JP3364254B2 - Catalyst for combustion of hydrocarbons - Google Patents
Catalyst for combustion of hydrocarbonsInfo
- Publication number
- JP3364254B2 JP3364254B2 JP35513692A JP35513692A JP3364254B2 JP 3364254 B2 JP3364254 B2 JP 3364254B2 JP 35513692 A JP35513692 A JP 35513692A JP 35513692 A JP35513692 A JP 35513692A JP 3364254 B2 JP3364254 B2 JP 3364254B2
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- temperature
- aluminosilicate
- combustion
- carrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Catalysts (AREA)
Description
【発明の詳細な説明】Detailed Description of the Invention
【0001】本発明は炭化水素の燃焼用触媒の製造方法
に関するものであり、特に加熱用又は暖房用の高温燃焼
器に使用して高い燃焼活性を発揮し、耐熱性にも優れた
炭化水素燃焼用触媒の製造方法に関する。The present invention relates to a method for producing a hydrocarbon combustion catalyst , which exhibits high combustion activity when used in a high temperature combustor for heating or heating, and has excellent heat resistance. And a method for producing a catalyst for burning hydrocarbons.
【0002】[0002]
【従来の技術】近年、省エネルギー、省資源あるいは環
境保全への関心の高まりから、触媒を用いて炭化水素燃
料と空気の混合物を高温で燃焼せしめる触媒燃焼方式が
脚光を集めている。炭化水素を酸素含有ガスの存在下
に、炭酸ガスと水蒸気に完全酸化させる触媒燃焼方式に
於いては、その触媒としては、白金、パラジウムなどの
白金族金属をアルミナ、シリカ等の耐熱性無機酸化物担
体に担持させた触媒が広く知られている。そして、耐熱
性無機酸化物担体としては、高温に曝されても諸物性の
変化が少なく、熱転移しても強度歪みの少ないことか
ら、ベーマイトを出発原料としたアルミナが賞用されて
いる。また、触媒担体の耐熱性をさらに改良する研究も
続けられており、例えば、特開昭60-222145 号公報に
は、担体に使用されるアルミナにランタン(La)など
の希土類元素を添加して、燃焼用触媒の耐熱性を改良す
る技術が提案されている。ところで、燃焼ガス出口温度
が1000℃以上となるような高温燃焼器に於いては、触媒
層内部温度が1200℃を超えることも希ではない。このよ
うな高温燃焼器に従来の燃焼用触媒を用いた場合には、
その担体が特に耐熱性に優れたアルミナであっても、ア
ルミナの結晶構造がγ−アルミナからα−アルミナへ転
移してしまい、担体の表面積、細孔容積、耐摩耗性が低
下するため、触媒の燃焼活性が劣化してしまう問題があ
った。2. Description of the Related Art In recent years, with increasing interest in energy saving, resource saving, or environmental protection, a catalytic combustion system in which a mixture of hydrocarbon fuel and air is burned at a high temperature using a catalyst has been attracting attention. In the catalytic combustion system in which hydrocarbons are completely oxidized into carbon dioxide and water vapor in the presence of oxygen-containing gas, the catalyst is platinum group metals such as platinum and palladium, and heat-resistant inorganic oxides such as alumina and silica. A catalyst supported on a physical carrier is widely known. As the heat-resistant inorganic oxide carrier, alumina having boehmite as a starting material has been favored because it has little change in physical properties even when exposed to high temperature and has little strength strain even after heat transfer. Further, researches for further improving the heat resistance of the catalyst carrier have been continued. For example, in JP-A-60-222145, a rare earth element such as lanthanum (La) is added to alumina used as a carrier. , Techniques for improving the heat resistance of combustion catalysts have been proposed. By the way, in a high temperature combustor in which the combustion gas outlet temperature is 1000 ° C. or higher, it is not uncommon for the catalyst layer internal temperature to exceed 1200 ° C. When a conventional combustion catalyst is used in such a high temperature combustor,
Even if the carrier is alumina which is particularly excellent in heat resistance, the crystal structure of alumina is transferred from γ-alumina to α-alumina, and the surface area of the carrier, the pore volume, and the wear resistance are reduced, so that the catalyst There was a problem that the combustion activity of was deteriorated.
【0003】[0003]
【発明が解決しようとする課題】一般に、燃焼用触媒の
活性は活性金属成分の担体への分散性に依存し、その分
散性は担体の表面積に依存すると考えられている。従っ
て、高温燃焼器にも使用可能な燃焼用触媒の開発には、
約1000℃以上の高温でも高い表面積を保持するような耐
熱性に富んだ触媒担体の開発が重要な課題である。本発
明は上記した従来の燃焼用触媒に指摘されるような問題
点を伴わず、高温燃焼器でも充分使用可能な新規な炭化
水素燃焼用触媒を提供するものである。It is generally considered that the activity of the combustion catalyst depends on the dispersibility of the active metal component in the carrier, and the dispersibility depends on the surface area of the carrier. Therefore, in developing a combustion catalyst that can be used in high-temperature combustors,
An important issue is the development of a heat-resistant catalyst carrier that retains a high surface area even at high temperatures of approximately 1000 ° C or higher. The present invention provides a novel hydrocarbon combustion catalyst that can be sufficiently used even in a high temperature combustor without the problems pointed out in the conventional combustion catalysts described above.
【0004】[0004]
【課題を解決するための手段】本発明者らは炭化水素燃
焼用触媒について鋭意研究を重ねた結果、特定の方法で
製造したアルミノシリケート触媒担体に白金族金属を担
持させて特定の温度で焼成する方法により、燃焼活性が
高く、しかも耐熱性に優れた炭化水素燃焼用触媒が得ら
れることを見い出し、本発明を完成した。すなわち、本
発明に係る炭化水素燃焼用触媒の製造方法は、炭素数2
〜20のアルミニウムアルコラートを脱イオン水で加水
分解した後にオルトケイ酸を混合するか、あるいはオル
トケイ酸を含有する脱イオン水にて前記のアルミニウム
アルコラートを加水分解し、得られた懸濁液を乾燥し
て、シリカ成分の含有量が0.5〜50重量%であるア
ルミノシリケートを調製し、このアルミノシリケートを
500〜1100℃未満の温度で焼成し、得られた触媒
担体に白金族金属を担持させ、700〜1200℃で焼
成することを特徴とする。通常の場合、アルミニウムシ
リケートは水溶性のアルミン酸アルカリ金属塩及びケイ
酸を、それぞれアルミナ源及びシリカ源に用いて調製さ
れるのが通例であるが、本発明のアルミノシリケート
は、アルミナ源として炭素数2〜20のアルミニウムア
ルコラートを使用し、シリカ源としてはオルトケイ酸を
使用する。このようなアルミノシリケートの製造法は、
特開平2−144145号公報に開示されており、その
方法によれば、アルミノシリケート中のシリカ成分の量
は、アルミニウムアルコラートと混合するオルトケイ酸
の量によって、任意に調節することができる。しかし、
本発明のアルミノシリケートにあっては、シリカ成分の
含有量は0.5〜50重量%、好ましくは5〜20重量
%の範囲にある。アルミニウムアルコラートとしては、
チグラーアルコールを合成する際に生成するところのC2
〜C20の炭素数分布を有する混合アルコラートが使用で
き、また炭素数2〜20の範囲にあるアルコールと、ア
ルミニウムとの反応から調製される種々のアルミニウム
アルコラートが使用できる。The present inventors have SUMMARY OF THE INVENTION As a result of intensive studies on a catalyst for hydrocarbon combustion, responsible platinum group metal aluminosilicate preparative catalysts carriers produced in a certain way
The inventors have found that a catalyst for burning hydrocarbons having high combustion activity and excellent heat resistance can be obtained by the method of holding and calcining at a specific temperature, and completed the present invention. That is, the method for producing a hydrocarbon combustion catalyst according to the present invention has 2 carbon atoms.
The 20 aluminum alcoholates or mixing orthosilicate after hydrolysis with deionized water, or by hydrolyzing the previous SL aluminum alcoholate of Te in deionized water containing orthosilicic acid, drying the obtained suspension to the content of the silica component is prepared aluminosilicate is from 0.5 to 50 wt%, the aluminosilicate
5 fired at 00 of less than 1100 ° C. temperature, by supporting a catalyst <br/> carrier platinum group metal thus obtained, baked at 700 to 1200 ° C.
It is characterized by performing . Usually, aluminum silicate is prepared by using water-soluble alkali metal aluminate and silicic acid as the alumina source and the silica source, respectively. However, the aluminosilicate of the present invention contains carbon as the alumina source. The number 2 to 20 of aluminum alcoholate is used, and orthosilicic acid is used as the silica source. The manufacturing method of such aluminosilicate is
Is disclosed in JP-A-2-144145, according to the method, the amount of silica component in the aluminosilicate, the amount of orthosilicic acid to be mixed with the aluminum alcoholate can be adjusted arbitrarily. But,
In the aluminosilicate of the present invention, the content of the silica component is in the range of 0.5 to 50% by weight, preferably 5 to 20% by weight. As aluminum alcoholate,
C 2 which is produced during the synthesis of Ziegler alcohol
~C mixed alcoholate can be used with a carbon number distribution of 20, also with an alcohol in the range of 2 to 20 carbon atoms, various aluminum alcoholate which is prepared from the reaction of aluminum can be used.
【0005】本発明に係る燃焼用触媒の典型的な製造法
を説明すると、まず、炭素数2〜20のアルミニウムア
ルコラート(アルミニウム含有量は0.1〜10重量
%)に、脱イオン水を添加し、60〜150℃の温度で
アルコラートを加水分解する。次いでこれに所定量のオ
ルトケイ酸(シリカ含有量0.1〜5重量%)を混合し
て懸濁液を調製し、次に、この懸濁液を300〜600
℃の温度でスプレー乾燥し、得られた乾燥粉末をそのま
ま、又は所望に応じて任意の形状、寸法に形成後、50
0〜1100℃未満、好ましくは700〜1100℃未
満、更に好ましくは700〜1000℃の温度で焼成し
て触媒担体を得る。別方として、アルミニウムアルコラ
ートの加水分解に使用する脱イオン水に、予め所定量の
オルトケイ酸を混合しておくこともできる。この場合は
勿論、アルミニウムアルコラートの加水分解後に、オル
トケイ酸を混合する場合も、そのオルトケイ酸は、イオ
ン交換装置で精製(脱イオン)されていることが好まし
い。アルミノシリケートの燃焼温度は、最終的に得られ
る燃焼用触媒の性能に重要な影響を及ぼし、その温度積
が低下し、一方、1100℃以上の場合には触媒担体と
して必要な表面積をアルミノシリケートに保持させるこ
とができない。本発明の触媒担体には、必要に応じて少
量のシリカ、マグネシア、チタニア等の耐火性無機酸化
物を含ませることができる、また、本発明の触媒担体
は、粉末として使用できるほか、押し出し品、錠剤、球
粒、顆粒、ハニカム構造等の任意の寸法を有する任意の
形状に形成することができる。A typical method for producing a combustion catalyst according to the present invention will be described. First, deionized water is added to an aluminum alcoholate having 2 to 20 carbon atoms (aluminum content is 0.1 to 10% by weight). And hydrolyze the alcoholate at a temperature of 60-150 ° C. Then, a predetermined amount of orthosilicic acid (silica content: 0.1 to 5% by weight) is mixed with this to prepare a suspension.
After spray-drying at a temperature of ℃, the dried powder obtained is formed as it is, or after being formed into any shape and size as desired, 50
0 to less than 1100 ° C , preferably 700 to 1100 ° C
The catalyst carrier is obtained by calcining at a temperature of 700 to 1000 ° C. Alternatively, the deionized water used to hydrolyze the aluminum alcoholate may be premixed with a predetermined amount of orthosilicic acid. In this case, of course, when orthosilicic acid is mixed after the hydrolysis of aluminum alcoholate, the orthosilicic acid is preferably purified (deionized) by an ion exchange device. The combustion temperature of aluminosilicate has an important influence on the performance of the finally obtained combustion catalyst, and its temperature product decreases, while at 1100 ° C or higher, the surface area required as a catalyst carrier is changed to aluminosilicate. I can't hold it. The catalyst carrier of the present invention may contain a small amount of a refractory inorganic oxide such as silica, magnesia, titania, etc., if necessary, and the catalyst carrier of the present invention can be used as a powder or extruded product. , Tablets, spheres, granules, honeycomb structures, etc. can be formed in any shape having any size.
【0006】本発明の触媒担体には次いで活性金属成分
として、白金族金属が担持される。白金族金属として
は、ルテニウム(Ru)、ロジウム(Rh)、パラジウ
ム(Pd)、オスミウム(Os)、イリジウム(I
r)、白金(Pt)の一種又は2種以上が使用できる
が、一般には、パラジウム、ロジウム、白金のいずれか
が好ましく、特にパラジウムが好ましい。触媒担体への
白金族金属の担持には、当業界で公知の方法がいずれも
採用可能であるが、白金族金属塩を含んだ水溶液に触媒
担体を浸す含浸法が好ましくは用いられる。白金族金属
としては塩化物、硝酸塩、酢酸塩等が好ましい。白金族
金属の担持量は酸化物として触媒重量(触媒担体と活性
金属の合計重量)の0.01〜20重量%が好ましく、
0.1〜10重量%が特に好ましい。白金族金属を担持
させた後は、空気中で、好ましくは温度200〜500
℃で乾燥し、更に空気中で好ましくは温度700〜12
00℃、更に好ましくは900〜1200℃の範囲で焼
成することにより本発明の燃焼用触媒を得ることができ
る。この焼成温度が700未満の場合であると、得られ
た触媒を700℃以上の温度で使用した際に、初期活性
の変動が大きく、また1200℃を超える温度で焼成し
た場合には、触媒表面が減少して担持させた活性金属成
分を凝集し、触媒活性が低下する。本発明の触媒は、各
種の炭化水素を完全酸化する際の触媒として使用するこ
とができ、特に、メタン、プロパン、ブタン、都市ガ
ス、天然ガス、灯油、軽油などの炭化水素を燃料とする
高温燃焼器の触媒として好適である。The catalyst carrier of the present invention is then loaded with a platinum group metal as an active metal component. Platinum group metals include ruthenium (Ru), rhodium (Rh), palladium (Pd), osmium (Os), iridium (I
One or two or more of r) and platinum (Pt) can be used, but in general, any one of palladium, rhodium and platinum is preferable, and palladium is particularly preferable. Any method known in the art can be used for supporting the platinum group metal on the catalyst carrier, but an impregnation method in which the catalyst carrier is immersed in an aqueous solution containing a platinum group metal salt is preferably used. As the platinum group metal, chloride, nitrate, acetate and the like are preferable. The amount of platinum group metal supported as an oxide is preferably 0.01 to 20% by weight of the catalyst weight (total weight of catalyst carrier and active metal),
0.1 to 10% by weight is particularly preferred. After supporting the platinum group metal, the temperature is preferably 200 to 500 in air.
And dried in air, preferably at a temperature of 700 to 12
The combustion catalyst of the present invention can be obtained by firing at a temperature of 00 ° C, more preferably 900 to 1200 ° C. When the calcination temperature is less than 700, when the obtained catalyst is used at a temperature of 700 ° C. or higher, the initial activity is
When the temperature is higher than 1200 ° C. , the surface of the catalyst is reduced to agglomerate the supported active metal components, and the catalytic activity is lowered. INDUSTRIAL APPLICABILITY The catalyst of the present invention can be used as a catalyst for complete oxidation of various hydrocarbons, and in particular, high temperature fueled by hydrocarbons such as methane, propane, butane, city gas, natural gas, kerosene, and light oil. It is suitable as a catalyst for a combustor.
【0007】以下、本発明を実施例により詳細に説明す
るが、本発明はこれらの実施例のみに限定されるもので
はない。
実施例―1
本発明に触媒担体材料として使用するアルミノシリケー
トは、以下のように製造される。混合アルコラート(ア
ルミニウム含量6.0wt.%)450gに脱イオン水
500gを添加し、90℃で15〜60分撹拌して加水
分解させた。この加水分解によってアルコールから分離
した水性アルミナ懸濁液に、イオン交換装置で脱イオン
処理したオルトケイ酸(シリカ含量3wt.%)190
gを混合した。得られた固体含有懸濁液を300〜60
0℃の温度で常法によりスプレー乾燥してアルミノシリ
ケート粉末を得た。組成分析の結果、このアルミノシリ
ケート中のシリカ含量は10重量%であった。スプレー
乾燥によって得た上記のアルミノシリケートを空気中7
00℃で2時間焼成した後。この焼成アルミノシリケー
ト担体を塩化パラジウム水溶液に浸してパラジウムを含
浸させ、しかる後、これを一旦乾燥させてから空気中9
00℃で2時間焼成することにより、アルミニウムシリ
ケート担体100g当り金属換算で1gのパラジウムが
担持された完成触媒Aを得た。比較例−1
アルミノシリケートの焼成温度及びパラジウム担持後の
焼成温度だけを、表1に示す通り変更した以外は実施例
―1と同様な方法で、アルミノシリケート担体100g
当り金属として1gのパラジウムが担持された完成触媒
Bを得た。比較例−2
アルミノシリケートの焼成温度及びパラジウム担持後の
焼成温度だけを、表1に示す通り変更した以外は実施例
―1と同様な方法で、アルミノシリケート担体100g
当り金属として1gのパラジウムが担持された完成触媒
Cを得た。
比較例−3
アルミノシリケートの焼成温度及びパラジウム担持後の
焼成温度だけを、表1に示す通り変更した以外は実施例
―1と同様な方法で、アルミノシリケート担体100g
当り金属として1gのパラジウムが担持された完成触媒
Dを得た。
比較例−4
従来法によりベーマイトを出発原料として調製したアル
ミナを、空気中700℃で2時間焼成し、このアルミナ
粉末を塩化パラジウム水溶液に浸してパラジウムを含浸
させ、しかる後、これを一旦乾燥させてから空気中12
00℃で2時間焼成することにより、アルミナ担体10
0g当り金属換算で1gのパラジウムが担持された完成
触媒Eを得た。
比較例−5
パラジウム担持後の焼成温度だけを表1に示す通り変更
した以外は比較例―4と同様にしてアルミナ担体100
g当り1gのパラジウムが担持された完成触媒Fを得
た。Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples. Example-1 The aluminosilicate used as the catalyst support material in the present invention is produced as follows. To 450 g of mixed alcoholate (aluminum content of 6.0 wt.%), 500 g of deionized water was added, and the mixture was hydrolyzed by stirring at 90 ° C. for 15 to 60 minutes. The aqueous alumina suspension separated from the alcohol by this hydrolysis was deionized with an ion exchange device to obtain orthosilicic acid (silica content 3 wt.%) 190
g were mixed. 300-60 solid-containing suspension obtained
Spray drying was carried out at a temperature of 0 ° C. by a conventional method to obtain an aluminosilicate powder. As a result of compositional analysis, the silica content in this aluminosilicate was 10% by weight. The above-mentioned aluminosilicate obtained by spray-drying in air 7
After firing at 00 ° C for 2 hours. The calcined aluminosilicate support is dipped in an aqueous solution of palladium chloride to impregnate it with palladium, which is then dried once and then dried in air.
By firing at 00 ° C. for 2 hours, a finished catalyst A carrying 1 g of palladium in terms of metal per 100 g of aluminum silicate support was obtained. Comparative Example-1 100 g of aluminosilicate carrier was prepared in the same manner as in Example-1, except that only the firing temperature of aluminosilicate and the firing temperature after supporting palladium were changed as shown in Table 1.
As a result, a finished catalyst B carrying 1 g of palladium as a metal was obtained. Comparative Example-2 100 g of aluminosilicate support was prepared in the same manner as in Example-1, except that only the firing temperature of aluminosilicate and the firing temperature after supporting palladium were changed as shown in Table 1.
As a result, a finished catalyst C supporting 1 g of palladium as a metal was obtained. Comparative Example- 3 Aluminosilicate support 100 g was prepared in the same manner as in Example-1, except that only the firing temperature of aluminosilicate and the firing temperature after supporting palladium were changed as shown in Table 1.
A finished catalyst D was obtained, in which 1 g of palladium was supported as a metal. Comparative Example 4 Alumina prepared using boehmite as a starting material by a conventional method was calcined in air at 700 ° C. for 2 hours, the alumina powder was dipped in an aqueous palladium chloride solution to impregnate palladium, and then dried once. 12 in the air
Alumina carrier 10 was obtained by firing at 00 ° C. for 2 hours.
A finished catalyst E supporting 1 g of palladium per metal of 0 g was obtained. Comparative Example 5 Alumina carrier 100 was prepared in the same manner as Comparative Example 4 except that only the firing temperature after supporting palladium was changed as shown in Table 1.
A finished catalyst F was obtained in which 1 g of palladium was supported per g.
【0008】上記の各実施例及び比較例で得た触媒を、
それぞれ円筒型燃焼器に0.3 g充填し、1.5 容量%のプ
ロパンを含有するプロパン/空気混合気体を1時間当り
9リッター導入し、着火温度及びプロパン転化率が50%
になる反応温度を測定することにより、各触媒のプロパ
ン燃焼活性を評価した。結果を表1に示す。尚、プロパ
ン転化率は燃焼器入口ガスのプロパン濃度と、出口ガス
のプロパン濃度との差から求めた。また、表1に示す触
媒の表面積は、各触媒から採取したサンプルを200 ℃で
乾燥後、液体窒素温度、相対圧力0.3 の条件の下での窒
素吸着量からBET1点法により算出した。
表 1
触媒 A B C D E F
担体 AS AS AS AS A A
担体焼成温度(℃) 700 1200 1200 1450 700 700
触媒焼成温度(℃) 900 900 1200 1200 1200 900
触媒表面積( m2 /g) 185 103 81 7 6 114
プロパン燃焼活性
着火温度(℃) 295 305 305 335 340 320 T50 (℃) 385 390 395 530 565 430
注)各触媒のパラジウム担持量はいずれも金属として1
wt %である。
AS=アルミノシリケ−ト(シリカ含量10wt% を示す。
A=アルミナを示す。
T50=プロパン転化率50%の温度を示す。The catalysts obtained in the above Examples and Comparative Examples were
Each cylinder combustor was filled with 0.3 g and the volume of 1.5%
Propane / air mixed gas containing lopan per hour
Introduced 9 liters, ignition temperature and propane conversion of 50%
By measuring the reaction temperature at which
The burning activity was evaluated. The results are shown in Table 1. In addition,
The conversion rate depends on the propane concentration in the combustor inlet gas and the outlet gas.
It was calculated from the difference with the propane concentration of. In addition, the touch shown in Table 1
The surface area of the medium is 200 ° C for the samples taken from each catalyst.
After drying, nitrification under the conditions of liquid nitrogen temperature and relative pressure 0.3.
It was calculated from the elementary adsorption amount by the BET one-point method.
Table 1
CatalystA B C D E F
Carrier AS AS AS AS A A
Carrier firing temperature (℃) 700 1200 1200 1450 700 700
Catalyst firing temperature (℃) 900 900 1200 1200 1200 900
Catalyst surface area (m2/ g) 185 103 81 7 6 114
Propane combustion activity
Ignition temperature (℃) 295 305 305 335 340 340 320 T50 (℃) 385 390 395 530 565 430
Note) The amount of palladium supported on each catalyst is 1 for metal
wt%.
AS = aluminosilicate (indicates silica content of 10 wt%.
A = indicates alumina.
T50 = temperature at which propane conversion is 50%.
【0009】表1から明らかな通り、本発明のアルミノ
シリケートを担体とした触媒は、従来のアルミナを担体
とした触媒に比較して、1200℃もの高温で焼成して
もな高い燃焼活性を維持し、耐熱性に優れていることが
分かる。表2は触媒C及びEについて、それぞれの焼成
条件を空気中1200℃で96時間に変更して上記と同
様な燃焼活性試験を行い、その実験結果を表1に示す実
験結果と対比したものである。
表2
触媒C 触媒E
触媒焼成温度(℃) 1200 1200 1200 1200
触媒焼成時間(hr) 2 96 2 96
触媒表面積 81 29 6 1
プロパン燃焼活性
着火温度(℃) 305 330 340 355T50 (℃) 395 430 565 610
上記表2から明らかな通り、アルミノシリケートを担体
とした触媒Cは、1200℃で96時間も焼成しても、
依然として比較的高い燃焼活性を保持しているのに対
し、従来のアルミナを担体とした触媒Eは、その燃焼活
性が著しく低下する。As is clear from Table 1, the aluminosilicate-supported catalyst of the present invention maintains a high combustion activity even when calcined at a high temperature of 1200 ° C., as compared with the conventional alumina-supported catalyst. However, it can be seen that the heat resistance is excellent. Table 2 for Catalyst C and E, respectively the firing conditions were conducted in the same manner as combustion activity test and the upper Symbol Change to 96 hours at 1200 ° C. in air, the actual <br/> shows the experimental results in Table 1 It is compared with the test results. Table 2 Catalyst C Catalyst E Catalyst calcination temperature (° C) 1200 1200 1200 1200 1200 Catalyst calcination time (hr) 2 96 2 96 Catalyst surface area 81 29 6 1 Propane combustion activation ignition temperature (° C) 305 330 330 340 355 T50 (° C) 395 430 as is clear from 565 610 top Symbol table 2, the catalyst C in which the a luminometer silicate and carrier be fired even 96 hours at 1200 ° C.,
While it still retains a relatively high combustion activity, the conventional alumina-supported catalyst E has a significantly reduced combustion activity.
【0010】[0010]
【発明の効果】本発明の燃焼用触媒は、アルミナ源とし
てアルミニウムアルコラ−トを、シリカ源としてはオル
トケイ酸を使用して得られ、高温焼成しても高表面積を
維持するアルミノシリケートを触媒担体として用いてい
る関係で、触媒層内部温度が1200℃にも達する高温燃焼
器に於いても、満足できる燃焼活性を発揮する。The combustion catalyst of the present invention is obtained by using aluminum alcoholate as an alumina source and orthosilicic acid as a silica source, and an aluminosilicate which maintains a high surface area even when it is fired at a high temperature. Due to its use as a carrier, it exhibits satisfactory combustion activity even in a high temperature combustor in which the internal temperature of the catalyst layer reaches 1200 ° C.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹内 朝光 神奈川県横浜市中区千鳥町8番地 日本 石油株式会社 中央技術研究所内 (56)参考文献 特開 平2−144145(JP,A) 特開 平3−257060(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 37/36 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Asami Takeuchi 8 Chidori-cho, Naka-ku, Yokohama-shi, Kanagawa Japan Petroleum Co., Ltd. Central Research Laboratory (56) Reference Japanese Patent Laid-Open No. 2-144145 (JP, A) Kaihei 3-257060 (JP, A) (58) Fields surveyed (Int.Cl. 7 , DB name) B01J 21/00-37/36
Claims (2)
ートを脱イオン水で加水分解した後にオルトケイ酸を混
合するか、あるいはオルトケイ酸を含有する脱イオン水
にて前記のアルミニウムアルコラートを加水分解し、得
られた懸濁液を乾燥して、シリカ成分の含有量が0.5
〜50重量%であるアルミノシリケートを調製し、この
アルミノシリケートを500〜1100℃未満の温度で
焼成し、得られた触媒担体に白金族金属を担持させ、7
00〜1200℃で焼成することを特徴とする炭化水素
の燃焼用触媒の製造方法。1. A mixing or orthosilicate aluminum alcoholate C2-20 after hydrolysis with deionized water, or the aluminum alcoholate before Symbol Te deionized water containing orthosilicic acid hydrolysis, Profit
The resulting suspension is dried to a silica content of 0.5.
The aluminosilicate is 50 wt% was prepared, this aluminosilicate was calcined at a temperature of less than 5 00~ 1100 ° C., allowed to support platinum group metal thus obtained catalyst carrier 7
A method for producing a hydrocarbon combustion catalyst , which comprises calcination at 00 to 1200 ° C.
00℃の温度で焼成することを特徴とする請求項1に記The firing according to claim 1, wherein the firing is performed at a temperature of 00 ° C.
載の炭化水素の燃焼用触媒の製造方法。A method for producing a catalyst for burning hydrocarbons as described above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35513692A JP3364254B2 (en) | 1992-12-17 | 1992-12-17 | Catalyst for combustion of hydrocarbons |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35513692A JP3364254B2 (en) | 1992-12-17 | 1992-12-17 | Catalyst for combustion of hydrocarbons |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06182200A JPH06182200A (en) | 1994-07-05 |
JP3364254B2 true JP3364254B2 (en) | 2003-01-08 |
Family
ID=18442153
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35513692A Expired - Lifetime JP3364254B2 (en) | 1992-12-17 | 1992-12-17 | Catalyst for combustion of hydrocarbons |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3364254B2 (en) |
-
1992
- 1992-12-17 JP JP35513692A patent/JP3364254B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH06182200A (en) | 1994-07-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1294268C (en) | Method of catalytic combustion using heat-resistant catalyst | |
KR100584799B1 (en) | Catalytic Material Having Improved Conversion Performance | |
US5899679A (en) | Catalytic combustion process using a plurality of successive catalytic zones | |
CA1036577A (en) | Compositions and methods for high temperature stable catalysts | |
US4088435A (en) | Method for the combustion of carbonaceous fuels utilizing high temperature stable catalysts | |
CA1037457A (en) | Compositions and methods for high temperature stable catalysts | |
US4910180A (en) | Catalyst and process for its preparation | |
US20050176580A1 (en) | Catalyst for partial oxidation of hydrocarbon, process for producing the same, process for producing hydrogen-containing gas with the use of the catalyst and method of using hydrogen-containing gas produced with the use of the catalyst | |
CA2048748A1 (en) | Catalysts | |
JPS63162043A (en) | Catalyst for cleaning exhaust gas | |
US5915951A (en) | Process for catalytic combustion of a fuel in the presence of a non-selective oxidation catalyst | |
JPH08309185A (en) | Catalyst for purifying exhaust gas and method for purification of exhaust gas | |
US3945946A (en) | Compositions and methods for high temperature stable catalysts | |
JPS63205141A (en) | Catalyst for purifying exhaust gas | |
JPS60187331A (en) | Colloid dispersion | |
JP3364254B2 (en) | Catalyst for combustion of hydrocarbons | |
KR19990035866A (en) | Catalyst supports and catalysts for use at high temperatures and catalyst methods using them | |
JP2533703B2 (en) | Catalyst for high temperature steam reforming reaction of hydrocarbon and method of using the same | |
JPH08206506A (en) | Combusting catalyst and combusting method using the catalyst | |
JPH0729055B2 (en) | Catalyst for oxidizing carbon-containing compound and method for producing the same | |
JPH0352642A (en) | Production of catalyst for combustion | |
JP4514419B2 (en) | Hydrocarbon partial oxidation catalyst, method for producing the same, and method for producing hydrogen-containing gas | |
JP3318352B2 (en) | Catalyst for combustion of hydrocarbons | |
JPH05309270A (en) | Combustion catalyst for hydrocarbon | |
JPH05309268A (en) | Catalyst for combustion of hydrocarbon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20071025 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081025 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081025 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091025 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091025 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101025 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111025 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111025 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111025 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121025 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131025 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131025 Year of fee payment: 11 |