ピロ燐酸ナトリウム、ピロ燐酸カリウム、燐酸二カ
リウム、燐酸三カリウム、燐酸三ナトリウム等の燐酸
塩、(メタ)ケイ酸ナトリウム、(メタ)ケイ酸カリウ
ム等の珪酸塩が挙げられる。
Various alkaline substances can be used as the curing stimulant. Specific examples thereof include, for example, alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, and lithium hydroxide; alkali metal carbonates such as sodium carbonate, potassium carbonate, and lithium carbonate; and calcium hydroxide, magnesium hydroxide, and the like. Alkaline earth metal hydroxides, sodium pyrophosphate, potassium pyrophosphate, dipotassium phosphate, tripotassium phosphate, trisodium phosphate, etc., phosphates such as sodium (meth) silicate and potassium (meth) silicate Salts.

【0015】これらの硬化刺激剤の内、アルカリ金属水
酸化物が好ましく、中でも水酸化ナトリウムが特に好ま
しい。又、これらの硬化刺激剤は固形でも水溶液でも使
用できるが混練時に水硬性組成物中に均一に分散するよ
うに水溶液を用いることが好ましい。
Of these curing stimulants, alkali metal hydroxides are preferred, and sodium hydroxide is particularly preferred. These hardening stimulants can be used either in a solid form or in an aqueous solution, but it is preferable to use an aqueous solution so as to be uniformly dispersed in the hydraulic composition during kneading.

【0016】硬化刺激剤の使用量は、その塩基性度(ア
ルカリ性の強さ)、潜在水硬性物質の粒径、更に添加す
る種々の超微粉状物質の種類や量、及び後述する水の量
によっても異なるが、概ね潜在水硬性物質と超微粉状物
質の合計量100重量部に対して0.1〜20重量部が
好ましく、特に好ましくは0.2〜5重量部である。
The amount of the curing stimulant used depends on its basicity (alkaline strength), the particle size of the latent hydraulic substance, the type and amount of various ultrafine powdery substances to be added, and the amount of water described later. Although it varies depending on the amount, it is generally preferably 0.1 to 20 parts by weight, particularly preferably 0.2 to 5 parts by weight, based on 100 parts by weight of the total of the latent hydraulic substance and the ultrafine powdery substance.

【0017】硬化刺激剤の量が少なすぎると、充分な強
度を発現しなかったり、養生硬化に長時間を要する等、
工業的に不利となる。また多すぎると硬化速度が速くな
りすぎ、混練工程や成形工程でのハンドリングが著しく
阻害されることがある。
If the amount of the curing stimulant is too small, sufficient strength may not be exhibited or a long time may be required for curing and curing.
Industrially disadvantageous. On the other hand, if the amount is too large, the curing speed becomes too fast, and handling in the kneading step or the molding step may be significantly impaired.

【0018】本発明の水硬性組成物に使用する場合の本
発明の分散剤の分子量は好ましくは、1,000〜50
0,000、更に好ましくは、3,000〜100,0
00のである。分子量が1,000以下及び、500,
000以上では水硬性組成物の流動性が悪く、またその
硬化体の強度も弱い。また、分散剤は上記で例示した物
を単独でまたは2種以上を混合して使用することができ
る。
When used in the hydraulic composition of the present invention, the molecular weight of the dispersant of the present invention is preferably from 1,000 to 50.
000, more preferably 3,000 to 100,0
00. Molecular weight of 1,000 or less and 500,
If it is more than 000, the fluidity of the hydraulic composition is poor and the strength of the cured product is low. As the dispersant, those exemplified above can be used alone or in combination of two or more.

【0019】またこの場合の分散剤は、水硬性組成物を
混練する時に速やかに組成物中に分散される事が好まし
いので、これら分散剤の水溶液や、細かく粉砕したパウ
ダー状のものを用いることが好ましい。
In this case, it is preferable that the dispersant is dispersed in the hydraulic composition immediately after kneading the hydraulic composition. Therefore, an aqueous solution of these dispersants or a finely pulverized powder should be used. Is preferred.

【0020】分散剤の使用量は、最終的に得られる硬化
体の要求特性等により異なるが潜在水硬性物質及び超微
粉状物質の合計量100重量部に対して通常0.1〜1
0重量部、好ましくは0.3〜6重量部、特に好ましく
は0.5〜3重量部である。分散剤の使用量が0.1重
量部より少ないと、後述する水の添加量にもよるが、混
練が困難になったり流動性が低下したりする。また、分
散剤の使用量が10重量部より多いと硬化しにくくなっ
たり、たとえ硬化したとしても、耐水性が悪くなる等の
問題が出てくる。
The amount of the dispersant varies depending on the required properties of the finally obtained cured product and the like, but is usually 0.1 to 1 with respect to 100 parts by weight of the total amount of the latent hydraulic substance and the ultrafine powdery substance.
0 parts by weight, preferably 0.3 to 6 parts by weight, particularly preferably 0.5 to 3 parts by weight. If the amount of the dispersant is less than 0.1 part by weight, kneading becomes difficult or the fluidity is reduced, depending on the amount of water described below. Further, if the amount of the dispersant is more than 10 parts by weight, it becomes difficult to cure, or even if it is cured, water resistance deteriorates.

【0021】本発明の水硬性組成物には、更に必要に応
じて種々の混和材を使用することが出来る。混和材の例
としては、例えば粉砕された徐冷スラグ、フェロクロム
スラグ、ワラストナイト、シリカ、アルミナ、タルク、
硅砂、硅石粉、クレー、カオリン、炭酸カルシウム、陶
磁器粉砕物、チタニア、ジルコニア、砂利等の無機充填
材、カーボン繊維、ガラス繊維、パルプ、ナイロン繊
維、ビニロン繊維、ポリエステル繊維、アクリル繊維等
の繊維材、砂糖、グルコース等の硬化遅延剤、シランカ
ップリング剤のような表面処理剤、顔料等が挙げられ
る。
In the hydraulic composition of the present invention, various admixtures can be further used, if necessary. Examples of the admixture include, for example, pulverized slow-cooled slag, ferrochrome slag, wollastonite, silica, alumina, talc,
Inorganic fillers such as silica sand, silica powder, clay, kaolin, calcium carbonate, crushed ceramics, titania, zirconia, gravel, etc., fiber materials such as carbon fiber, glass fiber, pulp, nylon fiber, vinylon fiber, polyester fiber and acrylic fiber , A curing retarder such as sugar and glucose, a surface treating agent such as a silane coupling agent, a pigment, and the like.

【0022】これら種々の混和材を用いる場合、その使
用量は、無機充填材の場合には潜在水硬性物質100重
量部に対して通常10〜300重量部、又硬化遅延剤、
表面処理剤、顔料等の混和剤の場合には潜在水硬性物質
100重量部に対して通常0.1〜20重量部用いられ
る。
When these various admixtures are used, they are usually used in an amount of 10 to 300 parts by weight with respect to 100 parts by weight of the latent hydraulic substance in the case of an inorganic filler.
In the case of an admixture such as a surface treating agent or a pigment, it is usually used in an amount of 0.1 to 20 parts by weight based on 100 parts by weight of the latent hydraulic substance.

【0023】本発明の水硬性組成物は、例えば以下のよ
うにして得ることできる。即ち、潜在水硬性物質、超微
粉状物質、硬化刺激剤、本発明の分散剤及び必要により
混和材からなる混合物を調製し、オムニミキサー、(千
代田技研工業(株)製)のような揺動型ミキサー、ニー
ダールーダー型ミキサー、プラネタリーミキサー等で混
合して本発明の水硬性組成物を得ることができる。
The hydraulic composition of the present invention can be obtained, for example, as follows. That is, a mixture comprising a latent hydraulic substance, an ultrafine powdery substance, a hardening stimulant, a dispersant of the present invention and, if necessary, an admixture is prepared, and a mixture such as an omni mixer (manufactured by Chiyoda Giken Kogyo Co., Ltd.) is prepared. The hydraulic composition of the present invention can be obtained by mixing with a dynamic mixer, a kneader-ruder mixer, a planetary mixer, or the like.

【0024】本発明の水硬性組成物を水と良く混練し、
混練物としたのち、適当な型枠に流し込み、更にこれを
湿潤養生することにより本発明の硬化物を得ることがで
きる。この場合の水の使用量は、使用する潜在水硬性物
質及び超微粉状物質の種類と量、硬化刺激剤の種類と
量、その他の混和材の種類と量によって異なり、混練物
が良好な混練性を示すように決めることが重要だが、通
常潜在水硬性物質と超微粉状物質の合計量100重量部
に対して8〜60重量部、好ましくは10〜45重量
部、より好ましくは12〜35重量部である。
The hydraulic composition of the present invention is kneaded well with water,
After kneading, the cured product of the present invention can be obtained by pouring the mixture into an appropriate mold and further performing wet curing. The amount of water used in this case depends on the type and amount of the latent hydraulic substance and the ultrafine substance used, the type and amount of the hardening stimulant, and the type and amount of other admixtures. Although it is important to determine the kneadability, it is usually 8 to 60 parts by weight, preferably 10 to 45 parts by weight, more preferably 12 to 60 parts by weight based on 100 parts by weight of the total of the latent hydraulic substance and the ultrafine powdery substance. 3535 parts by weight.

【0025】次に本発明の水硬性組成物を水と混練する
方法について説明する。先ず、潜在水硬性物質及び、超
微粉状物質を混合し、細かく粉砕された、及び/または
水に溶解された本発明の分散剤、必要により種々の混和
材を上記で例示したミキサーに入れて混合する。次いで
この混合物に硬化刺激剤と所定量の水、または硬化刺激
剤を水に溶解した水溶液を所定量添加し、更に混練を行
う。
Next, a method of kneading the hydraulic composition of the present invention with water will be described. First, the latent hydraulic substance and the ultrafine powdery substance are mixed, and the dispersant of the present invention finely pulverized and / or dissolved in water, and if necessary, various admixtures are added to the mixer exemplified above. Mix. Next, a predetermined amount of a curing stimulant and a predetermined amount of water or an aqueous solution of the curing stimulant dissolved in water is added to the mixture, and the mixture is further kneaded.

【0026】別の方法として、潜在水硬性物質、超微粉
状物質、必要により種々の混和材を添加し、ミキサーに
より粉体混合する。次いでこの混合物に本発明の分散剤
のナトリウム塩水溶液、硬化刺激剤と所定量の水、また
は硬化刺激剤を水に溶解した水溶液を所定量添加し、更
に混練を行い流動性のある混練物を得る。
As another method, a latent hydraulic substance, an ultrafine powdery substance and, if necessary, various admixtures are added, and powder is mixed by a mixer. Next, to this mixture, a sodium salt aqueous solution of the dispersant of the present invention, a curing stimulant and a predetermined amount of water, or a predetermined amount of an aqueous solution of the curing stimulant dissolved in water is added, and the mixture is further kneaded to obtain a kneaded material having fluidity obtain.

【0027】以上のようにして得られた混練物を硬化さ
せるための湿潤養生は、通常、5〜100℃の温度で飽
和蒸気圧下、2時間〜1カ月間の範囲で行われるが、1
00℃以上の温度で1〜20時間オートクレーブ処理を
行っても良い。湿潤養生温度が高い程、硬化が速い傾向
にあるが、一般的には、前記した範囲の温度である。湿
潤養生は、少なくとも混合物の水分が蒸発しない高湿度
雰囲気下で行うことが好ましい。一般的には相対湿度8
0%以上、好ましくは90%以上、更に好ましくは10
0%の雰囲気下で行う。また、湿潤養生初期の成形体を
水に浸漬して水中で養生を行うことも出来る。
The wet curing for curing the kneaded material obtained as described above is usually performed at a temperature of 5 to 100 ° C. under a saturated vapor pressure for a period of 2 hours to 1 month.
Autoclave treatment may be performed at a temperature of 00 ° C. or higher for 1 to 20 hours. The higher the wet curing temperature is, the faster the curing tends to be, but generally the temperature is in the above-mentioned range. The wet curing is preferably performed in a high humidity atmosphere in which at least the moisture of the mixture does not evaporate. Generally relative humidity 8
0% or more, preferably 90% or more, more preferably 10% or more.
Performed in an atmosphere of 0%. Alternatively, the molded body in the initial stage of wet curing can be immersed in water and cured in water.

【0028】以上のようにして得られた本発明の硬化体
は、その強度を生かした建築用構造材料、軽量高強度の
内外装材等の建築・建設材料として使用できる。具体的
には、打込み型枠材、床スラブ、カーテンウォール、内
外装材、等の建築材料に使用できる。また、本発明の分
散剤は、上記したような潜在水硬性物質、硬化刺激剤等
を含有する水硬性組成物以外に、一般に知られているセ
メント、各種混和材等からなる水硬性組成物用の分散剤
としても使用可能である。
The cured product of the present invention obtained as described above can be used as a building / construction material, such as a structural material for a building utilizing its strength, and a lightweight and high-strength interior / exterior material. Specifically, it can be used as a building material such as a driving form material, a floor slab, a curtain wall, an interior / exterior material, and the like. Further, the dispersant of the present invention, in addition to the hydraulic composition containing a latent hydraulic substance as described above, a hardening stimulant, etc., generally known cement, for hydraulic compositions comprising various admixtures and the like Can also be used as a dispersant.

【0029】[0029]

【実施例】以下、本発明を実施例で更に詳細に説明す
る。尚、以降の硬化物とは以上で説明した混練物を養生
硬化した後の硬化体をさす。
The present invention will be described in more detail with reference to the following examples. The cured product hereinafter refers to a cured product obtained by curing and curing the above-described kneaded material.

【0030】また、実施例中のフロー値は、混練の終わ
った混練物又はモルタルをJISR5201に準じて測
定した。
The flow values in the examples were measured for the kneaded material or mortar after kneading according to JISR5201.

【0031】また、実施例中の圧縮強度は、硬化物をセ
メントモルタル用円柱状試験体で作った直径5cm、高
さ10cmの円柱をテンシロン((株)オリエンテック
製)を用い、載荷速度0.2mm/分で圧縮して破壊し
た時の強度(kgf/cm2)である。
The compressive strength in the examples was determined by setting the loading rate to 0 using a Tensilon (manufactured by Orientec Co., Ltd.) with a 5 cm diameter and 10 cm height cylinder made of a cured product from a columnar specimen for cement mortar. It is the strength (kgf / cm 2 ) at the time of compressing and breaking at 0.2 mm / min.

【0032】又、曲げ強度は、4×4×16cmの角柱
状の試験体をテンシロン((株)オリエンテック製)を
用い、載荷速度0.5mm/分の条件で10cmのスパ
ン長で測定した時の強度(kgf/cm2 )である。
The bending strength of a 4 × 4 × 16 cm prismatic test piece was measured using Tensilon (manufactured by Orientec Co., Ltd.) at a loading speed of 0.5 mm / min and a span length of 10 cm. Strength at the time (kgf / cm 2 ).

【0033】また、引っ張り強度は、径5cm、長さ1
0cmの円柱状の試験体を、テンシロン((株)オリエ
ンテック製)を用い、載荷速度0.2mm/分の条件
で、直径方向から荷重をかけて、割裂したときの強度
(kgf/cm2 )である。また、本発明はこれら実施
例に限定されるものではない。尚、実施例、比較例にお
いて、部又は%は特に断らない限り、重量基準である。
The tensile strength is 5 cm in diameter and 1 in length.
Using a Tensilon (manufactured by Orientec Co., Ltd.), a columnar test specimen of 0 cm was subjected to a load from the diametric direction under a loading speed of 0.2 mm / min, and the strength (kgf / cm 2 ) when split. ). Further, the present invention is not limited to these examples. In Examples and Comparative Examples, parts and percentages are by weight unless otherwise specified.

【0034】実施例1 還流管付きセパラブルフラスコに、無水マレイン酸21
0部、脱イオン水700部を仕込み、温度を90ないし
100℃に昇温し、アクリル酸840部、過硫酸アンモ
ニウム32部、次亜燐酸ソーダ20部、水680部の混
合物をを滴下して、10時間反応させた後、系を室温ま
で冷却し、45%苛性ソーダ1385部で中和して乾燥
し、本発明の分散剤のナトリウム塩(水溶性塩A)を得
た。この物の重量平均分子量は35,000(GPC
法、ポリスチレンスルホン酸ソーダ換算)であった。
Example 1 Maleic anhydride 21 was placed in a separable flask equipped with a reflux tube.
0 parts, 700 parts of deionized water were charged, the temperature was raised to 90 to 100 ° C., and a mixture of 840 parts of acrylic acid, 32 parts of ammonium persulfate, 20 parts of sodium hypophosphite, and 680 parts of water was added dropwise. After reacting for 10 hours, the system was cooled to room temperature, neutralized with 1385 parts of 45% caustic soda, and dried to obtain a sodium salt (water-soluble salt A) of the dispersant of the present invention. The weight average molecular weight of this product was 35,000 (GPC
Method, sodium polystyrene sulfonate conversion).

【0035】実施例2〜10 単量体の種類及び量を表1に示す種類及び量に変えたほ
かは実施例1と同様にして本発明の分散剤のナトリウム
塩(水溶性塩B〜J)を得た。得られた水溶性塩B〜J
の重合平均分子量(GPC法、ポリスチレンスルホン酸
ソーダ換算)を表1に示す。
Examples 2 to 10 The sodium salt of the dispersant of the present invention (water-soluble salts B to J) was prepared in the same manner as in Example 1 except that the types and amounts of the monomers were changed to those shown in Table 1. ) Got. The obtained water-soluble salts B to J
Table 1 shows the polymerization average molecular weight (GPC method, converted to sodium polystyrene sulfonate) of

【0036】[0036]

【表1】 表 1 水溶性塩 単量体及びその共重合比 重量平均分子量 (重量比) a b c d e f g h B 66 10 24 25,000 C 80 10 10 30,000 D 70 20 10 45,000 E 90 10 42,000 F 60 10 30 37,000 G 80 10 10 29,000 H 70 10 10 10 23,000 I 75 10 10 5 19,000 J 85 10 5 59,000Table 1 Water-soluble salt monomer and its copolymerization ratio Weight average molecular weight (weight ratio) abcdefghB 66 10 24 25,000 C 80 10 10 30,000 D 70 20 10 45,000 E 90 10 42,000 F 60 10 30 37,000 G 80 10 10 29,000 H 70 10 10 10 23,000 I 75 10 10 5 19,000 J 85 10 5 59,000

【0037】注)表1において a:アクリル酸 b:無水マレイン酸 c:フマル酸 d:アリルスルホン酸ソーダ e:メタリルスルホン酸ソーダ f:酢酸ビニル g:スチレン h:NービニルピロリドンNote) In Table 1, a: acrylic acid b: maleic anhydride c: fumaric acid d: sodium allylsulfonate e: sodium methallylsulfonate f: vinyl acetate g: styrene h: N-vinylpyrrolidone

【0038】実施例11 オムニミキサーにブレーン比表面積4000cm2 /g
の高炉水砕スラグ(新日鉄製エスメント)900部、シ
リカフューム(平均粒径0.2μm、日本重化学工業
製)100部を入れて90秒間撹拌混合した。続いて、
水溶性塩A10部、硬化刺激剤として水酸化ナトリウム
20部と水220部、硬化調節剤として砂糖2部とから
成る水溶液を添加し、更に6分間混練した。
Example 11 A Blaine specific surface area of 4000 cm 2 / g was added to an omni mixer.
Of blast furnace granulated slag (Nippon Steel Esment Co., Ltd.) and 100 parts of silica fume (average particle size: 0.2 μm, manufactured by Nippon Heavy Industries) were stirred and mixed for 90 seconds. continue,
An aqueous solution consisting of 10 parts of a water-soluble salt A, 20 parts of sodium hydroxide and 220 parts of water as a curing stimulant, and 2 parts of sugar as a curing regulator was added and kneaded for further 6 minutes.

【0039】これらの混練によって得られたペースト状
混練物のフロー値は、250mmであった。次に混練物
を圧縮、引っ張り、及び曲げ試験用の型枠にいれて、9
0℃の飽和蒸気圧の雰囲気下で1日間蒸気養生後の本発
明の硬化物の圧縮強度は1390kgf/cm2 、曲げ
強度219kgf/cm2 、引っ張り強度79kgf/
cm2 であった。
The flow rate of the paste-like kneaded material obtained by these kneading was 250 mm. Next, the kneaded material was placed in a mold for compression, tension and bending tests,
The cured product of the present invention after 1 day of steam curing in an atmosphere of a saturated vapor pressure of 0 ° C. has a compression strength of 1390 kgf / cm 2 , a bending strength of 219 kgf / cm 2 and a tensile strength of 79 kgf / cm 2 .
cm 2 .

【0040】実施例12〜14 水溶性塩B,C,Dについて、実施例11と同様の操作
を繰り返し、試験した結果を表2に示す。(但し、水溶
性塩の添加量は表2に示したごとく変えた。)
Examples 12 to 14 The same operation as in Example 11 was repeated for the water-soluble salts B, C, and D, and the test results are shown in Table 2. (However, the amount of the water-soluble salt added was changed as shown in Table 2.)

【0041】[0041]

【表2】 表 2 水溶性塩 添加量 フロー値 圧縮強度 曲げ強度 引っ張り強度 種類 (部) mm kgf/cm2 〃 〃 B 12 210 1280 179 82 C 10 230 1360 188 78 D 10 220 1180 169 69Table 2 Amount of water-soluble salt added Flow value Compressive strength Bending strength Tensile strength Type (parts) mm kgf / cm 2 〃 B 12 210 1280 179 82 C 10 230 1360 188 78 D 10 220 1180 169 69

【0042】実施例15 オムニミキサーにブレーン比表面積4000cm2 /g
の高炉水砕スラグ(新日鉄製、エスメント)900部、
シリカフューム(平均粒径0.2μm、日本重化学工業
製)100部、細骨材として、フェロクロムスラグ(商
品名NJサンド7号、日本磁力選鉱製)1000部を入
れて90秒間撹拌混合した。続いて、水溶性塩E13
部、水酸化ナトリウム20部と硬化調節剤として、砂糖
1部、水260部とから成る水溶液を添加し、更に3分
間混練した後、実施例11と同様に養生して、本発明の
硬化物を得た。得られた硬化物について実施例1と同様
の試験を行った結果を表3に示す。
Example 15 A Blaine specific surface area of 4000 cm 2 / g was added to an omni mixer.
900 parts of granulated blast furnace slag (made by Nippon Steel, Esment),
100 parts of silica fume (average particle size: 0.2 μm, manufactured by Nippon Heavy Chemical Industry) and 1000 parts of ferrochrome slag (trade name: NJ Sand 7, manufactured by Nippon Magnetic Separation Co., Ltd.) as fine aggregate were put and mixed for 90 seconds. Subsequently, the water-soluble salt E13
, 20 parts of sodium hydroxide and an aqueous solution composed of 1 part of sugar and 260 parts of water as a curing regulator, kneaded for further 3 minutes, cured as in Example 11, and cured according to the present invention. I got Table 3 shows the results of the same test as in Example 1 performed on the obtained cured product.

【0043】実施例16 水溶性塩E13部を水溶性塩F10部に変えたほかは、
実施例15と同様にして、本発明の硬化物を得た。得ら
れた硬化物について実施例11と同様の試験を行った結
果を表3に示す。
Example 16 A water-soluble salt E was replaced by 13 parts of a water-soluble salt F,
In the same manner as in Example 15, a cured product of the present invention was obtained. Table 3 shows the results of the same test as in Example 11 performed on the obtained cured product.

【0044】[0044]

【表3】 表 3 水溶性塩 フロー値 圧縮強度 曲げ強度 引っ張り強度 種類 mm kgf/cm2 〃 〃 E 260 1098 237 89 F 220 1189 245 95Table 3 Water-soluble salt Flow value Compressive strength Bending strength Tensile strength Type mm kgf / cm 2 〃 E 260 1098 237 89 F 220 1189 245 95

【0045】実施例17 コンクリートミキサーにブレーン比表面積4000cm
2 /gの高炉水砕スラグ(新日鉄製、エスメント)95
0部、シリカフューム(平均粒径0.2μm、日本重化
学工業製)50部、珪砂(日光珪砂(川鉄工業製))1
000部、ワラストナイト200部を入れて90秒間撹
拌混合した。続いて水溶性塩G15部、水酸化ナトリウ
ム20部と、水290部とから成るアルカリ性水溶液と
硬化調節剤として、砂糖2部を添加し、更に5分間撹拌
混練した。これらを実施例11と同様に養生して、本発
明の硬化物を得た。得られた硬化物について実施例11
と同様の試験を行った結果を表4に示す。
Example 17 A concrete mixer having a Blaine specific surface area of 4000 cm
2 / g granulated blast furnace slag (Nippon Steel, Esment) 95
0 parts, silica fume (average particle size: 0.2 μm, manufactured by Nippon Heavy Industries) 50 parts, silica sand (Nikko silica sand (manufactured by Kawatetsu Kogyo)) 1
000 parts and 200 parts of wollastonite were added and stirred and mixed for 90 seconds. Subsequently, an alkaline aqueous solution composed of 15 parts of a water-soluble salt G, 20 parts of sodium hydroxide, and 290 parts of water, and 2 parts of sugar as a curing regulator were added, and the mixture was further stirred and kneaded for 5 minutes. These were cured in the same manner as in Example 11 to obtain a cured product of the present invention. Example 11 of the obtained cured product
Table 4 shows the results of the same test.

【0046】実施例18 水溶性塩G15部を水溶性塩H14部に変えたほかは、
実施例17と同様にして、本発明の硬化物を得た。得ら
れた硬化物について実施例11と同様の試験を行った結
果を表4に示す。
Example 18 A water-soluble salt G15 was replaced with water-soluble salt H14.
In the same manner as in Example 17, a cured product of the present invention was obtained. Table 4 shows the results of the same test as in Example 11 performed on the obtained cured product.

【0047】実施例19 水溶性塩G15部を水溶性塩I10部に変えたほかは、
実施例17と同様にして、本発明の硬化物を得た。得ら
れた硬化物について実施例11と同様の試験を行った結
果を表4に示す。
Example 19 A water-soluble salt G was replaced with 15 parts of a water-soluble salt I.
In the same manner as in Example 17, a cured product of the present invention was obtained. Table 4 shows the results of the same test as in Example 11 performed on the obtained cured product.

【0048】 表 4 水溶性塩 フロー値 圧縮強度 曲げ強度 引っ張り強度 種類 mm kgf/cm2 〃 〃 G 220 1079 235 105 H 200 1098 258 85 I 290 1430 245 114Table 4 Water-soluble salt Flow value Compressive strength Bending strength Tensile strength Type mm kgf / cm 2 〃 G G 220 1079 235 105 H 200 1098 258 85 I 290 1430 245 114

【0049】実施例20 コンクリートミキサーにブレーン比表面積4000cm
2 /gの高炉水砕スラグ(新日鉄製エスメント)900
部、シリカフューム(平均粒径0.2μm、日本重化学
工業製)100部、豊浦砂1000部、ポリアクリル酸
ナトリウム(商品名パナカヤク−B(日本化薬(株)
製))10部を仕込み、1分間良く混合した。次いで、
水溶性塩J10部、水酸化ナトリウム20部と砂糖3
部、水350部とから成る水溶液を添加し5分間撹拌混
練し混練物を得た。これらの混練によって得られた混練
物のフロー値は、180mmであった。これを実施例1
1と同様に蒸気養生して得た硬化物の圧縮強度は、11
80kgf/cm2 、曲げ強度258kgf/cm2
引っ張り強度109kgf/cm2 であった。
Example 20 A concrete mixer having a Blaine specific surface area of 4000 cm
2 / g granulated blast furnace slag (Nippon Steel Esment) 900
Parts, 100 parts of silica fume (average particle size: 0.2 μm, manufactured by Nippon Heavy Industries, Ltd.), 1000 parts of Toyoura sand, sodium polyacrylate (trade name Panakayak-B (Nippon Kayaku Co., Ltd.)
10) and mixed well for 1 minute. Then
10 parts of water-soluble salt J, 20 parts of sodium hydroxide and sugar 3
Of water and 350 parts of water, and the mixture was stirred and kneaded for 5 minutes to obtain a kneaded product. The flow value of the kneaded product obtained by these kneading was 180 mm. Example 1
The compressive strength of the cured product obtained by steam curing in the same manner as in Example 1 is 11
80 kgf / cm 2 , flexural strength 258 kgf / cm 2 ,
The tensile strength was 109 kgf / cm 2 .

【0050】比較例1 混合機に普通ポルトランドセメント(アサノセメント)
1000部、豊浦砂1000部を仕込み2分間良く混合
した。次いで水350部を添加し更に5分間混練しモル
タルを調製した。このモルタルのフロー値は130mm
であった。また、このモルタルを実施例11と同様に養
生硬化を行った後の硬化物の圧縮強度は、580kgf
/cm2 、曲げ強度95kgf/cm2 、引っ張り強度
35kgf/cm2 であった。
Comparative Example 1 Ordinary Portland cement (Asano cement) in a mixing machine
1000 parts and Toyoura sand 1000 parts were charged and mixed well for 2 minutes. Next, 350 parts of water was added and kneaded for another 5 minutes to prepare a mortar. The flow value of this mortar is 130mm
Met. Further, the compressive strength of the cured product of this mortar after curing and curing in the same manner as in Example 11 was 580 kgf
/ Cm 2 , bending strength 95 kgf / cm 2 , and tensile strength 35 kgf / cm 2 .

【0051】以上の実施例11〜20及び表2〜4に示
したように本発明の水硬性組成物と水との混練物の硬化
物は、公知のモルタルより大きいフロー値を持ち、かつ
その硬化物は、圧縮、曲げ、引っ張り強度とも公知の硬
化物に較べ優れている。
As shown in Examples 11 to 20 and Tables 2 to 4, the cured product of the kneaded product of the hydraulic composition of the present invention and water has a flow value larger than that of a known mortar, and The cured product has better compression, bending and tensile strength than known cured products.

【0052】[0052]

【発明の効果】本発明の分散剤を含む水硬性組成物は、
流動性に優れ、しかも圧縮強度、曲げ強度、引っ張り強
度共に優れていることから建築、建設、景観材料等の広
範な分野で用いることが出来る。
The hydraulic composition containing the dispersant of the present invention comprises:
Since it has excellent fluidity and excellent compressive strength, bending strength, and tensile strength, it can be used in a wide range of fields such as construction, construction, and landscape materials.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C04B 22:06 C04B 22:06 A 24:26 24:26 E H Z 22:06 22:06 Z 24:38) 24:38) Z 103:40 103:40 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification code FI C04B 22:06 C04B 22:06 A 24:26 24:26 E HZ 22:06 22:06 Z 24:38) 24:38 ) Z 103: 40 103: 40

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】アクリル酸と次の化合物群(a)から選ば
れる1種 (a)マレイン酸、無水マレイン酸、フマル酸 とを共重合してなる無機水硬性組成物用分散剤。
A dispersant for an inorganic hydraulic composition obtained by copolymerizing acrylic acid and one of the following compounds (a): (a) maleic acid, maleic anhydride, and fumaric acid.
【請求項2】アクリル酸と請求項1記載の化合物群
(a)から選ばれる1種とこれらと共重合可能な他の単
量体とを共重合してなる無機水硬性組成物用分散剤。
2. A dispersant for an inorganic hydraulic composition obtained by copolymerizing acrylic acid, one selected from the compound group (a) according to claim 1, and another monomer copolymerizable therewith. .
【請求項3】共重合可能な単量体がヒドロキシエチル
(メタ)アクリレート、Nービニルピロリドン、スチレ
ンスルホン酸ソーダ、(メタ)アリルスルホン酸ソー
ダ、スチレン、酢酸ビニルから選ばれる1種以上である
請求項2記載の分散剤。
3. The copolymerizable monomer is at least one selected from hydroxyethyl (meth) acrylate, N-vinylpyrrolidone, sodium styrenesulfonate, sodium (meth) allylsulfonate, styrene, and vinyl acetate. The dispersant according to claim 2.
【請求項4】分子量が、1000〜500,000であ
る請求項1、2または3記載の分散剤。
4. The dispersant according to claim 1, wherein the dispersant has a molecular weight of 1,000 to 500,000.
【請求項5】潜在水硬性物質、超微粉状物質、硬化刺激
剤、請求項1、2、3または4記載の分散剤を含有して
成る水硬性組成物。
5. A hydraulic composition comprising a latent hydraulic substance, an ultrafine powdery substance, a curing stimulant and the dispersant according to claim 1, 2, 3 or 4.
【請求項6】潜在水硬性物質が高炉水砕スラグ、転炉ス
ラグ、フライアッシュから選ばれる1種以上である請求
項5記載の水硬性組成物。
6. The hydraulic composition according to claim 5, wherein the latent hydraulic substance is at least one selected from granulated blast furnace slag, converter slag, and fly ash.
【請求項7】超微粉状物質がシリカフュームである請求
項5または6記載の水硬性組成物。
7. The hydraulic composition according to claim 5, wherein the ultrafine substance is silica fume.
【請求項8】硬化刺激剤がアルカリ金属の水酸化物、炭
酸塩、珪酸塩から選ばれた一種以上である請求項5、6
または7記載の水硬性組成物。
8. The curing stimulant is at least one selected from the group consisting of alkali metal hydroxides, carbonates and silicates.
Or the hydraulic composition according to 7.
【請求項9】硬化刺激剤が苛性ソーダ、炭酸ソーダ、苛
性カリ、珪酸ソーダから選ばれる1種以上である請求項
5、6、7または8記載の水硬性組成物。
9. The hydraulic composition according to claim 5, wherein the curing stimulant is at least one member selected from the group consisting of sodium hydroxide, sodium carbonate, potassium hydroxide, and sodium silicate.
【請求項10】請求項5、6、7、8または9記載の水
硬性組成物を水と混練した後、湿潤養生してなる硬化
物。
10. A cured product obtained by kneading the hydraulic composition according to claim 5, 6, 7, 8 or 9 with water, and then performing wet curing.
JP10319594A 1994-04-19 1994-04-19 Dispersant for inorganic hydraulic composition, hydraulic composition and cured product thereof Expired - Fee Related JP3315523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10319594A JP3315523B2 (en) 1994-04-19 1994-04-19 Dispersant for inorganic hydraulic composition, hydraulic composition and cured product thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10319594A JP3315523B2 (en) 1994-04-19 1994-04-19 Dispersant for inorganic hydraulic composition, hydraulic composition and cured product thereof

Publications (2)

Publication Number Publication Date
JPH07291691A JPH07291691A (en) 1995-11-07
JP3315523B2 true JP3315523B2 (en) 2002-08-19

Family

ID=14347741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10319594A Expired - Fee Related JP3315523B2 (en) 1994-04-19 1994-04-19 Dispersant for inorganic hydraulic composition, hydraulic composition and cured product thereof

Country Status (1)

Country Link
JP (1) JP3315523B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19830760A1 (en) * 1998-07-09 2000-01-13 Sueddeutsche Kalkstickstoff Use of water-soluble polymers as flow agents for refractories containing aluminum cement
US7422713B2 (en) * 2003-10-14 2008-09-09 Hewlett-Packard Development Company, L.P. Hybrid organic-inorganic composition for solid freeform fabrication
JP2005288294A (en) * 2004-03-31 2005-10-20 Kao Corp Dispersant for electronic material
US20090326159A1 (en) * 2006-09-13 2009-12-31 Toho Chemical Industry Co., Ltd. Cement dispersant
JP4984255B2 (en) * 2007-12-28 2012-07-25 東邦化学工業株式会社 New cement dispersant
JP4984254B2 (en) * 2007-12-28 2012-07-25 東邦化学工業株式会社 Cement dispersant
WO2015141667A1 (en) * 2014-03-18 2015-09-24 株式会社日本触媒 Cement composition and cement curing retarder
JP6294124B2 (en) * 2014-03-31 2018-03-14 株式会社日本触媒 Copolymer and process for producing the same
FR3074181B1 (en) * 2017-11-28 2020-11-06 Arkema France HYDROSOLUBLE COPOLYMERIC COMPOSITION WITH NEUTRAL PH

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0755848B2 (en) * 1985-03-12 1995-06-14 日本ゼオン株式会社 Admixture for cement
JP2741631B2 (en) * 1990-11-06 1998-04-22 株式会社エヌエムビー Cement dispersant that prevents flowability deterioration
JPH07257951A (en) * 1994-03-18 1995-10-09 Fujisawa Pharmaceut Co Ltd Water reducing agent for cement added viscous soil
JPH07286011A (en) * 1994-04-19 1995-10-31 Nippon Kayaku Co Ltd New copolymer, hydraulic composition and cured product thereof

Also Published As

Publication number Publication date
JPH07291691A (en) 1995-11-07

Similar Documents

Publication Publication Date Title
JP4155616B2 (en) Cement admixture, cement composition using the same, and preparation method thereof
EP1136508B1 (en) Cement admixture for improved slump life
JPH0211542B2 (en)
JP5051990B2 (en) Ultra-fast-hardening cement composition and dispersant for super-fast-hardening cement composition
JP3315523B2 (en) Dispersant for inorganic hydraulic composition, hydraulic composition and cured product thereof
JP2005139060A (en) Setting accelerator for cement
JP2000034151A (en) Cement admixture
JP2001302307A (en) Cement additive and concrete composition produced by using the same
JP2022526217A (en) Highly water-reducing powder preparation for dry mortar
JP4118375B2 (en) Cement admixture, cement composition using the same, and preparation method thereof
JP2010195622A (en) Water reducing agent composition and mortar or concrete using the same
JPH08119709A (en) Water-hardening composition, hardened article and its production
JP3429497B2 (en) Cement admixture, cement composition, and method of using the same
JP6969955B2 (en) Hydration heat inhibitor for cement and cement hydration heat suppression method
JPH08319146A (en) Liquid composition and production of high-strength inorganic material using the same
JPH07330402A (en) Dispersant for inorganic hydraulic composition, hydraulic composition using the same and hardened material formed therefrom
JPH07286011A (en) New copolymer, hydraulic composition and cured product thereof
JP2004244625A (en) Agent for treating wet soil and method for granulating wet soil
JP2585959B2 (en) Precast cement product composition for construction
JP2006328320A (en) Agent for treating water-containing soil, and method for granulating water-containing soil
JPH1045457A (en) Nonshrinkage-hardening composition and its hardened body
JP5311910B2 (en) Manufacturing method of concrete products
JP5155766B2 (en) Hydraulic composition
JPH0328151A (en) Cement composition and mortar or concrete produced by using the same
JPH05254906A (en) Artificial stone composition

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees