Nothing Special   »   [go: up one dir, main page]

JP2618563B2 - High strength electric resistance welded steel pipe which is hardly softened in welding heat affected zone and method of manufacturing the same - Google Patents

High strength electric resistance welded steel pipe which is hardly softened in welding heat affected zone and method of manufacturing the same

Info

Publication number
JP2618563B2
JP2618563B2 JP16626192A JP16626192A JP2618563B2 JP 2618563 B2 JP2618563 B2 JP 2618563B2 JP 16626192 A JP16626192 A JP 16626192A JP 16626192 A JP16626192 A JP 16626192A JP 2618563 B2 JP2618563 B2 JP 2618563B2
Authority
JP
Japan
Prior art keywords
steel pipe
strength
electric resistance
kgf
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16626192A
Other languages
Japanese (ja)
Other versions
JPH0610046A (en
Inventor
木宮康雄
住本大吾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16626192A priority Critical patent/JP2618563B2/en
Publication of JPH0610046A publication Critical patent/JPH0610046A/en
Application granted granted Critical
Publication of JP2618563B2 publication Critical patent/JP2618563B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は高寸法精度、溶接時の熱
影響部が軟化しにくく、優れた疲労強度が求められる部
品、例えばプロペラシャフトのような各種シャフト類、
自転車のフレーム等に用いられる経済的な高精度高強度
電縫鋼管に関する。
BACKGROUND OF THE INVENTION The present invention relates to components requiring high dimensional accuracy, a heat-affected zone that is hardly softened during welding, and excellent fatigue strength, for example, various shafts such as a propeller shaft,
The present invention relates to an economical high-precision, high-strength ERW steel pipe used for a bicycle frame or the like.

【0002】[0002]

【従来の技術】自動車、産業機械、自転車等の構造部材
については、徹底した軽量化、高機能化が検討されてお
り、高精度化および高強度化により薄肉化を図ってい
る。
2. Description of the Related Art Thorough weight reduction and high functionality are being studied for structural members of automobiles, industrial machines, bicycles and the like, and the thickness is reduced by increasing the precision and strength.

【0003】例えば自動車のプロペラシャフト用高強度
電縫鋼管については住友金属Vol.43−3(199
1)P44〜P60に示されるように材料の成分と冷間
圧延等を組み合わせて引張強度70〜80kgf/mm
2 級で、外径精度±0.18mm、肉厚精度±0.10
mmの高精度鋼管を得ている。また、自転車用フレーム
には主としてCr−Mo系の引張強度80〜90kgf
/mm2 級が使用されており、さらに特願昭62−50
3103のように構造用繊維を入れた樹脂を使用してい
る例も開示されているが非常に高価である。
For example, a high-strength ERW steel pipe for a propeller shaft of an automobile is disclosed in Sumitomo Metal Vol. 43-3 (199
1) Tensile strength of 70 to 80 kgf / mm by combining the components of the material and cold rolling as shown in P44 to P60
Class 2 , outer diameter accuracy ± 0.18mm, wall thickness accuracy ± 0.10
mm high precision steel pipe. The bicycle frame mainly has a Cr-Mo-based tensile strength of 80 to 90 kgf.
/ Mm 2 class is used.
Although an example using a resin containing structural fibers such as 3103 is also disclosed, it is very expensive.

【0004】[0004]

【発明が解決しようとする課題】本発明は部品の軽量化
および高性能化を目的に従来技術よりも、さらに高精度
および高強度であり、かつ溶接時の耐HAZ(熱影響
部)軟化性を有する、経済的な電縫鋼管を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has a higher precision and a higher strength than the prior art, and has a resistance to HAZ (heat affected zone) softening during welding for the purpose of weight reduction and high performance of parts. It is an object of the present invention to provide an economical electric resistance welded steel pipe having:

【0005】[0005]

【課題を解決するための手段】本発明の要旨とするとこ
ろは下記のとおりである。
The gist of the present invention is as follows.

【0006】(1) 成分組成が重量でC:0.10〜
0.20%、Si:0.15〜0.50%、Mn:1.
3〜2.5%、P:0.005〜0.020%、S:
0.0005〜0.0060%、Al:0.01〜0.
08%、Ti:0.02〜0.2%、B:0.0010
〜0.0030%、N:0.002〜0.005%、C
r:0.3〜0.7%、Mo:0.3〜1.0%を含有
させる残部Fe及び不可避的元素よりなる素材鋼スラブ
を仕上げ温度950℃以下Ar3 変態点以上で熱間圧延
し、450℃〜700℃で巻取った熱延コイルを電縫溶
接し、引張強度が100〜130kgf/mm2 である
ことを特徴とする熱影響部の軟化しにくい高強度電縫鋼
管の製造方法。
(1) The component composition is C: 0.10-0.1
0.20%, Si: 0.15 to 0.50%, Mn: 1.
3 to 2.5%, P: 0.005 to 0.020%, S:
0.0005-0.0060%, Al: 0.01-0.
08%, Ti: 0.02 to 0.2%, B: 0.0010
~ 0.0030%, N: 0.002-0.005%, C
Hot rolling at 950 ° C. or lower and Ar 3 transformation point or higher of a material steel slab containing the balance of Fe and inevitable elements containing r: 0.3 to 0.7% and Mo: 0.3 to 1.0%. Then, a hot-rolled coil wound at 450 ° C. to 700 ° C. is subjected to ERW welding to produce a high-strength ERW steel pipe having a tensile strength of 100 to 130 kgf / mm 2 , which hardly softens the heat-affected zone. Method.

【0007】(2) 成分組成が重量でC:0.10〜
0.20%、Si:0.15〜0.50%、Mn:1.
3〜2.5%、P:0.005〜0.020%、S:
0.0005〜0.0060%、Al:0.01〜0.
08%、Ti:0.02〜0.2%、B:0.0010
〜0.0030%、N:0.002〜0.005%、C
r:0.3〜0.7%、Mo:0.3〜1.0%、N
b:0.01〜0.10%を含有させる残部Fe及び不
可避的元素よりなる素材鋼スラブを仕上げ温度950℃
以下Ar3 変態点以上で熱間圧延し、450℃〜700
℃で巻取った熱延コイルを電縫溶接し、引張強度が10
0〜130kgf/mm2 であることを特徴とする熱影
響部の軟化しにくい高強度電縫鋼管の製造方法。
(2) C: 0.10 to 0.10
0.20%, Si: 0.15 to 0.50%, Mn: 1.
3 to 2.5%, P: 0.005 to 0.020%, S:
0.0005-0.0060%, Al: 0.01-0.
08%, Ti: 0.02 to 0.2%, B: 0.0010
~ 0.0030%, N: 0.002-0.005%, C
r: 0.3 to 0.7%, Mo: 0.3 to 1.0%, N
b: Finish steel slab consisting of Fe and unavoidable elements containing 0.01 to 0.10% by balance, finishing temperature 950 ° C.
Hereinafter, hot rolling is performed at an Ar 3 transformation point or higher, and the temperature is 450 ° C. to 700 ° C.
The hot rolled coil wound at ℃ is welded by electric resistance welding and has a tensile strength of 10
A method for producing a high-strength ERW steel pipe in which a heat-affected zone is hardly softened, which is characterized by being 0 to 130 kgf / mm 2 .

【0008】(3) 前記(1)又は(2)項の電縫鋼
管において、造管後に歪取り焼鈍を行い、引張強度が1
00〜130kgf/mm2 である鋼管を得ることを特
徴とする高精度高強度電縫鋼管の製造方法。
(3) In the ERW steel pipe according to the above (1) or (2), after the pipe is formed, the steel is subjected to strain relief annealing to have a tensile strength of 1%.
A method for producing a high-precision, high-strength ERW steel pipe, characterized by obtaining a steel pipe of 100 to 130 kgf / mm 2 .

【0009】(4) 前記(1)又は(2)項の電縫鋼
管において、造管後に焼準を行い、引張強度が100〜
S130kgf/mm2 である鋼管を得ることを特徴と
する高精度高強度電縫鋼管の製造方法。
(4) In the electric resistance welded steel pipe according to the above (1) or (2), normalizing is performed after the pipe is formed, and the tensile strength is 100 to 100%.
A method for producing a high-precision, high-strength ERW steel pipe, comprising obtaining a steel pipe of S130 kgf / mm 2 .

【0010】(5) 成分組成が重量でC:0.10〜
0.20%、Si:0.15〜0.50%、Mn:1.
3〜2.5%、P:0.005〜0.020%、S:
0.0005〜0.0060%、Al:0.01〜0.
08%、Ti:0.02〜0.2%、B:0.0010
〜0.0030%、N:0.002〜0.005%、C
r:0.3〜0.7%、Mo:0.3〜1.0%を含有
させる残部Fe及び不可避的元素よりなる電縫鋼管にお
いて、造管後に焼準と焼鈍と冷間引き抜き加工とを組み
合わせて寸法精度が外径±0.15mm以下、肉厚±
0.05mm以下であり、引張強度が100〜130k
gf/mm2 であることを特徴とする高精度高強度電縫
鋼管。
(5) C: 0.10-0.10
0.20%, Si: 0.15 to 0.50%, Mn: 1.
3 to 2.5%, P: 0.005 to 0.020%, S:
0.0005-0.0060%, Al: 0.01-0.
08%, Ti: 0.02 to 0.2%, B: 0.0010
~ 0.0030%, N: 0.002-0.005%, C
r: 0.3 to 0.7%, Mo: 0.3 to 1.0%, in an ERW steel pipe consisting of the balance Fe and unavoidable elements, after pipe forming, normalizing, annealing and cold drawing. Dimensional accuracy is ± 0.15mm or less in outer diameter and ±
0.05mm or less, tensile strength is 100-130k
A high-precision, high-strength ERW steel pipe characterized by gf / mm 2 .

【0011】(6) 成分組成が重量でC:0.10〜
0.20%、Si:0.15〜0.50%、Mn:1.
3〜2.5%、P:0.005〜0.020%、S:
0.0005〜0.0060%、Al:0.01〜0.
08%、Ti:0.02〜0.2%、B:0.0010
〜0.0030%、N:0.002〜0.005%、C
r:0.3〜0.7%、Mo:0.3〜1.0%、N
b:0.01〜0.10%を含有させる残部Fe及び不
可避的元素よりなる電縫鋼管において、造管後に焼準と
焼鈍と冷間引き抜き加工とを組み合わせ寸法精度が外径
±0.15mm以下、肉厚±0.05mm以下であり、
引張強度が100〜130kgf/mm2 であることを
特徴とする高精度高強度電縫鋼管。
(6) C: 0.10-0.10
0.20%, Si: 0.15 to 0.50%, Mn: 1.
3 to 2.5%, P: 0.005 to 0.020%, S:
0.0005-0.0060%, Al: 0.01-0.
08%, Ti: 0.02 to 0.2%, B: 0.0010
~ 0.0030%, N: 0.002-0.005%, C
r: 0.3 to 0.7%, Mo: 0.3 to 1.0%, N
b: In an ERW steel pipe made of the balance of Fe and an unavoidable element containing 0.01 to 0.10%, dimensional accuracy is ± 0.15 mm in outer diameter by combining normalizing, annealing, and cold drawing after pipe forming. Below, thickness ± 0.05mm or less,
A high-precision, high-strength ERW steel pipe having a tensile strength of 100 to 130 kgf / mm 2 .

【0012】(7) 前記(5)又は(6)項の成分組
成よりなる電縫鋼管において、造管後に焼準を行い、引
続き冷間引き抜き加工を行うことにより、寸法精度が外
径±0.15mm以下、肉厚±0.05mm以下であ
り、引張強度が100〜130kgf/mm2 である鋼
管を得ることを特徴とする高精度高強度電縫鋼管の製造
方法。
(7) In the ERW steel pipe having the component composition of the above (5) or (6), normalization is performed after the pipe is formed, and then cold drawing is performed, so that the dimensional accuracy can be reduced to an outer diameter of ± 0. A method for producing a high-precision, high-strength electric resistance welded steel pipe, characterized by obtaining a steel pipe having a thickness of 15 mm or less, a thickness of ± 0.05 mm or less, and a tensile strength of 100 to 130 kgf / mm 2 .

【0013】(8) 前記(5)又は(6)項の成分組
成よりなる電縫鋼管において造管後に焼準を行い、引続
き冷間引き抜き加工と焼鈍を行うことにより、寸法精度
が外径±0.15mm以下、肉厚±0.05mm以下で
あり、引張強度が100〜130kgf/mm2 である
鋼管を得ることを特徴とする高精度高強度電縫鋼管の製
造方法。
(8) In the ERW steel pipe having the component composition as described in the above (5) or (6), normalization is performed after the pipe is formed, and then cold drawing and annealing are performed, so that the dimensional accuracy is ± A method for producing a high-precision, high-strength ERW steel pipe, wherein a steel pipe having a thickness of 0.15 mm or less, a thickness of ± 0.05 mm or less, and a tensile strength of 100 to 130 kgf / mm 2 is obtained.

【0014】(9) 前記(5)又は(6)項の成分組
成よりなる電縫鋼管において造管後に焼鈍を行い、引続
き冷間引き抜き加工と焼準と焼鈍を組合せ行なうことに
より、寸法精度が外径±0.15mm以下、肉厚±0.
05mm以下であり、引張強度が100〜130kgf
/mm2 である鋼管を得ることを特徴とする高精度高強
度電縫鋼管の製造方法。
(9) In the ERW steel pipe having the component composition as described in the above (5) or (6), annealing is performed after the pipe is formed, and subsequently, cold drawing, normalizing and annealing are combined to achieve dimensional accuracy. Outer diameter ± 0.15mm or less, wall thickness ± 0.
05mm or less, tensile strength of 100-130kgf
Precision high-strength electric resistance welded steel pipe production method, characterized in that to obtain a steel pipe is / mm 2.

【0015】以下に本発明を詳細に説明する。最初に本
発明に使用する鋼板の成分について限定理由を説明す
る。
Hereinafter, the present invention will be described in detail. First, the reasons for limiting the components of the steel sheet used in the present invention will be described.

【0016】C量は少なければ延性が良好であり、加工
性に優れているが、所要の強度が得られないことから下
限を0.10%とした。又、0.20%を超えると、部
品として使用する場合のTIG溶接等の溶接時に熱影響
部が硬化し、靱性の低下が懸念されることから、上限を
0.20%とした。
If the C content is small, the ductility is good and the workability is excellent, but since the required strength cannot be obtained, the lower limit is set to 0.10%. If it exceeds 0.20%, the heat-affected zone is hardened during welding such as TIG welding when used as a part, and there is a concern that the toughness may decrease. Therefore, the upper limit is set to 0.20%.

【0017】Siはキルド鋼の脱酸材として有効であ
り、強度を確保するために下限を0.15%とした。
又、0.5%を超えると電縫溶接性および靱性が悪化す
るため、0.5%を上限とした。
Si is effective as a deoxidizing material for killed steel, and its lower limit is set to 0.15% in order to secure strength.
On the other hand, if it exceeds 0.5%, the resistance to electric resistance welding and toughness deteriorate, so the upper limit was made 0.5%.

【0018】Mnは、強度と延性のバランスが良く、強
度を上げ、伸びを確保するためには最低1.3%以上必
要である。又2.5%を超えると転炉での溶製が極めて
困難になることから、下限を1.3%、上限を2.5%
とした。
Mn has a good balance between strength and ductility, and must be at least 1.3% or more in order to increase strength and secure elongation. If it exceeds 2.5%, melting in the converter becomes extremely difficult, so the lower limit is 1.3% and the upper limit is 2.5%.
And

【0019】Pは製鋼時不可避的に混入する元素である
が、0.005%未満にすることは製鋼技術上難しく、
0.020%を超えると特に超高張力鋼管の電縫溶接時
に溶接部割を発生しやすいため、下限を0.005%、
上限を0.020%とした。
P is an element inevitably mixed during steel making, but it is difficult to make the content less than 0.005% in terms of steel making technology.
If the content exceeds 0.020%, particularly in the case of electric resistance welding of ultra-high tensile steel pipe, a welded portion is likely to be generated.
The upper limit was made 0.020%.

【0020】SもP同様製鋼時不可避的に混入する元素
であり、0.0005%未満にすることは製鋼技術上難
しく、0.0060%を超えると電縫溶接時に溶接部割
を発生しやすいため、下限を0.0005%、上限を
0.0060%とした。Sによる電縫溶接時の割を更に
抑制するには、MnSを形態制御する元素であるCaを
添加してもよい。
S is also an element inevitably mixed in steel making like P, and it is difficult to reduce the content to less than 0.0005% in steel making technology, and if it exceeds 0.0060%, a weld crack is likely to occur during electric resistance welding. Therefore, the lower limit is made 0.0005% and the upper limit is made 0.0060%. In order to further suppress cracking during electric resistance welding by S, Ca which is an element for controlling the form of MnS may be added.

【0021】Alはキルド鋼の場合、0.01%未満に
おさえることは製鋼技術上難しく、又、0.08%を超
えると鋳片の割れ、酸化物系巨大介在物形成による内質
欠陥等をひきおこしやすいため、下限を0.01%、上
限を0.08%とした。
In the case of killed steel, it is difficult to suppress the content of Al to less than 0.01% in terms of steelmaking technology, and if it exceeds 0.08%, cracks in slabs, internal defects due to formation of oxide-based giant inclusions, etc. Therefore, the lower limit was set to 0.01% and the upper limit was set to 0.08%.

【0022】Bは冷却過程においてフェライト変態を遅
らせて高強度変態組織を得るために必須の元素である
が、本発明鋼の成分組成においても0.0010%未満
では強度不足となり、0.0030%を超えるとBor
on Constituentが生成して延靱性が著し
く低下するため、下限を0.001%、上限を0.00
30%とした。
B is an essential element for delaying ferrite transformation in the cooling process and obtaining a high-strength transformed structure. However, even in the composition of the steel of the present invention, if the content is less than 0.0010%, the strength becomes insufficient, and 0.0030% Beyond Bor
Since on-constituent is generated and ductility is significantly reduced, the lower limit is 0.001% and the upper limit is 0.00.
30%.

【0023】Nは製鋼時不可避的に混入する元素である
が、0.002%未満におさえることは製鋼技術上難し
く、0.005%を超えるとTi、Bの強度上昇効果を
阻害して強度不足をひきおこすため、下限を0.002
%、上限を0.005%とした。
N is an element which is inevitably mixed during steel making. However, it is difficult in terms of steel making technology to keep the content below 0.002%, and if it exceeds 0.005%, the effect of increasing the strength of Ti and B is hindered. 0.002 lower limit to cause shortage
%, And the upper limit was made 0.005%.

【0024】Moはフェライト変態を抑制し、細粒化に
効果があり、析出強化する特徴を有し、造管後の熱処理
により一部マルテンサイトを含むベイナイト組織を得
て、強度を上げるのに有効であるため、0.3%以上を
含有させる。しかし、1.0%を越えて添加しても効果
の向上が少なく、延性の劣化を招くことから、下限を
0.3%、上限を1.0%とした。
Mo suppresses ferrite transformation, has an effect on grain refinement, and has a feature of strengthening precipitation. Mo is used after pipe forming to obtain a bainite structure partially containing martensite, thereby increasing the strength. Since it is effective, the content is 0.3% or more. However, even if added over 1.0%, the effect is little improved and ductility is deteriorated, so the lower limit was set to 0.3% and the upper limit was set to 1.0%.

【0025】Crは比較的経済的な成分であり、フェラ
イト変態を抑制し、造管後の熱処理により一部マルテン
サイトを含むベイナイト組織を得て、強度を上げるのに
有効であるため、0.3%以上を含有させる。この場
合、0.7%を超えて添加するとERW造管でCrの酸
化物による溶接欠陥が発生し易くなり、面倒な不活性ガ
スシール溶接が必要である。したがって、上限を0.7
%とした。
Since Cr is a relatively economical component, it is effective in suppressing ferrite transformation, obtaining a bainite structure partially containing martensite by heat treatment after pipe formation, and increasing the strength. 3% or more is contained. In this case, if it is added in excess of 0.7%, welding defects due to oxides of Cr are likely to occur in the ERW pipe, and troublesome inert gas seal welding is required. Therefore, the upper limit is 0.7
%.

【0026】TiはMoと同様に熱間圧延での未再結晶
γ域を広げるために細粒化に効果があり、析出強化し、
鋼材の強度を上昇させる元素であり、超高張力電縫鋼管
の製造に有効であるため、0.02%以上を含有させ
る。しかし、0.20%を越えると延靱性を害するので
下限は0.02%、上限を0.20%とした。
Ti, like Mo, has an effect on grain refinement in order to widen the unrecrystallized γ region in hot rolling, strengthens precipitation,
It is an element that increases the strength of the steel material and is effective for producing an ultra-high tensile strength electric resistance welded steel pipe. However, if it exceeds 0.20%, the toughness is impaired, so the lower limit was made 0.02% and the upper limit was made 0.20%.

【0027】NbはTiと同様な効果があり、熱影響部
の軟化を防止効果があるため、0.01%以上を含有さ
せる。しかし、0.1%以上入れても殆ど固溶強化に差
が無いことから、下限を0.01%、上限を0.10%
とした。
Nb has the same effect as Ti, and has the effect of preventing the heat-affected zone from softening. Therefore, Nb is contained in an amount of 0.01% or more. However, even when 0.1% or more is added, there is almost no difference in solid solution strengthening, so the lower limit is 0.01% and the upper limit is 0.10%.
And

【0028】VはMoおよびTiと同様な析出強化をす
るが、効果は小さく、MoとTiで十分な効果が得られ
る。
V enhances precipitation strengthening in the same manner as Mo and Ti, but the effect is small, and sufficient effects can be obtained with Mo and Ti.

【0029】次に製造工程について説明する。本発明の
製造工程を図1〜図6に示す。請求項1および請求項2
は図1の工程で、請求項3は図2の工程で、請求項4は
図3の工程で製造する。請求項5および請求項6は図4
から図6のいずれでもよい。請求項7は図の工程で、
請求項8は図の工程で、請求項9は図の工程で製造
する。なお、図4から図6の電縫造管の前工程は省略し
たが図1から図3に同じである。また、図5から図6の
伸管および焼鈍は伸管の加工率に応じて数回繰り返して
もよい。本発明に従い、上記成分の鋼を熱間板厚圧延時
に1150℃以上に加熱し、950℃以下Ar3 変態点
以上で仕上圧延を終了することが望ましい。1150℃
以上に加熱するのはTiの固溶を十分に行なうためであ
る。上記成分の鋼を熱間板厚圧延時に950℃以下Ar
3 変態点以上で仕上圧延を終了することが望ましい。こ
れは、特に靱性の改善が望まれる場合、および低強度の
鋼板を得て造管を容易にする場合に必要である。950
℃超では未再結晶域での圧延が存在しないため強度・延
靱性が劣化し、Ar3 変態点未満では2相域圧延によっ
て強度は上昇するが延靱性が著しく低下する。よって上
記成分の鋼を熱間板厚圧延時に950℃以下Ar3 変態
点以上で仕上圧延を終了し引続き本発明の条件で巻取る
ことによって、後工程での製造が容易な低強度で延性の
優れた材質とすることができる。
Next, the manufacturing process will be described. The manufacturing process of the present invention is shown in FIGS. Claim 1 and Claim 2
1 is the process of FIG. 1, claim 3 is the process of FIG. 2, and claim 4 is the process of FIG. Claims 5 and 6 show FIG.
6 to FIG. In claim 7 4 steps,
In the process of claim 8 5, claim 9 is prepared in the step of FIG. In addition, although the previous process of the ERW pipe of FIGS. 4 to 6 was omitted, it is the same as that of FIGS. 1 to 3. Further, the drawing and annealing in FIGS. 5 and 6 may be repeated several times depending on the working ratio of the drawn tube. According to the present invention, it is desirable to heat the steel having the above components to 1150 ° C. or higher during hot thickness rolling, and to finish the finish rolling at 950 ° C. or lower and the Ar 3 transformation point or higher. 1150 ° C
The heating is performed in order to sufficiently dissolve the Ti. 950 ° C or less Ar of steel of the above composition during hot strip rolling
It is desirable to finish the finish rolling at three or more transformation points. This is necessary particularly when improvement in toughness is desired and when obtaining a low-strength steel plate to facilitate pipe making. 950
If the temperature exceeds ℃, the strength and ductility are deteriorated because there is no rolling in the non-recrystallized region. If the temperature is lower than the Ar 3 transformation point, the strength is increased by the two-phase region rolling, but the ductility is significantly reduced. Therefore, by finishing the finish rolling at 950 ° C. or lower at the Ar 3 transformation point or higher and hot-rolling the steel having the above-mentioned components at the Ar 3 transformation point or lower at the time of hot plate rolling, the low-strength and ductile material which can be easily manufactured in the subsequent process is easily manufactured. Excellent material can be used.

【0030】巻取温度は400℃以上で巻取れば焼入れ
されず、造管に必要な延性が確保できるが、製造の温度
ばらつきを考慮して下限を450℃とした。また、M
o、Tiの析出強化は約600℃で最大になり、巻取温
度は600℃以上で巻取れば、コイル内の冷却速度は炉
冷に近いため、Mo等の析出は過時効し、フェライトが
析出して比較的に低強度で延性のある鋼板を製造でき
る。しかし、2相域になると強度の変動が大きくなるの
で上限を700℃にした。このように製造された鋼板は
電縫管に造管するに十分な延性を有する。なお、図1か
ら図3は酸洗工程が入っているが製品の用途によっては
必ずしも必要は無い。
If the coiling temperature is 400 ° C. or higher, quenching is not performed, and the ductility required for pipe making can be ensured. Also, M
The precipitation strengthening of o and Ti is maximized at about 600 ° C. If the coiling temperature is 600 ° C or higher, the cooling rate in the coil is close to the furnace cooling. Precipitation can produce a relatively low-strength and ductile steel sheet. However, in the two-phase region, the fluctuation in strength becomes large, so the upper limit was set to 700 ° C. The steel plate manufactured in this manner has sufficient ductility to form an ERW pipe. Although FIGS. 1 to 3 include a pickling step, they are not necessarily required depending on the use of the product.

【0031】図1の製造工程に示す造管ままの製品は経
済的であり、成形造管時の加工硬化により高強度の鋼管
が得られる。造管後の熱処理は造管時の冷間加工による
加工歪を除去し、電縫溶接部の焼き入れ硬化部を軟化
し、延性および靱性を改善するためであり、焼鈍または
焼準を行なう。本発明の成分系は、図2に示すように、
造管後に焼鈍を行なうと延性および靱性が回復するとと
もにMo、Tiが析出し、降伏比が90%以上の高強度
鋼管が得られる。焼鈍の温度は500℃以上であれば延
性及び靱性の十分な回復が得られ、650℃までは強度
の低下が少ない。また、溶接部と母材部の組織を均一に
し、約70%の低降伏比であり、延性が大きく、加工硬
化が大きい高強度鋼管を得るためには電縫造管後に引続
き素管熱処理として図3の焼準を行なう。これはAc3
点以上に加熱してオーステナイト化した後に空冷並の冷
却で、フェライトの生成を抑制し、一部マルテンサイト
を含むベイナイト主体の組織とし、伸管に十分な伸びの
回復と伸管による加工硬化代を大きくし強度上昇を図
る。焼準温度は温度のばらつきを考慮してAc3+20
℃以上とし、上限は細粒を保ち強度延性のバランスを確
保するため、Ac3+70以下が望ましい。また、ここ
での空冷は300℃までの冷却速度が10〜150℃/
分の範囲である。本発明は高精度鋼管を得るために図4
〜図6の工程で製造する。電縫造管直後の素管熱処理は
造管時の冷間加工による加工歪を除去し、電縫溶接部の
焼き入れ硬化部を軟化し、冷間加工性を改善するためで
あり、500℃以上の軟化焼鈍または焼準を行なう。し
かし、本発明の成分系は焼鈍を行なうとMo、Tiが析
出し、加工硬化が殆ど期待できない。そこで、請求項7
および請求項8は電縫造管後に引続き素管熱処理として
焼準を行なう。これはAc3点以上に加熱してオーステ
ナイト化した後に空冷並の冷却で、フェライトの生成を
抑制し、一部マルテンサイトを含むベイナイト主体の組
織とし、伸管に十分な伸びの回復と伸管による加工硬化
代を大きくし強度上昇を図る。焼準温度は温度のばらつ
きを考慮してAc3+20℃以上とし、上限は細粒を保
ち強度延性のバランスを確保するため、Ac3+70℃
以下が望ましい。また、ここでの空冷は300℃までの
冷却速度が10〜150℃/分の範囲である。Ac3点
未満の熱処理では上記の効果が得られず所定の強度が得
られない。
The as-tube-formed product shown in the manufacturing process of FIG. 1 is economical, and a high-strength steel pipe can be obtained by work hardening at the time of forming and forming. The heat treatment after pipe forming is for removing working strain due to cold working at the time of pipe forming, softening the quenched and hardened part of the electric resistance welded part, and improving ductility and toughness, and performing annealing or normalizing. The component system of the present invention comprises, as shown in FIG.
When annealing is performed after pipe forming, ductility and toughness are recovered, and Mo and Ti are precipitated, and a high-strength steel pipe having a yield ratio of 90% or more is obtained. If the annealing temperature is 500 ° C. or higher, sufficient recovery of ductility and toughness can be obtained, and strength does not decrease much up to 650 ° C. In addition, in order to obtain a high-strength steel pipe with a low yield ratio of about 70%, a large ductility, and a large work hardening, it is necessary to continue heat treatment of the pipe after ERW pipe to make the structure of the welded part and the base metal part uniform. The normalization of FIG. 3 is performed. This is Ac3
After heating to austenite by heating above the point, the formation of ferrite is suppressed by air-cooled cooling, and a bainite-based structure partially containing martensite is formed. To increase the strength. The normalizing temperature is set to Ac3 + 20 in consideration of temperature variation.
C. or more, and the upper limit is desirably Ac3 + 70 or less in order to maintain fine grains and maintain a balance between strength and ductility. The air cooling here is performed at a cooling rate up to 300 ° C.
Range of minutes. The present invention is directed to FIG.
6 through FIG. The heat treatment of the raw pipe immediately after the ERW pipe is for removing the work strain due to the cold working during pipe making, softening the hardened and hardened portion of the ERW weld, and improving the cold workability at 500 ° C. The above softening annealing or normalizing is performed. However, when the component system of the present invention is annealed, Mo and Ti precipitate, and work hardening can hardly be expected. Therefore, claim 7
In claim 8, normalizing is subsequently performed as heat treatment of the shell after the electric resistance welded pipe. This is to cool to austenite by heating to more than the Ac3 point and then suppress the formation of ferrite by air-cooling-like cooling to form a bainite-based structure partially containing martensite. Increase work hardening allowance and increase strength. The normalizing temperature is set to Ac3 + 20 ° C. or more in consideration of temperature variation, and the upper limit is Ac3 + 70 ° C. in order to keep fine grains and secure the balance of strength ductility.
The following is desirable. The air cooling here has a cooling rate up to 300 ° C. in a range of 10 to 150 ° C./min. If the heat treatment is less than the Ac3 point, the above effects cannot be obtained, and the predetermined strength cannot be obtained.

【0032】請求項7は伸管の加工率が小さく必要な延
性、靱性が確保できる場合の製造工程で図4のように焼
準後伸管加工ままで製品となる。請求項8は伸管の加工
率が大きく必要な延性および靱性の確保が困難な場合
で、伸管後に焼鈍を行い、延性および靱性の回復を行な
う。請求項9は造管後に焼鈍を行い、伸管の途中に焼準
を入れ、加工硬化による強度向上を行なう。本発明の材
料は焼鈍の場合が焼準より軟らかくできるので伸管加工
率が大きく何回も伸管する場合はこの方法が伸管し易く
適している。焼準は最後の伸管前に入れ、最後の伸管の
加工率と焼鈍温度で強度、延性を調整する。なお、本発
明の材料は適当な焼鈍温度を選べば数回の伸管および焼
鈍を繰り返し行なっても強度を確保でき良好な製品が製
造できる。したがって、図5および図6の焼鈍および伸
管は数回繰り返しても問題無い。伸管はダイスとプラグ
を用いた冷間引き抜きで行なう。
A seventh aspect of the present invention relates to a manufacturing process in which the required elongation and toughness can be ensured with a low elongation rate of the elongate pipe, as shown in FIG. Claim 8 is a case where it is difficult to secure necessary ductility and toughness because the working ratio of the drawn tube is large, and annealing is performed after the drawn tube to recover ductility and toughness. According to a ninth aspect, annealing is performed after pipe forming, and normalizing is performed in the middle of drawing to improve strength by work hardening. Since the material of the present invention can be made softer than in normalizing in the case of annealing, this method is suitable when the drawing ratio is large and the drawing is repeated many times because the drawing is easy. Normalization is performed before the last drawing, and the strength and ductility are adjusted by the working ratio and annealing temperature of the last drawing. It should be noted that the material of the present invention can secure the strength and produce a good product even if repeated drawing and annealing are repeated several times if an appropriate annealing temperature is selected. Therefore, there is no problem even if the annealing and drawing in FIGS. 5 and 6 are repeated several times. The drawing is performed by cold drawing using a die and a plug.

【0033】[0033]

【実施例】第1表に、サイズφ42.7×t3.0mm
の電縫鋼管を従来法および本発明法により製造した条件
および結果を示す。ここでの冷間伸管はダイスおよびプ
ラグを用いて丸断面形状に伸管を行なった。また、冷間
伸管率が60%以上のものは焼鈍と伸管を2回以上繰り
返し行なった。従来法では100kgf/mm2 以上の
強度を未達成であるが、本発明では達成できる。本発明
の最終製品をアーク溶接した場合、溶接は良好であり、
熱影響部の最軟化部の強度は従来材より優れている。ま
た、本発明によれば、造管後に焼準の熱処理を加えるこ
とによって母材部・溶接部が均一で強度・延靱性バラン
スの優れた超高張力電縫鋼管を得ることができる。熱処
理後に更に冷間伸管加工を付加することにより、寸法精
度は外径±0.15mm、肉厚±0.05mmを達成し
ており、各種寸法を容易に製造できるため、小ロット対
応が可能であり、経済的である。本発明は製造工程の最
後が焼鈍または伸管であるので降伏比が高く疲労強度上
有利である。
EXAMPLES Table 1 shows the size φ42.7 × t3.0 mm.
The conditions and results of the ERW steel pipe manufactured by the conventional method and the method of the present invention are shown. Here, the cold drawing was performed to have a round cross-sectional shape using a die and a plug. When the cold drawing ratio was 60% or more, annealing and drawing were repeated twice or more. Although the strength of 100 kgf / mm 2 or more has not been achieved in the conventional method, it can be achieved in the present invention. When the final product of the present invention is arc welded, the welding is good,
The strength of the softest part of the heat-affected zone is superior to that of the conventional material. Further, according to the present invention, it is possible to obtain an ultra-high tensile strength electric resistance welded steel pipe having a uniform base material portion and a welded portion and an excellent balance of strength and ductility by applying normalizing heat treatment after pipe forming. By adding a cold drawing process after heat treatment, the dimensional accuracy has achieved outer diameter ± 0.15mm and wall thickness ± 0.05mm. And economical. In the present invention, since the end of the manufacturing process is annealing or drawing, the yield ratio is high and the fatigue strength is advantageous.

【0034】[0034]

【表1】 [Table 1]

【0035】[0035]

【表2】 [Table 2]

【0036】[0036]

【発明の効果】本発明によれば、100kgf/mm2
以上の強度を達成でき、アーク溶接したばあい溶接は良
好であり、熱影響部の軟化程度も従来材より優れてい
る。また、本発明によれば、造管後に焼準の熱処理を加
えることによって母材部・溶接部が均一で強度・延靱性
バランスの優れた高強度電縫鋼管を得ることができる。
熱処理後に更に冷間伸管加工を付加することにより、寸
法精度は外径±0.15mm、肉厚±0.05mmを達
成でき、各種寸法を容易に製造できるため、小ロット対
応が可能であり、経済的である。また、本発明は製造工
程の最後が焼鈍または伸管であるので降伏比が高く疲労
強度上有利である。また、任意の断面に加工できるので
曲げ加工性の優れた角管等が製造可能である。また、必
要に応じて、熱間板厚圧延における仕上圧延温度および
巻取温度を適正に制御することにより、低強度で延性の
優れた素材鋼板を製造して造管を容易にすることができ
る。
According to the present invention, 100 kgf / mm 2
The above strength can be achieved, the welding is good in the case of arc welding, and the degree of softening of the heat-affected zone is superior to the conventional material. Further, according to the present invention, a high-strength ERW pipe having a uniform base material portion and a welded portion and an excellent balance of strength and ductility can be obtained by performing normalizing heat treatment after pipe forming.
By adding cold drawing after the heat treatment, the dimensional accuracy can achieve outer diameter ± 0.15mm and wall thickness ± 0.05mm, and various dimensions can be easily manufactured. Is economical. Further, in the present invention, since the end of the manufacturing process is annealing or drawing, the yield ratio is high, which is advantageous in terms of fatigue strength. Further, since it can be processed into an arbitrary cross section, a square tube or the like having excellent bending workability can be manufactured. In addition, if necessary, by appropriately controlling the finish rolling temperature and the winding temperature in the hot thickness rolling, it is possible to produce a low-strength, excellent ductility material steel sheet and facilitate pipe making. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の請求項1に記載の方法の製造工程図。FIG. 1 is a manufacturing process diagram of the method according to claim 1 of the present invention.

【図2】請求項2に記載の方法の製造工程図。FIG. 2 is a manufacturing process diagram of the method according to claim 2.

【図3】請求項3に記載の方法の製造工程図。FIG. 3 is a manufacturing process diagram of the method according to claim 3.

【図4】請求項4、請求項5および請求項6に記載の方
法の製造工程図。
FIG. 4 is a manufacturing process diagram of the method according to claim 4, 5, or 6.

【図5】請求項4、請求項5および請求項7に記載の方
法の製造工程図。
FIG. 5 is a manufacturing process diagram of the method according to claim 4, 5 or 7.

【図6】請求項4、請求項5および請求項8に記載の方
法の製造工程図。
FIG. 6 is a manufacturing process diagram of the method according to claim 4, 5 or 8.

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 成分組成が重量で C:0.10〜0.20% Si:0.15〜0.50% Mn:1.3〜2.5% P:0.005〜0.020% S:0.0005〜0.0060% Al:0.01〜0.08% Ti:0.02〜0.2% B:0.0010〜0.0030% N:0.002〜0.005% Cr:0.3〜0.7% Mo:0.3〜1.0% を含有し残部Fe及び不可避的元素よりなる素材鋼スラ
ブを仕上げ温度950℃以下Ar3 変態点以上で熱間圧
延し、450℃〜700℃で巻取った熱延コイルを電縫
溶接し、引張強度が100〜130kgf/mm2 であ
ることを特徴とする熱影響部の軟化しにくい高強度電縫
鋼管の製造方法。
1. Composition: C: 0.10 to 0.20% Si: 0.15 to 0.50% Mn: 1.3 to 2.5% P: 0.005 to 0.020% by weight S: 0.0005 to 0.0060% Al: 0.01 to 0.08% Ti: 0.02 to 0.2% B: 0.0010 to 0.0030% N: 0.002 to 0.005% A material steel slab containing Cr: 0.3 to 0.7% Mo: 0.3 to 1.0% and the balance being Fe and unavoidable elements is hot-rolled at a finishing temperature of 950 ° C or lower and an Ar 3 transformation point or higher. Hot-rolled coil wound at 450 ° C. to 700 ° C. is welded by electric resistance welding, and has a tensile strength of 100 to 130 kgf / mm 2 , characterized in that the heat-affected zone is not easily softened. .
【請求項2】 成分組成が重量で C:0.10〜0.20% Si:0.15〜0.50% Mn:1.3〜2.5% P:0.005〜0.020% S:0.0005〜0.0060% Al:0.01〜0.08% Ti:0.02〜0.2% B:0.0010〜0.0030% N:0.002〜0.005% Cr:0.3〜0.7% Mo:0.3〜1.0% Nb:0.01〜0.10% を含有し残部Fe及び不可避的元素よりなる素材鋼スラ
ブを仕上げ温度950℃以下Ar3 変態点以上で熱間圧
延し、450℃〜700℃で巻取った熱延コイルを電縫
溶接し、引張強度が100〜130kgf/mm2 であ
ることを特徴とする熱影響部の軟化しにくい高強度電縫
鋼管の製造方法。
2. The composition of the component is: C: 0.10 to 0.20% Si: 0.15 to 0.50% Mn: 1.3 to 2.5% P: 0.005 to 0.020% by weight S: 0.0005 to 0.0060% Al: 0.01 to 0.08% Ti: 0.02 to 0.2% B: 0.0010 to 0.0030% N: 0.002 to 0.005% Cr: 0.3% to 0.7% Mo: 0.3% to 1.0% Nb: 0.01% to 0.10%, and finish steel slab consisting of Fe and unavoidable elements at a finishing temperature of 950 ° C or lower. Softening of the heat-affected zone characterized in that the hot-rolled coil hot-rolled at the Ar 3 transformation point or higher and wound at 450 ° C. to 700 ° C. is subjected to electric resistance welding and has a tensile strength of 100 to 130 kgf / mm 2. Manufacturing method of high strength ERW steel pipe that is difficult to perform.
【請求項3】 請求項1又は請求項2の電縫鋼管におい
て、造管後に歪取り焼鈍を行い、引張強度が100〜1
30kgf/mm2 である鋼管を得ることを特徴とする
高精度高強度電縫鋼管の製造方法。
3. The electric resistance welded steel pipe according to claim 1 or 2, wherein after pipe forming, strain relief annealing is performed, and the tensile strength is 100 to 1%.
A method for producing a high-precision, high-strength ERW steel pipe, comprising obtaining a steel pipe of 30 kgf / mm 2 .
【請求項4】 請求項1又は請求項2の電縫鋼管におい
て、造管後に焼準を行い、引張強度が100〜S130
kgf/mm2 である鋼管を得ることを特徴とする高精
度高強度電縫鋼管の製造方法。
4. The electric resistance welded steel pipe according to claim 1, wherein normalization is performed after pipe forming, and the tensile strength is 100 to S130.
A method for producing a high-precision, high-strength ERW steel pipe, characterized by obtaining a steel pipe of kgf / mm 2 .
【請求項5】 成分組成が重量で C:0.10〜0.20% Si:0.15〜0.50% Mn:1.3〜2.5% P:0.005〜0.020% S:0.0005〜0.0060% Al:0.01〜0.08% Ti:0.02〜0.2% B:0.0010〜0.0030% N:0.002〜0.005% Cr:0.3〜0.7% Mo:0.3〜1.0% を含有し残部Fe及び不可避的元素よりなる電縫鋼管に
おいて、造管後に焼準と焼鈍と冷間引き抜き加工とを組
み合わせ処理したものであり、寸法精度が外径±0.1
5mm以下、肉厚±0.05mm以下であり、引張強度
が100〜130kgf/mm2 であることを特徴とす
る高精度高強度電縫鋼管。
5. The composition of the component is: C: 0.10 to 0.20% Si: 0.15 to 0.50% Mn: 1.3 to 2.5% P: 0.005 to 0.020% by weight S: 0.0005 to 0.0060% Al: 0.01 to 0.08% Ti: 0.02 to 0.2% B: 0.0010 to 0.0030% N: 0.002 to 0.005% In an ERW steel pipe containing Cr: 0.3 to 0.7% Mo: 0.3 to 1.0% and the balance being Fe and unavoidable elements, after pipe forming, normalizing, annealing, and cold drawing are performed. Dimensional accuracy is ± 0.1
A high-precision, high-strength ERW steel pipe having a thickness of 5 mm or less, a thickness of 0.05 mm or less, and a tensile strength of 100 to 130 kgf / mm 2 .
【請求項6】 成分組成が重量で C:0.10〜0.20% Si:0.15〜0.50% Mn:1.3〜2.5% P:0.005〜0.020% S:0.0005〜0.0060% Al:0.01〜0.08% Ti:0.02〜0.2% B:0.0010〜0.0030% N:0.002〜0.005% Cr:0.3〜0.7% Mo:0.3〜1.0% Nb:0.01〜0.10% を含有させる残部Fe及び不可避的元素よりなる電縫鋼
管において、造管後に焼準と焼鈍と冷間引き抜き加工と
を組み合わせ処理したもので寸法精度が外径±0.15
mm以下、肉厚±0.05mm以下であり、引張強度が
100〜130kgf/mm2 であることを特徴とする
高精度高強度電縫鋼管。
6. The component composition is C: 0.10 to 0.20% Si: 0.15 to 0.50% Mn: 1.3 to 2.5% P: 0.005 to 0.020% by weight S: 0.0005 to 0.0060% Al: 0.01 to 0.08% Ti: 0.02 to 0.2% B: 0.0010 to 0.0030% N: 0.002 to 0.005% Cr: 0.3 to 0.7% Mo: 0.3 to 1.0% Nb: 0.01 to 0.10% In an electric resistance welded steel pipe composed of the balance Fe and inevitable elements, Combination of pre-annealing and cold-drawing with dimensional accuracy of outer diameter ± 0.15
A high-precision, high-strength ERW steel pipe having a thickness of at most 0.05 mm, a thickness of at most ± 0.05 mm, and a tensile strength of 100 to 130 kgf / mm 2 .
【請求項7】 請求項5又は請求項6の成分組成よりな
る電縫鋼管において、造管後に焼準を行い、引続き冷間
引き抜き加工を行うことにより、寸法精度が外径±0.
15mm以下、肉厚±0.05mm以下であり、引張強
度が100〜130kgf/mm2 である鋼管を得るこ
とを特徴とする高精度高強度電縫鋼管の製造方法。
7. An electric resistance welded steel pipe comprising the component composition according to claim 5 or 6, wherein normalization is performed after pipe forming, and then cold drawing is performed, so that the dimensional accuracy has an outer diameter of ± 0.
A method for producing a high-precision, high-strength ERW steel pipe, wherein a steel pipe having a thickness of 15 mm or less, a thickness of ± 0.05 mm or less, and a tensile strength of 100 to 130 kgf / mm 2 is obtained.
【請求項8】 請求項5又は請求項6の成分組成よりな
る電縫鋼管において造管後に焼準を行い、引続き冷間引
き抜き加工と焼鈍を行うことにより、寸法精度が外径±
0.15mm以下、肉厚±0.05mm以下であり、引
張強度が100〜130kgf/mm2 である鋼管を得
ることを特徴とする高精度高強度電縫鋼管の製造方法。
8. An electric resistance welded steel pipe comprising the component composition according to claim 5 or 6 is subjected to normalization after pipe forming, and subsequently to cold drawing and annealing, so that the dimensional accuracy is reduced to ±
A method for producing a high-precision, high-strength ERW steel pipe, wherein a steel pipe having a thickness of 0.15 mm or less, a thickness of ± 0.05 mm or less, and a tensile strength of 100 to 130 kgf / mm 2 is obtained.
【請求項9】 請求項5又は請求項6の成分組成よりな
る電縫鋼管において造管後に焼鈍を行い、引続き冷間引
き抜き加工と焼準と焼鈍を組合せ行なうことにより、寸
法精度が外径±0.15mm以下、肉厚±0.05mm
以下であり、引張強度が100〜130kgf/mm2
である鋼管を得ることを特徴とする高精度高強度電縫鋼
管の製造方法。
9. An electric resistance welded steel pipe having the composition of claim 5 or 6 is annealed after being formed, and is continuously subjected to cold drawing, normalizing, and annealing, so that dimensional accuracy is reduced to ± 0.15mm or less, wall thickness ± 0.05mm
And a tensile strength of 100 to 130 kgf / mm 2
A method for producing a high-precision, high-strength electric resistance welded steel pipe, characterized by obtaining a steel pipe as described above.
JP16626192A 1992-06-24 1992-06-24 High strength electric resistance welded steel pipe which is hardly softened in welding heat affected zone and method of manufacturing the same Expired - Lifetime JP2618563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16626192A JP2618563B2 (en) 1992-06-24 1992-06-24 High strength electric resistance welded steel pipe which is hardly softened in welding heat affected zone and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16626192A JP2618563B2 (en) 1992-06-24 1992-06-24 High strength electric resistance welded steel pipe which is hardly softened in welding heat affected zone and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH0610046A JPH0610046A (en) 1994-01-18
JP2618563B2 true JP2618563B2 (en) 1997-06-11

Family

ID=15828105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16626192A Expired - Lifetime JP2618563B2 (en) 1992-06-24 1992-06-24 High strength electric resistance welded steel pipe which is hardly softened in welding heat affected zone and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2618563B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100481364B1 (en) * 2000-12-05 2005-04-08 주식회사 포스코 A method for manufacturing high strength cold rolled steel sheet with excellent workability
EP3524471B1 (en) 2018-02-09 2020-06-10 Forankra AB Attachment of cargo holding belt to a vehicle loading platform
CN112301280A (en) * 2020-10-15 2021-02-02 徐州徐工液压件有限公司 High-strength low-stress cold-drawn steel pipe and production method thereof

Also Published As

Publication number Publication date
JPH0610046A (en) 1994-01-18

Similar Documents

Publication Publication Date Title
JP2004010991A (en) Method of producing ultrahigh strength cold rolled steel sheet having excellent spot weldability
JP3422864B2 (en) Stainless steel with excellent workability and method for producing the same
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JP2618563B2 (en) High strength electric resistance welded steel pipe which is hardly softened in welding heat affected zone and method of manufacturing the same
JP3118623B2 (en) Method for producing non-heat treated electric resistance welded oil well pipe having tensile strength of 800 MPa or more
JP2621744B2 (en) Ultra-high tensile cold rolled steel sheet and method for producing the same
JPH05287439A (en) Mo-v type ultrahigh tensile strength resistance welded steel tube excellent in ductility
JPH07150247A (en) Production of steel tube with high strength and low yield ratio for construction use
JPH07278730A (en) Electric resistance welded tube with 1080 to 1450mpa tensile strength excellent in ductility and toughness and its production
JP4300049B2 (en) Manufacturing method of high-strength steel pipe for building structure with low yield ratio
JPH07150245A (en) Production of thick-walled steel tube having high toughness and low yield ratio
JP3117529B2 (en) Mo-based ultra-high tensile ERW steel pipe with excellent ductility
JPH0718372A (en) Thin steel sheet for automotive use excellent in impact resistance and its production
JP3107697B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JPH06179945A (en) Cr-mo series ultrahigh tensile strength electric resistance welded steel tube excellent in ductility
JPH0790375A (en) Production of thick bend steel pipe having high strength and high toughness
JPH07216504A (en) Electric resistance welded tube excellent in ductility and toughness and having 680-1070mpa tensile strength and its production
JP3263348B2 (en) Method of manufacturing non-heat treated high workability electric resistance welded steel pipe
JP3107695B2 (en) Method for producing shaped steel having flange with excellent strength, toughness and weldability
JP3107698B2 (en) Method for producing shaped steel having flange excellent in strength, toughness and fire resistance
JP2529042B2 (en) Manufacturing method of low yield ratio steel pipe for building by cold forming.
JPH04103719A (en) Production of ultrahigh strength resistance welded tube
JPH07216505A (en) Electric resistance welded tube excellent in toughness and having 680-1300mpa strength and its production
JPH05247588A (en) Cr-based ultrahigh tensile strength resistance welded steel tube excellent in ductility
JPH04198422A (en) Manufacture of hot rolled steel sheet for working

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970107