Nothing Special   »   [go: up one dir, main page]

JP2851274B2 - Method for producing N, N-diisopropylethylamine - Google Patents

Method for producing N, N-diisopropylethylamine

Info

Publication number
JP2851274B2
JP2851274B2 JP9260814A JP26081497A JP2851274B2 JP 2851274 B2 JP2851274 B2 JP 2851274B2 JP 9260814 A JP9260814 A JP 9260814A JP 26081497 A JP26081497 A JP 26081497A JP 2851274 B2 JP2851274 B2 JP 2851274B2
Authority
JP
Japan
Prior art keywords
reaction
dipea
acetaldehyde
yield
catalytic reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9260814A
Other languages
Japanese (ja)
Other versions
JPH1081650A (en
Inventor
俊成 名畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koei Chemical Industry Co Ltd
Original Assignee
Koei Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koei Chemical Industry Co Ltd filed Critical Koei Chemical Industry Co Ltd
Priority to JP9260814A priority Critical patent/JP2851274B2/en
Publication of JPH1081650A publication Critical patent/JPH1081650A/en
Application granted granted Critical
Publication of JP2851274B2 publication Critical patent/JP2851274B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、N,N−ジイソプ
ロピルエチルアミン(以下、DIPEAという)を製造
する方法に関し、詳しくはエチルアミンとアセトンを出
発原料とし、貴金属触媒存在下での接触還元反応による
DIPEAの製造法、及びジイソプロピルアミン(以
下、DIPAという)とアセトアルデヒドを出発原料と
し、貴金属触媒存在下アセトアルデヒドを反応系内に供
給しながら接触還元反応を行なうことによるDIPEA
の製造法に関する。DIPEAは医農薬の原料として有
用な化合物である。
The present invention relates to a method for producing N, N-diisopropylethylamine (hereinafter referred to as DIPEA), and more particularly to DIPEA by catalytic reduction reaction using ethylamine and acetone as starting materials in the presence of a noble metal catalyst. And DIPEA by performing a catalytic reduction reaction while supplying acetaldehyde into the reaction system in the presence of a noble metal catalyst using diisopropylamine (hereinafter referred to as DIPA) and acetaldehyde as starting materials.
A method for producing the same. DIPEA is a compound useful as a raw material for medical and agricultural chemicals.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
DIPEAの製造法としてはDIPAをジエチル硫酸で
エチル化する方法が知られている(Chem.Be
r.,91,380〜392(1958))。この方法
によると反応器に原料のDIPAと目的物であるDIP
EAを等モルずつ仕込み、ジエチル硫酸を加え140℃
で3.5時間反応し、収率90%でDIPEAを得てい
る。しかしながら、この方法は収率が高いものの反応を
促進させるため目的物を加えるなど工業的に有利な方法
とは言い難い。また、他の製造法としてDIPAをエチ
ルアイオダイドでエチル化する方法(J.O.C.,1
6,1911(1951))があるが、収率は約50%
と低く好ましい方法とは言い難い。本発明の目的は、安
価に入手できる原料を用いてDIPEAを良好な収率で
得る方法を提供することにある。
2. Description of the Related Art
As a method for producing DIPEA, a method is known in which DIPA is ethylated with diethyl sulfate (Chem. Be).
r. , 91, 380-392 (1958)). According to this method, DIPA as a raw material and DIP as a target substance are added to a reactor.
EA was charged in equimolar amounts, and diethyl sulfuric acid was added, and 140 ° C.
For 3.5 hours to obtain DIPEA with a yield of 90%. However, although this method has a high yield, it is hard to say that it is an industrially advantageous method such as adding a target substance to promote the reaction. As another production method, DIPA is ethylated with ethyl iodide (JOC, 1).
6, 1911 (1951)), but the yield is about 50%.
It is difficult to say that it is a low and preferable method. An object of the present invention is to provide a method for obtaining DIPEA in a good yield using raw materials that can be obtained at low cost.

【0003】[0003]

【課題を解決するための手段及び発明の実施の形態】本
発明の第1発明は、エチルアミンとアセトンを貴金属触
媒の存在下、接触還元反応させることを特徴とするDI
PEAの製造法である。
Means for Solving the Problems and Embodiments of the Invention The first invention of the present invention is characterized in that DI is subjected to a catalytic reduction reaction of ethylamine and acetone in the presence of a noble metal catalyst.
This is a method for producing PEA.

【0004】また本発明の第2発明は、DIPAとアセ
トアルデヒドを貴金属触媒の存在下、接触還元反応させ
てDIPEAを製造するにあたり、反応系内にアセトア
ルデヒドを供給しながら反応することを特徴とするDI
PEAの製造法である。
A second invention of the present invention is characterized in that DIPA and acetaldehyde are subjected to a catalytic reduction reaction in the presence of a noble metal catalyst to produce DIPEA, wherein the reaction is carried out while supplying acetaldehyde into the reaction system.
This is a method for producing PEA.

【0005】従来本第1発明の方法は意外にも知られて
いない。その理由はエチルアミンにアセトンとの接触還
元によりイソプロピル基を導入する場合、イソプロピル
基1個の導入は比較的容易であるが、更にもう1個のイ
ソプロピル基の導入は、中間体であるN−イソプロピル
エチルアミン(以下、MIPEAという)のアルキル基
による立体障害により生じるその窒素原子の活性低下に
よって困難であると考えられていたものと推察される。
Conventionally, the method of the first invention has not been known surprisingly. The reason is that when an isopropyl group is introduced into ethylamine by catalytic reduction with acetone, the introduction of one isopropyl group is relatively easy, but the introduction of another isopropyl group is based on the intermediate N-isopropyl. It is presumed that this was thought to be difficult due to a decrease in the activity of the nitrogen atom caused by steric hindrance by the alkyl group of ethylamine (hereinafter referred to as MIPEA).

【0006】そこで、本発明者は、水素化触媒として極
めて汎用されているラネーNi触媒を用いてエチルアミ
ンとアセトンの接触還元反応を試みたが、主たる生成物
はアセトンの還元体であるイソプロピルアルコールであ
りDIPEAの生成をほとんど認めることができなかっ
た。本発明者は、更に検討を重ねた結果、意外にも、貴
金属触媒を用いるとDIPEAの収率が著しく向上する
ことを見出し本発明の第1発明を完成するに至った。
Accordingly, the present inventor has attempted a catalytic reduction reaction of ethylamine and acetone using a Raney Ni catalyst which is extremely widely used as a hydrogenation catalyst. The main product is isopropyl alcohol, which is a reduced form of acetone. There was almost no DIPEA formation. As a result of further studies, the present inventors have surprisingly found that the use of a noble metal catalyst significantly improves the yield of DIPEA, and completed the first invention of the present invention.

【0007】本発明の第2発明のような第2級アミンと
アルデヒドの接触還元反応による第3級アミンの製造に
おいては、一般に、オートクレーブ中に第2級アミンと
アルデヒドのいずれも全量を仕込み水素化触媒の存在下
接触還元反応させる方法がとられている。ところが、ジ
イソプロピルアミンとアセトアルデヒドの接触還元反応
によるDIPEAの製造の際、かかる一般の方法では貴
金属触媒及びラネーNi触媒のいずれでもアセトアルデ
ヒドが本発明の目的以外の反応を起こし、DIPEAの
収率は極めて低いかもしくはDIPEAの生成をほとん
ど認めることができない。このように、従来一般的に行
なわれている方法ではDIPEAを収率良く得ることが
できない。
In the production of a tertiary amine by a catalytic reduction reaction of a secondary amine and an aldehyde as in the second invention of the present invention, generally, all of the secondary amine and the aldehyde are charged in an autoclave and hydrogen is charged. A method of performing a catalytic reduction reaction in the presence of a conversion catalyst is employed. However, in the production of DIPEA by the catalytic reduction reaction of diisopropylamine and acetaldehyde, in such a general method, acetaldehyde causes a reaction other than the object of the present invention with any of the noble metal catalyst and Raney Ni catalyst, and the yield of DIPEA is extremely low. Or the formation of DIPEA is hardly noticeable. As described above, DIPEA cannot be obtained with a high yield by the conventional method.

【0008】そこで、本発明者は、鋭意研究を行なった
結果、意外にも、貴金属触媒の存在下反応系内に原料の
アセトアルデヒドを供給しながらDIPAとアセトアル
デヒドの接触還元反応を行なうことにより、DIPEA
の収率が著しく向上することを見出し本発明の第2発明
を完成するに至った。ところでラネーNi触媒の存在下
反応系内に原料のアセトアルデヒドを供給しながらDI
PAとアセトアルデヒドの接触還元反応を行なっても、
主たる生成物はアセトアルデヒドの還元体であるエタノ
ールでありDIPEAの生成をほとんど認めることがで
きない。
Accordingly, the present inventors have conducted intensive studies and, as a result, surprisingly, DIPEA was carried out by performing a catalytic reduction reaction of DIPA and acetaldehyde while supplying raw material acetaldehyde in the presence of a noble metal catalyst.
It has been found that the yield of the present invention is significantly improved, and the second invention of the present invention has been completed. By the way, while supplying the raw material acetaldehyde into the reaction system in the presence of Raney Ni catalyst, DI
Even if the catalytic reduction reaction of PA and acetaldehyde is performed,
The main product is ethanol, which is a reduced form of acetaldehyde, and the formation of DIPEA is hardly observed.

【0009】本第2発明では水素化触媒として貴金属触
媒を用いること及び反応系内にアセトアルデヒドを供給
しながら接触還元反応を行なうことが重要である。本発
明の方法に用いる貴金属触媒としては通常使用される水
素化用貴金属触媒が挙げられ、その具体例としてはパラ
ジウム−カーボン、ルテニウム−カーボン、ロジウム−
カーボン、白金−カーボンなどが挙げられる。貴金属触
媒の使用量は、エチルアミン又はジイソプロピルアミン
に対して1〜20%重量の範囲が反応効率、触媒効率の
面から好ましい。
In the second invention, it is important to use a noble metal catalyst as the hydrogenation catalyst and to carry out the catalytic reduction reaction while supplying acetaldehyde into the reaction system. Examples of the noble metal catalyst used in the method of the present invention include commonly used noble metal catalysts for hydrogenation, and specific examples thereof include palladium-carbon, ruthenium-carbon, and rhodium-.
Carbon, platinum-carbon and the like. The amount of the noble metal catalyst used is preferably in the range of 1 to 20% by weight based on ethylamine or diisopropylamine from the viewpoint of reaction efficiency and catalyst efficiency.

【0010】本発明の第1発明の方法について更に説明
する。アセトンの使用量は通常エチルアミンに対して2
倍〜30倍モルで、好ましくは4〜16倍モルと過剰に
用いることにより反応が好適に進行する。アセトンの使
用量がエチルアミンに対して2倍モル未満であると、D
IPEAよりもMIPEAの方の生成率が増す。エチル
アミンは水溶液として反応に供することができる。エチ
ルアミン水溶液としては工業的に入手しやすい70%品
が用いられる。
[0010] The method of the first invention of the present invention will be further described. The amount of acetone used is usually 2 to ethylamine.
The reaction proceeds suitably when used in an excess of 1 to 30 moles, preferably 4 to 16 moles. If the amount of acetone used is less than twice the mole of ethylamine, D
The production rate of MIPEA is higher than that of IPEA. Ethylamine can be subjected to the reaction as an aqueous solution. As the ethylamine aqueous solution, a 70% product that is industrially easily available is used.

【0011】本発明の第1発明の反応は比較的低温下で
生成可能なMIPEAを経由してDIPEAを生成する
ものである。本発明の第1発明の好ましい一つの実施態
様によれば、エチルアミン、アセトン及び貴金属触媒を
オートクレーブに仕込み、水素を導入しながら100〜
180℃好ましくは130〜160℃まで徐々に加温
し、該温度に保ちながら常圧以上好ましくは5〜60気
圧で水素の導入を続ければよい。水素導入開始後3〜1
0時間で水素の吸収が終了し、エチルアミンはほとんど
消費される。他の好ましい実施態様としては、常温〜9
0℃程度でエチルアミンとアセトンを貴金属触媒存在下
で接触還元反応させてMIPEAを製造単離し、次いで
単離されたMIPEAとアセトンを貴金属触媒存在下1
00〜180℃好ましくは130〜160℃で接触還元
反応させてDIPEAを製造するといった2ステップの
方法が挙げられる。
The reaction of the first invention of the present invention is to produce DIPEA via MIPEA which can be produced at a relatively low temperature. According to one preferred embodiment of the first invention of the present invention, ethylamine, acetone and a noble metal catalyst are charged into an autoclave and 100 to 100 while introducing hydrogen.
The temperature may be gradually increased to 180 ° C., preferably 130 to 160 ° C., and the introduction of hydrogen may be continued at a normal pressure or higher and preferably 5 to 60 atm while maintaining the temperature. 3-1 after the start of hydrogen introduction
At 0 hours, the absorption of hydrogen ends, and ethylamine is almost consumed. In another preferred embodiment, room temperature to 9
Ethylamine and acetone are subjected to a catalytic reduction reaction in the presence of a noble metal catalyst at about 0 ° C. to produce and isolate MIPEA. Then, the isolated MIPEA and acetone are isolated in the presence of a noble metal catalyst.
A two-step method of producing DIPEA by performing a catalytic reduction reaction at 00 to 180 ° C, preferably 130 to 160 ° C.

【0012】また本発明の第1発明の方法において反応
液中に含まれるMIPEAは反応液から単離後、アセト
ンと貴金属触媒存在下で接触還元反応せしめることによ
りDIPEAに誘導できる。
In the method of the first invention of the present invention, MIPEA contained in the reaction solution can be induced to DIPEA by isolating from the reaction solution and subjecting it to a catalytic reduction reaction with acetone in the presence of a noble metal catalyst.

【0013】つぎに、本発明の第2発明の方法について
更に説明する。反応系内に供給するアセトアルデヒド
は、DIPAに対して1〜2.0倍モルと理論量ないし
過剰に用いるのが好ましい。本発明には、溶媒は特に必
要でないが、アセトアルデヒドは低沸点のため溶媒で希
釈して供給する方が操作しやすい。溶媒としては水、或
はアミンとアセトアルデヒドに対して不活性な有機溶媒
などが使用できるが、後処理の操作性のよい水が好まし
い。溶媒量としては特に制限はないが、生産効率を考慮
した場合、アセトアルデヒドに対して0.5〜3倍重量
が好ましい。
Next, the method of the second invention of the present invention will be further described. The acetaldehyde to be supplied into the reaction system is preferably used in a theoretical amount or an excess of 1 to 2.0 times mol of DIPA. In the present invention, a solvent is not particularly required, but since acetaldehyde has a low boiling point, it is easier to operate by diluting with a solvent and supplying it. As the solvent, water or an organic solvent inert to amine and acetaldehyde can be used, but water having good operability in post-treatment is preferable. The amount of the solvent is not particularly limited, but is preferably 0.5 to 3 times the weight of acetaldehyde in consideration of production efficiency.

【0014】反応温度は通常室温〜200℃好ましくは
70〜150℃である。反応圧としては常圧以上好まし
くは5〜60気圧である。アセトアルデヒドの供給時間
は1〜6時間で十分であり、DIPAはほとんど消費さ
れる。
[0014] The reaction temperature is usually from room temperature to 200 ° C, preferably from 70 to 150 ° C. The reaction pressure is not lower than normal pressure and preferably 5 to 60 atm. A supply time of acetaldehyde of 1 to 6 hours is sufficient, and DIPA is almost consumed.

【0015】本発明の方法で製造されるDIPEAは一
般的な単離精製手段、例えば反応液から濾過により触媒
を除去し、濾液を蒸留することにより極めて容易に高純
度で得られる。
The DIPEA produced by the method of the present invention can be obtained very easily and in a high purity by a general isolation and purification means, for example, by removing the catalyst from the reaction solution by filtration and distilling the filtrate.

【0016】[0016]

【実施例】本発明の方法を実施例及び比較例により説明
するが、本発明はそれらの実施例に限定されるものでは
ない。
EXAMPLES The method of the present invention will be described with reference to examples and comparative examples, but the present invention is not limited to these examples.

【0017】実施例1 容量1リットルの電磁式撹拌式オートクレーブに70%
エチルアミン水溶液64g(1.0モル)、アセトン4
64g(8.0モル)及びパラジウム−カーボン6.4
gを仕込み、これに水素を導入、及び加熱して160
℃、50気圧に昇温昇圧し接触還元反応を行なった。次
いで当該温度、当該圧を保ちながら水素の導入を続け接
触還元反応を行なった。水素吸収は水素導入開始後7時
間で終了した。反応液を冷却後、濾過して触媒を濾別
し、濾液を蒸留してDIPEAを82.8g(収率6
4.2%)及びMIPEAを20.3g(収率23.3
%)得た。
Example 1 70% in a magnetic stirring type autoclave having a capacity of 1 liter
64 g (1.0 mol) of an ethylamine aqueous solution, acetone 4
64 g (8.0 mol) and palladium-carbon 6.4
g, hydrogen was introduced therein, and heated to 160 g.
The temperature was raised to 50 ° C. and a pressure of 50 atm to perform a catalytic reduction reaction. Next, while maintaining the temperature and the pressure, introduction of hydrogen was continued to perform a catalytic reduction reaction. Hydrogen absorption was completed 7 hours after the start of hydrogen introduction. After cooling, the reaction solution was filtered to remove the catalyst, and the filtrate was distilled to obtain 82.8 g of DIPEA (yield: 6).
4.2%) and 20.3 g of MIPEA (yield 23.3).
%)Obtained.

【0018】実施例2 反応温度を180℃に代えた他は実施例1と同様にして
反応及び後処理を行ない、DIPEAを57.7g(収
率44.7%)及びMIPEAを29.6g(収率3
4.0%)得た。
Example 2 A reaction and a post-treatment were carried out in the same manner as in Example 1 except that the reaction temperature was changed to 180 ° C., and 57.7 g of DIPEA (44.7% yield) and 29.6 g of MIPEA were obtained. Yield 3
4.0%).

【0019】実施例3 70%エチルアミン水溶液を45g(0.7モル)及び
アセトンを487g(8.4モル)に代えた他は実施例
1と同様にして反応及び後処理を行ない、DIPEAを
60.8g(収率67.3%)及びMIPEAを12.
0g(収率19.7%)得た。
Example 3 The reaction and post-treatment were carried out in the same manner as in Example 1 except that the 70% ethylamine aqueous solution was replaced by 45 g (0.7 mol) and the acetone by 487 g (8.4 mol), and DIPEA was added to 60%. 0.8 g (67.3% yield) and MIPEA.
0 g (19.7% yield) was obtained.

【0020】実施例4 70%エチルアミン水溶液を257g(4モル)、アセ
トンを232g(4モル)及びパラジウム−カーボンを
3.5g反応温度を70℃に代えた他は実施例1と同様
にして反応及び後処理を行ない、MIPEAを334.
4g(収率96.1%)得た。なお、水素吸収は水素導
入開始後4時間で終了した。
Example 4 257 g (4 mol) of a 70% ethylamine aqueous solution, 232 g (4 mol) of acetone and 3.5 g of palladium-carbon were reacted in the same manner as in Example 1 except that the reaction temperature was changed to 70 ° C. And post-processing is performed, and MIPEA is set to 334.
4 g (96.1% yield) was obtained. The hydrogen absorption was completed 4 hours after the start of hydrogen introduction.

【0021】ついで、得られたMIPEA100g
(1.15モル),アセトン333g(5.75モル)
及びパラジウム−カーボン7.4gを容量1リットルの
電磁式撹拌式オートクレーブに仕込み、これに水素を導
入しながら160℃、40気圧で5時間接触還元反応を
行なった。反応液を冷却後、濾過して触媒を濾別し、濾
液を蒸留してDIPEAを105.9g(収率71.4
%)、未反応MIPEAを8.4g(回収率8.4%)
得た。
Then, 100 g of the obtained MIPEA was obtained.
(1.15 mol), 333 g (5.75 mol) of acetone
And 7.4 g of palladium-carbon was charged into a 1-liter electromagnetic stirring type autoclave, and a catalytic reduction reaction was carried out at 160 ° C. and 40 atm for 5 hours while introducing hydrogen into the autoclave. After cooling, the reaction solution was filtered to remove the catalyst, and the filtrate was distilled to obtain 105.9 g of DIPEA (yield: 71.4).
%), 8.4 g of unreacted MIPEA (recovery rate 8.4%)
Obtained.

【0022】実施例5 容量1リットルの電磁式撹拌式オートクレーブにDIP
A202g(2.0モル)及びパラジウム−カーボン1
2.9gを仕込み、これに水素を導入し加熱し120
℃、25気圧とした。次いで50%アセトアルデヒド水
溶液184g(2.1モル)を高圧定量ポンプにて及び
25気圧を保つように水素をオートクレーブ内に3時間
かけて供給しながら接触還元反応を行なった。反応液を
冷却後、濾過して触媒を濾別し、2層に分液した濾液の
オイル層を蒸留してDIPEAを210.0g(収率8
1.4%)及び未反応DIPAを17.8g(回収率
8.8%)得た。他にエタノールが10.4g(収率1
0.8%)副生していた。
Example 5 DIP was added to a magnetic stirring autoclave having a capacity of 1 liter.
A 202 g (2.0 mol) and palladium-carbon 1
2.9 g was charged, hydrogen was introduced into the mixture, and the mixture was heated to 120 g.
° C and 25 atm. Next, 184 g (2.1 mol) of a 50% acetaldehyde aqueous solution was subjected to a catalytic reduction reaction while supplying hydrogen into the autoclave over 3 hours by a high-pressure metering pump and keeping 25 atm. After cooling, the reaction solution was filtered to separate the catalyst, and the oil layer of the filtrate separated into two layers was distilled to obtain 210.0 g of DIPEA (yield 8).
1.4%) and 17.8 g of unreacted DIPA (recovery rate: 8.8%). In addition, 10.4 g of ethanol (yield 1
0.8%).

【0023】実施例6 パラジウム−カーボンを7.7g及び50%アセトアル
デヒド水溶液を228g(2.6モル)に代えた他は実
施例5と同様にして反応及び後処理を行ない、DIPE
Aを236.1g(収率91.5%)得、未反応DIP
Aは0.6g(回収率0.3%)とほとんど残っていな
かった。他にエタノールが10.5g(収率8.8%)
副生していた。
Example 6 The reaction and post-treatment were carried out in the same manner as in Example 5 except that 7.7 g of palladium-carbon and 228 g (2.6 mol) of a 50% aqueous acetaldehyde solution were used.
A, 236.1 g (91.5% yield), unreacted DIP
A remained almost at 0.6 g (recovery 0.3%). 10.5 g of ethanol (8.8% yield)
It was a by-product.

【0024】比較例1 容量1リットルの電磁式撹拌式オートクレーブにDIP
A202g(2.0モル)、50%アセトアルデヒド水
溶液184g(2.1モル)及びパラジウム−カーボン
7.7gを仕込み、これに水素を導入しながら120
℃、25気圧で接触還元反応を行なったところ、1時間
30分で水素の吸収が止まり反応は終了した。反応液を
冷却後、濾過して触媒を濾別し、2層に分液した濾液の
オイル層を蒸留してDIPEAを23.5g(収率9.
1%)及び未反応DIPAを68.3g(回収率33.
8%)得た。他に高沸物が多種多量に副生していた。
COMPARATIVE EXAMPLE 1 DIP was added to a 1-liter electromagnetic stirring type autoclave.
A 202 g (2.0 mol), 184 g (2.1 mol) of a 50% aqueous solution of acetaldehyde and 7.7 g of palladium-carbon were charged, and hydrogen was introduced into the mixture.
When the catalytic reduction reaction was performed at 25 ° C. and 25 ° C., the absorption of hydrogen stopped in 1 hour and 30 minutes, and the reaction was completed. After cooling, the reaction solution was filtered to separate the catalyst, and the oil layer of the filtrate separated into two layers was distilled to obtain 23.5 g of DIPEA (yield 9.
1%) and 68.3 g of unreacted DIPA (recovery: 33.3%).
8%). In addition, many high-boiling substances were by-produced.

【0025】比較例2 パラジウム−カーボンをラネーNi52gに代えた他は
実施例6と同様にして反応及び後処理を行なった。DI
PEAの生成量はトレースであり、未反応DIPAを1
94.9g(回収率96.5%)及びエタノールを11
8g(収率98.7%)得た。
Comparative Example 2 A reaction and a post-treatment were carried out in the same manner as in Example 6 except that 52 g of Raney Ni was used instead of palladium-carbon. DI
The amount of produced PEA is a trace, and the amount of unreacted DIPA was 1
94.9 g (recovery rate 96.5%) and ethanol
8 g (98.7% yield) was obtained.

【0026】[0026]

【発明の効果】本発明の第1及び2発明によれば、従来
法に比べ安価な原料で良好な収率でDIPEAが得られ
る。
According to the first and second aspects of the present invention, DIPEA can be obtained at a good yield with less expensive raw materials than the conventional method.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 ジイソプロピルアミンとアセトアルデヒ
ドを貴金属触媒の存在下、接触還元反応させてN,N−
ジイソプロピルエチルアミンを製造するにあたり、反応
系内にアセトアルデヒドを供給しながら反応することを
特徴とするN,N−ジイソプロピルエチルアミンの製造
法。
Claims: 1. A catalytic reduction reaction of diisopropylamine and acetaldehyde in the presence of a noble metal catalyst to give N, N-
A method for producing N, N-diisopropylethylamine, wherein the reaction is carried out while supplying acetaldehyde into the reaction system when producing diisopropylethylamine.
JP9260814A 1997-09-08 1997-09-08 Method for producing N, N-diisopropylethylamine Expired - Fee Related JP2851274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9260814A JP2851274B2 (en) 1997-09-08 1997-09-08 Method for producing N, N-diisopropylethylamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9260814A JP2851274B2 (en) 1997-09-08 1997-09-08 Method for producing N, N-diisopropylethylamine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP63333974A Division JP2740828B2 (en) 1988-12-29 1988-12-29 Method for producing N, N-diisopropylethylamine

Publications (2)

Publication Number Publication Date
JPH1081650A JPH1081650A (en) 1998-03-31
JP2851274B2 true JP2851274B2 (en) 1999-01-27

Family

ID=17353137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9260814A Expired - Fee Related JP2851274B2 (en) 1997-09-08 1997-09-08 Method for producing N, N-diisopropylethylamine

Country Status (1)

Country Link
JP (1) JP2851274B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034978B2 (en) 2006-05-31 2011-10-11 Basf Se Process for the preparation of an amine
US9884805B2 (en) 2014-02-18 2018-02-06 Basf Antwerpen Nv Method for producing N-ethyl-diisopropylamine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111393301B (en) * 2020-05-09 2023-01-03 建德建业资源再生技术有限公司 Production method of diisopropylethylamine capable of preventing catalyst from caking

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8034978B2 (en) 2006-05-31 2011-10-11 Basf Se Process for the preparation of an amine
US9884805B2 (en) 2014-02-18 2018-02-06 Basf Antwerpen Nv Method for producing N-ethyl-diisopropylamine

Also Published As

Publication number Publication date
JPH1081650A (en) 1998-03-31

Similar Documents

Publication Publication Date Title
EP2303828B1 (en) Method for producing substituted biphenyls
EP2178826B1 (en) Process and intermediates for the synthesis of 1,2-substituted 3,4-dioxo-1-cyclobutene compounds
JP3001685B2 (en) Diamine production method
JP2851274B2 (en) Method for producing N, N-diisopropylethylamine
KR20140139579A (en) Methods for producing 1,5,7-triazabicyclo[4.4.0] dec-5-ene by reaction of a disubstituted carbodiimide and dipropylene triamine
JP2740828B2 (en) Method for producing N, N-diisopropylethylamine
US20080033154A1 (en) Process for Producing 3-Aminomethyltetrahydrofuran Derivative
US20080064905A1 (en) Process for preparing 1,2-diols from carbonyl compounds
CA1250311A (en) Process for the preparation of methyl n- methylanthranilate
KR20140003707A (en) Method for preparing xylylenediamine
JPH07138209A (en) Production of halogen-containing aminomethyl compound
EP1405843B1 (en) Method for producing aminostilbene derivative
EP2462104B1 (en) Method for synthesizing aminoalcohols
JPH078839B2 (en) Method for producing N, N, N ', N'-tetramethyl-1.6-hexanediamine
JPH08109170A (en) Production of hexahydropyridazine
JP2813465B2 (en) Method for producing 1-phenoxy-2-aminopropane
JP2558480B2 (en) Method for producing N-ethylpiperazine
EP1131289B1 (en) Processes for preparing 2-piperidineethanol compounds
JPH01135758A (en) Production of aromatic polycarbamate
EP1893556B1 (en) Process for preparing tetrafluorobenzene carbaldehyde alkyl acetal
JPS62164656A (en) Production of cyanoisophorone
JPH0725745B2 (en) Method for producing amine compound
KR101578190B1 (en) Method for preparing xylylenediamine
CN111018734A (en) Synthesis method of cinacalcet hydrochloride intermediate
JP4024919B2 (en) Process for producing 1-amino-1-methyl-3 (4) -aminomethylcyclohexane

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081113

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees