JP3091151B2 - Manufacturing method of integrated photovoltaic device - Google Patents
Manufacturing method of integrated photovoltaic deviceInfo
- Publication number
- JP3091151B2 JP3091151B2 JP09012139A JP1213997A JP3091151B2 JP 3091151 B2 JP3091151 B2 JP 3091151B2 JP 09012139 A JP09012139 A JP 09012139A JP 1213997 A JP1213997 A JP 1213997A JP 3091151 B2 JP3091151 B2 JP 3091151B2
- Authority
- JP
- Japan
- Prior art keywords
- transparent conductive
- photovoltaic device
- conductive film
- semiconductor layer
- amorphous semiconductor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Description
【0001】[0001]
【発明の属する技術分野】この発明は、非晶質半導体を
用いた集積型光起電力装置の製造方法に関する。The present invention relates to a method for manufacturing an integrated photovoltaic device using an amorphous semiconductor.
【0002】[0002]
【従来の技術】近年、非晶質シリコン(a−Si)系半
導体を光活性層に用いた光起電力装置が色々な用途に使
用されている。これは一枚の基板上に多数の光電変換素
子をカスケード接続することにより、高電圧を取り出さ
れるようにした集積型a−Si光起電力装置の開発に負
うところが大きい。2. Description of the Related Art In recent years, photovoltaic devices using an amorphous silicon (a-Si) semiconductor as a photoactive layer have been used for various purposes. This largely depends on the development of an integrated a-Si photovoltaic device that can take out a high voltage by cascading a large number of photoelectric conversion elements on one substrate.
【0003】一般的なa−Si光起電力装置は、ガラス
基板の上に透明導電膜、p型、i型、n型a−Si膜、
裏面金属電極膜をこの順序で積層して形成される。そし
て、集積型a−Si光起電力装置は、全体として1枚の
基板から高い電圧を取り出すように、多数の光電変換素
子をカスケード接続している。A general a-Si photovoltaic device comprises a transparent conductive film, a p-type, i-type, and n-type a-Si film on a glass substrate.
The back metal electrode film is formed by laminating in this order. In the integrated a-Si photovoltaic device, a large number of photoelectric conversion elements are connected in cascade so that a high voltage is taken out from one substrate as a whole.
【0004】集積型構造を形成するためには、ガラス基
板上の透明導電膜、a−Si膜、金属電極膜を分離する
必要がある。各々の膜の分離の方法としては、主にレー
ザを用いたレーザパターニング法が用いられている(例
えば、特公平4−64473号公報参照)。In order to form an integrated structure, it is necessary to separate a transparent conductive film, an a-Si film, and a metal electrode film on a glass substrate. As a method of separating each film, a laser patterning method using a laser is mainly used (for example, see Japanese Patent Publication No. 4-64473).
【0005】従来のレーザパターニング法を用いた集積
型光起電力装置の製造方法につき図2に従い説明する。
図2は、従来の集積型光起電力装置の製造方法を工程別
に示す要部拡大断面図であって、2つの光電変換素子を
電気的に直列接続する隣接間隔部を中心に示している。A method of manufacturing an integrated photovoltaic device using a conventional laser patterning method will be described with reference to FIG.
FIG. 2 is an enlarged cross-sectional view of a main part showing a conventional method of manufacturing an integrated photovoltaic device for each process, and mainly shows an adjacent space where two photoelectric conversion elements are electrically connected in series.
【0006】ガラスなどの絶縁性透光性基板1の一主面
上にITOやSnO2などからなる透明導電膜2を形成
し、例えば、レーザビームの照射により透明導電膜2を
任意の段数に短冊状に分割する(図2(a)参照)。そ
して、この分割された透明導電膜2上に内部にpin接
合を有するa−Si膜からなる非晶質半導体層3を堆積
する(図2(b)参照)。A transparent conductive film 2 made of ITO, SnO 2 or the like is formed on one main surface of an insulative light-transmitting substrate 1 made of glass or the like. It is divided into strips (see FIG. 2A). Then, an amorphous semiconductor layer 3 made of an a-Si film having a pin junction inside is deposited on the divided transparent conductive film 2 (see FIG. 2B).
【0007】その後、基板1の他主面側から、透明導電
膜2の分割ラインに沿って、この分割ラインと重ならな
いようにしてレーザビームを照射し、非晶質半導体層3
内の水素を急激に放出させ、この水素の放出により非晶
質半導体層を除去して、非晶質半導体層3を分割する
(図2(c)参照)。After that, a laser beam is irradiated from the other main surface side of the substrate 1 along the dividing line of the transparent conductive film 2 so as not to overlap with the dividing line, thereby forming the amorphous semiconductor layer 3.
The hydrogen in the inside is rapidly released, the amorphous semiconductor layer is removed by the release of the hydrogen, and the amorphous semiconductor layer 3 is divided (see FIG. 2C).
【0008】続いて、非晶質半導体層3上にアルミニウ
ムなどの裏面金属電極膜4を形成して、透明導電膜2と
裏面金属電極膜4とを接続する(図2(d)参照)。そ
の後、透明導電膜2及び非晶質半導体層3の分割ライン
に沿って、両分割ラインと重ならないようにして、基板
1の他主面側からレーザビームを照射し、非晶質半導体
層3内の水素を急激に放出させて、非晶質半導体層及び
その上の裏面金属電極膜を除去し、隣接するセル間を分
離する(図2(e)参照)。Subsequently, a back metal electrode film 4 of aluminum or the like is formed on the amorphous semiconductor layer 3, and the transparent conductive film 2 and the back metal electrode film 4 are connected (see FIG. 2D). Thereafter, a laser beam is irradiated from the other main surface side of the substrate 1 along the dividing line of the transparent conductive film 2 and the amorphous semiconductor layer 3 so as not to overlap with both dividing lines. The hydrogen in the cell is rapidly released to remove the amorphous semiconductor layer and the back metal electrode film thereon, thereby separating adjacent cells (see FIG. 2E).
【0009】[0009]
【発明が解決しようとする課題】ところで、光劣化対策
や変換効率向上に伴う非晶質半導体層の膜厚の最適化及
びナローバンドギャップ材料を用いた積層型光起電力装
置の開発が進むにつれ、非晶質半導体層の薄膜化が進ん
でいる。By the way, as the film thickness of the amorphous semiconductor layer is optimized and the development of a stacked photovoltaic device using a narrow band gap material is advanced with the countermeasures against light deterioration and the improvement of the conversion efficiency, Amorphous semiconductor layers are becoming thinner.
【0010】非晶質半導体層の薄膜化に伴い、裏面金属
電極のパターニングの際に、非晶質半導体層内の水素の
絶対量が不足し、裏面金属電極膜が完全に除去されない
という問題があった。特に、非晶質半導体層の膜厚が3
000Å以下になると、非晶質半導体層内の水素の絶対
量の不足による加工不良が顕著になり、十分な特性を得
ることができないという問題があった。[0010] With the thinning of the amorphous semiconductor layer, the absolute amount of hydrogen in the amorphous semiconductor layer becomes insufficient when patterning the back metal electrode, and the back metal electrode film is not completely removed. there were. In particular, when the thickness of the amorphous semiconductor layer is 3
If the temperature is less than 000 °, processing defects due to shortage of the absolute amount of hydrogen in the amorphous semiconductor layer become remarkable, and there is a problem that sufficient characteristics cannot be obtained.
【0011】この発明は、上述した従来の問題点に鑑み
なされたものにして、非晶質半導体層が薄膜化しても、
裏面金属電極膜の加工不良の発生を防止する集積型光起
電力装置の製造方法を提供することをその目的とする。The present invention has been made in consideration of the above-mentioned conventional problems, and has been made in consideration of the above circumstances.
An object of the present invention is to provide a method of manufacturing an integrated photovoltaic device that prevents the occurrence of processing defects of a back metal electrode film.
【0012】[0012]
【課題を解決するための手段】この発明の集積型光起電
力装置の製造方法は、透光性基板の一主面上に、透明導
電膜、非晶質半導体層及び裏面金属電極膜をこの順序で
形成した集積型光起電力装置の製造方法であって、加工
領域の透明導電膜の少なくとも一部を非晶質化し、この
加工領域に透光性基板の他主面側からレーザビームを照
射し、加工領域上の非晶質半導体層及び裏面金属電極膜
を除去することを特徴とする。According to a method of manufacturing an integrated photovoltaic device of the present invention, a transparent conductive film, an amorphous semiconductor layer and a back metal electrode film are formed on one main surface of a light transmitting substrate. A method of manufacturing an integrated type photovoltaic device formed in order, wherein at least a part of a transparent conductive film in a processing region is made amorphous, and a laser beam is applied to the processing region from the other main surface side of the light-transmitting substrate. Irradiation is performed to remove the amorphous semiconductor layer and the back metal electrode film on the processing region.
【0013】前記透明導電膜の表面にイオンを注入する
ことにより、透明導電膜表面を非晶質化するように構成
することができる。By injecting ions into the surface of the transparent conductive film, the surface of the transparent conductive film can be made amorphous.
【0014】上記方法により、非晶質半導体層の水素の
放出と共に、透明導電膜の元素も放出され、非晶質半導
体層の水素の絶対量の不足を非晶質化された透明導電膜
中の元素で補うことができ、裏面金属電極膜を確実に除
去することができる。According to the above method, the element of the transparent conductive film is also released together with the release of hydrogen from the amorphous semiconductor layer. Element, and the back metal electrode film can be reliably removed.
【0015】[0015]
【発明の実施の形態】以下、この発明の実施の形態に係
るレーザパターニング法を用いた集積型光起電力装置の
製造方法につき図1に従い説明する。この発明の実施の
形態は、非晶質半導体層として、a−Siとa−SiG
eを多層化したいわゆるタンデム構造の集積型光起電力
装置に適用したものである。図1は、この発明の集積型
光起電力装置の製造方法を工程別に示す要部拡大断面図
であって、2つの光電変換素子を電気的に直列接続する
隣接間隔部を中心に示している。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A method of manufacturing an integrated photovoltaic device using a laser patterning method according to an embodiment of the present invention will be described below with reference to FIG. In the embodiment of the present invention, a-Si and a-SiG are used as amorphous semiconductor layers.
This is applied to a so-called tandem-structure integrated photovoltaic device in which e is multilayered. FIG. 1 is an enlarged cross-sectional view of a main part showing a method of manufacturing an integrated photovoltaic device according to the present invention for each step, and mainly shows an adjacent space where two photoelectric conversion elements are electrically connected in series. .
【0016】ガラスからなる絶縁性透光性基板1の一主
面上に膜厚0.2から1μm、この実施の形態では約1
μmの膜厚のSnO2からなる透明導電膜2を熱CVD
法などにより形成する。その後、例えば、レーザビーム
の照射により透明導電膜2を任意の段数に短冊状に分割
する。そして、裏面金属電極加工部5に位置する箇所の
透明導電膜を非晶質化し、非晶質領域2aを形成する
(図1(a)参照)。On one main surface of the insulating translucent substrate 1 made of glass, a film thickness of 0.2 to 1 μm, in this embodiment about 1 μm.
The transparent conductive film 2 made of SnO 2 having a thickness of μm is formed by thermal CVD.
It is formed by a method or the like. Thereafter, for example, the transparent conductive film 2 is divided into strips in an arbitrary number of steps by laser beam irradiation. Then, the transparent conductive film at the position located on the rear surface metal electrode processing portion 5 is made amorphous to form an amorphous region 2a (see FIG. 1A).
【0017】この非晶質化領域2aは、この実施の形態
においては、Sn+イオンを注入することにより形成し
た。Sn+イオンを加速電圧50keV、温度300
℃、ドーズ量2×1015cm-2にの注入条件でイオン注
入することにより、深さ約0.2μmの非晶質化領域2
aが形成された。In this embodiment, the amorphous region 2a is formed by implanting Sn + ions. Sn + ions are accelerated at a voltage of 50 keV and a temperature of 300.
The amorphous region 2 having a depth of about 0.2 μm is formed by ion implantation at a temperature of 2 ° C. and a dose amount of 2 × 10 15 cm −2.
a was formed.
【0018】尚、非晶質化領域2aの形成は、透明導電
膜2を分割した後、または分割する前のいずれで行って
もよい。The formation of the amorphized region 2a may be performed after the transparent conductive film 2 is divided or before the division.
【0019】そして、非晶質化領域2aが形成された透
明導電膜2上に内部にpin接合を有するa−Si膜と
a−SiGeとを積層したトータル膜厚が0.3から
0.5μm程度の非晶質半導体層3を堆積する(図1
(b)参照)。この実施の形態においては、トータル膜
厚が約0.3μmの非晶質半導体層3をプラズマCVD
法により形成した。The total thickness of the a-Si film having a pin junction and a-SiGe laminated on the transparent conductive film 2 having the amorphized region 2a formed thereon is 0.3 to 0.5 μm. A degree of amorphous semiconductor layer 3 is deposited (FIG. 1).
(B)). In this embodiment, an amorphous semiconductor layer 3 having a total thickness of about 0.3 μm is formed by plasma CVD.
It was formed by a method.
【0020】その後、基板1の他主面側から、透明導電
膜2の分割ラインに沿って、この分割ラインと重ならな
いようにしてレーザビームを照射し、非晶質半導体層3
内の水素を急激に放出させ、この水素の放出により非晶
質半導体層を除去して、非晶質半導体層3を分割する
(図1(c)参照)。Thereafter, a laser beam is irradiated from the other main surface side of the substrate 1 along the division line of the transparent conductive film 2 so as not to overlap with the division line, and the amorphous semiconductor layer 3 is irradiated.
The hydrogen in the inside is rapidly released, and the release of the hydrogen removes the amorphous semiconductor layer to divide the amorphous semiconductor layer 3 (see FIG. 1C).
【0021】なお、このレーザパターニングの際、非晶
質半導体層3中の水素の絶対量が不足して、非晶質半導
体層3の分離が十分でなくても、透明導電膜2の一部が
露出していれば、次の工程で形成される裏面金属電極膜
4との電気的接続が行えるので、問題にはならない。In this laser patterning, even if the absolute amount of hydrogen in the amorphous semiconductor layer 3 is insufficient and the separation of the amorphous semiconductor layer 3 is not sufficient, a part of the transparent conductive film 2 can be formed. Is exposed, there is no problem because electrical connection with the back metal electrode film 4 formed in the next step can be made.
【0022】続いて、非晶質半導体層3上にアルミニウ
ムなどの膜厚約0.5μmの裏面金属電極膜4をスパッ
タ法により形成して、透明導電膜2と裏面金属電極膜4
とを接続する(図1(d)参照)。Subsequently, a back metal electrode film 4 made of aluminum or the like and having a thickness of about 0.5 μm is formed on the amorphous semiconductor layer 3 by sputtering, so that the transparent conductive film 2 and the back metal electrode film 4 are formed.
(See FIG. 1D).
【0023】その後、透明導電膜2及びa−Si膜3の
分割ラインに沿って、基板1の他主面側から裏面金属電
極加工部5部分、即ち、非晶質化領域2a部分にレーザ
ビームを照射し、非晶質半導体層3内の水素及び非晶質
化領域2a中の酸素(O)を急激に放出させて、非晶質
半導体層及びその上の裏面金属電極膜を除去し、隣接す
るセル間を分離する(図1(e)参照)。Thereafter, along the dividing line of the transparent conductive film 2 and the a-Si film 3, the laser beam is applied from the other main surface side of the substrate 1 to the back metal electrode processing portion 5, that is, to the amorphous region 2 a. To rapidly release hydrogen in the amorphous semiconductor layer 3 and oxygen (O) in the amorphized region 2a to remove the amorphous semiconductor layer and the back metal electrode film thereon. The adjacent cells are separated (see FIG. 1E).
【0024】上記のように、通常多結晶であるSnO2
膜の一部を非晶質化して、非晶質化領域2aを設けるこ
とにより、結合力の弱い部分が形成され、SnO2中に
含まれる酸素の放出が容易になる。その結果、この非晶
質化領域2aをレーザビームで照射することにより、酸
素が放出され、非晶質半導体層3中の水素の不足量を補
い裏面金属電極膜4を確実に分離できる。As described above, SnO 2, which is usually polycrystalline,
By amorphizing a part of the film and providing the amorphized region 2a, a portion having a weak bonding force is formed, and the release of oxygen contained in SnO 2 becomes easy. As a result, by irradiating the amorphous region 2a with a laser beam, oxygen is released, and the shortage of hydrogen in the amorphous semiconductor layer 3 is compensated for, whereby the back metal electrode film 4 can be reliably separated.
【0025】次に、従来の集積型光起電力装置とこの発
明の集積型光起電力装置における裏面金属電極膜のパタ
ーニングの評価を行うため、10cm角12段の集積型
a−Si/a−SiGeタンデム構造の光起電力装置を
作成し、それぞれの各段の低照度Voc測定(1万ルク
ス蛍光灯下にて測定)を行った。そのときのVoc測定
結果を表1に出力特性を表2に示す。Next, in order to evaluate the patterning of the back metal electrode film in the conventional integrated photovoltaic device and the integrated photovoltaic device of the present invention, a 10 cm square, 12-stage integrated a-Si / a- A photovoltaic device having a SiGe tandem structure was prepared, and low-intensity Voc measurement (measured under a 10,000-lux fluorescent lamp) of each stage was performed. Table 1 shows the Voc measurement results at that time, and Table 2 shows the output characteristics.
【0026】尚、本発明による光起電力装置は、上記の
製造方法により作成し、従来の光起電力装置は透明導電
膜に非晶質化領域を形成しない以外は本発明と同じ条件
で作成した。The photovoltaic device according to the present invention is manufactured by the above-described manufacturing method, and the conventional photovoltaic device is manufactured under the same conditions as those of the present invention except that an amorphous region is not formed in the transparent conductive film. did.
【0027】[0027]
【表1】 (単位:mV)[Table 1] (Unit: mV)
【0028】[0028]
【表2】 [Table 2]
【0029】ここで、Vocは開放電圧、Iscは短絡
電流、F.F.は曲線因子、Pmaxは出力である。ま
た、セル面積は10cm角、照射光はAM1.5、10
0mW/cm2である。Here, Voc is an open circuit voltage, Isc is a short circuit current, and F.C. F. Is the fill factor and Pmax is the output. The cell area was 10 cm square, and the irradiation light was AM 1.5, 10
0 mW / cm 2 .
【0030】上記表1及び2から明らかなように、本発
明方法により作成した集積型光起電力装置は、従来の方
法により作成した光起電力装置と比較して非晶質半導体
層の薄膜化による裏面金属電極膜の加工不良が低減され
ることにより、低照度Vocが向上し、良好な出力特性
が得られた。As is apparent from Tables 1 and 2, the integrated photovoltaic device manufactured by the method of the present invention has a thinner amorphous semiconductor layer than the photovoltaic device manufactured by the conventional method. As a result, low illuminance Voc was improved, and good output characteristics were obtained.
【0031】上記した実施の形態においては、透明導電
膜の非晶質化の方法として、Sn+イオンによるイオン
注入を用いたが、他のイオン種(例えば、Si+イオ
ン)を用いたり、レーザビームを照射して瞬時に加熱冷
却する表面急冷法を用いることも可能である。In the above-described embodiment, as the method for amorphizing the transparent conductive film, ion implantation using Sn + ions is used. However, other ion species (for example, Si + ions) may be used, or a laser may be used. It is also possible to use a surface quenching method of instantaneously heating and cooling by irradiating a beam.
【0032】また、SnO2にHe、Ne、Ar等の希
ガス元素のイオンを注入することで、非晶質化領域を形
成し、これらの希ガス元素をレーザビームの照射により
放出させることで非晶質半導体層中の水素の不足分を補
い、裏面金属電極膜の分離を確実に行うことも可能であ
る。。Further, by implanting ions of rare gas elements such as He, Ne, and Ar into SnO 2 , an amorphous region is formed, and these rare gas elements are emitted by laser beam irradiation. It is also possible to compensate for the shortage of hydrogen in the amorphous semiconductor layer and to reliably separate the back metal electrode film. .
【0033】[0033]
【発明の効果】以上説明したように、この発明によれ
ば、透明導電膜の非晶質化された領域から放出される元
素により、薄膜化された非晶質半導体層中の水素の不足
分が補われるので、確実に裏面金属電極膜を加工するこ
とができ、集積型光起電力装置の出力特性を改善するこ
とができる。As described above, according to the present invention, a shortage of hydrogen in a thinned amorphous semiconductor layer is caused by an element released from an amorphous region of a transparent conductive film. Is compensated, the back metal electrode film can be processed reliably, and the output characteristics of the integrated photovoltaic device can be improved.
【図1】この発明の集積型光起電力装置の製造方法を工
程別に示す要部拡大断面図である。FIG. 1 is an enlarged sectional view of a main part showing a method of manufacturing an integrated photovoltaic device according to the present invention in each step.
【図2】従来の集積型光起電力装置の製造方法を工程別
に示す要部拡大断面図である。FIG. 2 is an enlarged sectional view of a main part showing a method of manufacturing a conventional integrated photovoltaic device for each process.
1 基板 2 透明導電膜 2a 非晶質化領域 3 非晶質半導体層 4 裏面金属電極 DESCRIPTION OF SYMBOLS 1 Substrate 2 Transparent conductive film 2a Amorphous region 3 Amorphous semiconductor layer 4 Back metal electrode
フロントページの続き (56)参考文献 特開 平6−151914(JP,A) 特開 平3−79085(JP,A) 特開 昭63−211685(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 31/04 - 31/078 Continuation of front page (56) References JP-A-6-151914 (JP, A) JP-A-3-79085 (JP, A) JP-A-63-121685 (JP, A) (58) Fields investigated (Int .Cl. 7 , DB name) H01L 31/04-31/078
Claims (2)
非晶質半導体層及び裏面金属電極膜をこの順序で形成し
た集積型光起電力装置の製造方法であって、加工領域の
透明導電膜の少なくとも一部を非晶質化し、この加工領
域に透光性基板の他主面側からレーザビームを照射し、
加工領域上の非晶質半導体層及び裏面金属電極膜を除去
することを特徴とする集積型光起電力装置の製造方法。1. A transparent conductive film on one main surface of a translucent substrate,
A method of manufacturing an integrated photovoltaic device in which an amorphous semiconductor layer and a backside metal electrode film are formed in this order, wherein at least a part of a transparent conductive film in a processing region is made amorphous and the transparent conductive film is formed in the processing region. Irradiate the laser beam from the other main surface side of the optical substrate,
A method of manufacturing an integrated photovoltaic device, comprising removing an amorphous semiconductor layer and a back metal electrode film on a processing region.
ることにより、透明導電膜表面を非晶質化することを特
徴とする請求項1に記載の集積型光起電力装置の製造方
法。2. The method of manufacturing an integrated photovoltaic device according to claim 1, wherein the surface of the transparent conductive film is made amorphous by implanting ions into the surface of the transparent conductive film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09012139A JP3091151B2 (en) | 1997-01-27 | 1997-01-27 | Manufacturing method of integrated photovoltaic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP09012139A JP3091151B2 (en) | 1997-01-27 | 1997-01-27 | Manufacturing method of integrated photovoltaic device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH10209475A JPH10209475A (en) | 1998-08-07 |
JP3091151B2 true JP3091151B2 (en) | 2000-09-25 |
Family
ID=11797189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP09012139A Expired - Fee Related JP3091151B2 (en) | 1997-01-27 | 1997-01-27 | Manufacturing method of integrated photovoltaic device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3091151B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4931439B2 (en) * | 2006-03-01 | 2012-05-16 | 三洋電機株式会社 | Thin-film solar cell and method for manufacturing the thin-film solar cell |
GB2439962B (en) * | 2006-06-14 | 2008-09-24 | Exitech Ltd | Process and apparatus for laser scribing |
GB0622232D0 (en) | 2006-11-08 | 2006-12-20 | Rumsby Philip T | Method and apparatus for laser beam alignment for solar panel scribing |
GB0802289D0 (en) * | 2008-02-07 | 2008-03-12 | Rumsby Philip T | Method and appartus for making a partially transparent solar panel |
GB2474665B (en) | 2009-10-22 | 2011-10-12 | M Solv Ltd | Method and apparatus for dividing thin film device into separate cells |
US8865569B2 (en) | 2009-10-22 | 2014-10-21 | M-Solv Ltd. | Method and apparatus for dividing thin film device into separate cells |
GB2483922B (en) | 2010-09-25 | 2013-11-20 | M Solv Ltd | Method and apparatus for dividing thin film device into separate cells |
GB2492971B (en) | 2011-07-15 | 2013-09-18 | M Solv Ltd | Method and apparatus for dividing thin film device into separate cells |
-
1997
- 1997-01-27 JP JP09012139A patent/JP3091151B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH10209475A (en) | 1998-08-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1870944B1 (en) | Optoelectric conversion element and its manufacturing method, and optoelectric conversion module using same | |
US4532371A (en) | Series-connected photovoltaic array and method of making same | |
US20060266409A1 (en) | Method of fabricating a thin-film solar cell, and thin-film solar cell | |
JPH0472392B2 (en) | ||
WO1993023880A1 (en) | Monolithic, parallel connected photovoltaic array and method for its manufacture | |
CN117374169B (en) | Preparation method of back contact solar cell and back contact solar cell | |
JP3091151B2 (en) | Manufacturing method of integrated photovoltaic device | |
JP2001274447A (en) | Method of manufacturing integrated thin film solar battery | |
JP2000049369A (en) | Thin-film solar battery module | |
JP2808004B2 (en) | Solar cell | |
JP4171166B2 (en) | Photovoltaic device and manufacturing method thereof | |
JPH0494174A (en) | Compound thin film solar cell and its production | |
US6239474B1 (en) | Integration type photovoltaic apparatus and method of fabricating the same | |
JP4127994B2 (en) | Photovoltaic device manufacturing method | |
JP2002280580A (en) | Integrated photovoltaic device and manufacturing method therefor | |
JP2006222384A (en) | Integrated thin film solar battery and its manufacturing method | |
JP3400041B2 (en) | Photovoltaic element and method for manufacturing the same | |
EP0215482B1 (en) | Solar battery and method of manufacture | |
JP4201457B2 (en) | Manufacturing method of integrated photovoltaic device | |
US20230215967A1 (en) | Method for thermally activating a passivation layer | |
JPS59220978A (en) | Manufacture of photovoltaic device | |
JP4131622B2 (en) | Integrated photovoltaic device and method for manufacturing the same | |
JP4052782B2 (en) | Integrated photovoltaic device and method for manufacturing the same | |
JP2000049371A (en) | Photovoltaic device and its manufacture | |
JP3358164B2 (en) | Method for manufacturing photovoltaic device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080721 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |