Nothing Special   »   [go: up one dir, main page]

JP2888455B2 - Semiconductor light emitting device - Google Patents

Semiconductor light emitting device

Info

Publication number
JP2888455B2
JP2888455B2 JP3011389A JP1138991A JP2888455B2 JP 2888455 B2 JP2888455 B2 JP 2888455B2 JP 3011389 A JP3011389 A JP 3011389A JP 1138991 A JP1138991 A JP 1138991A JP 2888455 B2 JP2888455 B2 JP 2888455B2
Authority
JP
Japan
Prior art keywords
laser
light emitting
mode
emitting device
semiconductor light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3011389A
Other languages
Japanese (ja)
Other versions
JPH04242989A (en
Inventor
好典 中野
剛司 川上
督郎 大町
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3011389A priority Critical patent/JP2888455B2/en
Publication of JPH04242989A publication Critical patent/JPH04242989A/en
Application granted granted Critical
Publication of JP2888455B2 publication Critical patent/JP2888455B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06233Controlling other output parameters than intensity or frequency
    • H01S5/06236Controlling other output parameters than intensity or frequency controlling the polarisation, e.g. TM/TE polarisation switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18305Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • H01S5/1835Non-circular mesa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18355Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a defined polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/42Arrays of surface emitting lasers
    • H01S5/423Arrays of surface emitting lasers having a vertical cavity

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、偏波面が制御できる垂
直キャビティの面発光形の半導体発光装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vertical cavity surface emitting semiconductor light emitting device whose polarization plane can be controlled.

【0002】[0002]

【従来の技術】基板と垂直方向に共振器が形成された面
発光形の半導体レーザは、結晶軸で定まる互いに直交す
る2方向の直線偏波で発振する。例えば、(001)基
板上の面発光形レーザでは、2つの〔110〕方向に沿
った偏波が観測されている。
2. Description of the Related Art A surface-emitting type semiconductor laser in which a resonator is formed in a direction perpendicular to a substrate oscillates with linearly polarized waves in two directions orthogonal to each other and determined by a crystal axis. For example, in a surface emitting laser on a (001) substrate, polarized waves along two [110] directions are observed.

【0003】[0003]

【発明が解決しようとする課題】発光面の形状が点対称
である場合、近接素子間でも偏波方向がばらついたり、
あるいは、単独素子でも通電電流を増加させてゆくと、
偏波面が変動することが、しばしば観測されている。偏
波面の安定化には、発光面の対称性をなくすことが有効
であり、発光面を楕円形状あるいは長方形にすること
で、1つの方向の直線偏波だけを選択的に発振させるこ
とができる。ただ、2つの偏波方向を任意に制御できる
構造の面発光形半導体レーザは未だ提案されていない。
本発明は上記の欠点を改善するために提案されたもの
で、その目的は半導体発光装置における制御用電極へ流
す電流をオン、オフすることによって、出力光の偏波方
向を制御できる半導体発光装置を提供することにある。
In the case where the shape of the light emitting surface is point symmetric, the polarization direction varies between adjacent elements,
Alternatively, if the energizing current is increased even with a single element,
Variations in the polarization plane are often observed. To stabilize the polarization plane, it is effective to eliminate the symmetry of the light-emitting surface. By making the light-emitting surface elliptical or rectangular, only linear polarization in one direction can be selectively oscillated. . However, a surface emitting semiconductor laser having a structure capable of arbitrarily controlling two polarization directions has not yet been proposed.
SUMMARY OF THE INVENTION The present invention has been proposed in order to improve the above-mentioned drawbacks, and an object of the present invention is to turn on and off a current flowing to a control electrode in a semiconductor light emitting device, thereby controlling a polarization direction of output light. Is to provide.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成するた
め本発明は基板と垂直な方向に共振器が形成された面発
光形の半導体レーザにおいて、活性層を含むメサ領域の
発光面の形状がL字、T字あるいは十字形をしており、
p側およびn側の何れかの電極が、電気的に独立に制御
できる少なくとも2つ以上の領域から形成されているこ
とを特徴とする半導体発光装置を発明の要旨とするもの
である。
In order to achieve the above object, the present invention relates to a surface emitting semiconductor laser having a resonator formed in a direction perpendicular to a substrate, wherein a light emitting surface of a mesa region including an active layer is formed. Is L-shaped, T-shaped or cross-shaped,
An object of the present invention is to provide a semiconductor light emitting device in which any one of the p-side and n-side electrodes is formed of at least two or more regions that can be independently controlled electrically.

【0005】[0005]

【作用】本発明では、直交する2方向に沿って、同一基
板上に、並列に、2つの面発光形レーザ(レーザA、レ
ーザB)を配置し、レーザAは蒸着金属の一部を除去し
た低反射率の領域を含んでおり、一方、レーザBは全面
に電極金属を蒸着し、全面が高反射率な共振器領域で構
成されている。このため、レーザAはレーザBに比べ
て、発振しきい値密度および出力光密度は劣るように作
製されている。最初、共振器の利得の小さいレーザだけ
に通電し、レーザ発振(モード1)させておく。この場
合の出力光は、直線偏波である。ついで、レーザBにレ
ーザ発振させるに充分足る制御信号を印加させると、レ
ーザ発振が起こる。この場合の発振モードは、レーザB
およびレーザAの内、レーザBの幅でレーザAの領域に
延長させた領域を境界とした基本モード(モード2)と
なる。モード1とモード2とは互いに直交している。
According to the present invention, two surface emitting lasers (laser A and laser B) are disposed in parallel on the same substrate along two orthogonal directions, and the laser A removes a part of the vapor deposition metal. On the other hand, the laser B has an electrode metal deposited on the entire surface thereof, and the entire surface of the laser B is formed of a high-reflectance resonator region. For this reason, the laser A is manufactured so that the oscillation threshold density and the output light density are inferior to the laser B. Initially, only a laser having a small gain of the resonator is energized to cause laser oscillation (mode 1). The output light in this case is linearly polarized. Next, when a control signal sufficient for causing the laser B to oscillate is applied to the laser B, laser oscillation occurs. The oscillation mode in this case is laser B
And a basic mode (mode 2) having a boundary extending from the laser A to the laser A by the width of the laser B. Mode 1 and mode 2 are orthogonal to each other.

【0006】モード2はレーザBおよびレーザAの一部
に架けての高反射率の領域だけで構成されており、一部
に低反射率な領域を含むレーザA領域だけで発振してい
るモード1に比べて、共振器利得が大きい。したがっ
て、一旦モード2での発振が起こると、このモードでの
光子密度はモード1に比べて高くなり易く、レーザAの
共振器内にモード2が存在すると、レーザAの領域での
キャリアは、モード1よりも共振器利得の大きいモード
2の光と相互作用が活発になり、モード1の光は光のク
エンチ現象(衰弱現象)が起こる。レーザBへ供給する
電流値を大きくすると、モード1での発振を全く停止さ
せ、モード1と直交方向に偏波しているモード2だけの
出力光を得ることができる。
[0006] Mode 2 is a mode in which the laser B and the laser A only include a high-reflectance region over a part of the laser A, and the mode 2 oscillates only in the laser A region including a low-reflectance region. As compared with 1, the resonator gain is large. Therefore, once oscillation in mode 2 occurs, the photon density in this mode is likely to be higher than in mode 1, and if mode 2 is present in the resonator of laser A, carriers in the region of laser A are: Interaction with the light of mode 2 having a larger resonator gain than that of mode 1 becomes active, and the light of mode 1 undergoes a light quench phenomenon (depletion phenomenon). When the value of the current supplied to the laser B is increased, the oscillation in the mode 1 is completely stopped, and only the output light in the mode 2 polarized in the direction orthogonal to the mode 1 can be obtained.

【0007】[0007]

【実施例】次に本発明の実施例について説明する。なお
実施例は一つの例示であって、本発明の精神を逸脱しな
い範囲で、種々の変更あるいは改良を行いうることは云
うまでもない。
Next, an embodiment of the present invention will be described. The embodiment is merely an example, and it goes without saying that various changes or improvements can be made without departing from the spirit of the present invention.

【0008】図1は本発明の第1の実施例の発光面の配
置を示すものでレーザAとレーザBとはL字形に配置さ
れている。すなわち発光面は、〔110〕および、
FIG. 1 shows an arrangement of light emitting surfaces according to a first embodiment of the present invention. Lasers A and B are arranged in an L-shape. That is, the light emitting surface is [110] and

【数1】 〔10〕 に平行に形成された6μm×3μmの長方形が2つ組み
合わされたL字形状である。斜線領域に蒸着金属1,1
aが配置されている。この実施例で使用している基板は
(001)のn形GaAs基板であり、AuZn/Au
の薄膜で構成された蒸着金属1及び1aがp側電極を兼
ねている。これらは、AlAs/GaAsを10層積層
した半導体多層膜上に蒸着されており、蒸着面の反射率
は約98%で、半導体多層膜だけの領域の反射率より約
30%高かった。レーザAの領域には部分的に金属が蒸
着されていない領域10が形成されている。また基板7
の下面に窓9が形成されている。
The L-shape is formed by combining two 6 μm × 3 μm rectangles formed in parallel with [10]. Metallization 1,1 in the shaded area
a is arranged. The substrate used in this example is an (001) n-type GaAs substrate, and AuZn / Au
The metallized metal 1 and 1a composed of the thin film also serves as the p-side electrode. These are deposited on a semiconductor multilayer film in which 10 layers of AlAs / GaAs are stacked, and the reflectance of the deposition surface is about 98%, which is about 30% higher than the reflectance of the region of the semiconductor multilayer film alone. In the region of the laser A, a region 10 in which metal is not partially deposited is formed. Also, the substrate 7
A window 9 is formed on the lower surface of the.

【0009】図2は図1においてX−Y線に沿った断面
図を示す。図において1,1aはp側電極、2はp側高
反射半導体層、3はp形GaAsクラッド層、4はIn
GaAsSQW層、5はn形GaAsクラッド層、6は
n形高反射半導体層、7はn形GaAs基板、8はn側
電極、9は出力窓を示す。活性層にはInGaAsの歪
超格子を用いた構造であり、AlGaAsクラッド層3
をふくめた共振器長を発振波長(0.98μm)と等し
く選んだ構造である。基板側の反射鏡は、AlAs/G
aAsを28.5層堆積させた構造であり、反射率は約
95%である。レーザAだけに通電した時のしきい値電
流は3mAであった。レーザAを全面電極で形成した構
造のレーザは1.2mAのしきい値であり、金属蒸着が
一部分欠削していることによって、反射損失が増大して
いることが分かる。
FIG. 2 is a sectional view taken along the line XY in FIG. In the figures, 1 and 1a are p-side electrodes, 2 is a p-side high-reflection semiconductor layer, 3 is a p-type GaAs cladding layer, and 4 is In.
A GaAsSQW layer, 5 is an n-type GaAs cladding layer, 6 is an n-type highly reflective semiconductor layer, 7 is an n-type GaAs substrate, 8 is an n-side electrode, and 9 is an output window. The active layer has a structure using a strained superlattice of InGaAs, and has an AlGaAs cladding layer 3.
Is selected to be equal to the oscillation wavelength (0.98 μm). The reflection mirror on the substrate side is AlAs / G
This is a structure in which 28.5 layers of aAs are deposited, and the reflectance is about 95%. The threshold current when only the laser A was energized was 3 mA. The laser having a structure in which the laser A is formed by the entire surface electrode has a threshold value of 1.2 mA, and it can be seen that the reflection loss is increased due to the partial lack of the metal deposition.

【0010】この実施例のレーザAの光出力は、6mA
通電時で約1mWで、〔110〕方向の直線偏波による
基本モード発振であった。レーザAに4mA通電してい
る状態で、レーザBにも3mAの電流を供給すると、レ
ーザAの光強度は約3mWに増加するとともに、
The light output of the laser A of this embodiment is 6 mA
At the time of energization, the fundamental mode oscillation was about 1 mW due to linear polarization in the [110] direction. When a current of 3 mA is also supplied to the laser B while 4 mA is supplied to the laser A, the light intensity of the laser A increases to about 3 mW,

【数1】に直線偏光した基本モード発振の光出力が得ら
れた。したがって、アナライザーを通して観測した光出
力は、レーザBへの電流供給によって、20dB以上の
消光比で強度変調されている。
## EQU1 ## A linearly polarized fundamental mode oscillation light output was obtained. Therefore, the light output observed through the analyzer is intensity-modulated by the current supply to the laser B at an extinction ratio of 20 dB or more.

【0011】レーザBの領域をレーザAに比べて充分に
大きくすると、どちらも全面電極を形成した素子でも同
様なクエンチ現象が起こる。したがって、制御電力が大
きくなる欠点を無視すれば、より簡単な構造で、電流注
入による偏波面のスイッチングが実現できる。レーザB
に注入する電流は、高周波信号を供給しても、基本的な
スイッチング動作には何等問題はない。アナライザーあ
るいは偏波保持ファイバと組み合わせることで、10G
b/sの変調が実現できる。
When the area of the laser B is made sufficiently larger than that of the laser A, the same quenching phenomenon occurs in the element in which both electrodes are formed. Therefore, if the drawback that the control power becomes large is ignored, the polarization plane switching by current injection can be realized with a simpler structure. Laser B
Even if the current injected into the circuit supplies a high-frequency signal, there is no problem in the basic switching operation. 10G by combining with analyzer or polarization maintaining fiber
b / s modulation can be realized.

【0012】本実施例では、蒸着金属を電極として用い
た場合について説明したが、電極形成と切り放して、発
光面上の蒸着金属を単なる反射鏡として用いることがで
きる。したがって、本実施例は、誘導体多層膜を反射鏡
とした構造にも充分に適用できる。
In this embodiment, the case where the metal deposited is used as an electrode has been described. However, the electrode formed and cut off can be used as a simple reflecting mirror on the light emitting surface. Therefore, this embodiment can be sufficiently applied to a structure in which the dielectric multilayer film is used as a reflecting mirror.

【0013】図3は本発明の第2の実施例を示すもの
で、レーザAの両側に夫々レーザBが配置されている十
字形の場合を示し、第1の実施例と同様の効果を有す
る。
FIG. 3 shows a second embodiment of the present invention, which shows a cross-shaped case in which lasers B are disposed on both sides of a laser A, respectively, and has the same effect as that of the first embodiment. .

【0014】図4は本発明の第3の実施例を示すもの
で、メサ領域の発光面の形状がT字形を出す場合で、第
1の実施例と同様の効果を有する。
FIG. 4 shows a third embodiment of the present invention, in which the light emitting surface of the mesa region has a T-shape, and has the same effect as the first embodiment.

【0015】この実施例は、半導体レーザの波形には無
関係であり、長波長帯系でもGaAlAs/GaAs系
でも全く同様な効果が期待できる。また、使用基板の導
電形にも依存しない。p形基板、半絶縁性基板等にも構
造の最適化によって基本的には適用てできる。なお上記
の実施例はメサ型の場合について説明したが、本発明は
これに限定されることなく、活性層は電流狭窄層によっ
て埋め込まれた構造であってもよい。
This embodiment is irrelevant to the waveform of the semiconductor laser, and the same effect can be expected in both the long wavelength band system and the GaAlAs / GaAs system. Also, it does not depend on the conductivity type of the substrate used. Basically, it can be applied to a p-type substrate, a semi-insulating substrate, and the like by optimizing the structure. Although the above embodiment has been described with reference to the case of the mesa type, the present invention is not limited to this, and the active layer may have a structure embedded with a current confinement layer.

【0016】[0016]

【発明の効果】本発明では、共振器内の発振横モードの
クエンチ現象を利用して、制御用電極(レーザB)へ流
す電流をオン・オフ制御することによって、出力光の偏
波方向を90度回転させることができる。したがって、
本発明の半導体発光装置からのレーザー出力を、偏波依
存性を有する適当な検出器を通すことに依って、電流制
御の強度変調に変換させることができる効果を有する。
According to the present invention, the current flowing to the control electrode (laser B) is turned on / off by utilizing the quench phenomenon of the oscillation transverse mode in the resonator, thereby changing the polarization direction of the output light. Can be rotated 90 degrees. Therefore,
By passing the laser output from the semiconductor light emitting device of the present invention through an appropriate detector having polarization dependency, there is an effect that the laser output can be converted into current control intensity modulation.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の発光面の第1の実施例の配置図を示
す。
FIG. 1 shows a layout of a first embodiment of a light emitting surface of the present invention.

【図2】本発明の第1実施例の断面構造図を示す。FIG. 2 is a sectional structural view of a first embodiment of the present invention.

【図3及び4】本発明の他の実施例を示す。3 and 4 show another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1,1a p側電極 2 p側高反射半導体層 3 p形GaAsクラッド層 4 InGaAsSQW層 5 n形GaAsクラッド層 6 n形高反射半導体層 7 n形GaAs基板 8 n側電極 9 出力窓 10 金属電極の欠除部分 Reference Signs List 1, 1a p-side electrode 2 p-side high reflection semiconductor layer 3 p-type GaAs cladding layer 4 InGaAsSQW layer 5 n-type GaAs cladding layer 6 n-type high reflection semiconductor layer 7 n-type GaAs substrate 8 n-side electrode 9 output window 10 metal electrode Missing part of

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板と垂直な方向に共振器が形成された
面発光形の半導体レーザにおいて、活性層を含むメサ領
域の発光面の形状がL字、T字あるいは十字形をしてお
り、p側およびn側の何れかの電極が、電気的に独立に
制御できる少なくとも2つ以上の領域から形成されてい
ることを特徴とする半導体発光装置。
1. A surface emitting semiconductor laser in which a resonator is formed in a direction perpendicular to a substrate, wherein a light emitting surface of a mesa region including an active layer has an L shape, a T shape, or a cross shape. A semiconductor light emitting device, wherein at least one of the p-side electrode and the n-side electrode is formed of at least two or more regions that can be electrically independently controlled.
【請求項2】 メサ領域の上下面の少なくとも一つの面
には、空間的に蒸着金属の一部に欠除部が配置されてい
ることを特徴とする請求項1記載の半導体発光装置。
2. The semiconductor light emitting device according to claim 1, wherein said at least one of the upper and lower surfaces of the mesa region is provided with a spatially cutout portion in a part of the vapor-deposited metal.
JP3011389A 1991-01-07 1991-01-07 Semiconductor light emitting device Expired - Fee Related JP2888455B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3011389A JP2888455B2 (en) 1991-01-07 1991-01-07 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3011389A JP2888455B2 (en) 1991-01-07 1991-01-07 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPH04242989A JPH04242989A (en) 1992-08-31
JP2888455B2 true JP2888455B2 (en) 1999-05-10

Family

ID=11776657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3011389A Expired - Fee Related JP2888455B2 (en) 1991-01-07 1991-01-07 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2888455B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345462A (en) * 1993-03-29 1994-09-06 At&T Bell Laboratories Semiconductor surface emitting laser having enhanced polarization control and transverse mode selectivity
JP3766976B2 (en) * 1994-01-20 2006-04-19 セイコーエプソン株式会社 Surface emitting semiconductor laser device and manufacturing method thereof
US5778018A (en) * 1994-10-13 1998-07-07 Nec Corporation VCSELs (vertical-cavity surface emitting lasers) and VCSEL-based devices
JP3618451B2 (en) * 1996-03-28 2005-02-09 オリンパス株式会社 Optical displacement sensor

Also Published As

Publication number Publication date
JPH04242989A (en) 1992-08-31

Similar Documents

Publication Publication Date Title
US7005680B2 (en) Semiconductor light-emitting device including a divided electrode having a plurality of spaced apart conductive members
US5319659A (en) Semiconductor diode laser having an intracavity spatial phase controller for beam control and switching
JPH06112594A (en) Surface emission semiconductor light emission device and fabrication thereof
JP2888455B2 (en) Semiconductor light emitting device
US4768200A (en) Internal current confinement type semiconductor light emission device
JPS63116489A (en) Optical integrated circuit
KR970004500B1 (en) Semiconductor laser device
JPH05152674A (en) Surface light emitting semiconductor laser with outer modulator
JPH0563301A (en) Semiconductor optical element and optical communication system
JPH0457384A (en) Semiconductor laser
JPH04107976A (en) Semiconductor laser device
WO2006011370A1 (en) Polarization modulating laser device
JPH1012960A (en) Semiconductor laser device
JP3700308B2 (en) Surface emitting semiconductor laser device and driving method thereof
JPS62137893A (en) Semiconductor laser
JPH03240285A (en) Bistable semiconductor laser
JPH0824207B2 (en) Semiconductor laser device
JPH0311325A (en) Face input/output semiconductor laser memory
JPH1079555A (en) Surface-emitting laser
JPH0732291B2 (en) Semiconductor laser
JPH05235464A (en) Optical semiconductor device
KR100364772B1 (en) Semiconductor laser
JPH05308173A (en) Semiconductor laser
JPH0537068A (en) Semiconductor laser
JPH04221874A (en) Microscopic resonator light emitting element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100219

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees