Nothing Special   »   [go: up one dir, main page]

JP3050885B2 - Non-aqueous solvent secondary battery and method of manufacturing the same - Google Patents

Non-aqueous solvent secondary battery and method of manufacturing the same

Info

Publication number
JP3050885B2
JP3050885B2 JP1245256A JP24525689A JP3050885B2 JP 3050885 B2 JP3050885 B2 JP 3050885B2 JP 1245256 A JP1245256 A JP 1245256A JP 24525689 A JP24525689 A JP 24525689A JP 3050885 B2 JP3050885 B2 JP 3050885B2
Authority
JP
Japan
Prior art keywords
positive electrode
aqueous solvent
secondary battery
active material
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1245256A
Other languages
Japanese (ja)
Other versions
JPH03108261A (en
Inventor
修司 山田
隆久 大崎
圀昭 稲田
等 土山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP1245256A priority Critical patent/JP3050885B2/en
Publication of JPH03108261A publication Critical patent/JPH03108261A/en
Application granted granted Critical
Publication of JP3050885B2 publication Critical patent/JP3050885B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、非水溶媒二次電池及びその製造方法に関
し、特に正極活物質を改良した非水溶媒二次電池及びそ
の製造方法に係わるものである。
The present invention relates to a non-aqueous solvent secondary battery and a method for producing the same, and more particularly, to a non-aqueous solvent secondary battery having an improved positive electrode active material and a non-aqueous solvent secondary battery. It relates to a manufacturing method.

(従来の技術) 近年、負極活物質としてリチウム、ナトリウム、アル
ミニウム等の軽金属を用いた非水溶媒電池は高エネルギ
ー密度電池として注目されており、正極活物質に二酸化
マンガン(MnO2)、フッ化炭素[(CF)]、塩化チオ
ニル(SOCl2)等を用いた一次電池は既に電卓、時計の
電池やメモリのバックアップ電池として多用されてい
る。更に、近年、VTR、通信機器等の各種の電子機器の
小形、軽量化に伴い、それらの電源として高エネルギー
密度の二次電池の要求が高まり、軽金属を負極活物質と
する非水溶媒二次電池の研究が活発に行われている。
(Prior art) In recent years, non-aqueous solvent batteries using light metals such as lithium, sodium, and aluminum as the negative electrode active material have attracted attention as high energy density batteries, and manganese dioxide (MnO 2 ), fluorinated Primary batteries using carbon [(CF) n ], thionyl chloride (SOCl 2 ), and the like have already been widely used as calculators, clock batteries, and memory backup batteries. Furthermore, in recent years, with the miniaturization and weight reduction of various electronic devices such as VTRs and communication devices, demands for secondary batteries having a high energy density as a power source for these devices have increased, and non-aqueous solvent secondary batteries using a light metal as a negative electrode active material have been required. Battery research is being actively conducted.

非水溶媒二次電池は、負極にリチウム、ナトリウム、
アルミニウム等の軽金属を用い、電解液として炭酸プロ
ピレン(PC)、1,2−ジメトキシエタン(DME)、γ−ブ
チロラクトン(γ−BL)、テトラヒドロフラン(THF)
などの非水溶媒中にLiClO4、LiBF4、LiAsF6、LiPF6等の
電解質を溶解したものから構成され、正極活物質として
は主にTiS2、MoS2、V2O5、V6O13等のが研究されてい
る。
Non-aqueous solvent secondary batteries have lithium, sodium,
A light metal such as aluminum is used, and propylene carbonate (PC), 1,2-dimethoxyethane (DME), γ-butyrolactone (γ-BL), tetrahydrofuran (THF) is used as an electrolyte.
It is composed of an electrolyte such as LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 dissolved in a non-aqueous solvent such as TiS 2 , MoS 2 , V 2 O 5 , V 6 O as a positive electrode active material. Thirteen magnitudes have been studied.

一方、非水溶媒一次電池に用いられているMnO2は、低
コストであるという利点から、このMnO2を二次電池の正
極活物質として用いることが考えられ、中でもスピネル
構造をとるLiMn2O4は充放電の可逆性を有することがMat
Res..Bull.,vol.18,pp461−472(1983)に報告されてい
る。
On the other hand, MnO 2 used in the non-aqueous solvent primary battery, the advantage of low cost, it is considered to use this MnO 2 as a positive electrode active material for a secondary battery, LiMn 2 O take inter alia spinel structure 4 Mat have a reversibility of charge and discharge
Res. Bull., Vol. 18, pp 461-472 (1983).

上述したLiMn2O4を正極活物質として用いた二次電池
では、浅い深度の充放電ではサイクル寿命特性が良好で
あるが、深い深度の充放電ではサイクル寿命特性が劣る
という問題があった。また、大電流放電では活物質の利
用率が著しく低下する問題があった。
The above-described secondary battery using LiMn 2 O 4 as a positive electrode active material has a problem that the cycle life characteristics are good when charging and discharging at a shallow depth, but the cycle life characteristics are poor when charging and discharging at a deep depth. In addition, there is a problem that the utilization rate of the active material is significantly reduced in the large current discharge.

(発明が解決しようとする課題) 本発明は、上記従来の課題を解決するためになされた
もので、充放電特性及び大電流放電特性の優れた非水溶
媒二次電池及びその製造方法を提供しようとするもので
ある。
(Problems to be Solved by the Invention) The present invention has been made to solve the above-mentioned conventional problems, and provides a non-aqueous solvent secondary battery having excellent charge / discharge characteristics and large current discharge characteristics, and a method for manufacturing the same. What you want to do.

[発明の構成] (課題を解決するための手段) 本発明は、リチウム、リチウム合金または充放電時に
リチウムイオンを吸蔵・放出する化合物を含む負極と、
正極活物質を含む正極と、非水溶媒中に電解質を溶解し
た電解液とを備えた非水溶媒二次電池において、 前記正極活物質は、下記一般式(1)で表される組成
を有する化合物であることを特徴とする非水溶媒二次電
池である。
[Constitution of the Invention] (Means for Solving the Problems) The present invention provides a negative electrode containing lithium, a lithium alloy, or a compound capable of inserting and extracting lithium ions during charge and discharge,
In a non-aqueous solvent secondary battery including a positive electrode including a positive electrode active material and an electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent, the positive electrode active material has a composition represented by the following general formula (1). A non-aqueous solvent secondary battery, which is a compound.

LixMyMnzO4 …(1) ただし、前記(1)式において、MはMg、Ca、Cdであ
り、x、y及びzはそれぞれ0.85≦x≦1.05、0.05≦y
≦0.3、1.7≦z≦2を示す。
Li x M y Mn z O 4 ... (1) However, in the equation (1), M is Mg, Ca, a Cd, x, y and z respectively 0.85 ≦ x ≦ 1.05,0.05 ≦ y
≦ 0.3, 1.7 ≦ z ≦ 2.

また、本発明は、リチウム、リチウム合金または充放
電時にリチウムイオンを吸蔵・放出する化合物を含む負
極と、正極活物質を含む正極と、非水溶媒中に電解質を
溶解した電解液とを備えた非水溶媒二次電池の製造方法
において、 前記正極活物質は、マンガン酸化物と、リチウム塩
と、Mg、CaまたはCdの塩との混合物に熱処理を施すこと
により作製される下記一般式(1)で表される組成のも
のであることを特徴とする非水溶媒二次電池の製造方法
である。
Further, the present invention includes: a negative electrode including lithium, a lithium alloy or a compound which inserts and releases lithium ions during charge and discharge, a positive electrode including a positive electrode active material, and an electrolytic solution obtained by dissolving an electrolyte in a non-aqueous solvent. In the method for producing a nonaqueous solvent secondary battery, the positive electrode active material is prepared by subjecting a mixture of a manganese oxide, a lithium salt, and a salt of Mg, Ca, or Cd to a heat treatment. A method for producing a non-aqueous solvent secondary battery characterized by having a composition represented by the following formula:

LixMyMnzO4 …(1) ただし、前記(1)式において、MはMg、Ca、Cdであ
り、x、y及びzはそれぞれ0.85≦x≦1.05、0.05≦y
≦0.3、1.7≦z≦2を示す。
Li x M y Mn z O 4 ... (1) However, in the equation (1), M is Mg, Ca, a Cd, x, y and z respectively 0.85 ≦ x ≦ 1.05,0.05 ≦ y
≦ 0.3, 1.7 ≦ z ≦ 2.

前記製造方法において、前記マンガン酸化物として
は、例えば、MnO2、Mn2O3等を挙げることができる。前
記リチウム塩としては、例えば、酸化リチウム(Li
2O)、炭酸リチウム(Li2CO3)、硝酸リチウム(LiN
O3)、ハロゲン化リチウム等を挙げることができる。ま
た、Mg、CaまたはCdの塩としては、例えば、Mg、Caまた
はCdの酸化物、炭酸化物、硝酸化物またはハロゲン化物
等を挙げることができる。
In the manufacturing method, examples of the manganese oxide include MnO 2 and Mn 2 O 3 . As the lithium salt, for example, lithium oxide (Li
2 O), lithium carbonate (Li 2 CO 3 ), lithium nitrate (LiN
O 3 ) and lithium halide. Examples of the Mg, Ca or Cd salt include oxides, carbonates, nitrates and halides of Mg, Ca or Cd.

前記負極は、例えば、リチウム、LiAl、LiPb、LiSn、
LiBi等のリチウム合金、ポリアセタール、ポリアセチレ
ン、ポリピロールなどの導電性高分子、有機焼結体から
なる炭素材等から構成することができる。
The negative electrode is, for example, lithium, LiAl, LiPb, LiSn,
It can be composed of a lithium alloy such as LiBi, a conductive polymer such as polyacetal, polyacetylene, or polypyrrole, or a carbon material made of an organic sintered body.

上記正極活物質を構成するLiMn2O4及び2価金属イオ
ン(Mg,Ca,Cd)の比率は、LiMn2O4に2価金属イオンを
添加した時の夫々の成分量比を表わす次式の範囲とする
ことが望ましい。
The ratio of LiMn 2 O 4 and the divalent metal ion (Mg, Ca, Cd) constituting the positive electrode active material is represented by the following equation, which represents the respective component ratios when the divalent metal ion is added to LiMn 2 O 4. It is desirable to be within the range.

LixMyMnzO4 但し、式中のM;2価金属イオン、x+y+Z=3、0.8
5≦x≦1.05、0.05≦y≦0.3、1.7≦z≦2を示す。こ
のようなx、y、zの値が上記範囲を逸脱すると、大電
流放電特性の優れた電池を得ることが困難となる。特
に、2価金属イオンの添加量を多くすると、LiMn2O4
ピネル構造の格子に取り込まれない2価金属イオンが増
加し、正極活物質中に占めるLiMn2O4の絶対量が低下し
て放電容量を低下させる。
Li x M y Mn z O 4 where, M in the formula; divalent metal ions, x + y + Z = 3,0.8
5 ≦ x ≦ 1.05, 0.05 ≦ y ≦ 0.3, 1.7 ≦ z ≦ 2. If the values of x, y, and z deviate from the above ranges, it becomes difficult to obtain a battery having excellent large current discharge characteristics. In particular, when the amount of added divalent metal ions is increased, the amount of divalent metal ions not taken into the lattice of the LiMn 2 O 4 spinel structure increases, and the absolute amount of LiMn 2 O 4 occupying in the positive electrode active material decreases. Decreases discharge capacity.

上記正極としては、例えば正極活物質である前記一般
式(1)で表される組成を有する化合物の粉末に導電
材、結着剤と共に成形してペレット状にしたもの、前記
一般式(1)で表される組成を有する化合物の粉末に導
電材、結着剤と共に混練、シート化したシート状物、又
は前記一般式(1)で表される組成を有する化合物の粉
末、導電材及び結着剤を適当な溶媒に懸濁し、これを集
電体に塗布、乾燥して膜状としたもの等を挙げることが
できる。前記導電材としては、例えばアセチレンブラッ
ク、カーボンブラック、黒鉛等、結着剤としてはポリテ
トラフルオロエチレン等を用いることができる。また、
前記導電材及び結着剤は前記正極活物質に対して夫々5
〜20重量%、2〜7重量の範囲にすることが望ましい。
As the positive electrode, for example, a powder of a compound having a composition represented by the general formula (1), which is a positive electrode active material, formed into a pellet shape together with a conductive material and a binder, and the general formula (1) A sheet-like material kneaded and formed into a sheet of a compound having a composition represented by the formula (1) together with a conductive material and a binder, or a powder of a compound having a composition represented by the general formula (1), a conductive material and a binder The agent may be suspended in an appropriate solvent, applied to a current collector and dried to form a film. As the conductive material, for example, acetylene black, carbon black, graphite or the like can be used, and as the binder, polytetrafluoroethylene or the like can be used. Also,
The conductive material and the binder are 5 to the positive electrode active material, respectively.
-20% by weight, 2-7% by weight.

上記電解液を構成する非水溶媒としては、例えばエチ
レンカーボネート、2−メチルテトラヒドロフラン、1,
2−ジメトキシエタン、ジエトキシエタン、1,3−ジオキ
ソラン、1,3−ジメトキシプロパンから選ばれる1種又
は2種以上の混合物を挙げることができる。また、同電
解液を構成する電解質としては、例えばLiBF4、LiPF6
LiClO4、LiAsF6、LiCF3SO3、LiAlCl4から選ばれる1種
又は2種以上のリチウム塩を用いることができる。かか
るリチウム塩は、前記非水溶媒中に0.5〜1.5モル/溶
解させることが望ましい。
Examples of the non-aqueous solvent constituting the electrolytic solution include ethylene carbonate, 2-methyltetrahydrofuran,
Examples thereof include one or a mixture of two or more selected from 2-dimethoxyethane, diethoxyethane, 1,3-dioxolan, and 1,3-dimethoxypropane. Examples of the electrolyte constituting the electrolyte include LiBF 4 , LiPF 6 ,
One or more lithium salts selected from LiClO 4 , LiAsF 6 , LiCF 3 SO 3 , and LiAlCl 4 can be used. It is desirable that the lithium salt is dissolved in the nonaqueous solvent in an amount of 0.5 to 1.5 mol / mol.

(作 用) 本発明によれば、前述した一般式(1)で表される組
成を有する化合物を正極活物質として用いることによ
り、LiMn2O4スピネル構造に欠陥を生じさせ、充放電時
において負極のリチウムイオンの正極への拡散を容易に
する。従って、充放電寿命特性及び大電流放電特性優れ
た非水溶媒二次電池を得ることができる。
(Operation) According to the present invention, by using a compound having the composition represented by the above-described general formula (1) as a positive electrode active material, a defect is generated in the LiMn 2 O 4 spinel structure, and during charge and discharge, It facilitates diffusion of lithium ions from the negative electrode to the positive electrode. Therefore, a non-aqueous solvent secondary battery having excellent charge / discharge life characteristics and high current discharge characteristics can be obtained.

(実施例) 以下、本発明を円筒形非水溶媒二次電池に適用した例
について第1図を参照して詳細に説明する。
(Example) Hereinafter, an example in which the present invention is applied to a cylindrical non-aqueous solvent secondary battery will be described in detail with reference to FIG.

実施例1 図中の1は、底部に絶縁体2が配置された有底円筒状
のステンレス容器である。この容器1内には、電極群3
が収納されている。この電極群3は、正極4、セパレー
タ5及び負極6をこの順序で積層した帯状物を該負極6
が外側に位置するように渦巻き状に巻回した構造になっ
ている。前記正極4は、次のような方法により作製した
ものを用い、前記セパレータ5はポリプロピレン性多孔
質フィルムからなるものを、前記負極6は帯状リチウム
箔からなるものをそれぞれ用いた。
Example 1 In the figure, reference numeral 1 denotes a bottomed cylindrical stainless steel container in which an insulator 2 is disposed at the bottom. In the container 1, an electrode group 3
Is stored. The electrode group 3 is formed by laminating a positive electrode 4, a separator 5 and a negative electrode 6 in this order on the negative electrode 6.
Is spirally wound so that is located outside. The positive electrode 4 was prepared by the following method, the separator 5 was formed of a polypropylene porous film, and the negative electrode 6 was formed of a band-shaped lithium foil.

まず、三二酸化マンガン(Mn2O3)と炭酸リチウム(L
i2CO3)と塩基性炭酸マグネシウム〔3MgCO3・Mg(OH)
・3H2O〕とをLixMgyMnzO4で表わされるx、y、zが
下記第1表及び第2表に示す組成比となるように配合
し、乳鉢で十分に混合した後、空気中、850℃で24時間
熱処理した。得られた各生成物をX線回折測定したとこ
ろ、LiMn2O4相が存在することが確認された。つづい
て、前記Mgイオンが添加された各LiMn2O4粉末80重量%
をアセチレンブラック15重量%及びポリテトラフルオロ
エチレン粉末5重量%と共に混合し、シート化し、エキ
スパンドメタル集電体に圧着することによって幅40mm長
さ200mmの帯状正極を作製した。
First, manganese trioxide (Mn 2 O 3 ) and lithium carbonate (L
i 2 CO 3 ) and basic magnesium carbonate [3MgCO 3 · Mg (OH)
3 · 3H 2 O] and the Li x Mg y Mn z O 4 in represented by x, y, z are formulated so as to have the composition ratios shown in Tables 1 and 2 below, were thoroughly mixed in a mortar Thereafter, heat treatment was performed in air at 850 ° C. for 24 hours. X-ray diffraction measurement of each of the obtained products confirmed that a LiMn 2 O 4 phase was present. Subsequently, each LiMn 2 O 4 powder to which the Mg ions were added was 80% by weight.
Was mixed with 15% by weight of acetylene black and 5% by weight of polytetrafluoroethylene powder, formed into a sheet, and pressed on an expanded metal current collector to produce a strip-shaped positive electrode having a width of 40 mm and a length of 200 mm.

前記容器1内には、1.5モル濃度の六フッ化砒酸リチ
ウム(LiAsF6)が溶解された2−メチルテトラヒドロフ
ランの電解液が収容されている。前記電極群3上には、
中央部が開口された絶縁紙7が載置されている。更に、
前記容器1の上部開口部には、絶縁封口板8が該容器1
へのかしめ加工等に液密に設けられており、かつ該絶縁
封口板8の中央には正極端子9が嵌合されている。この
正極端子9は、前記電極群3の正極4に正極リード10を
介して接続されている。なお、電極群3の負極6は図示
しない負極リードを介して負極端子である前記容器1に
接続されている。
The said container 1, 2-methyltetrahydrofuran electrolyte hexafluoride arsenate lithium (LiAsF 6) was dissolved in 1.5 mol concentration is accommodated. On the electrode group 3,
An insulating paper 7 having a central opening is placed. Furthermore,
At the upper opening of the container 1, an insulating sealing plate 8 is provided.
A positive electrode terminal 9 is fitted in the center of the insulating sealing plate 8 in a liquid-tight manner for caulking or the like. The positive electrode terminal 9 is connected to the positive electrode 4 of the electrode group 3 via a positive electrode lead 10. In addition, the negative electrode 6 of the electrode group 3 is connected to the container 1 as a negative electrode terminal via a negative electrode lead (not shown).

しかして、本実施例1の非水溶媒二次電池について、
放電電流600mAで2.0Vまで放電した時の放電容量を測定
した。その結果を同第1表及び第2表にに併記した。
Thus, for the non-aqueous solvent secondary battery of Example 1,
The discharge capacity when the battery was discharged to 2.0 V at a discharge current of 600 mA was measured. The results are shown in Tables 1 and 2.

上記第1表及び第2表から明らかなようにLixMgyMnzO
4で表されるx、y、zが0.85≦x≦1.05、0.05≦y≦
0.3、1.7≦z≦2を満たす正極活物質を含む正極が組み
込まれた二次電池(A2〜A4、B2〜B6、C1〜C5、D2〜D4及
びE2)は、放電容量が500mAh以上と良好な特性を有する
ことがことわかる。
As is clear from Tables 1 and 2 above, Li x Mg y Mn z O
X, y, z represented by 4 is 0.85 ≦ x ≦ 1.05, 0.05 ≦ y ≦
Rechargeable batteries (A2 to A4, B2 to B6, C1 to C5, D2 to D4 and E2) incorporating a positive electrode containing a positive electrode active material satisfying 0.3 and 1.7 ≦ z ≦ 2 have good discharge capacities of 500 mAh or more. It can be seen that it has excellent characteristics.

実施例2 塩基性炭酸マグネシウム〔3MgCO3・Mg(OH)・3H
2O〕、炭酸カルシウム、塩基性炭酸亜鉛(5ZnO・2CO3
4H2O)及び炭酸カドミウムを用意し、これらを三二酸化
マンガン(Mn2O3)と炭酸リチウム(Li2CO3)とにLiM
0.1Mn1.9O4(M;2価金属イオン)の組成比となるように
それぞれ配合し、乳鉢で十分に混合した後、空気中、85
0℃で24時間熱処理した。得られた各生成物をX線回折
測定したところ、LiMn2O4相が存在することが確認され
た。これら生成物を正極活物質として用いた以外、実施
例1と同様な4種の非水溶媒電池の組み立てた。
Example 2 Basic magnesium carbonate [3MgCO 3 · Mg (OH) 3 · 3H
2 O], calcium carbonate, basic zinc carbonate (5ZnO · 2CO 3 ·
4H 2 O) and cadmium carbonate are prepared, and these are converted to manganese trioxide (Mn 2 O 3 ) and lithium carbonate (Li 2 CO 3 ).
0.1 Mn 1.9 O 4 (M; divalent metal ion) were blended so as to have a composition ratio, and mixed well in a mortar.
Heat treatment was performed at 0 ° C. for 24 hours. X-ray diffraction measurement of each of the obtained products confirmed that a LiMn 2 O 4 phase was present. Four kinds of non-aqueous solvent batteries were assembled in the same manner as in Example 1 except that these products were used as a positive electrode active material.

比較例 三二酸化マンガン(Mn2O3)と炭酸リチウム(Li2C
O3)とをLiMn2O4の組成比となるように配合し、乳鉢で
十分に混合した後、空気中、850℃で24時間熱処理し
た。得られた生成物をX線回折測定したところ、LiMn2O
4相が存在することが確認された。かかる生成物を正極
活物質として用いた以外、実施例1と同様な非水溶媒電
池を組み立てた。
Comparative Example Manganese trioxide (Mn 2 O 3 ) and lithium carbonate (Li 2 C
O 3 ) and LiMn 2 O 4 in a composition ratio, mixed well in a mortar, and heat-treated in air at 850 ° C. for 24 hours. When the obtained product was measured by X-ray diffraction, LiMn 2 O
The presence of four phases was confirmed. A non-aqueous solvent battery similar to that of Example 1 was assembled except that this product was used as a positive electrode active material.

しかして、本実施例2の4種の非水溶媒二次電池及び
比較例の二次電池について、放電電流600mAで2.0Vまで
放電した時の放電容量を測定した。その結果を第2図に
示す。なお、第2図中のF、G、H、IはそれぞれMg、
Ca、Zn、Cdを添加したLiMn2O4を正極活物質とした二次
電池の特性線を示す。
The discharge capacity of the four nonaqueous solvent secondary batteries of Example 2 and the secondary battery of Comparative Example when discharged to 2.0 V at a discharge current of 600 mA was measured. The result is shown in FIG. In FIG. 2, F, G, H, and I are Mg,
3 shows characteristic lines of a secondary battery using LiMn 2 O 4 to which Ca, Zn, and Cd are added as a positive electrode active material.

第2図から明らかなように本実施例2の各二次電池で
は、比較例の二次電池に比べて放電容量(特に大電流放
電での容量)を向上できることがわかる。
2. As is clear from FIG. 2, the discharge capacity (particularly the capacity at high current discharge) of each secondary battery of Example 2 can be improved as compared with the secondary battery of Comparative Example.

また、本実施例2の4種の非水溶媒二次電池及び比較
例の二次電池について充電電流100mA、放電電流600mAで
充放電を繰り返し行ない、各電池のサイクル数に対する
放電容量を測定した。その結果を第3図に示した。な
お、第3図中のF、G、H、IはそれぞれMg、Ca、Zn、
Cdを添加したLiMn2O4を正極活物質とした二次電池の特
性線を示す。
In addition, charge and discharge were repeated at a charge current of 100 mA and a discharge current of 600 mA for the four types of nonaqueous solvent secondary batteries of Example 2 and the secondary battery of Comparative Example, and the discharge capacity with respect to the cycle number of each battery was measured. The result is shown in FIG. In FIG. 3, F, G, H, and I are Mg, Ca, Zn,
3 shows characteristic lines of a secondary battery using LiMn 2 O 4 to which Cd is added as a positive electrode active material.

第3図から明らかなように本実施例2の各二次電池
は、比較例の二次電池に比べてサイクル寿命が格段に向
上できることがわかる。
As is clear from FIG. 3, it can be seen that the cycle life of each secondary battery of Example 2 can be remarkably improved as compared with the secondary battery of Comparative Example.

[発明の効果] 以上詳述したように本発明によれば、充放電特性及び
大電流放電特性の優れた非水溶媒二次電池及びその製造
方法を提供することができる。
[Effects of the Invention] As described above in detail, according to the present invention, it is possible to provide a non-aqueous solvent secondary battery having excellent charge / discharge characteristics and high current discharge characteristics, and a method for manufacturing the same.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の実施例1における円筒型非水溶媒二次
電池を示す断面図、第2図は本実施例2、参照例及び比
較例の二次電池における放電電流に対する放電容量の関
係を示す特性図、第3図は本実施例2、参照例及び比較
例の二次電池におけるサイクル数に対する放電容量の関
係を示す特性図である。 1……ステンレス容器、3……電極群、4……正極、5
……セパレータ、6……負極、8……封口板、9……正
極端子。
FIG. 1 is a cross-sectional view showing a cylindrical non-aqueous solvent secondary battery in Example 1 of the present invention, and FIG. 2 is a relationship between discharge current and discharge current in the secondary batteries of Example 2, Reference Example and Comparative Example. FIG. 3 is a characteristic diagram showing the relationship between the discharge capacity and the number of cycles in the secondary batteries of Example 2, the reference example, and the comparative example. 1 ... stainless steel container, 3 ... electrode group, 4 ... positive electrode, 5
... Separator, 6 negative electrode, 8 sealing plate, 9 positive electrode terminal.

フロントページの続き (72)発明者 稲田 圀昭 東京都品川区南品川3丁目4番10号 東 芝電池株式会社内 (72)発明者 土山 等 東京都品川区南品川3丁目4番10号 東 芝電池株式会社内 (56)参考文献 特開 平2−139861(JP,A) 特開 平2−60056(JP,A) 特開 昭63−67463(JP,A) 特開 昭63−24554(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/36 - 4/62 H01M 4/02 - 4/04 H01M 10/40 JICSTファイル(JOIS)Continuing from the front page (72) Inventor Kuniaki Inada 3-4-10 Minamishinagawa, Shinagawa-ku, Tokyo Toshiba Battery Corporation (72) Inventor Tsuchiyama, etc. 3-4-1-10 Minamishinagawa, Shinagawa-ku, Tokyo East (56) References JP-A-2-139861 (JP, A) JP-A-2-60056 (JP, A) JP-A-63-67463 (JP, A) JP-A-63-24554 (JP) JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01M 4/36-4/62 H01M 4/02-4/04 H01M 10/40 JICST file (JOIS)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウム、リチウム合金または充放電時に
リチウムイオンを吸蔵・放出する化合物を含む負極と、
正極活物質を含む正極と、非水溶媒中に電解質を溶解し
た電解液とを備えた非水溶媒二次電池において、 前記正極活物質は、下記一般式(1)で表される組成を
有する化合物であることを特徴とする非水溶媒二次電
池。 LixMyMnzO4 …(1) ただし、前記(1)式において、MはMg、Ca、Cdであ
り、x、y及びzはそれぞれ0.85≦x≦1.05、0.05≦y
≦0.3、1.7≦z≦2を示す。
1. A negative electrode containing lithium, a lithium alloy or a compound capable of inserting and extracting lithium ions during charge and discharge,
In a non-aqueous solvent secondary battery including a positive electrode including a positive electrode active material and an electrolytic solution in which an electrolyte is dissolved in a non-aqueous solvent, the positive electrode active material has a composition represented by the following general formula (1). A non-aqueous solvent secondary battery, which is a compound. Li x M y Mn z O 4 ... (1) However, in the equation (1), M is Mg, Ca, a Cd, x, y and z respectively 0.85 ≦ x ≦ 1.05,0.05 ≦ y
≦ 0.3, 1.7 ≦ z ≦ 2.
【請求項2】リチウム、リチウム合金または充放電時に
リチウムイオンを吸蔵・放出する化合物を含む負極と、
正極活物質を含む正極と、非水溶媒中に電解質を溶解し
た電解液とを備えた非水溶媒二次電池の製造方法におい
て、 前記正極活物質は、マンガン酸化物と、リチウム塩と、
Mg、CaまたはCdの塩との混合物に熱処理を施すことによ
り作製される下記一般式(1)で表される組成のもので
あることを特徴とする非水溶媒二次電池の製造方法。 LixMyMnzO4 …(1) ただし、前記(1)式において、MはMg、Ca、Cdであ
り、x、y及びzはそれぞれ0.85≦x≦1.05、0.05≦y
≦0.3、1.7≦z≦2を示す。
2. A negative electrode containing lithium, a lithium alloy, or a compound capable of inserting and extracting lithium ions during charge and discharge,
In a method for manufacturing a non-aqueous solvent secondary battery including a positive electrode including a positive electrode active material and an electrolyte solution in which an electrolyte is dissolved in a non-aqueous solvent, the positive electrode active material includes a manganese oxide, a lithium salt,
A method for producing a non-aqueous solvent secondary battery, characterized by having a composition represented by the following general formula (1) produced by subjecting a mixture with a salt of Mg, Ca or Cd to heat treatment. Li x M y Mn z O 4 ... (1) However, in the equation (1), M is Mg, Ca, a Cd, x, y and z respectively 0.85 ≦ x ≦ 1.05,0.05 ≦ y
≦ 0.3, 1.7 ≦ z ≦ 2.
JP1245256A 1989-09-22 1989-09-22 Non-aqueous solvent secondary battery and method of manufacturing the same Expired - Lifetime JP3050885B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1245256A JP3050885B2 (en) 1989-09-22 1989-09-22 Non-aqueous solvent secondary battery and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1245256A JP3050885B2 (en) 1989-09-22 1989-09-22 Non-aqueous solvent secondary battery and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH03108261A JPH03108261A (en) 1991-05-08
JP3050885B2 true JP3050885B2 (en) 2000-06-12

Family

ID=17130975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1245256A Expired - Lifetime JP3050885B2 (en) 1989-09-22 1989-09-22 Non-aqueous solvent secondary battery and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3050885B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4025208A1 (en) * 1990-08-09 1992-02-13 Varta Batterie ELECTROCHEMICAL SECONDARY ELEMENT
JP2584123B2 (en) * 1990-10-02 1997-02-19 松下電器産業株式会社 Non-aqueous electrolyte secondary battery
US5478672A (en) * 1993-12-24 1995-12-26 Sharp Kabushiki Kaisha Nonaqueous secondary battery, positive-electrode active material
JP4734684B2 (en) * 1998-10-22 2011-07-27 株式会社豊田中央研究所 Positive electrode active material for lithium secondary battery, method for producing the same, lithium secondary battery using the same, and aging treatment method for the secondary battery
EP1135334B1 (en) 1998-11-20 2002-10-09 Fmc Corporation Multiple doped lithium manganese oxide compounds and methods of preparing same
JP2002298845A (en) * 2001-03-30 2002-10-11 Sony Corp Positive electrode active material and method for synthesizing the same, and battery and method of manufacturing the same
CN103140965A (en) 2010-11-05 2013-06-05 日本电气株式会社 Positive electrode active material for secondary battery, and secondary battery using same
WO2013153690A1 (en) 2012-04-13 2013-10-17 日本電気株式会社 Positive electrode active material for secondary cell, and secondary cell using same
JP7510143B2 (en) * 2019-08-28 2024-07-03 国立大学法人東北大学 Nonaqueous electrolyte secondary battery and positive electrode active material for the same

Also Published As

Publication number Publication date
JPH03108261A (en) 1991-05-08

Similar Documents

Publication Publication Date Title
JP3269396B2 (en) Non-aqueous electrolyte lithium secondary battery
US20060093911A1 (en) Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP2000011996A (en) Nonaqueous electrolyte secondary battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JP3212639B2 (en) Non-aqueous solvent secondary battery
JP3050885B2 (en) Non-aqueous solvent secondary battery and method of manufacturing the same
JPH1027609A (en) Secondary battery with nonaqueous electrolyte
JP3802287B2 (en) Lithium secondary battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JP3079344B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH06275268A (en) Nonaqueous electrolyte secondary battery
JP3637690B2 (en) Non-aqueous electrolyte secondary battery
JP3670895B2 (en) Lithium secondary battery
JPH1027627A (en) Lithium secondary battery
JPH07235295A (en) Nonaqueous secondary battery
JP2000012026A (en) Nonaqueous electrolyte secondary battery
JP2006024417A (en) Manufacturing method of battery
JP2975727B2 (en) Non-aqueous electrolyte battery
JP2611265B2 (en) Non-aqueous electrolyte secondary battery
JPH0821431B2 (en) Organic electrolyte secondary battery
JP2002063904A (en) Positive electrode active material and nonaqueous electrolyte battery as well as their manufacturing method
JP3050016B2 (en) Non-aqueous electrolyte secondary battery
JP2003317718A (en) Positive electrode material, electrode and battery
JP2000040511A (en) Lithium ion secondary battery
JP4161422B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080331

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 10