Nothing Special   »   [go: up one dir, main page]

JP3091281B2 - Collision type air crusher - Google Patents

Collision type air crusher

Info

Publication number
JP3091281B2
JP3091281B2 JP03319632A JP31963291A JP3091281B2 JP 3091281 B2 JP3091281 B2 JP 3091281B2 JP 03319632 A JP03319632 A JP 03319632A JP 31963291 A JP31963291 A JP 31963291A JP 3091281 B2 JP3091281 B2 JP 3091281B2
Authority
JP
Japan
Prior art keywords
powder
collision
chamber
pulverizer
airflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03319632A
Other languages
Japanese (ja)
Other versions
JPH05131157A (en
Inventor
聡 三ツ村
一彦 小俣
仁志 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP03319632A priority Critical patent/JP3091281B2/en
Publication of JPH05131157A publication Critical patent/JPH05131157A/en
Application granted granted Critical
Publication of JP3091281B2 publication Critical patent/JP3091281B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Combined Means For Separation Of Solids (AREA)
  • Disintegrating Or Milling (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、気流分級機を具備した
ジェット気流(高圧気体)を用いることにより粉体原料
を微粉砕する衝突式気流粉砕装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impingement type air flow pulverizer for finely pulverizing a powder material by using a jet air flow (high-pressure gas) equipped with an air flow classifier.

【0002】[0002]

【従来の技術】ジェット気流を用いた衝突式気流粉砕機
は、一般に、ジェット気流に粉体原料を乗せ粒子混合気
流とした後、加速管の出口より噴出させ、この粒子混合
気流を加速管の出口前方に設けた衝突部材の衝突面に衝
突させて、その衝撃力により粉体原料を微粉砕するもの
である。以下その詳細について、図8及び図9に示した
従来例の衝突式気流粉砕機に基づいて説明する。従来の
衝突式気流粉砕機は、高圧気体供給ノズル21を接続し
た加速管22の出口23に対向して衝突部材24を設
け、加速管22に供給した高圧気体の流動により、加速
管22の中途に一方向から連通させた粉体原料供給口2
5より加速管22の内部に粉体原料を吸引し、これを高
圧気体と共に噴出させて衝突部材24の衝突面に衝突さ
せ、その衝撃によって粉砕するようにしたものである。
2. Description of the Related Art In general, an impingement type air flow pulverizer using a jet airflow generally mixes a powder material with a jet airflow to form a particle mixed airflow, and then ejects the mixture from an outlet of an acceleration tube. The material is made to collide with a collision surface of a collision member provided in front of the outlet, and the powder material is finely pulverized by the impact force. Hereinafter, the details thereof will be described based on the conventional collision-type airflow pulverizer shown in FIGS. 8 and 9. In the conventional collision type airflow pulverizer, a collision member 24 is provided to face an outlet 23 of an acceleration tube 22 to which a high-pressure gas supply nozzle 21 is connected. Raw material supply port 2 that is connected to the
5, the powder raw material is sucked into the accelerating tube 22 and ejected together with the high-pressure gas to collide with the collision surface of the collision member 24 and to be pulverized by the impact.

【0003】[0003]

【発明が解決しようとしている課題】しかしながら、上
記従来例では、粉体原料の供給口25が加速管22の中
途に連通して一箇所だけに設けられている為、加速管2
2内に吸引導入された粉体原料は、粉体原料の供給口2
5を通過直後に、高圧気体供給ノズル21により噴出す
る高圧気流によって、加速管出口23の方向に向かって
流路を急激に変更しながら、高圧気流中に分散し、急加
速される。この状態において、粉体原料のうち比較的粗
粒子のものは、その慣性力の影響で加速管22の低流部
を通過し、一方、比較的微粒子のものは、加速管22の
高流部を通過する為、高圧気流中に粉体原料が十分均一
に分散されない。この為、粉体原料濃度の高い流れと低
い流れとに分離したまま加速管22を出て、対向する衝
突部材24に部分的に集中して粉体原料が衝突すること
になり、粉砕効率が低下し、処理能力の低下を引き起こ
すという問題がある。更に上記従来例では、衝突部材2
4の衝突面29に衝突して粉砕された粉砕物は、粉砕室
の内壁に二次(あるいは三次)衝突して更に微粉砕され
るが、粉砕室31が箱型である為、効率的な二次衝突が
行われず、微粉砕処理能力の向上が図れないという欠点
があった。
However, in the above-mentioned prior art, since the supply port 25 for the powder raw material is provided only at one place communicating with the middle of the acceleration tube 22, the acceleration tube 2 is not provided.
The powdered raw material sucked and introduced into the inside 2 is supplied to the powder material supply port 2.
Immediately after passing through 5, the high-pressure gas stream ejected by the high-pressure gas supply nozzle 21 is dispersed in the high-pressure gas stream while rapidly changing the flow path toward the acceleration pipe outlet 23, and is rapidly accelerated. In this state, relatively coarse particles of the powder raw material pass through the low flow portion of the accelerating tube 22 under the influence of the inertial force, while relatively fine particles of the powder raw material pass through the high flow portion of the accelerating tube 22. , The powder material is not sufficiently uniformly dispersed in the high-pressure airflow. As a result, the powder material exits the accelerating tube 22 while being separated into a flow having a high powder material concentration and a flow having a low powder material concentration, and the powder material collides with the opposing collision member 24 in a partially concentrated manner. And there is a problem that the processing capacity is reduced. Further, in the above conventional example, the collision member 2
The crushed material crushed by colliding with the collision surface 29 of the No. 4 collides secondary (or tertiary) with the inner wall of the crushing chamber and is further finely crushed. However, since the crushing chamber 31 is box-shaped, it is efficient. There was a drawback that secondary collision was not performed and the pulverization processing ability could not be improved.

【0004】又、従来かかる粉砕機における衝突部材2
4の衝突面29は、粉体原料を乗せた粒子混合気流方
向、即ち、加速管22に対して、図8に示す様な直角の
もの、あるいは図9に示す様な45度に傾斜した平板状
のもの(特開昭57−50554号公報及び特開昭58
−143853号公報参照)が用いられているが、これ
らは次のような欠点があった。即ち、図8の様に、加速
管22の軸方向と垂直な衝突面29を有してる場合に
は、加速管22の出口23から吹き出される粉体原料
と、衝突面29で反射される粉砕物とが衝突面29の近
傍で共存する割合が高くなり、衝突面29の近傍での粉
体(粉体原料及び粉砕物)濃度が高くなる為、粉砕効率
が劣るという問題がある。又、図9に示した様な粉砕機
においては、衝突面30が加速管22の軸方向に対して
45度に傾斜している為に、衝突面30の近傍での粉体
濃度は図8の粉砕機と比較して低くはなるが、この場合
は、図8の粉砕機と比較して高圧気流による衝突力が分
散し、低下してしまうという問題がある。更に、図9に
示した様な粉砕機においては、粉砕室壁31への二次衝
突を有効に利用しているとはいえないという問題もあ
る。例えば、図9に示した衝突面30の角度が加速管2
2に対して45度傾斜したものでは、熱可塑性樹脂のご
とき粉体原料を微粉砕するときには問題は少ないが、衝
突する際に粉砕に要する衝撃力は小さく、更に、粉砕室
壁31との二次衝突による粉砕が少ない為、粉砕能力
は、図8の粉砕機と比較して1/2〜1/1.5程度、
粉砕能力が落ちる。
[0004] In addition, the collision member 2 in the conventional pulverizer is used.
The collision surface 29 of No. 4 is in the direction of the mixed gas flow on which the powder raw material is loaded, that is, a flat surface as shown in FIG. 8 or a flat plate inclined at 45 degrees as shown in FIG. (Japanese Patent Application Laid-Open Nos. 57-50554 and 58
-143853), but these have the following disadvantages. That is, as shown in FIG. 8, when the collision surface 29 has the collision surface 29 perpendicular to the axial direction of the acceleration tube 22, the powder raw material blown out from the outlet 23 of the acceleration tube 22 is reflected by the collision surface 29. There is a problem that the ratio of coexistence with the pulverized material near the collision surface 29 increases, and the powder (powder raw material and pulverized material) concentration near the collision surface 29 increases, resulting in poor pulverization efficiency. Further, in the pulverizer as shown in FIG. 9, since the collision surface 30 is inclined at 45 degrees with respect to the axial direction of the acceleration tube 22, the powder concentration near the collision surface 30 is reduced as shown in FIG. However, in this case, there is a problem that the impact force due to the high-pressure air flow is dispersed and reduced as compared with the crusher of FIG. Further, in the pulverizer as shown in FIG. 9, there is also a problem that the secondary collision with the pulverization chamber wall 31 cannot be effectively used. For example, the angle of the collision surface 30 shown in FIG.
In the case where the material is inclined 45 degrees with respect to 2, there is little problem when finely pulverizing a powdery raw material such as a thermoplastic resin, but the impact force required for pulverization at the time of collision is small. Since the pulverization by the next collision is small, the pulverization ability is about 1/2 to 1 / 1.5 as compared with the pulverizer of FIG.
The crushing ability drops.

【0005】上記の様な衝突式気流粉砕機に接続される
気流分級機としては、種々の分級機が提案されている
が、代表的なものとしては図10に示す様なディスパー
ジョンセパレーター(日本ニューマチック工業社製)が
一般に用いられている。その概略としては、搬送エアー
と共に粉体供給筒から導入される粉体材料が、その底部
に中央部が高い傾斜状の分級板100が設けられている
分級室150に導入され、該分級室150において、粉
体材料が粉体材料と共に流入される気流により旋回流動
され、分級ルーバー90を介して微粉と粗粉とに遠心分
離され、微粉は分級板100の中央部に設けられた微粉
排出シュート120から排出され、粗粉は分級板100
の外周部に設けらた粗粉排出口110から排出されるも
のである。しかしながら、従来のこの様な気流分級機に
は下記の様な問題がある。即ち、図10に示した様に、
この種の気流分級機の分級室150への粉体材料供給部
は、サイクロン状の形状を有しており、上部カバー60
の上面中央部に案内筒54が起立状に設けられ、案内筒
54の上部外周面に供給筒80が接続されており、且
つ、該供給筒80は、この供給筒80を介して供給され
てくる粉体材料が、案内筒54の内円周接線方向に導入
されてくる様に接続されている。従って、供給筒80よ
り案内筒54内に粉体材料を供給すると、粉体材料は案
内筒54の内周面に沿って旋回しながら下落する。この
場合に粉体材料は、供給筒80から案内筒54内周面に
沿って帯状に下落する為、分級室150に流入してくる
粉体材料の分布及び濃度は不均一となり(分級室150
へ案内筒54の内周面の一部からのみ粉体材料は流入す
る)、粉体材料の分散が悪いという問題がある。又、処
理量を大きくとると粉体材料の凝集がいっそう起こり易
く、更に分散が十分に行われなくなる為、高精度の分級
が行えないという問題がある。更に、粉体材料を搬送す
るエアー量が多い場合には、分級室150に流入するエ
アー量も多くなる為、分級室150において旋回する粒
子の中心向き速度が大きくなり分離粒子径が大きくなる
という問題点がある。そこで、通常、分離粒子径を小さ
くする方法として、案内筒54の上部に設けた筒140
でエアーをダンパーによりコントロールして抜いている
が、この際に抜くエアー量が多いと粉体材料の一部も排
出してしまい、損失するという実用上の問題点が生じる
場合もある。
Various classifiers have been proposed as an airflow classifier connected to the above-mentioned collision type airflow pulverizer. A typical example is a dispersion separator as shown in FIG. Pneumatic Industries) is generally used. In brief, the powder material introduced from the powder supply cylinder together with the conveying air is introduced into a classifying chamber 150 in which a graded plate 100 having a high central portion is provided at the bottom thereof. In the above, the powder material is swirled by an airflow flowing together with the powder material, centrifuged into fine powder and coarse powder through a classification louver 90, and the fine powder is a fine powder discharge chute provided at the center of the classification plate 100. 120, and the coarse powder is
Is discharged from a coarse powder discharge port 110 provided in the outer peripheral portion of the main body. However, such a conventional air classifier has the following problems. That is, as shown in FIG.
The powder material supply section to the classifying chamber 150 of this type of airflow classifier has a cyclone-like shape, and the upper cover 60
A guide cylinder 54 is provided upright at the center of the upper surface, and a supply cylinder 80 is connected to the upper outer peripheral surface of the guide cylinder 54, and the supply cylinder 80 is supplied through the supply cylinder 80. The incoming powder material is connected so as to be introduced in the tangential direction of the inner circumference of the guide cylinder 54. Therefore, when the powder material is supplied from the supply cylinder 80 into the guide cylinder 54, the powder material falls while rotating along the inner peripheral surface of the guide cylinder 54. In this case, since the powder material falls in a belt shape from the supply cylinder 80 along the inner peripheral surface of the guide cylinder 54, the distribution and concentration of the powder material flowing into the classification chamber 150 become uneven (the classification chamber 150).
The powder material flows only from a part of the inner peripheral surface of the guide cylinder 54), which causes a problem that the dispersion of the powder material is poor. In addition, when the processing amount is large, the aggregation of the powder material is more likely to occur, and the dispersion is not sufficiently performed, so that there is a problem that high-precision classification cannot be performed. Furthermore, when the amount of air that conveys the powder material is large, the amount of air that flows into the classifying chamber 150 also increases, so that the velocity of the particles turning in the classifying chamber 150 toward the center increases, and the diameter of the separated particles increases. There is a problem. Therefore, usually, as a method of reducing the separation particle diameter, a cylinder 140 provided above the guide cylinder 54 is used.
In this case, air is controlled by a damper to extract air. However, if the amount of air extracted at this time is large, a part of the powder material is also discharged, which may cause a practical problem of loss.

【0006】本発明の目的は、上記の様な従来技術の問
題点を解決し、高精度の気流分級機部を具備し、且つ、
粉体原料を効率よく粉砕出来る衝突式気流粉砕機部とを
具備する新規な衝突式気流粉砕装置を提供することであ
る。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned problems of the prior art, to provide a high-precision airflow classifier,
It is an object of the present invention to provide a novel collision-type airflow pulverizing apparatus including a collision-type airflow pulverizer that can efficiently pulverize a powder material.

【0007】[0007]

【課題を解決するための手段】上記の目的は、下記の本
発明により達成される。即ち、本発明は、(i)搬送エ
アーと共に粉体供給筒から導入された粉体材料が、流入
する気流により旋回流動され分級ルーバーを介して微粉
と粗粉とに遠心分離される分級室を有する気流分級機部
と、(ii)高圧気体により粉体原料を搬送加速する為の
加速管と、該加速管から噴出する粉体を衝突力により粉
砕する為の衝突面を有する衝突部材を具備する粉砕室と
を有し、且つ該衝突部材が加速管出口に対向して設けら
れている衝突式気流粉砕機部とを具備した衝突式気流粉
砕装置において、気流分級機部が、分級室の底部に設け
られた傾斜状の分級板の中央部に設けられた排出口に接
続した微粉排出シュートから微粉を排出させ、分級板の
外周部に形成された粗粉排出口から粗粉を排出させる構
造を有し、且つ、分級室の上部に粉体供給筒と連通され
た環状の案内室を設け、該案内室と分級室との間に案内
室の内円周方向の接線方向に先端を向けた複数のルーバ
ーが設けられていることを特徴とし、衝突式気流粉砕機
部が、ラバール形状を有する加速管のスロート部と加速
管出口との間に、加速管の全円周方向におよぶ粉体原料
供給口、又は複数個(n≧2)の孔からなる粉体原料供
給口が設けられ、且つ、粉砕室の断面形状が実質円形状
もしくは楕円形状であり、更に、衝突部材の後方に粉砕
物排出口が設けられていることを特徴とし、且つ、上記
気流分級機部の粗粉排出口が上記衝突式気流粉砕機部の
粉体原料供給口に連通され、更に、衝突式気流粉砕機部
の粉砕物排出口が気流分級機部の粉体供給筒に連通され
ていることを特徴とする衝突式気流粉砕装置である。
The above objects are achieved by the present invention described below. That is, the present invention provides: (i) a classifying chamber in which a powder material introduced from a powder supply cylinder together with conveying air is swirled by an inflowing air flow and centrifuged into fine powder and coarse powder through a classification louver; (Ii) an acceleration tube for conveying and accelerating the powder material by high-pressure gas, and a collision member having a collision surface for crushing the powder ejected from the acceleration tube by a collision force. And a collision-type airflow pulverizer, wherein the collision member is provided to face the acceleration tube outlet, and an impingement-type airflow pulverizer unit provided with the collision member. The fine powder is discharged from the fine powder discharge chute connected to the discharge port provided at the center of the inclined classification plate provided at the bottom, and the coarse powder is discharged from the coarse powder discharge port formed at the outer periphery of the classification plate. It has a structure and supplies powder to the upper part of the classification chamber An annular guide chamber communicated with the cylinder is provided, and a plurality of louvers each having a tip directed in a tangential direction in an inner circumferential direction of the guide chamber are provided between the guide chamber and the classifying chamber, An impingement type air current pulverizer is provided between a throat portion of the acceleration tube having a Laval shape and an outlet of the acceleration tube, and a plurality of (n ≧ 2) powder material supply ports extending in the entire circumferential direction of the acceleration tube. A powder raw material supply port comprising holes is provided, and the cross-sectional shape of the grinding chamber is substantially circular or elliptical, and further, a pulverized material discharge port is provided behind the collision member, In addition, the coarse powder discharge port of the airflow classifier section is communicated with the powder material supply port of the collision type airflow pulverizer section, and the pulverized material discharge port of the collision type airflow pulverizer section is connected to the powder of the airflow classifier section. A collision type airflow pulverizer, which is connected to a body supply cylinder.

【0008】[0008]

【作用】本発明の衝突式気流粉砕装置は、気流分級機部
と衝突式気流粉砕機部とからなり、両部分を特定の構造
とし、且つ、気流分級機部で精度よく遠心分離された粗
粉の排出口が、粉砕効率に優れた衝突式気流粉砕機部の
粉体原料供給口に連通され、更に、衝突式気流粉砕機部
の粉砕物排出口が気流分級機部の粉体供給筒に連通され
ている為、従来の衝突式気流粉砕装置に比し、非常に効
率よく、且つ高精度に粉体材料を粉砕出来る。即ち、本
発明者らは、従来の気流分級機の問題点を解決すべく鋭
意研究した結果、分級室の上部に粉体供給筒と連通する
環状の案内室を設け、該案内室と該分級室との間に案内
室の内円周方向の接線方向に先端を向けた複数のルーバ
ーを設ければ、粉体材料の分散性を向上出来、更に、高
精度の分級が行えること見出した。又、本発明者らは、
従来の衝突式気流粉砕機の問題点を解決すべく鋭意研究
した結果、ラバール形状を有する加速管のスロート部と
加速管出口との間に、加速管の全円周方向におよぶ粉体
原料供給口、又は複数個(n≧2)の粉体原料供給口を
設け、且つ、粉砕室断面形状を実質円形もしくは楕円形
状とし、更に好ましくは、加速管の中心軸が鉛直方向を
有するものとすれば、粉体材料を濃度の偏りを発生しな
い様に均一に高圧気流中に分散させることが出来、且
つ、加速管に対向する衝突部材の衝突面に均一に衝突さ
せることが出来る為、衝突の際の衝撃力により効率よく
粉体材料を粉砕出来ることを見出した。
The impingement airflow pulverizer of the present invention comprises an airflow classifier section and an impingement airflow pulverizer section, both parts having a specific structure, and a coarse centrifugally separated by the airflow classifier section with high accuracy. The discharge port of the powder is connected to the powder material supply port of the impingement type air current pulverizer with excellent grinding efficiency, and the pulverized material outlet of the impingement type air flow pulverizer is connected to the powder supply cylinder of the air flow classifier. , The powder material can be pulverized very efficiently and with high precision as compared with the conventional collision type air flow pulverizer. That is, the present inventors have conducted intensive studies to solve the problems of the conventional airflow classifier, and as a result, provided an annular guide chamber communicating with the powder supply cylinder at the upper part of the classifier, and provided the guide chamber with the classifier. It has been found that the dispersibility of the powder material can be improved and a high-precision classification can be performed by providing a plurality of louvers whose tips are directed tangentially in the inner circumferential direction of the guide chamber between the chamber and the chamber. Also, the present inventors
As a result of intensive research to solve the problems of the conventional impingement airflow pulverizer, powder material was supplied between the throat of the Laval-shaped accelerating tube and the outlet of the accelerating tube in the entire circumferential direction of the accelerating tube. Port or a plurality of (n ≧ 2) powder material supply ports, and the grinding chamber has a substantially circular or elliptical cross-sectional shape, and more preferably, the central axis of the accelerating tube has a vertical direction. For example, it is possible to uniformly disperse the powder material in the high-pressure airflow so as not to cause a bias in the concentration, and to uniformly collide with the collision surface of the collision member facing the acceleration tube. It was found that the powder material can be efficiently pulverized by the impact force at the time.

【0009】[0009]

【好ましい実施態様】以下に、本発明を添付図面に基づ
いて更に詳細に説明する。図1は、本発明の衝突式気流
粉砕装置の一実施例を示す概略断面図であり、図2は、
図1のA−A´線における断面図であり、図3は図1の
C−C´線における断面図であり、同様に図4は図1の
B−B´線における断面図であり、図5は図1のD−D
´線における断面図である。
Preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings. FIG. 1 is a schematic cross-sectional view showing one embodiment of a collision-type airflow pulverizer of the present invention, and FIG.
FIG. 3 is a cross-sectional view taken along the line AA ′ of FIG. 1, FIG. 3 is a cross-sectional view taken along the line CC ′ of FIG. 1, and FIG. 4 is a cross-sectional view taken along the line BB ′ of FIG. FIG. 5 is a cross-sectional view of FIG.
It is sectional drawing in the 'line.

【0010】本発明の衝突式気流粉砕装置は、以下に述
べる特定の構造を有する気流分級機部と衝突式気流粉砕
機部とからなることを特徴とする。先ず、本発明の衝突
式気流粉砕装置の衝突式気流粉砕機部について図1に基
づき説明する。本発明装置の衝突式気流粉砕機部は、図
1に示す様に、原料供給口1、高圧気体貯槽2、加速管
3、衝突部材4、粉砕室5及び粉砕物排出口6とから構
成される。衝突式気流粉砕機部における高圧気体の作用
を説明すると、高圧気体は、先ず高圧気体貯槽2の左右
にある入口7から入り、圧力の変動等、脈動が均一にさ
れた後、原料供給口1の中心部に設けられたラバルノズ
ル9から加速管3に流入される(図4図示)。加速管3
もラバルノズル9と同様の末広がりのラバル形状を有す
る為、加速管3に流入された高圧気体は、膨張しながら
超音速領域まで加速される。その過程で高圧気体は減圧
され、加速管3を出たところで気体の圧力は粉砕室5の
圧力と略同一になる。一方、円形もしくは楕円形状の粉
砕室5では、図3に示した図 1のC−C´線における断
面図から明らかな様に、出口部6で粉砕室5内の気体を
吸引すると、粉砕室5の内部に吸引流が発生する。そし
て、この吸引流の作用により、衝突部材4の表面は減圧
状態になる。そして、この様な衝突部材4の表面の減圧
作用により、加速管3より出た噴流は更に加速され、衝
突部材4の表面に衝突する。この時、衝突部材4の衝突
面は、頂角が110〜175度の範囲の錐体形状を有し
ている為、衝突部材4に衝突した噴流は、この円錐状部
材の頂点を中心として、衝突部材4と粉砕室5壁との間
に放射状に拡散される。この拡散された気流は、前述し
た粉砕室5内部の吸引流に乗る形で、粉砕室5の出口部
6に導かれる。
[0010] The collision-type airflow pulverizer of the present invention is characterized by comprising an airflow classifier having a specific structure described below and a collision-type airflow pulverizer. First, the collision-type airflow pulverizer of the collision-type airflow pulverizer of the present invention will be described with reference to FIG. As shown in FIG. 1, the collision type air flow crusher of the apparatus of the present invention includes a raw material supply port 1, a high pressure gas storage tank 2, an acceleration tube 3, a collision member 4, a crushing chamber 5, and a crushed material discharge port 6. You. The operation of the high-pressure gas in the impingement type air-flow crusher will be described. First, the high-pressure gas enters through the inlets 7 on the left and right sides of the high-pressure gas storage tank 2, and after pulsation such as pressure fluctuation is made uniform, the raw material supply port 1 is turned on. Flows from the Laval nozzle 9 provided at the center of the accelerating tube 3 (shown in FIG. 4). Accelerator tube 3
The high pressure gas that has flowed into the accelerating tube 3 is accelerated to the supersonic range while expanding, because it also has a flared Laval shape similar to the Laval nozzle 9. During this process, the high-pressure gas is depressurized, and the pressure of the gas at the time of exiting the acceleration tube 3 becomes substantially the same as the pressure of the pulverizing chamber 5. On the other hand, in the grinding chamber 5 having a circular or elliptical shape, as is apparent from the cross-sectional view taken along the line CC ′ of FIG. 5, a suction flow is generated. Then, the surface of the collision member 4 is reduced in pressure by the action of the suction flow. Then, by such a pressure reducing action on the surface of the collision member 4, the jet flow from the acceleration tube 3 is further accelerated and collides with the surface of the collision member 4. At this time, since the collision surface of the collision member 4 has a cone shape with a vertex angle in a range of 110 to 175 degrees, the jet colliding with the collision member 4 centers around the vertex of the conical member. It is radially diffused between the collision member 4 and the wall of the crushing chamber 5. The diffused air flow is guided to the outlet 6 of the crushing chamber 5 while riding on the suction flow in the crushing chamber 5 described above.

【0011】次に、供給される粉体原料が、衝突式気流
粉砕機部で受ける作用について説明する。被粉砕物であ
る粉体原料は、原料供給口1の上部から供給される。そ
して、供給された粉体原料は、原料供給口1の下部から
加速管3へと吸引排出される。この際の原料の吸引排出
の原理は、前述した高圧気体の加速管における膨脹減圧
によるエゼクター効果による。この時、本発明の衝突式
気流粉砕機装置の衝突式気流粉砕機部では、粉体原料を
十分に分散させて加速管3内部に吸引させる様にする為
に、ラバール形状を有する加速管3のスロート部と加速
管3の出口との間に、図2(a)に示した様な加速管3
の全円周方向におよぶ粉体原料供給口1を、又は、図2
(b)に示した様な複数個(n≧2)の孔からなる粉体
原料供給口1を設けてある為(図2(b)ではn=
4)、粉体原料は高圧気流により十分に分散され加速さ
れる。これに対し、図8及び図9に示した様な従来の衝
突式気流粉砕機では、加速管22への原料供給口25
は、加速管22の途中に連通されて一箇所だけに設けら
れており、加速管22内に吸引導入された粉体原料は、
原料供給口25を通過直後に、高圧気体供給ノズル21
にから噴出してくる高圧気流によって、加速管出口23
の方向に向かって流路を急激に変更されながら、高圧気
流中に分散し、急加速されるものである為、粉体原料濃
度の高い流れと低い流れとに分離されてしまい十分に分
散されて加速されなかった。この様にして加速管3内部
に分散されて吸引される粉体原料は、原料供給口1の中
央部に設けられているラバルノズル9から放射される高
速気流により完全に分散される。
Next, the action of the supplied powdery raw material in the impingement type air current pulverizer will be described. The powder raw material to be pulverized is supplied from above the raw material supply port 1. Then, the supplied powder raw material is sucked and discharged from the lower part of the raw material supply port 1 to the acceleration tube 3. The principle of suction and discharge of the raw material at this time is based on the ejector effect by the expansion and decompression of the high-pressure gas in the accelerating tube. At this time, in the collision type air flow pulverizer section of the collision type air flow pulverizer apparatus of the present invention, in order to sufficiently disperse the powder raw material and suck the powder raw material into the acceleration tube 3, the acceleration tube 3 having a Laval shape is used. Between the throat portion of the cylinder and the outlet of the accelerating tube 3 as shown in FIG.
The raw material supply port 1 extending in the entire circumferential direction of FIG.
As shown in FIG. 2B, a powder material supply port 1 having a plurality of holes (n ≧ 2) is provided (in FIG. 2B, n = 2).
4) The powder raw material is sufficiently dispersed and accelerated by the high-pressure airflow. On the other hand, in the conventional collision-type air-flow pulverizer as shown in FIGS.
Is provided only at one location and communicated in the middle of the accelerating tube 22, and the powder raw material sucked and introduced into the accelerating tube 22 is
Immediately after passing through the raw material supply port 25, the high pressure gas supply nozzle 21
The high-pressure airflow gushes from the
While the flow path is rapidly changed in the direction of, it is dispersed in the high-pressure air flow and is rapidly accelerated, so it is separated into a high flow and a low flow of the powder material concentration and is sufficiently dispersed. Was not accelerated. The powder raw material dispersed and sucked in the accelerating tube 3 in this manner is completely dispersed by the high-speed airflow radiated from the Laval nozzle 9 provided at the center of the raw material supply port 1.

【0012】次に、以上の様にして分散された粉体原料
は、加速管3の内部を流れる高速気流に乗って加速さ
れ、超音速固気混合流れとなる。この固気混合流れは加
速管3を出た後、固気混合噴流となり、前述の噴流と同
様の作用を受け衝突部材4に衝突する。この衝突により
原料粗粉は微粉砕される。粉砕物は次いで粉砕室5の壁
における二次衝突による微粉砕が更に行われ、場合によ
っては、粉砕物は粉砕室5の出口部6に搬送されるまで
に、粉砕室5の壁及び衝突部材4の側面との三次(及び
四次)の衝突が生じ、更に粉砕される。特に、本発明装
置の衝突式気流粉砕機部においては、粉砕室5の断面形
状が円形もしくは楕円形状を有している為、該衝突面か
ら実質上全周方向に分散された粉砕物は粉砕室内5の壁
と効率よく二次衝突を生じ、更に粉砕効率が向上され
る。又、本発明装置の衝突式気流粉砕機部の衝突部材4
の衝突面の先端部分は、頂角が110〜175度の範囲
にある錐体形状である為、例えば、原料が樹脂や粘着性
のあるものを含有する粉体である場合にも、融着、凝集
物及び粗粒子等の問題も発生しない。更に、本発明装置
の衝突式気流粉砕機部は、粉体原料を高速気流中に均一
に分散出来る為、摩耗性のある物質を含有した粉体原料
を粉砕する場合においても、加速管3の内壁や衝突部材
4の衝突面の局部的な摩耗の発生を防止出来、より安定
した運転が可能となる。
Next, the powder material dispersed as described above is accelerated by a high-speed airflow flowing inside the accelerating tube 3 and becomes a supersonic solid-gas mixed flow. After flowing out of the accelerating tube 3, this mixed gas-solid stream becomes a solid-gas mixed jet, and collides with the collision member 4 under the same action as the above jet. The raw material coarse powder is finely pulverized by this collision. The pulverized material is then further pulverized by secondary collision at the wall of the pulverizing chamber 5, and in some cases, the pulverized substance is transported to the outlet 6 of the pulverizing chamber 5 and the pulverized material by the collision member. A tertiary (and quaternary) collision with the four sides occurs and is further comminuted. In particular, in the collision-type airflow pulverizer of the apparatus of the present invention, since the cross-sectional shape of the pulverizing chamber 5 has a circular or elliptical shape, pulverized material dispersed in substantially the entire circumferential direction from the collision surface is pulverized. Secondary collision occurs efficiently with the wall of the room 5, and the crushing efficiency is further improved. Further, the collision member 4 of the collision-type airflow pulverizer of the apparatus of the present invention.
Since the tip of the collision surface has a pyramid shape with an apex angle in the range of 110 to 175 degrees, for example, even when the raw material is a powder containing a resin or a sticky material, it is fused. Also, problems such as aggregates and coarse particles do not occur. Further, since the impingement type air current pulverizer of the apparatus of the present invention can uniformly disperse the powder material in the high-speed air current, even when the powder material containing the abrasive material is pulverized, The occurrence of local wear on the inner wall and the collision surface of the collision member 4 can be prevented, and more stable operation can be performed.

【0013】次に、本発明装置のもう一つの構成部分で
ある気流分級機部について、図1に従って説明する。図
1において、41は筒状の本体ケーシング、42は下部
ケーシングを示し、42の下部には粗粉排出用のホッパ
ー43が接続されている。又、本体ケーシング41の内
部には分級室44が設けられている。この分級室44の
上部は、本体ケーシング41の上部に取付けられた環状
の案内室45と、中央部が高くなっている円錐状(傘
状)の上部カバー46とによって閉鎖されている。分級
室44と案内室45の間の仕切壁に、円周方向に配列す
る複数のルーバー47(図5に例示)を設けておき、案
内室45に、供給塔48から送り込まれてくる粉体材料
とエアーとが、該ルーバー47の間から分級室44に旋
回されて流入される様にする。尚、案内室45の中を流
動するエアーと粉体材料とを、各ルーバー47間に均一
に分配させることが、精度よく分級させる為には必要で
ある。又、ルーバー47へ到達するまでの流路として
は、遠心力による濃縮が起こりにくい形状にする必要が
ある。図1の例では分級室44の水平面に対して垂直な
上方向に供給筒48を接続させているが、これに限定さ
れるものではない。この様にして、本発明装置に用いる
気流分級機部では、ルーバー47を介してエアーと粉体
材料とが分級室44へ供給される為、分級室44へ供給
される際にエアーと粉体材料とは従来の方式より著しい
分散の向上が達成される。又、ルーバー間隔は任意に調
整出来る。
Next, an airflow classifier which is another component of the apparatus of the present invention will be described with reference to FIG. In FIG. 1, reference numeral 41 denotes a cylindrical main body casing, reference numeral 42 denotes a lower casing, and a hopper 43 for discharging coarse powder is connected to a lower portion of 42. A classifying chamber 44 is provided inside the main body casing 41. The upper part of the classifying chamber 44 is closed by an annular guide chamber 45 attached to the upper part of the main body casing 41 and a conical (umbrella-shaped) upper cover 46 having a raised central part. A plurality of louvers 47 (illustrated in FIG. 5) arranged in the circumferential direction are provided on a partition wall between the classifying chamber 44 and the guide chamber 45, and the powder fed from the supply tower 48 into the guide chamber 45 is provided. The material and air are swirled into the classifying chamber 44 from between the louvers 47 and flow therethrough. Note that it is necessary to distribute the air and the powder material flowing in the guide chamber 45 evenly between the louvers 47 in order to accurately classify them. Further, the flow path to reach the louver 47 needs to have a shape in which concentration by centrifugal force is difficult to occur. In the example of FIG. 1, the supply cylinder 48 is connected in an upward direction perpendicular to the horizontal plane of the classification chamber 44, but the invention is not limited to this. In this way, in the airflow classifier used in the apparatus of the present invention, the air and the powder material are supplied to the classification chamber 44 via the louver 47. Significant dispersion enhancement is achieved with the material over conventional approaches. Further, the louver interval can be arbitrarily adjusted.

【0014】又、本発明装置に用いる気流分級機部で
は、本体ケーシング41の下部にも円周方向に配列する
分級ルーバー49を設け、外部から分級室44へ旋回流
を起こす為の分級エアーを分級ルーバー49を介して取
り入れている。分級室44の底部には、中央部が高くな
った円錐状(傘状)の分級板50を設け、該分級板50
の外周囲に粗粉排出口51を形成する。又、分級板50
の中央部には微粉排出口に接続した微粉排出シュート5
2を設け、該微粉排出シュート52の下端部をL字形に
屈曲させ、この屈曲端部を下部ケーシング42の側壁よ
り外部に位置させる様にする。更に、微粉排出シュート
52はサイクロンや集塵機の様な微粉回収手段を介して
吸引ファンに接続されており(図示なし)、該吸引ファ
ンにより分級室44に吸引力を作用させて、該ルーバー
49の間より分級室44に流入する吸引エアーによっ
て、分級に要する旋回流を起こしている。本発明装置に
用いられる気流分級機部は、上記の様な構造を有する
為、粉体材料を供給筒48から案内筒45にエアーと供
に供給すると、この粉体材料を含むエアーは、案内室4
5へと各ルーバー47の間を通過して、分級室44へと
旋回しながら均一の濃度で分散しながら流入される。分
級室44内に旋回しながら流入された粉体材料は、次
に、微粉排出シュート52に接続した吸引ファンにより
発生する、分級室44の下部にある分級ルーバー49の
間より流入する吸引エアー流に乗って更に旋回を増し、
各粒子に作用する遠心力によって粗粉と微粉とに効率よ
く遠心分離される。この時、分級室44内の外周部を旋
回する粗粉は、粗粉排出口51より排出されて、下部の
ホッパー43から排出される。又、分級板50の上部傾
斜面に沿って中心部へと移行する微粉は、微粉排出シュ
ート52から微粉回収手段(図示なし)へと排出され
る。本発明装置に用いられる気流分級機部では、分級室
44に粉体材料と共に流入されるエアーは、全て旋回流
となって流入する為、分級室44内で旋回する粒子の中
心向きの速度は、遠心力に比べ相対的に小さくなり、分
級室44において分離粒子径の小さな分級が行われ、粒
子径の非常に小さな微粉を微粉排出シュート52に排出
させることが出来る。しかも、粉体材料が、略均一な濃
度で分級室44に流入されてくる為、精緻な分布の微粉
体を得ることが出来る。
Further, in the airflow classifier used in the apparatus of the present invention, a classification louver 49 arranged in the circumferential direction is also provided at a lower portion of the main body casing 41, and classification air for generating a swirling flow from the outside to the classification chamber 44 is supplied. Introduced via classification louvers 49. At the bottom of the classifying chamber 44, a conical (umbrella-shaped) classifying plate 50 having a raised central portion is provided.
A coarse powder discharge port 51 is formed around the outside. Also, the classifying plate 50
In the center of the fine powder discharge chute 5 connected to the fine powder discharge port
2, the lower end of the fine powder discharge chute 52 is bent into an L-shape, and the bent end is positioned outside the side wall of the lower casing 42. Further, the fine powder discharge chute 52 is connected to a suction fan (not shown) via fine powder collecting means such as a cyclone or a dust collector, and applies a suction force to the classifying chamber 44 by the suction fan to generate the louver 49. The swirling flow required for classification is caused by the suction air flowing into the classification chamber 44 from between. Since the airflow classifier used in the apparatus of the present invention has the above-described structure, when the powder material is supplied from the supply cylinder 48 to the guide cylinder 45 together with air, the air containing the powder material is guided. Room 4
5 and between the louvers 47, and is swirled into the classification chamber 44 while being dispersed at a uniform concentration. The powdered material swirled into the classifying chamber 44 is then generated by a suction fan connected to the fine powder discharge chute 52, and the suction air flow flowing from between the classifying louvers 49 at the lower part of the classifying chamber 44. To get more turns,
The particles are efficiently centrifuged into coarse powder and fine powder by the centrifugal force acting on each particle. At this time, the coarse powder turning around the outer periphery of the classification chamber 44 is discharged from the coarse powder discharge port 51 and discharged from the lower hopper 43. The fine powder moving to the center along the upper inclined surface of the classification plate 50 is discharged from the fine powder discharge chute 52 to fine powder collecting means (not shown). In the airflow classifier used in the apparatus of the present invention, all the air flowing into the classification chamber 44 together with the powder material flows in the form of a swirling flow. The separation is relatively small compared to the centrifugal force, and the classification is performed with a small separation particle diameter in the classification chamber 44, so that the fine powder having a very small particle diameter can be discharged to the fine powder discharge chute 52. In addition, since the powder material flows into the classification chamber 44 at a substantially uniform concentration, fine powder having a fine distribution can be obtained.

【0015】本発明の衝突式気流粉砕装置は、以上説明
した様な衝突式気流粉砕機部と気流分級機部とを図1に
示す様に連結させたものである。即ち、気流分級機部の
粗粉排出口51を衝突式気流粉砕機部の被粉砕物供給口
1に連結させ、且つ、衝突式気流粉砕機部の粉砕物排出
口6を気流分級機部の粉体供給筒48に連結させること
により、衝突式気流粉砕機部で効率よく粉砕された粉砕
物が気流分級機部に導入され、粒子径の非常に小さな、
しかも精緻な分布の微粉体のみが微粉排出シュート52
から回収され、それ以外の粗粉は、衝突式気流粉砕機部
に再度導入されて再粉砕され、粒子径の非常に小さな、
しかも精緻な分布の微粉体となるまで繰り返し粉砕が続
けられる。尚、本発明の衝突式気流粉砕装置において、
粉砕用原料は、適宜の導入手段により図1の原料導入口
53から導入される。
The impingement type air flow pulverizer of the present invention comprises the above-described impingement type air flow pulverizer and an air flow classifier connected as shown in FIG. That is, the coarse powder discharge port 51 of the airflow classifier section is connected to the pulverized material supply port 1 of the collision type airflow pulverizer section, and the pulverized substance discharge port 6 of the collision type airflow pulverizer section is connected to the airflow classifier section. By being connected to the powder supply cylinder 48, the pulverized material efficiently pulverized by the collision type air flow pulverizer is introduced into the air flow classifier, and the particle size is extremely small.
Moreover, only the fine powder having a fine distribution
, And the other coarse powder is re-introduced into the impingement airflow pulverizer and re-pulverized, and has a very small particle size.
In addition, grinding is repeated until a fine powder having a fine distribution is obtained. Incidentally, in the collision type airflow pulverizer of the present invention,
The raw material for pulverization is introduced from the raw material introduction port 53 of FIG. 1 by an appropriate introduction means.

【0016】[0016]

【発明の効果】以上の様に、本発明の衝突式気流粉砕装
置の衝突式気流粉砕機部は、従来のそれに比べ、加速管
への原料供給方法が工夫されている為、被粉砕物はより
強く分散され、加速されて粉砕室へと導入される。更
に、粉砕室の背圧が低いことから、被粉砕物をより速く
衝突部材に衝突させることが可能である。これらの結
果、粉砕効率を向上させることが可能となる。又、本発
明の衝突式気流粉砕装置の衝突式気流粉砕機部は、粉砕
室形状の工夫や被粉砕物の強分散による粉塵濃度の低下
により、衝突部材ならびに加速管と粉砕室における被粉
砕室の融着や磨耗も、従来の衝突式気流粉砕機に比べ大
幅に低減されて、安定稼働させることが出来る。又、本
発明の衝突式気流粉砕装置の気流分級機部では、分級室
において分離粒子径の小さな分級が行われ、粒子径の非
常に小さな、しかも精緻な分布の微粉体を得ることが出
来る。従って、本発明の衝突式気流粉砕装置は、効率よ
く粉体原料の粉砕が出来、粉砕された微粉体の回収も精
度よく出来る。
As described above, the collision type air flow pulverizer of the collision type air flow pulverizer of the present invention has a more devised method of supplying the raw material to the acceleration tube than the conventional one, so that the material to be ground is It is more strongly dispersed, accelerated and introduced into the grinding chamber. Further, since the back pressure of the crushing chamber is low, it is possible to cause the crushed object to collide with the collision member more quickly. As a result, it is possible to improve the pulverization efficiency. In addition, the collision type airflow pulverizer of the collision type airflow pulverizer of the present invention is designed to reduce the dust concentration by devising the shape of the pulverization chamber and by strongly dispersing the pulverized material. Fusing and abrasion are greatly reduced as compared with the conventional collision type airflow pulverizer, and stable operation can be achieved. Further, in the airflow classifier of the collision type airflow pulverizer according to the present invention, classification with a small separation particle size is performed in a classification chamber, and a fine powder having a very small particle size and a fine distribution can be obtained. Therefore, the collision-type airflow pulverizer of the present invention can efficiently pulverize the powder raw material, and can accurately recover the pulverized fine powder.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の衝突式気流粉砕装置の概略断面図。FIG. 1 is a schematic cross-sectional view of a collision type airflow pulverizer of the present invention.

【図2】(a)は、原料供給口が加速管の全円周方向に
およぶ場合の例の、図1におけるA−A´線の断面図で
ある。(b)は、原料供給口がn=4個の孔からなる場
合の例の、図1におけるA−A´線の断面図である。
FIG. 2A is a cross-sectional view taken along line AA ′ in FIG. 1 in a case where a raw material supply port extends in the entire circumferential direction of an acceleration tube. FIG. 2B is a cross-sectional view taken along the line AA ′ in FIG. 1 in an example in which the raw material supply port includes n = 4 holes.

【図3】図1のC−C´断面図である。FIG. 3 is a sectional view taken along the line CC ′ of FIG. 1;

【図4】図1のB−B´断面図である。FIG. 4 is a sectional view taken along line BB ′ of FIG. 1;

【図5】図1のD−D´断面図である。FIG. 5 is a sectional view taken along line DD ′ of FIG. 1;

【図6】衝突部材4の変形例を示す投影図である。FIG. 6 is a projection view showing a modification of the collision member 4.

【図7】衝突部材4の別の変形例を示す投影図である。FIG. 7 is a projection view showing another modification of the collision member 4.

【図8】従来の衝突式気流粉砕機を示す概略図である。FIG. 8 is a schematic view showing a conventional collision type airflow pulverizer.

【図9】従来の衝突式気流粉砕機を示す概略図である。FIG. 9 is a schematic view showing a conventional collision type airflow pulverizer.

【図10】従来の気流分級機を示す概略図である。FIG. 10 is a schematic view showing a conventional airflow classifier.

【符号の説明】[Explanation of symbols]

1、25:粉体原料供給口 2:高圧気体貯槽 3、22:加速管 4、24、28:衝突部材 5、26、31:粉砕室 6、27:粉砕室出口 7:高圧気体入口 8:高圧気体連絡通路 9:ラバルノズル 21:高圧気体供給ノズル 23:加速管出口 29、30:衝突面 41、101:分級機本体ケーシング 42、70:分級機下部ケーシング 43:粗粉排出ホッパー 44、150:分級室 45:案内室 46、60:上部カバー 47、49、90:ルーバー 48、80:供給筒 50、100:分級板 51、110:粗粉排出口 52、120:微粉排出シート 53:原料導入部 54:案内筒 130:粗粉排出ホッパー 140:案内筒上部 1, 25: powder material supply port 2: high pressure gas storage tank 3, 22: acceleration tube 4, 24, 28: collision member 5, 26, 31: crushing chamber 6, 27: crushing chamber outlet 7: high pressure gas inlet 8: High-pressure gas communication passage 9: Laval nozzle 21: high-pressure gas supply nozzle 23: acceleration pipe outlet 29, 30: collision surface 41, 101: classifier main body casing 42, 70: classifier lower casing 43: coarse powder discharge hopper 44, 150: Classification room 45: Guide room 46, 60: Upper cover 47, 49, 90: Louver 48, 80: Supply cylinder 50, 100: Classification plate 51, 110: Coarse powder discharge port 52, 120: Fine powder discharge sheet 53: Raw material introduction Part 54: guide cylinder 130: coarse powder discharge hopper 140: upper part of guide cylinder

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭54−117971(JP,A) 特開 平3−206466(JP,A) 特開 平1−254266(JP,A) (58)調査した分野(Int.Cl.7,DB名) B02C 19/00 B02C 19/06 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-54-117971 (JP, A) JP-A-3-206466 (JP, A) JP-A-1-254266 (JP, A) (58) Survey Field (Int. Cl. 7 , DB name) B02C 19/00 B02C 19/06

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 (i)搬送エアーと共に粉体供給筒から
導入された粉体材料が、流入する気流により旋回流動さ
れ分級ルーバーを介して微粉と粗粉とに遠心分離される
分級室を有する気流分級機部と、(ii)高圧気体により
粉体原料を搬送加速する為の加速管と、該加速管から噴
出する粉体を衝突力により粉砕する為の衝突面を有する
衝突部材を具備する粉砕室とを有し、且つ該衝突部材が
加速管出口に対向して設けられている衝突式気流粉砕機
部とを具備した衝突式気流粉砕装置において、気流分級
機部が、分級室の底部に設けられた傾斜状の分級板の中
央部に設けられた排出口に接続した微粉排出シュートか
ら微粉を排出させ、分級板の外周部に形成された粗粉排
出口から粗粉を排出させる構造を有し、且つ、分級室の
上部に粉体供給筒と連通された環状の案内室を設け、該
案内室と分級室との間に案内室の内円周方向の接線方向
に先端を向けた複数のルーバーが設けられていることを
特徴とし、衝突式気流粉砕機部が、ラバール形状を有す
る加速管のスロート部と加速管出口との間に、加速管の
全円周方向におよぶ粉体原料供給口、又は複数個(n≧
2)の孔からなる粉体原料供給口が設けられ、且つ、粉
砕室の断面形状が実質円形状もしくは楕円形状であり、
更に、衝突部材の後方に粉砕物排出口が設けられている
ことを特徴とし、且つ、上記気流分級機部の粗粉排出口
が上記衝突式気流粉砕機部の粉体原料供給口に連通さ
れ、更に、衝突式気流粉砕機部の粉砕物排出口が気流分
級機部の粉体供給筒に連通されていることを特徴とする
衝突式気流粉砕装置。
(1 ) A classifying chamber is provided in which a powder material introduced from a powder supply cylinder together with conveying air is swirled by an incoming air flow and centrifugally separated into fine powder and coarse powder via a classification louver. It has a air classifier unit, the impact surface for crushing by the impact force the powder ejected from the accelerating tube and, the pressurized-speed tube for conveying accelerate the powder material by (ii) a high pressure gas
A crushing chamber equipped with a collision member , and a collision-type airflow crusher comprising: a collision-type airflow crusher section in which the collision member is provided to face an acceleration tube outlet; The fine powder is discharged from the fine powder discharge chute connected to the discharge port provided at the center of the inclined classification plate provided at the bottom of the classification chamber, and the coarse powder is discharged from the coarse powder discharge port formed at the outer periphery of the classification plate. An annular guide chamber having a structure for discharging the powder and communicating with the powder supply cylinder at an upper part of the classifying chamber, and a tangent line between the guide chamber and the classifying chamber in an inner circumferential direction of the guide chamber; Characterized in that a plurality of louvers with the tip directed in the direction are provided, and the impingement type air flow pulverizer section is provided between the throat portion of the acceleration tube having a Laval shape and the exit of the acceleration tube. Powder material supply ports extending in the circumferential direction, or multiple (n ≧
2) a powder material supply port comprising a hole is provided, and the cross-sectional shape of the grinding chamber is substantially circular or elliptical;
Further, a pulverized material discharge port is provided behind the collision member, and a coarse powder discharge port of the airflow classifier section is communicated with a powder material supply port of the collision type airflow pulverizer section. And a pulverized material discharge port of the impingement type airflow pulverizer section is connected to a powder supply cylinder of the airflow classifier section.
【請求項2】 加速管の中心軸が鉛直方向である請求項
1に記載の衝突式気流粉砕装置。
2. The impingement type airflow pulverizer according to claim 1, wherein the central axis of the acceleration tube is vertical.
【請求項3】 衝突部材の衝突面の先端部分の形状が、
頂角が110〜175度の範囲にある錐体形状である請
求項1に記載の衝突式気流粉砕装置。
3. The shape of the tip of the collision surface of the collision member is
The collision-type airflow pulverizer according to claim 1, wherein the collision-type airflow pulverizer has a cone shape having a vertex angle in a range of 110 to 175 degrees.
JP03319632A 1991-11-08 1991-11-08 Collision type air crusher Expired - Fee Related JP3091281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03319632A JP3091281B2 (en) 1991-11-08 1991-11-08 Collision type air crusher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03319632A JP3091281B2 (en) 1991-11-08 1991-11-08 Collision type air crusher

Publications (2)

Publication Number Publication Date
JPH05131157A JPH05131157A (en) 1993-05-28
JP3091281B2 true JP3091281B2 (en) 2000-09-25

Family

ID=18112463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03319632A Expired - Fee Related JP3091281B2 (en) 1991-11-08 1991-11-08 Collision type air crusher

Country Status (1)

Country Link
JP (1) JP3091281B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108906289B (en) * 2018-08-01 2023-05-23 西安科技大学 Composite superfine powder jet mill with self material as jet medium
CN117680242B (en) * 2024-02-01 2024-05-24 新乡市大北农农牧有限责任公司 Multifunctional automatic feed grinder

Also Published As

Publication number Publication date
JPH05131157A (en) 1993-05-28

Similar Documents

Publication Publication Date Title
US6951312B2 (en) Particle entraining eductor-spike nozzle device for a fluidized bed jet mill
US6789756B2 (en) Vortex mill for controlled milling of particulate solids
JPH05309287A (en) Impingement type pneumatic pulverizing machine and production of electrostatic charge developing toner
KR910004253A (en) Impingement air pulverizer and pulverization method
JP3845214B2 (en) Classifier and rectifier
JP3091281B2 (en) Collision type air crusher
JP3185065B2 (en) Collision type air crusher
JP3091289B2 (en) Collision type air crusher
JP3108820B2 (en) Collision type air crusher
JP2967304B2 (en) Classification crusher
JP3114040B2 (en) Collision type air crusher
JPS58143853A (en) Supersonic jet mill
JP2942405B2 (en) Collision type air crusher
JPH07132241A (en) Pulverizer
JPH0523611A (en) Collision type pneumatic grander
JPH07185383A (en) Circulation type pulverizing and classifying machine
JP3016402B2 (en) Collision type air crusher
JPH01207152A (en) Gaseous flow classifier
JPH0534977A (en) Production of electrostatic charge image developing toner
JP2811621B2 (en) Method and apparatus for supplying raw material powder to airflow classifier
JPH04326953A (en) Impact type pneumatic grinder
JPH08182936A (en) Impact pneumatic pulverizer and production of toner for electrostatic charge image development by using the same
JP2733488B2 (en) Jet air flow type powder crusher
JPH01207178A (en) Pneumatic classifying machine
JP3101786B2 (en) Collision type air crusher

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees