Nothing Special   »   [go: up one dir, main page]

JP2716559B2 - Cooling / heating mixed type multi-room air conditioner - Google Patents

Cooling / heating mixed type multi-room air conditioner

Info

Publication number
JP2716559B2
JP2716559B2 JP2052113A JP5211390A JP2716559B2 JP 2716559 B2 JP2716559 B2 JP 2716559B2 JP 2052113 A JP2052113 A JP 2052113A JP 5211390 A JP5211390 A JP 5211390A JP 2716559 B2 JP2716559 B2 JP 2716559B2
Authority
JP
Japan
Prior art keywords
compressor
heat exchanger
outdoor
outdoor heat
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2052113A
Other languages
Japanese (ja)
Other versions
JPH03255860A (en
Inventor
文雄 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2052113A priority Critical patent/JP2716559B2/en
Publication of JPH03255860A publication Critical patent/JPH03255860A/en
Application granted granted Critical
Publication of JP2716559B2 publication Critical patent/JP2716559B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、冷房運転と暖房運転の同時運転が可能な
冷暖混在型多室空気調和装置に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mixed cooling / heating multi-room air conditioner capable of simultaneously operating a cooling operation and a heating operation.

〔従来の技術〕[Conventional technology]

第3図は例えば特開平1-167561号公報に開示された従
来の多室型冷暖房装置の構成図を示すもので、図におい
て、(1)は室外ユニットであって、(2)は圧縮機、
(3)は室外熱交換器、(4)はアキュームレータであ
る。(5a)(5b)(5c)は3台の室内ユニットで、(6
a)(6b)(6c)は室内熱交換器、(7)は冷媒吐出
管、(8)は冷媒吸込管である。(9a)(9b)は切換
弁、(10)は室外ユニット(1)と室内ユニット(5a)
〜(5c)とのユニット間配管で、このうち(11)は高圧
ガス冷媒配管、(12)は低圧ガス冷媒配管、(13)は液
冷媒配管である。(14a)(14b)(14c)および(15a)
(15b))15c)は各室内ユニット(5a)〜(5c)の切換
弁、(16a)(16b)(16c)は冷媒減圧器、(17)はバ
イパス管、(20)は冷媒減圧器、(22)は室外熱交換器
(3)のファンを示す。
FIG. 3 shows a configuration diagram of a conventional multi-room air-conditioning apparatus disclosed in, for example, Japanese Patent Application Laid-Open No. 1-167561. In the figure, (1) is an outdoor unit, and (2) is a compressor. ,
(3) is an outdoor heat exchanger, and (4) is an accumulator. (5a), (5b), and (5c) are three indoor units.
a) (6b) and (6c) are indoor heat exchangers, (7) is a refrigerant discharge pipe, and (8) is a refrigerant suction pipe. (9a) (9b): switching valve, (10): outdoor unit (1) and indoor unit (5a)
(11) is a high-pressure gas refrigerant pipe, (12) is a low-pressure gas refrigerant pipe, and (13) is a liquid refrigerant pipe. (14a) (14b) (14c) and (15a)
(15b)) 15c) is a switching valve of each indoor unit (5a) to (5c), (16a) (16b) (16c) is a refrigerant pressure reducer, (17) is a bypass pipe, (20) is a refrigerant pressure reducer, (22) indicates a fan of the outdoor heat exchanger (3).

次に動作について説明する。ここでは室内ユニット
(5a)と(5b)が暖房モードで、室内ユニット(5c)が
冷房モードの場合について説明する。まず、圧縮機
(2)より吐出された高温高圧のガス冷媒は、高圧ガス
冷媒配管(11)を通って室内ユニット(5a)(5b)へ導
かれ、切換弁(14a)(14b)を経て熱交換器(6a)(6
b)で凝縮液化し、そして高温液冷媒となって冷媒減圧
器(16a)(16b)より液冷媒配管(13)へ流入し、その
後、高温液冷媒は冷媒減圧器(16c)および(20)によ
り減圧されて室内ユニット(5c)および室外ユニット
(1)へ分流し、熱交換器(6c)および(3)でそれぞ
れ蒸発ガス化して切換弁(15c)および(9b)を経て低
圧ガス冷媒配管(12)へ流入する。かくして、低圧ガス
冷媒は低圧ガス冷媒配管(12)よりアキュームレータ
(4)を通って再び圧縮機(2)へ吸入される冷媒回路
が構成されている。
Next, the operation will be described. Here, the case where the indoor units (5a) and (5b) are in the heating mode and the indoor unit (5c) is in the cooling mode will be described. First, the high-temperature and high-pressure gas refrigerant discharged from the compressor (2) is guided to the indoor units (5a) and (5b) through the high-pressure gas refrigerant pipe (11) and passes through the switching valves (14a) and (14b). Heat exchanger (6a) (6
In b), it is condensed and liquefied, and becomes high-temperature liquid refrigerant and flows into the liquid refrigerant pipe (13) from the refrigerant decompressors (16a) and (16b). , And is diverted to the indoor unit (5c) and the outdoor unit (1), gasified and vaporized by the heat exchangers (6c) and (3), respectively, and then passed through the switching valves (15c) and (9b). Flow into (12). Thus, a refrigerant circuit is formed in which the low-pressure gas refrigerant is sucked from the low-pressure gas refrigerant pipe (12) through the accumulator (4) again into the compressor (2).

なお、この冷媒回路を構成している各種機器の動作
は、室外ユニット(1)側に設けられた制御装置(図示
せず)によって次のように制御されている。
The operation of various devices constituting the refrigerant circuit is controlled as follows by a control device (not shown) provided on the outdoor unit (1) side.

圧縮機(2)の容量(冷媒循環量)を決定する圧縮機
(2)の回転数は、室内ユニット(5a)〜(5c)側の各
部屋に設けられた各ルームサーモ(図示せず)の送信す
る冷・暖ON-OFF信号に基づいて制御される。
The number of rotations of the compressor (2) that determines the capacity (refrigerant circulation amount) of the compressor (2) is determined by each room thermo (not shown) provided in each room on the indoor units (5a) to (5c) side. Is controlled based on the cold / warm ON-OFF signal transmitted by

また、室外熱交換器の容量を決定する1因子であり、
室外側送風機であるファン(22)回転数は、室外ユニッ
ト(1)に設けられた外気サーモ(図示せず)の検出す
る外気温度と予め設定された温度との温度差に基づいて
制御される。
In addition, it is one factor that determines the capacity of the outdoor heat exchanger,
The rotation speed of a fan (22) serving as an outdoor blower is controlled based on a temperature difference between an outside air temperature detected by an outside air thermometer (not shown) provided in the outdoor unit (1) and a preset temperature. .

また、ON-OFF制御によって、室外熱交換器の容量を決
定する1因子である室外熱交換器(3)の伝熱面積を0
%または100%に切換えたり、室外熱交換器(3)の機
能を放熱または吸熱機能へ切換える切換弁(9a)(9b)
は、ルームサーモの送信する冷・暖房信号の冷・暖房比
率に基づいてON-OFF制御される。
Further, by the ON-OFF control, the heat transfer area of the outdoor heat exchanger (3), which is one factor for determining the capacity of the outdoor heat exchanger, is reduced to 0.
Switching valve (9a) (9b) that switches the function of the outdoor heat exchanger (3) to the heat release or heat absorption function
Is ON-OFF controlled based on the cooling / heating ratio of the cooling / heating signal transmitted by the room thermo.

また、各室内熱交換器(6a)〜(6c)の冷・暖運転モ
ードを切換える高圧ガス冷媒配管(11)に設けられた切
換弁(14a)〜(14c)と、低圧ガス冷媒配管(12)に設
けられた切換弁(15a)〜(15c)は、各ルームサーモの
送信する冷・暖信号を受信した制御装置によってそれぞ
れ個別に制御されている。
In addition, switching valves (14a) to (14c) provided in the high-pressure gas refrigerant pipe (11) for switching between the cooling and warming operation modes of the indoor heat exchangers (6a) to (6c), and the low-pressure gas refrigerant pipe (12 The switching valves (15a) to (15c) provided in (1) and (2) are individually controlled by a control device that has received the cooling / heating signals transmitted from each room thermo.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

従来の冷暖混在型多室空気調和装置は、以上のように
構成されているので、各種機器を制御する制御用配線が
室内−室外ユニット間を行き来し、制御回路の配線が複
雑になるために、配線工事に時間がかかったり、誤配線
をしたりする。
Since the conventional cooling / heating mixed type multi-room air conditioner is configured as described above, control wiring for controlling various devices goes back and forth between the indoor and outdoor units, and wiring of the control circuit becomes complicated. It takes time for wiring work or incorrect wiring.

また、圧縮機の容量を決定する圧縮機の回転数を各ル
ームサーモの冷・暖ON-OFF信号に基づいて制御すると共
に、室外熱交換器の容量を決定する1因子である室外側
送風機の回転数を外気温度に基づいて制御したり、ある
いは、室外熱交換器の放熱または吸熱機能を各ルームサ
ーモの送信する信号に基づいて切換制御したり、各種機
器を互いに関連せずに、それぞれ個別に制御しているた
めに、天候・気候等の環境変化に追従できなかったり、
また、冷凍サイクルの各種機器がバランスするのに時間
がかかったりして、各室内温度が目標温度になかなか安
定しない。
In addition, the number of rotations of the compressor that determines the capacity of the compressor is controlled based on the ON / OFF signal of the cooling / warming of each room thermostat, and the outdoor blower, which is one factor that determines the capacity of the outdoor heat exchanger, is controlled. The number of rotations is controlled based on the outside air temperature, or the heat radiation or heat absorption function of the outdoor heat exchanger is switched and controlled based on the signal transmitted by each room thermometer. Because it cannot control environmental changes such as weather and climate,
In addition, it takes time for various components of the refrigeration cycle to balance, and each room temperature is not easily stabilized at the target temperature.

さらに、冷凍サイクル全体の負荷バランスを崩す各室
内ユニットの冷・暖仕様変更や増減工事等を行なった時
には、制御回路プログラムの変更や、複雑な配線改修工
事をしなければならないという問題点があった。
Furthermore, when changing the cooling / warming specifications of each indoor unit or increasing or decreasing the load that disrupts the load balance of the entire refrigeration cycle, the control circuit program must be changed and complicated wiring repair work must be performed. Was.

この発明は上記のような問題点を解消するためになさ
れたもので、各種機器の制御用配線が室内−室外ユニッ
ト間を行き来することがなく、配線回路が簡単で、配線
工事が短期間にできると共に、また、天候・気候等の環
境条件変化によって室外ユニット側の負荷が変化した
り、また、室内扉の開閉や、室内設定温度の変更や、冷
・暖房運転モードの切替によって室内ユニット側の負荷
が変化したり、また、各室内ユニットの仕様変更・増減
工事等によって冷凍サイクル全体の冷・暖房比率が変化
しても、これらの変化に対応して追従するために、室内
ユニットの増減・仕様変更が簡単にできると共に、冷凍
サイクルがスピーディにバランスし、各室内温度がスピ
ーディに精度良く安定する信頼性の高い冷暖混在型多室
空気調和装置を得ることを目的とする。
The present invention has been made in order to solve the above-described problems, and the control wiring of various devices does not move between the indoor unit and the outdoor unit, the wiring circuit is simple, and the wiring work is completed in a short time. In addition to the above, the load on the outdoor unit changes due to changes in environmental conditions such as weather and climate, and the indoor unit opens and closes by opening and closing the indoor door, changing the indoor set temperature, and switching between the cooling and heating operation modes. Even if the load on the refrigeration cycle changes due to a change in the load on the refrigeration cycle or a change in the specifications of each indoor unit or a change in the number of indoor units, the increase or decrease in the number of indoor units・ It is possible to obtain a highly reliable cooling / heating mixed-type multi-room air conditioner in which specifications can be changed easily, the refrigeration cycle is quickly balanced, and each room temperature is quickly and accurately stabilized. The interest.

〔問題を解決するための手段〕[Means for solving the problem]

この発明に係る冷暖混在型多室空気調和装置は、容量
可変の圧縮機、室外熱交換器、および室外側送風機を有
する室外ユニットと、複数の室内熱交換器を有する室内
ユニットと、一端が上記室外熱交換器の一端に、他端が
上記複数の室内熱交換器の一端に、それぞれ電子膨張弁
を介して接続される高圧液冷媒配管と、一端が上記圧縮
機の吐出側及び放熱切換弁を介して上記室外熱交換器の
他端に、他端がそれぞれ第1の電磁開閉弁を介して上記
複数の室内熱交換器の他端に接続される高圧ガス冷媒配
管と、一端が上記圧縮機の吸入側及び吸熱切換弁を介し
て上記室外熱交換器の他端に、他端がそれぞれ第2の電
磁開閉弁を介して上記複数の室内熱交換器の他端に接続
される低圧ガス冷媒配管とを備えた冷暖混在型多室空気
調和装置において、上記圧縮機の吐出冷媒圧力Pdに対応
する特性値を検出する第1の検出器と、上記圧縮機の吸
入冷媒圧力Psに対応する特性値を検出する第2の検出器
と、上記第1の検出器および第2の検出器の検出結果P
d,Psと予め設定された第1の目標値Pdθ,および第2の
目標値Psθとを比較し、ΔPd=Pdθ−Pd,ΔPs=Psθ−P
sを演算し、これらの演算結果ΔPd,ΔPsにより上記圧縮
機および上記室外熱交換器の必要容量を式 を用いて演算し(ここにa,b,c,dは正の定数)、この演
算結果に基づいて、上記圧縮機の容量Δθcompを制御す
ると共に、上記室外熱交換器の容量ΔAKcを決定する上
記室外側送風機の回転数Kcと伝熱面積Aを制御する室外
ユニット制御装置とを備えたたものである。
The mixed cooling / heating multi-room air conditioner according to the present invention has an outdoor unit having a variable capacity compressor, an outdoor heat exchanger, and an outdoor blower, an indoor unit having a plurality of indoor heat exchangers, A high-pressure liquid refrigerant pipe connected to one end of the outdoor heat exchanger and the other end to one end of each of the plurality of indoor heat exchangers via an electronic expansion valve, and one end connected to the discharge side of the compressor and a radiation switching valve A high-pressure gas refrigerant pipe connected to the other end of the outdoor heat exchanger via a first solenoid on-off valve via a first solenoid on-off valve, A low-pressure gas connected to the other end of the outdoor heat exchanger via a suction side of the heat exchanger and a heat absorption switching valve, and the other end connected to the other end of the plurality of indoor heat exchangers via a second electromagnetic on / off valve, respectively. In a cooling / heating mixed type multi-room air conditioner equipped with a refrigerant pipe, A first detector that detects a characteristic value corresponding to the discharge refrigerant pressure Pd of the compressor, a second detector that detects a characteristic value corresponding to the suction refrigerant pressure Ps of the compressor, and the first detector. Detection result P of the detector and the second detector
d, comparing the first target value Pd theta, and a second target value Ps theta previously set as Ps, ΔPd = Pd θ -Pd, ΔPs = Ps θ -P
s and calculate the required capacity of the compressor and the outdoor heat exchanger according to the calculation results ΔPd and ΔPs. (Where a, b, c, and d are positive constants), and based on the calculation result, control the capacity Δθcomp of the compressor and determine the capacity ΔAKc of the outdoor heat exchanger. An outdoor unit control device for controlling the rotation speed Kc and the heat transfer area A of the outdoor blower is provided.

〔作用〕[Action]

この発明においては、圧縮機の吐出冷媒圧力および吸
入冷媒圧力に対応する特性値と第1の目標値および第2
の目標値とを比較し、該比較結果により圧縮機および室
外熱交換器の必要容量を演算し、この演算結果に基づい
て圧縮機の容量を制御すると共に、室外熱交換器の容量
を決定する室外側送風機の回転数を制御し、室外ユニッ
ト側機器のみの演算制御により、冷凍サイクル全体の負
荷をバランスさせる。
In the present invention, the characteristic values corresponding to the discharge refrigerant pressure and the suction refrigerant pressure of the compressor, the first target value, and the second
, The required capacity of the compressor and the outdoor heat exchanger is calculated based on the comparison result, the capacity of the compressor is controlled based on the calculation result, and the capacity of the outdoor heat exchanger is determined. The number of rotations of the outdoor blower is controlled, and the load of the entire refrigeration cycle is balanced by arithmetic control of only the outdoor unit-side device.

〔実施例〕〔Example〕

以下、この発明の一実施例を図について説明する。第
1図はこの発明による冷暖混在型多室空気調和装置の冷
媒回路図であって、(101)は室外ユニット、(102)は
複数台熱交換器からなる室内ユニットを示す。上記室外
ユニット(101)は圧縮機(103)、高低圧熱交換アキュ
ームレータ(104)、室外熱交換器(105)、室外側送風
機であるファン(106)、圧縮機容量制御手段(107)、
室外ユニット制御装置(108)とから構成されており、
上記圧縮機(103)の吐出口から高圧ガス管冷媒配(10
9)、吸入口から高低圧熱交換アキュームレータ(104)
を介して低圧ガス冷媒配管(111)、高低圧熱交換アキ
ュームレータ(104)の底部の高圧液冷媒配管(110)が
それぞれ室内ユニット(102)へ接続されている。ま
た、室外ユニット(101)の高圧ガス冷媒配管(109)の
途中に設けられ、圧縮機(103)の吐出冷媒圧力に対応
する特性値を検出する第1の検出器である吐出圧力検出
器(119)と、圧縮器(103)とアキュームレータ(10
4)の間の低圧ガス冷媒配管(111)の途中に設けられ、
圧縮機(103)の吸入冷媒圧力に対応する特性値を検出
する第2の検出器である吸入圧力検出器(120)を設け
ている。なお、圧縮機(103)の吐出冷媒ガスを導く高
圧ガス冷媒配管(109)と接続された室外熱交換器(10
5)の放熱運転時の入口側配管に設けられ、室外熱交換
器の吸熱運転時には冷媒の流れを停止し、放熱運転時に
室外熱交換器への冷媒流量を開度によって調整する放熱
切換弁である電磁切換弁(116z)と、また、この電磁切
換弁(116z)の放熱運転時の出口側配管と圧縮機(10
3)の吸入冷媒ガスを導く吸入配管である低圧ガス冷媒
配管(111)とを接続する配管に設けられ、室外熱交換
器(105)の放熱運転時には冷媒の流れを停止し、吸熱
運転時に室外熱交換器(105)への冷媒流量を開度によ
って調整する吸熱切換弁である電磁切換弁(117z)とを
設け、また、高圧液冷媒配管(110)に接続される室外
熱交換器(105)の放熱運転時の出口側配管(吸熱運転
時の入口側配管)には、絞り機構である電子膨張弁(11
8z)が設けられている。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a refrigerant circuit diagram of a mixed cooling / heating multi-room air conditioner according to the present invention, where (101) shows an outdoor unit and (102) shows an indoor unit composed of a plurality of heat exchangers. The outdoor unit (101) includes a compressor (103), a high / low pressure heat exchange accumulator (104), an outdoor heat exchanger (105), a fan (106) serving as an outdoor blower, a compressor capacity control means (107),
And an outdoor unit control device (108),
A high-pressure gas pipe refrigerant distribution (10
9), high-low pressure heat exchange accumulator from intake port (104)
The low-pressure gas refrigerant pipe (111) and the high-pressure liquid refrigerant pipe (110) at the bottom of the high / low pressure heat exchange accumulator (104) are connected to the indoor unit (102) via the. In addition, a discharge pressure detector (a first pressure detector) which is provided in the middle of the high pressure gas refrigerant pipe (109) of the outdoor unit (101) and detects a characteristic value corresponding to the discharge refrigerant pressure of the compressor (103). 119), compressor (103) and accumulator (10
4) installed in the middle of the low-pressure gas refrigerant pipe (111),
A suction pressure detector (120) as a second detector for detecting a characteristic value corresponding to a suction refrigerant pressure of the compressor (103) is provided. The outdoor heat exchanger (10) connected to the high-pressure gas refrigerant pipe (109) for guiding the refrigerant gas discharged from the compressor (103)
5) A radiation switching valve that is provided on the inlet side pipe during the heat radiation operation, stops the flow of refrigerant during the heat absorption operation of the outdoor heat exchanger, and adjusts the flow rate of the refrigerant to the outdoor heat exchanger according to the opening during the heat radiation operation. An electromagnetic switching valve (116z), and an outlet side piping and a compressor (10
The pipe is connected to the low-pressure gas refrigerant pipe (111), which is the suction pipe for introducing the refrigerant gas of 3), and stops the flow of the refrigerant during the heat radiation operation of the outdoor heat exchanger (105), and stops the outdoor flow during the heat absorption operation. An electromagnetic switching valve (117z), which is a heat absorbing switching valve that adjusts the flow rate of the refrigerant to the heat exchanger (105) according to the opening, is provided, and the outdoor heat exchanger (105) connected to the high-pressure liquid refrigerant pipe (110) is provided. ), The outlet pipe during the heat dissipation operation (the inlet pipe during the heat absorption operation) has an electronic expansion valve (11
8z).

また、上記室内ユニット(102)の各室内熱交換器(1
12)〜(115)はそれぞれ一方を高圧ガス冷媒配管(10
9)と低圧ガス冷媒配管(111)との流路選択が可能なよ
うにそれぞれ第1の電磁開閉弁(116a)(116b)(116
c)(116d)および第2の電磁開閉弁(117a)(117b)
(117c)(117d)を介して連絡されており、他方には電
子膨張弁(118a)〜(118d)を介して高圧液冷媒配管
(110)に連結されている。
In addition, each indoor heat exchanger (1
12) to (115) are each connected to a high-pressure gas refrigerant pipe (10
The first solenoid on-off valves (116a) (116b) (116) so that the flow path of the low pressure gas refrigerant pipe (111) and the low pressure gas refrigerant pipe (111) can be selected.
c) (116d) and the second solenoid on-off valve (117a) (117b)
(117c) and (117d) are connected to each other, and the other is connected to a high-pressure liquid refrigerant pipe (110) via electronic expansion valves (118a) to (118d).

次に動作を第2図について説明する。室内ユニット
(102)において暖房モードが熱交換器(112)のみで、
冷房モードが熱交換器(113)(115)の3台で同時運転
された場合、冷媒の流れは実線矢印となる。冷凍サイク
ル上、凝縮器1個に対し蒸発器3個の比率となり、高圧
圧力Pdと低圧圧力Psが目標値とずれることになり、高圧
圧力Pdは目標高圧圧力Pdθより高くなり低圧圧力Psは目
標低圧圧力Psθより高くなる。
Next, the operation will be described with reference to FIG. In the indoor unit (102), the heating mode is only the heat exchanger (112),
When the cooling mode is operated simultaneously with the three heat exchangers (113) and (115), the flow of the refrigerant is indicated by solid arrows. On the refrigeration cycle, the ratio of one evaporator to one condenser becomes the ratio, and the high pressure Pd and the low pressure Ps deviate from the target value. The high pressure Pd becomes higher than the target high pressure Pd θ , and the low pressure Ps becomes It becomes higher than the target low pressure Ps θ .

ところで、圧縮機の容量変化Δθcompに対し高圧圧力
の変化ΔPd、低圧圧力の変化をΔPsとすると、 ΔPd=a・Δθcomp、ΔPs=−bΔθcomp、a>o、b
>oとなり、室外熱交換器の伝熱面積Aと熱通過率Kの
積AKの変化ΔAKに対し、高圧圧力の変化ΔPd=−c・Δ
AKc、低圧圧力の変化ΔPs=−d・ΔAKcとなり(cは凝
縮器として使用する場合を示す)、重畳操作によれば下
式で表わされる。
By the way, assuming that the change in the high-pressure pressure is ΔPd and the change in the low-pressure pressure is ΔPs with respect to the compressor capacity change Δθcomp, ΔPd = a · Δθcomp, ΔPs = −bΔθcomp, a> o, b
> O, and the change ΔAK of the product AK of the heat transfer area A and the heat transfer rate K of the outdoor heat exchanger is compared with the change ΔPd of the high pressure pressure −−c · Δ
AKc, the change in low-pressure pressure ΔPs = −d · ΔAKc (c indicates the case where the condenser is used as a condenser), and is expressed by the following equation according to the superposition operation.

ΔPd=a・Δθcomp−cΔAKc ΔPs=−bΔθcomp−dΔAKc よって 逆行列をとれば、 となる。ΔPd = a · Δθcomp−cΔAKc ΔPs = −bΔθcomp−dΔAKc By taking the inverse matrix, Becomes

上記(1)式により、目標高圧圧力Pdθと吐出圧力検出
器(119)の値Pdとの偏差をΔPdとし、目標低圧圧力Ps
θと吸入圧力検出器(120)の値Psとの偏差をΔPsと
し、制御器(108)にて演算すれば圧縮機(103)の容量
変更量Δθcompと室外熱交換器(105)の熱交換能力の
変更量ΔAKcがでてき、これらの演算結果に基づいて圧
縮機の容量を決定する圧縮機(103)の回転数を制御す
ると共に、室外熱交換器(105)の容量を決定する最大
因子である室外側送風機(106)の回転数と、室外熱交
換器の放熱容量を決定する電磁切換弁(116z)の開度、
若しくは、室外熱交換器(105)の吸熱容量を決定する
電磁切換弁(117z)の開度のいずれか一方とを制御す
る。なお、上記実施例では、目標高圧圧力と吐出圧力検
出器(119)の検出圧力との偏差値、および、目標低圧
圧力と吸入圧力検出器(120)の検出圧力との偏差値に
よって演算したが、目標高圧圧力の飽和温度に相当する
目標凝縮温度と高圧ガス冷媒配管(109)の凝縮温度を
検出する第1の検出器の検出温度との偏差値、および、
目標低圧圧力の飽和温度に相当する目標蒸発温度と低圧
ガス冷媒配管(111)の蒸発温度を検出する第2の検出
器の検出温度との偏差値に基づいて圧縮機(103)およ
び室外熱交換器(105)の必要容量を演算しても同様の
効果が得られる。
According to the above equation (1), the deviation between the target high pressure Pd θ and the value Pd of the discharge pressure detector (119) is ΔPd, and the target low pressure Ps
Let ΔPs be the difference between θ and the value Ps of the suction pressure detector (120), and if the calculation is performed by the controller (108), the capacity change amount Δθcomp of the compressor (103) and the heat exchange of the outdoor heat exchanger (105) The capacity change amount ΔAKc is obtained, and based on these calculation results, the compressor (103) that determines the capacity of the compressor is controlled, and the maximum factor that determines the capacity of the outdoor heat exchanger (105) is determined. The rotation speed of the outdoor blower (106) and the opening degree of the electromagnetic switching valve (116z) for determining the heat radiation capacity of the outdoor heat exchanger;
Alternatively, one of the degrees of opening of the electromagnetic switching valve (117z) that determines the heat absorption capacity of the outdoor heat exchanger (105) is controlled. In the above embodiment, the calculation is performed based on the deviation between the target high pressure and the pressure detected by the discharge pressure detector (119), and the deviation between the target low pressure and the pressure detected by the suction pressure detector (120). A deviation value between a target condensing temperature corresponding to the target high pressure saturation temperature and a detected temperature of the first detector that detects the condensing temperature of the high pressure gas refrigerant pipe (109);
Compressor (103) and outdoor heat exchange based on a deviation value between a target evaporation temperature corresponding to the saturation temperature of the target low pressure and a detection temperature of a second detector that detects an evaporation temperature of low pressure gas refrigerant pipe (111). The same effect can be obtained by calculating the required capacity of the container (105).

また、上記実施例では、室外熱交換器(105)の容量
を決定するのに、室外側送風機(106)の回転数と、電
磁切換弁(116z)の開度、若しくは電磁切換弁(117z)
の開度のいずれか一方とを制御するようにしたが、両電
磁切換弁(116z)(117z)の開度を一定として、室外側
送風機(106)の回転数のみを制御するようにしてもよ
い。
Further, in the above embodiment, in order to determine the capacity of the outdoor heat exchanger (105), the rotation speed of the outdoor blower (106), the opening degree of the electromagnetic switching valve (116z), or the electromagnetic switching valve (117z)
The opening degree of each of the solenoid-operated switching valves (116z) and (117z) is fixed, and only the rotation speed of the outdoor blower (106) is controlled. Good.

〔発明の効果〕〔The invention's effect〕

以上説明したように、この発明は、第1の検出器およ
び第2の検出器の検出結果と予め設定された第1の目標
値および第2の目標値とを比較し、該比較結果により圧
縮機および室外熱交換器の必要容量を演算し、この演算
結果に基づいて上記圧縮機の容量を制御すると共に、上
記室外熱交換器の容量を決定する室外側送風機の回転数
を制御するようにしたので、室内ユニット側の負荷の大
幅な変動にも速かに対応できる。また、室外ユニット側
機器のみの演算制御により、冷凍サイクル全体の負荷を
バランスさせているので、各種機器の制御用配線が室内
−室外ユニット間を行き来することがなく、配線回路が
簡単で、配線工事が短期間にできると共に、また、天候
・気候等の環境条件変化によって室外ユニット側の負荷
が変化したり、また、室内扉の開閉や、室内設定温度の
変更や、冷・暖房運転モードの切替によって室内ユニッ
ト側の負荷が変化したり、また、各室内ユニットの仕様
変更・増減工事等によって冷凍サイクル全体の冷・暖房
比率が変化しても、これらの変化に対応して追従するた
めに、室内ユニットの増減・仕様変更が簡単にできると
共に、冷凍サイクルがスピーディにバランスし、各室内
温度がスピーティに精度良く安定する信頼性の高い冷暖
混在型多室空気調和装置が得られる。
As described above, according to the present invention, the detection results of the first detector and the second detector are compared with the first target value and the second target value set in advance, and compression is performed based on the comparison results. Calculating the required capacity of the heat exchanger and the outdoor heat exchanger, controlling the capacity of the compressor based on the calculation result, and controlling the rotation speed of the outdoor blower that determines the capacity of the outdoor heat exchanger. Therefore, it is possible to quickly respond to a large change in the load on the indoor unit side. In addition, since the load of the entire refrigeration cycle is balanced by the arithmetic control of only the outdoor unit-side devices, the control wiring of various devices does not move between the indoor and outdoor units, and the wiring circuit is simple and the wiring is simple. Work can be completed in a short period of time, and the load on the outdoor unit changes due to changes in environmental conditions such as weather and climate.In addition, opening and closing of indoor doors, changing indoor set temperatures, and cooling / heating operation modes Even if the load on the indoor unit changes due to switching, or if the cooling / heating ratio of the entire refrigeration cycle changes due to changes in the specifications or increase / decrease construction of each indoor unit, it is necessary to follow these changes. It is easy to increase / decrease and change the specifications of indoor units, and the refrigeration cycle is quickly balanced, and each indoor temperature is speedy and stable with high reliability. Warm Mixed multi-room air conditioner is obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施冷による冷暖混在型多室空気
調和装置の冷媒回路図、第2図は第1図装置の冷媒の流
れ図、第3図は従来の多室型冷暖房装置の冷媒回路図で
ある。 (101)は室外ユニット、(102)は室内ユニット、(10
3)は圧縮機、(104)は高低圧熱交換アキュームレー
タ、(105)は室外熱交換器、(107)は圧縮機容量制御
手段、(108)は室外ユニット制御器、(109)は高圧ガ
ス冷媒配管、(110)は高圧液冷媒配管、(111)は低圧
ガス冷媒配管、(112)〜(115)は室内熱交換器、(11
6a)〜(116d)、(117a)〜(117d)は電磁開閉弁、
(118a)〜(118d)は電子膨張弁、(116z)(117z)は
電磁切換弁、(118z)は電子膨張弁、(119)は吐出圧
力検出器、(120)は吸入圧力検出器。 なお、図中同一符号は同一又は相当部分を示す。
FIG. 1 is a refrigerant circuit diagram of a mixed cooling / heating multi-room air-conditioning apparatus according to one embodiment of the present invention, FIG. 2 is a flow chart of the refrigerant in FIG. 1, and FIG. 3 is a refrigerant in a conventional multi-room cooling / heating apparatus. It is a circuit diagram. (101) is an outdoor unit, (102) is an indoor unit, (10
3) is a compressor, (104) is a high and low pressure heat exchange accumulator, (105) is an outdoor heat exchanger, (107) is compressor capacity control means, (108) is an outdoor unit controller, and (109) is high pressure gas. Refrigerant pipe, (110) is a high-pressure liquid refrigerant pipe, (111) is a low-pressure gas refrigerant pipe, (112) to (115) are indoor heat exchangers,
6a) to (116d), (117a) to (117d) are solenoid on-off valves,
(118a) to (118d) are electronic expansion valves, (116z) and (117z) are electromagnetic switching valves, (118z) is an electronic expansion valve, (119) is a discharge pressure detector, and (120) is a suction pressure detector. In the drawings, the same reference numerals indicate the same or corresponding parts.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】容量可変の圧縮機、室外熱交換器、および
室外側送風機を有する室外ユニットと、複数の室内熱交
換器を有する室内ユニットと、一端が上記室外熱交換器
の一端に、他端が上記複数の室内熱交換器の一端に、そ
れぞれ電子膨張弁を介して接続される高圧液冷媒配管
と、一端が上記圧縮機の吐出側及び放熱切換弁を介して
上記室外熱交換器の他端に、他端がそれぞれ第1の電磁
開閉弁を介して上記複数の室内熱交換器の他端に接続さ
れる高圧ガス冷媒配管と、一端が上記圧縮機の吸入側及
び吸熱切換弁を介して上記室外熱交換器の他端に、他端
がそれぞれ第2の電磁開閉弁を介して上記複数の室内熱
交換器の他端に接続される低圧ガス冷媒配管とを備えた
冷暖混在型多室空調調和装置において、上記圧縮機の吐
出冷媒圧力Pdに対応する特性値を検出する第1の検出器
と、上記圧縮機の吸入冷媒圧力Psに対応する特性値を検
出する第2の検出器と、上記第1の検出器および第2の
検出器の検出結果Pd,Psと予め設定された第1の目標値P
dθ,および第2の目標値Psθとを比較し、ΔPd=Pdθ
−Pd,ΔPs=Psθ−Psを演算し、これらの演算結果ΔPd,
ΔPsにより上記圧縮機および上記室外熱交換器の必要容
量を式 を用いて演算し(ここにa,b,c,dは正の定数)、この演
算結果に基づいて、上記圧縮機の容量Δθcompを制御す
ると共に、上記室外熱交換器の容量ΔAKcを決定する上
記室外側送風機の回転数Kcと伝熱面積Aを制御する室外
ユニット制御装置とを備えたことを特徴とする冷暖混在
型多室空気調和装置。
1. An outdoor unit having a variable capacity compressor, an outdoor heat exchanger, and an outdoor blower, an indoor unit having a plurality of indoor heat exchangers, one end being connected to one end of the outdoor heat exchanger, One end of the outdoor heat exchanger is connected to one end of each of the plurality of indoor heat exchangers via an electronic expansion valve, and one end of the outdoor heat exchanger is connected to the discharge side of the compressor and a radiation switching valve. At the other end, a high-pressure gas refrigerant pipe, the other end of which is connected to the other end of the plurality of indoor heat exchangers via the first electromagnetic on-off valve, and one end of which is connected to the suction side of the compressor and an endothermic switching valve. And a low-pressure gas refrigerant pipe having the other end connected to the other end of the outdoor heat exchanger and the other end connected to the other end of the plurality of indoor heat exchangers via a second electromagnetic on-off valve. Corresponds to the refrigerant pressure Pd discharged from the compressor in a multi-room air conditioning system A first detector for detecting a characteristic value corresponding to the suction refrigerant pressure Ps of the compressor, a second detector for detecting a characteristic value corresponding to the suction refrigerant pressure Ps of the compressor, and detection of the first detector and the second detector. The results Pd, Ps and a preset first target value P
d θ and the second target value Ps θ, and ΔPd = Pd θ
−Pd, ΔPs = Ps θ −Ps, and these calculation results ΔPd,
The required capacity of the compressor and the outdoor heat exchanger is calculated by ΔPs (Where a, b, c, and d are positive constants), and based on the calculation result, control the capacity Δθcomp of the compressor and determine the capacity ΔAKc of the outdoor heat exchanger. An air-conditioning / cooling type multi-room air conditioner, comprising: an outdoor unit control device for controlling the rotation speed Kc and the heat transfer area A of the outdoor blower.
JP2052113A 1990-03-02 1990-03-02 Cooling / heating mixed type multi-room air conditioner Expired - Lifetime JP2716559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2052113A JP2716559B2 (en) 1990-03-02 1990-03-02 Cooling / heating mixed type multi-room air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2052113A JP2716559B2 (en) 1990-03-02 1990-03-02 Cooling / heating mixed type multi-room air conditioner

Publications (2)

Publication Number Publication Date
JPH03255860A JPH03255860A (en) 1991-11-14
JP2716559B2 true JP2716559B2 (en) 1998-02-18

Family

ID=12905812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2052113A Expired - Lifetime JP2716559B2 (en) 1990-03-02 1990-03-02 Cooling / heating mixed type multi-room air conditioner

Country Status (1)

Country Link
JP (1) JP2716559B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112233A (en) * 2009-11-24 2011-06-09 Mitsubishi Electric Corp Air conditioning device
WO2013093966A1 (en) * 2011-12-21 2013-06-27 日立アプライアンス株式会社 Air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6878612B2 (en) * 2017-10-27 2021-05-26 三菱電機株式会社 Refrigeration cycle equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61110859A (en) * 1984-11-02 1986-05-29 ダイキン工業株式会社 Heat recovery type air conditioner
JPS61110833A (en) * 1984-11-05 1986-05-29 Daikin Ind Ltd Heat recovery type air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011112233A (en) * 2009-11-24 2011-06-09 Mitsubishi Electric Corp Air conditioning device
WO2013093966A1 (en) * 2011-12-21 2013-06-27 日立アプライアンス株式会社 Air conditioner

Also Published As

Publication number Publication date
JPH03255860A (en) 1991-11-14

Similar Documents

Publication Publication Date Title
EP2719966B1 (en) Refrigeration air-conditioning device
CN101113834B (en) Method of controlling air conditioner
US20080197206A1 (en) Refrigerant System With Water Heating
JP2723953B2 (en) Air conditioner
CA2530895C (en) Air-conditioning system with multiple indoor and outdoor units and control system therefore
JP3852553B2 (en) Air conditioner
KR20120114997A (en) Air conditoner
JP2716559B2 (en) Cooling / heating mixed type multi-room air conditioner
JPH043865A (en) Freezing cycle device
JP2531256B2 (en) Air conditioner
JP2893844B2 (en) Air conditioner
JPH02223757A (en) Air conditioner
JP2777176B2 (en) Air conditioner
KR20200073471A (en) Control method for air conditioner
JPH04236062A (en) Air conditioner
JP2534926B2 (en) Multi-room air conditioner
KR101135849B1 (en) Method and apparatus for controlling heating of an air conditioner
JPH0484061A (en) Electrically-driven expansion valve controller for multi-chamber type air conditioner
JPH05302765A (en) Multi-chamber type air conditioner
JPH0694325A (en) Cooling/heating coexisting type engine-driven heat pump system
JP2503701B2 (en) Air conditioner
JPH0752047B2 (en) Air conditioner
JPH04217755A (en) Multiroom type air-conditioner
JPH04198669A (en) Electric expansion valve control device for multi-chamber type air-conditioning machine
KR20070038287A (en) Air conditioner having volume variableness type condenser and method of control thereof

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071107

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101107

Year of fee payment: 13