JP2611594B2 - Method of manufacturing slab for steel slab - Google Patents
Method of manufacturing slab for steel slabInfo
- Publication number
- JP2611594B2 JP2611594B2 JP34539591A JP34539591A JP2611594B2 JP 2611594 B2 JP2611594 B2 JP 2611594B2 JP 34539591 A JP34539591 A JP 34539591A JP 34539591 A JP34539591 A JP 34539591A JP 2611594 B2 JP2611594 B2 JP 2611594B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- mold
- current frequency
- immersion nozzle
- linear moving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Continuous Casting (AREA)
Description
【0001】[0001]
【産業上の利用分野】この発明は、鋳型内の溶鋼に電磁
力を印加して、湯面の波動を抑制する連続鋳造方法に関
する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous casting method for applying an electromagnetic force to molten steel in a mold to suppress a wave on a molten metal surface.
【0002】[0002]
【従来の技術】通常、連続鋳造においては、溶鋼の酸化
防止のために、浸漬ノズルを用いて溶鋼を大気から遮断
しつつ鋳型内に注入する。スラブ連続鋳造用の浸漬ノズ
ルは、その下端にて左右に開口する1対の吐出口を有す
る。これら吐出口から実質的に左右均等に鋳型中央から
周辺へ向かって溶鋼が吐出される。2. Description of the Related Art Generally, in continuous casting, molten steel is injected into a mold while being shielded from the atmosphere using an immersion nozzle in order to prevent oxidation of the molten steel. The immersion nozzle for continuous slab casting has a pair of discharge ports that open left and right at the lower end. Molten steel is discharged from these discharge ports substantially equally to the left and right from the center of the mold to the periphery.
【0003】ところで、連鋳機の生産性を向上させるた
めに、鋳造速度すなわち鋳型内への溶鋼注入速度を増加
させることが近年の連続鋳造における課題となってい
る。しかし、注入速度を1.5m/分を超えて増加させ
ると、鋳型内の溶鋼が激しく擾乱され、湯面上の波長
が、浸漬ノズル部をシーソーの支点になるような数mの
波長のものから、短い数cmの波長のものまで、種々の波
動が発生し、湯面の波動が大きくなる。このような湯面
の波動はモールドパウダーの溶鋼中への巻き込みを生じ
る。また、鋳型内溶鋼の激しい擾乱は、前記の巻き込ま
れたモールドパウダーや、精錬工程で生じた溶鋼中の非
金属介在物が鋳型内で湯面に向かって浮上することを阻
害し、結果として鋳型内の溶鋼中からこれらの介在物が
取り除かれることを困難にする。このようにして鋳片中
に取り込まれた介在物は、最終工程を経た製品の表面や
内部の欠陷として顕在化し製品の品位を著しく低下させ
る。In order to improve the productivity of a continuous casting machine, increasing the casting speed, that is, the speed of injecting molten steel into a mold, has been an issue in continuous casting in recent years. However, when the injection speed is increased beyond 1.5 m / min, the molten steel in the mold is violently disturbed, and the wavelength on the molten metal surface is several meters long so that the immersion nozzle becomes a fulcrum of the seesaw. , Various waves ranging from short wavelengths of several centimeters are generated, and the waves on the molten metal surface become large. Such a wave of the molten metal causes entrainment of the mold powder into the molten steel. In addition, the violent disturbance of the molten steel in the mold prevents the entrained mold powder and nonmetallic inclusions in the molten steel generated in the refining process from floating toward the molten metal surface in the mold, and as a result, the mold This makes it difficult to remove these inclusions from the molten steel inside. The inclusions incorporated in the slab in this way become apparent as defects on the surface or inside of the product that has undergone the final process, and significantly lower the quality of the product.
【0004】上記のような介在物の取り込みを防止する
ために、鋳型に磁場発生装置を設け、浸漬ノズルから吐
出する溶湯流を、鋳型短辺側から浸漬ノズル側へ鋳型幅
方向に沿って押し戻す向きに電磁誘導力を印加して溶鋼
吐出流の勢いを弱める。これにより、湯面の波動の低減
と、鋳型内溶鋼の擾乱の抑制を図る技術が開発されてい
る(例えば、特公昭64−10305)。そして、この
湯面変動量を5mm程度以下にすることが、通常操業の目
標とされてきた。In order to prevent the inclusion of inclusions as described above, a magnetic field generator is provided in the mold, and the flow of the molten metal discharged from the immersion nozzle is pushed back from the short side of the mold to the immersion nozzle in the width direction of the mold. The force of the molten steel discharge flow is reduced by applying an electromagnetic induction force in the direction. As a result, techniques have been developed for reducing the wave of the molten metal surface and suppressing the disturbance of the molten steel in the mold (for example, Japanese Patent Publication No. 64-10305). It has been a target of normal operation to reduce the level change of the molten metal to about 5 mm or less.
【0005】[0005]
【発明が解決しようとする課題】当技術に係わる磁場発
生装置は、前述のようにリニア移動磁場式であるので、
その運転に際しては、適当な電流値と、周波数を決めな
くてはならない。このうち周波数の決定は従来以下のよ
うに行っていた。つまり、溶鋼吐出流の減衰率を高める
には溶鋼吐出流にはたらくローレンツ力を高めなくては
ならない。そのためには、溶鋼吐出流と、鋳型の短辺側
から浸漬ノズル側に向かって移動する磁束との相対速度
を高めなくてはならない。したがって磁束の移動速度、
すなわち周波数を高めなくてはならない。しかし、周波
数を高めると鋳型枠を構成するステンレス・鋳型銅板お
よび溶鋼の透磁率が低下し、浸漬ノズルからの溶鋼吐出
流に有効に作用する磁束密度が低下する。そこで、これ
ら2つの条件を満足する最適な周波数を0.5Hzとし
た。Since the magnetic field generator according to the present technology is of the linear moving magnetic field type as described above,
In the operation, an appropriate current value and frequency must be determined. Of these, the frequency was conventionally determined as follows. That is, to increase the damping rate of the molten steel discharge flow, the Lorentz force acting on the molten steel discharge flow must be increased. For that purpose, the relative speed between the molten steel discharge flow and the magnetic flux moving from the short side of the mold toward the immersion nozzle must be increased. Therefore, the moving speed of the magnetic flux,
That is, the frequency must be increased. However, when the frequency is increased, the magnetic permeability of the stainless steel mold copper plate and the molten steel constituting the mold frame decreases, and the magnetic flux density that effectively acts on the molten steel discharge flow from the immersion nozzle decreases. Therefore, the optimum frequency that satisfies these two conditions is set to 0.5 Hz.
【0006】図1は上記の通り、磁場発生装置の電流周
波数が0.5Hzの条件で、磁場移動方向を短辺から浸漬
ノズルへ向かう向きとして、その電流値を変化させたと
きの鋳型内湯面の波動の大きさを表したものである。こ
こで、波動の大きさは、鋳型短辺から40mm、鋳型内長
辺から40mmそれぞれ離れた位置で、10分間の湯面波
動振幅量の平均値で表した(ここで湯面波動振幅量とは
図2に示すように、周期約1〜2秒の短周期波と周期約
10秒〜15の長周期波で概ね構成される鋳型短辺近傍
湯面変動波形の内、長周期波高が極大・極小を示す時刻
にそれぞれ最も近い時刻での短周期波高の極大・極小間
の波高差32をいう)。鋳造速度が比較的遅く、鋳型幅
の狭い条件(図中の白抜き逆三角および白抜き四角)で
は磁場発生装置の電流値を増すとともに、湯面波動の抑
制効果は大きくなる。しかし鋳造速度が比較的速く、鋳
型幅の広い条件(図中の黒三角および黒四角)では、磁
場発生装置の電流値を増し過ぎると、湯面波動の抑制効
果は小さくなり、却って湯面波動を助長する結果となっ
ている。FIG. 1 is a diagram showing a state in which the current frequency of a magnetic field generator is 0.5 Hz and the direction of movement of the magnetic field is from the short side to the immersion nozzle, and the current value is changed. It shows the magnitude of the wave. Here, the magnitude of the wave was represented by the average value of the level wave amplitude for 10 minutes at positions 40 mm away from the short side of the mold and 40 mm from the long side inside the mold, respectively. As shown in FIG. 2, the long-period wave height of the mold fluctuation near the short side of the mold generally consisting of a short-period wave of about 1 to 2 seconds and a long-period wave of about 10 seconds to 15 A peak height difference 32 between the maximum and the minimum of the short-period wave height at the time closest to the time indicating the minimum). Under conditions where the casting speed is relatively slow and the mold width is narrow (open inverted triangle and open square in the figure), the current value of the magnetic field generator is increased, and the effect of suppressing the surface wave is increased. However, under the conditions of relatively high casting speed and wide mold width (black triangle and black square in the figure), if the current value of the magnetic field generator is excessively increased, the effect of suppressing the surface wave wave becomes small, and on the contrary, the wave surface wave wave The result is to encourage.
【0007】本発明は、上記に代表される問題の解決、
つまり「スラブ連続鋳造において浸漬ノズルの下部の二
股の溶鋼吐出孔から鋳型内に流入した溶鋼流が鋳型内溶
鋼湯面に与える湯面波動を鋳型に設置されたリニア磁界
発生装置を用いて電磁制動力により抑制する方法」すな
わち、広い鋳造条件で、湯面波動を抑制するための、磁
界発生装置の電流周波数の設定と鋳造条件との関係を示
す操業方法を提供するものである。The present invention solves the problems represented by the above,
In other words, in continuous slab casting, the molten steel flow flowing into the mold from the forked molten steel discharge hole at the bottom of the immersion nozzle applied the molten steel surface wave to the molten steel surface in the mold using a linear magnetic field generator installed in the mold to control the electromagnetic wave. The present invention provides an operation method showing the relationship between the setting of the current frequency of the magnetic field generator and the casting conditions for suppressing the surface wave motion under a wide casting condition.
【0008】[0008]
【課題を解決するための手段】本発明に係わる磁場発生
装置はリニア移動磁場式であり、磁束は鋳片引き抜き方
向と直交する方向に鋳型短片側から浸漬ノズル側へ向か
って移動する。あるいは、磁束は浸漬ノズルの下部の二
股の溶鋼吐出孔から流入する溶鋼流に向かう角度で、す
なわち、鋳片引抜き方向と直交する面から傾いた方向を
鋳型短辺側から浸漬ノズル側に向かって移動する。従っ
て、鋳型内のある一点に於ける磁束密度は周期的に変化
する。つまり、浸漬ノズルから吐出する溶湯流は、時間
的に常に、一定の磁束密度の磁束と交叉するわけではな
く、浸漬ノズルから溶湯流のある断片が吐出された時刻
の違いによって、リニア移動磁場の印加領域を通過し終
わるまでに、その溶湯流の断片が受ける電磁力の大きさ
の合計量に違いが生じる。The magnetic field generator according to the present invention is of a linear moving magnetic field type, and the magnetic flux moves from the mold short piece side to the immersion nozzle side in a direction perpendicular to the slab drawing direction. Alternatively, the magnetic flux is at an angle toward the molten steel flow flowing from the forked molten steel discharge hole at the lower part of the immersion nozzle, that is, a direction inclined from a plane orthogonal to the slab drawing direction from the mold short side to the immersion nozzle side. Moving. Therefore, the magnetic flux density at one point in the mold changes periodically. In other words, the flow of the molten metal discharged from the immersion nozzle does not always intersect with the magnetic flux having a constant magnetic flux density in time. By the end of passing through the application area, a difference occurs in the total amount of the electromagnetic force received by the fragments of the melt flow.
【0009】発明者らは、浸漬ノズルから吐出された溶
湯流のある断片がリニア移動磁場の印加領域の通過に要
する時間と、浸漬ノズルから吐出された溶湯流のその断
片がリニア移動磁場の印加領域を通過中に、磁束がこの
溶湯流と交叉する回数は、鋳型幅、鋳型幅と鋳造速度に
よってきまる時間当たりの溶鋼吐出量、浸漬ノズルから
の溶鋼吐出角度、浸漬ノズルの吐出口の浸漬深さ、およ
び磁場発生装置の電流周波数で決まること。そしてこの
浸漬ノズルから吐出された溶湯流のその断片がリニア移
動磁場の印加領域を通過中に、磁束がこの溶湯流と交叉
する回数によって、上記のような「浸漬ノズルから溶湯
流のある断片が吐出された時刻の違いによって、リニア
移動磁場の印加領域を通過し終わるまでに、その溶湯流
の断片が受ける電磁力の大きさの合計量に違いが生じ
る」現象の程度の大小が決まることを見出した。The inventors have determined that the time required for a fragment of the molten metal stream discharged from the immersion nozzle to pass through the area to which the linear moving magnetic field is applied, and that the fragment of the molten metal stream discharged from the immersing nozzle determines the linear moving magnetic field While passing through the region, the number of times that the magnetic flux intersects this molten metal flow is determined by the width of the mold, the amount of molten steel discharged per time determined by the mold width and the casting speed, the molten steel discharge angle from the immersion nozzle, and the immersion depth of the discharge port of the immersion nozzle. And the current frequency of the magnetic field generator. Then, while the fragment of the molten metal stream discharged from the immersion nozzle passes through the application region of the linear moving magnetic field, the number of times that the magnetic flux intersects the molten metal stream depends on the number of times that the fragment having the molten metal stream from the immersion nozzle The difference in the time of ejection causes a difference in the total amount of the electromagnetic force received by the fragment of the melt flow before passing through the application area of the linear moving magnetic field ''. The magnitude of the phenomenon is determined I found it.
【0010】このような現象を小さくするためには、浸
漬ノズルから吐出された溶湯流のどの断片も、リニア移
動磁場の印加領域を通過中に、移動する磁束とかならず
同程度の回数交叉するようにすることである。そのため
には2つの方法が考えられる。 第1は、浸漬ノズルか
ら吐出された溶湯流のどの断片も、できるだけ長い時間
リニア移動磁場の印加領域内を流れるようにする方法で
ある。そのためには鋳造速度を減じて浸漬ノズルから吐
出された溶湯流の流速を減じたり、浸漬ノズルの吐出角
度を浅くして、浸漬ノズルから吐出された溶湯流がリニ
ア移動磁場の印加領域の中を磁束の移動方向と平行に流
れるようにすることが必要である。しかし、鋳造速度を
減じると連鋳機の生産能率が下がるし、浸漬ノズルの吐
出角度を浅くすると溶湯流によるモールドパウダーの巻
込み等が生じ、鋳片への介在物取り込みをもたらす。し
たがってこの方法は得策ではない。In order to reduce such a phenomenon, any fragment of the molten metal stream discharged from the immersion nozzle must cross the magnetic flux moving at the same number of times while passing through the region where the linear moving magnetic field is applied. It is to be. Two methods are conceivable for that purpose. The first is a method in which any fragment of the molten metal stream discharged from the immersion nozzle flows in the region where the linear moving magnetic field is applied for as long as possible. For this purpose, the casting speed is reduced to reduce the flow velocity of the molten metal flow discharged from the immersion nozzle, or the discharge angle of the immersion nozzle is made shallow, so that the molten metal flow discharged from the immersion nozzle flows through the area where the linear moving magnetic field is applied. It is necessary to allow the magnetic flux to flow parallel to the moving direction. However, if the casting speed is reduced, the production efficiency of the continuous caster is reduced, and if the discharge angle of the immersion nozzle is made shallow, the mold powder is entangled by the molten metal flow and the like, and inclusions are taken into the slab. Therefore, this method is not advisable.
【0011】第2は磁場発生装置の電流周波数を増して
磁束の移動速度を増すことによって、浸漬ノズルから吐
出された溶湯流のどの断片もリニア移動磁場の印加領域
を通過中に、なるべく同程度の回数だけ磁束と交叉する
ようにすることである。この第2の方法によれば、鋳造
速度や浸漬ノズルの吐出角度から直接の制約を受けな
い。但し、磁場発生装置の電流周波数を増すと、透磁率
が低下し、浸漬ノズルからの溶鋼吐出流に有効に作用す
る磁束密度が低下する。したがってこの電流周波数は、
浸漬ノズルから吐出された溶湯流のどの断片もリニア移
動磁場の印加領域を通過中になるべく同程度の回数だけ
磁束と交叉するに必要な最低の周波数であることが望ま
しい。Second, the current frequency of the magnetic field generator is increased to increase the moving speed of the magnetic flux, so that any fragments of the molten metal stream discharged from the immersion nozzle are as similar as possible while passing through the region where the linear moving magnetic field is applied. Is to cross the magnetic flux the number of times. According to the second method, there is no direct restriction on the casting speed and the discharge angle of the immersion nozzle. However, when the current frequency of the magnetic field generator is increased, the magnetic permeability decreases, and the magnetic flux density effectively acting on the molten steel discharge flow from the immersion nozzle decreases. Therefore, this current frequency is
It is desirable that the lowest frequency necessary for any piece of the molten metal stream discharged from the immersion nozzle to cross the magnetic flux as many times as possible while passing through the application region of the linear moving magnetic field.
【0012】第2の方法は、発明者らが連続鋳造機での
実験により発見した方法であるが、磁場発生装置の電流
周波数を選択してリニア磁界の移動速度を調整すること
により、浸漬ノズルから吐出された溶鋼流のどの断片も
リニア磁界の印加領域を通過中に、少なくとも1回、移
動磁束(移動磁場)と交差させるに必要な最低の周波数
以上の周波数に設定する方法である。すなわち、浸漬ノ
ズルから吐出された溶鋼流のどの断片もリニア磁界の印
加領域を通過中に少なくともリニア磁界の1周期以上の
磁束密度の制動作用を受けるので、溶鋼流に制動された
部分と制動されない部分の偏りができない。選択する周
波数が最低の周波数あるいはその整数倍であれば、溶鋼
流のどの断片も等しく制動作用を受けるので、鋳型内溶
鋼湯面の波動量はさらに減少する。The second method is a method discovered by the inventors through experiments on a continuous casting machine. The immersion nozzle is selected by selecting the current frequency of the magnetic field generator and adjusting the moving speed of the linear magnetic field. This is a method in which any fragment of the molten steel flow discharged from the apparatus is set to a frequency equal to or higher than the minimum frequency required to cross the moving magnetic flux (moving magnetic field) at least once while passing through the application region of the linear magnetic field. That is, since any fragment of the molten steel flow discharged from the immersion nozzle is subjected to the braking action of the magnetic flux density of at least one cycle of the linear magnetic field while passing through the application region of the linear magnetic field, the portion that is braked by the molten steel flow is not braked. The part cannot be biased. If the selected frequency is the lowest frequency or an integer multiple thereof, all the pieces of the molten steel flow are equally braked, so that the wave amount of the molten steel in the mold is further reduced.
【0013】この第2の方法によれば、鋳造速度や浸漬
ノズルの吐出角度から直接の制約を受けないで湯面波動
量を減少させることができる。ただし、磁場発生装置の
電流周波数を増すと、透磁率が低下し、鋳型内の磁束密
度が低下するので、この電流周波数は以下に述べる方法
で求めた必要な最低の周波数あるいはその2倍、3倍な
どの整数倍の周波数であることが望ましい。この整数倍
値は、浸漬ノズルから吐出された溶鋼流の断片に移動磁
束が作用する制動力は磁束密度の二乗と周波数との積に
比例して大きくなるので、この積の値が最大となる倍数
値に選択することが効果的である。発明者らは、この第
2の方法に於て必要とされる最低限の電流周波数を、次
のようにしてもとめた。According to the second method, the wave amount of the molten metal can be reduced without being directly restricted by the casting speed or the discharge angle of the immersion nozzle. However, when the current frequency of the magnetic field generator is increased, the magnetic permeability decreases and the magnetic flux density in the mold decreases. Therefore, the current frequency is set to the required minimum frequency obtained by the method described below or twice or three times the minimum required frequency. It is desirable that the frequency be an integral multiple such as double. This integral multiple value is the maximum value because the braking force applied by the moving magnetic flux to the fragment of the molten steel flow discharged from the immersion nozzle increases in proportion to the product of the square of the magnetic flux density and the frequency. It is effective to select a multiple value. The inventors have determined the minimum current frequency required in the second method as follows.
【0014】まず、本発明に係わる磁場発生装置に於
て、リニア移動磁場の印加領域を電流周波数F[Hz]で
移動する磁束が周期的に通過する時間間隔P[sec ]
は、下記(2)式で表せる。 P=1/(N・F) …(2) ただし、式(2)中の符号Nは、磁場発生装置の極数を
意味する。First, in the magnetic field generator according to the present invention, a time interval P [sec] at which a magnetic flux moving at a current frequency F [Hz] periodically passes through an application region of a linear moving magnetic field.
Can be expressed by the following equation (2). P = 1 / (N · F) (2) where the symbol N in equation (2) means the number of poles of the magnetic field generator.
【0015】一方、図3は磁束の移動方向が鋳片引抜き
方向と直交する方向である場合を例示するが、図3に示
すように、浸漬ノズルの吐出孔29の下向き角度αが大
きいときは、吐出孔29から吐出された溶鋼流の微小断
片がリニア移動磁場の印加領域に進入して逸脱するま
で、つまり図3のリニア移動磁場の印加領域の下端34
に要する時間、すなわち有効制動時間T[sec ]は下記
(3)式で表せる。 T=(W−D)/(V・sin θ) …(3)On the other hand, FIG. 3 illustrates a case where the moving direction of the magnetic flux is a direction orthogonal to the direction of drawing the slab. As shown in FIG. 3, when the downward angle α of the discharge hole 29 of the immersion nozzle is large, 3 until the minute fragments of the molten steel flow discharged from the discharge holes 29 enter and deviate from the application region of the linear moving magnetic field, that is, the lower end 34 of the application region of the linear moving magnetic field in FIG.
, Ie, the effective braking time T [sec] can be expressed by the following equation (3). T = (W−D) / (V · sin θ) (3)
【0016】他方、浸漬ノズルの吐出孔29の下向き角
度αが小さいとき、あるいは浸漬ノズルの吐出孔29か
ら吐出される溶鋼流の方向と磁束の移動方向の相対角度
が小さいときは、吐出孔29から吐出される溶湯流がリ
ニア移動磁界の上側、下側に抜け出る以前に鋳型の短辺
側の凝固殻に到達する。このような場合は、溶鋼流の断
片が浸漬ノズルの吐出孔29を出て、鋳型の短辺側の凝
固殻に到達するまでの時間が有効制動時間T[sec ]と
なり、下記(3)式または(4)式により時間Tをそれ
ぞれ求めることができる。 T=A/(2V・cos θ) …(4)On the other hand, when the downward angle α of the discharge hole 29 of the immersion nozzle is small, or when the relative angle between the direction of the molten steel flow discharged from the discharge hole 29 of the immersion nozzle and the moving direction of the magnetic flux is small, the discharge hole 29 The molten metal discharged from the mold reaches the solidified shell on the short side of the mold before exiting above and below the linear moving magnetic field. In such a case, the time required for the fragment of the molten steel flow to exit the discharge hole 29 of the immersion nozzle and reach the solidified shell on the short side of the mold is the effective braking time T [sec], and the following equation (3) Alternatively, the time T can be obtained by the equation (4). T = A / (2V · cos θ) (4)
【0017】ただし、上記(3)式および(4)式にお
いて、Vは浸漬ノズルから吐出する溶湯流がリニア移動
磁場の印加領域(ここで印加領域とは、鋳型の厚み方向
中心で測った磁束密度の時間平均が最大値をしめす位置
を中心として、その最大値の1/2の磁束密度を時間平
均値として持つ領域をいう。)を通過する際の平均流速
[m/sec]、θは浸漬ノズルから吐出する溶湯流がリニ
ア移動磁場の印加領域を通過する際に水平線となす角度
[rad ]、Wはリニア移動磁場の印加領域の鋳型高さ方
向の幅[m]、Dは浸漬ノズル吐出口上端がリニア移動
磁場の印加領域にある場合は、浸漬ノズル吐出口上端か
らリニア移動磁場の印加領域の上端までの距離[m]、
それ以外の場合はD=0[m]、Aは鋳造幅[m]をそ
れぞれ意味する。In the above formulas (3) and (4), V is a region in which the flow of the molten metal discharged from the immersion nozzle is applied with a linear moving magnetic field (where the applied region is a magnetic flux measured at the center in the thickness direction of the mold). The average flow velocity [m / sec] when passing through a region having a magnetic flux density of 1/2 of the maximum value as a time average value around the position where the time average of the density shows the maximum value is the center. The angle [rad] that the molten metal stream discharged from the immersion nozzle makes with the horizontal line when passing through the application region of the linear moving magnetic field, W is the width [m] of the application region of the linear moving magnetic field in the mold height direction, and D is the immersion nozzle. When the upper end of the discharge port is in the application region of the linear moving magnetic field, the distance [m] from the upper end of the discharge port of the immersion nozzle to the upper end of the application region of the linear moving magnetic field,
In other cases, D = 0 [m], and A means the casting width [m].
【0018】なお、V,θの値は実際の連続鋳造機で直
接測定することは、大変困難である。そこで、発明者ら
は、1/3スケールの鋳型水モデルで実際の鋳造を再現
し、V,θを測定した。但し、V,θは磁場発生装置に
よる吐出流の制動効果が加味されたものではない。It is very difficult to directly measure the values of V and θ with an actual continuous casting machine. Then, the inventors reproduced actual casting with a 1/3 scale mold water model, and measured V and θ. However, V and θ do not take into account the effect of the discharge flow braking by the magnetic field generator.
【0019】上記(2),(3),(4)式から、浸漬
ノズルから吐出された溶鋼流のどの断片も、磁場の印加
領域を通過中に交叉する磁束の合計された量が同一にな
るために必要な最低の電流周波数Fは、P=Tの関係か
ら下記(5)式または(6)式のように表すことができ
る。浸漬ノズルから吐出する溶鋼流がリニア移動磁界の
下側に抜け出る場合は、下記(5)式を用いる。 F=(V・sin θ)/{N・(W−D)} …(5) 浸漬ノズルから吐出する溶鋼流がリニア移動磁界の上
側、下側に抜け出ない場合は、下記(6)式を用いる。 F=(2V・cos θ)/(N・A) …(6) 図3は、上記(5)式中の記号を説明するための模式図
で、磁束の移動方向が鋳片引抜き方向と直交する方向で
ある場合を例示する。From the above equations (2), (3) and (4), it can be seen that the total amount of magnetic flux intersecting while passing through the magnetic field application region is the same for any of the fragments of the molten steel flow discharged from the immersion nozzle. The minimum current frequency F required to be satisfied can be expressed as the following equation (5) or (6) from the relationship of P = T. When the molten steel flow discharged from the immersion nozzle escapes below the linear moving magnetic field, the following equation (5) is used. F = (V · sin θ) / {N · (W−D)} (5) If the molten steel flow discharged from the immersion nozzle does not escape above and below the linear moving magnetic field, the following equation (6) is used. Used. F = (2V · cos θ) / (N · A) (6) FIG. 3 is a schematic diagram for explaining symbols in the above formula (5), and the moving direction of the magnetic flux is orthogonal to the slab drawing direction. An example is shown in which the direction is the same.
【0020】図4は、磁場発生装置の電流周波数を発明
者らが連続鋳造機で測定し、測定値から計算して求めた
鋳型内での磁束密度の時間平均の最大値との関係であ
る。電流周波数が増すと、鋳型枠を構成するステンレス
・鋳型銅板および溶鋼の透磁率が低下し、磁束密度が低
下する。それぞれの連続鋳造機の鋳型内の磁束密度値
は、実際設備の構造、性能の違いにより、必ずしも図4
と同じものとはならない。発明者らの実験によれば、少
なくとも1200ガウスの鋳型内の磁束密度値を使用す
ることが浸漬ノズルから吐出された溶鋼流の流速を有効
に制動するために必要であるので、図4の例では、2.
8Hz以下の電流周波数を選択してリニア磁界の移動速度
を調整する。FIG. 4 shows the relationship between the current frequency of the magnetic field generator and the maximum value of the time average of the magnetic flux density in the mold obtained by measuring the current frequency with a continuous casting machine and calculating from the measured values. . When the current frequency increases, the magnetic permeability of the stainless steel mold copper plate and the molten steel constituting the mold frame decreases, and the magnetic flux density decreases. The magnetic flux density value in the mold of each continuous casting machine is not necessarily the same as the actual equipment structure and performance.
Is not the same as According to our experiments, it is necessary to use a flux density value in the mold of at least 1200 gauss to effectively dampen the flow velocity of the molten steel flow discharged from the immersion nozzle, so the example of FIG. Then, 2.
A current frequency of 8 Hz or less is selected to adjust the moving speed of the linear magnetic field.
【0021】この(5)式あるいは(6)式で決まる値
を最低値として、また最高値を、透磁率の低下が浸漬ノ
ズルからの溶鋼吐出流に有効に作用する磁束密度の著し
い低下をきたさないような値とするような電流周波数の
範囲において磁場発生装置を運転することが、鋳造速度
が比較的速く鋳型幅の広い条件においても、鋳型内の湯
面波動をよく抑制するための、磁場発生装置の電流周波
数の設定方法であることを発見者らは見出したわけであ
る。The value determined by the formula (5) or (6) is defined as the minimum value, and the maximum value is defined as the maximum value. The decrease in the magnetic permeability causes a significant decrease in the magnetic flux density which effectively acts on the molten steel discharge flow from the immersion nozzle. Operating the magnetic field generator in a current frequency range that does not have such a value, even under conditions where the casting speed is relatively high and the mold width is wide, the magnetic field for suppressing the surface wave in the mold well. The discoverers have found that this is a method of setting the current frequency of the generator.
【0022】さらに、発明者らは、V,θの値が実際の
連続鋳造操業で直接測定できないので、必要な最低の周
波数あるいはその整数倍の周波数が直ちに求められない
ことの不便を解決する方法を見出した。Further, the present inventors have proposed a method for solving the inconvenience that the required minimum frequency or a frequency that is an integral multiple thereof cannot be immediately obtained because the values of V and θ cannot be directly measured in an actual continuous casting operation. Was found.
【0023】連続鋳造の鋳造幅をA[m]、鋳造厚みを
B[m]、鋳造速度をC[m/秒]、浸漬ノズルの吐出
孔の孔径面積をS[m2 ]として、これらの値に基づき
下記(6)式または(7)式により算出した有効制動パ
ラメ−タEを用いて、鋳造条件の広い範囲、すなわち、
鋳造幅を0.7 〜2.6 m、鋳造厚みを0.1 〜0.3 m、鋳造
速度を毎分0.6 〜5.0 m、浸漬ノズルの溶鋼吐出角度α
を下向き60°から上向き15°までとし、鋳造能力を
最大15トン/min ・ストランドまでの操業に対し、前
述の水モデルでの実験と連続鋳造機での鋳造の実験を行
った。The casting width of the continuous casting is A [m], the casting thickness is B [m], the casting speed is C [m / sec], and the diameter area of the discharge hole of the immersion nozzle is S [m 2]. ], Using the effective braking parameter E calculated by the following equation (6) or (7) based on these values, a wide range of casting conditions,
Casting width 0.7-2.6 m, casting thickness 0.1-0.3 m, casting speed 0.6-5.0 m / min, molten steel discharge angle α of immersion nozzle
From a downward angle of 60 ° to an upward angle of 15 °, and a casting capacity of up to 15 tons / min. For an operation up to a strand, an experiment using the above-described water model and an experiment using a continuous casting machine were conducted.
【0024】その結果、有効制動パラメ−タEと浸漬ノ
ズルの溶鋼吐出角度αおよび求める必要な最低の周波
数、あるいはその整数倍の周波数Fとの関係が、図13
および図14に示すように整理されるという知見を得
た。有効制動パラメ−タEは、浸漬ノズルの溶鋼吐出角
度αに応じて下記(6)式または(7)式により求ま
る。 −25°≧α≧−60°のときは、 E=A・B・C/{N・(W−D)・S} …(6) +15°≧α>−25°のときは、 E=4・B・C・(cos α)2 /(N・A・S) …(7)As a result, FIG. 13 shows the relationship between the effective braking parameter E, the molten steel discharge angle α of the immersion nozzle, and the required minimum frequency or a frequency F that is an integral multiple thereof.
And that they are arranged as shown in FIG. The effective braking parameter E is obtained by the following equation (6) or (7) according to the molten steel discharge angle α of the immersion nozzle. When −25 ° ≧ α ≧ −60 °, E = A · B · C / {N · (WD) · S} (6) When + 15 ° ≧ α> −25 °, E = 4 ・ B ・ C ・ (cos α) 2 / (N ・ A ・ S)… (7)
【0025】ただし、Aは連続鋳造の鋳造幅(m)、B
は鋳造厚み(m)、Cは鋳造速度(m/秒)、Sは浸漬
ノズルの吐出孔の孔径面積(m2 )をそれぞれ表わす。
なお、孔径面積Sは吐出孔の吐出方向軸に直交する断面
の面積に相当し、この断面形状は円、楕円、正方形、矩
形、卵形、等をなす。図13において、浸漬ノズルの溶
鋼吐出孔の角度αに応じて、図中に示す各直線は下式
(8)で表わされる。 F=jE+k …(8)Here, A is the casting width (m) of continuous casting, and B is
Is the casting thickness (m), C is the casting speed (m / sec), and S is the hole diameter area (m 2 ) Respectively.
Note that the hole diameter area S corresponds to the area of a cross section orthogonal to the discharge direction axis of the discharge hole, and the cross sectional shape is a circle, an ellipse, a square, a rectangle, an oval, or the like. In FIG. 13, each straight line shown in the figure is represented by the following equation (8) according to the angle α of the molten steel discharge hole of the immersion nozzle. F = jE + k (8)
【0026】ただし、上記(8)式において、−35°
≧α≧−60°のときはj=0.30,k=0、−25
°≧α>−35°のときはj=0.28,k=0、+1
5°≧α>−25°のときは、j=0.26,k=0と
する。However, in the above equation (8), -35 °
When ≧ α ≧ −60 °, j = 0.30, k = 0, −25
When ° ≧ α> −35 °, j = 0.28, k = 0, +1
When 5 ° ≧ α> −25 °, j = 0.26 and k = 0.
【0027】[0027]
【作用】本発明は、スラブ連続鋳造の鋳造条件の広い範
囲において、鋳型内の湯面波動をよく抑制するために、
鋳型に設置されたリニア磁界発生装置を使用した電磁制
動力を用いる方法、鋳造条件に応じた最適の周波数を明
らかにしている。さらに、鋳造条件から有効制動パラメ
−タEを計算することにより、浸漬ノズルの溶鋼吐出角
度αに応じて、最適の周波数を選択する手法を提供す
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention is intended to suppress the level wave in the mold in a wide range of slab continuous casting conditions.
The method using electromagnetic braking force using a linear magnetic field generator installed in a mold and the optimum frequency according to casting conditions are clarified. Further, by calculating the effective braking parameter E from the casting conditions, there is provided a method for selecting an optimum frequency according to the molten steel discharge angle α of the immersion nozzle.
【0028】本発明の開示した手法で選択した電流周波
数で運転するリニア磁界発生装置の移動磁束は浸漬ノズ
ルの下部の二股の溶鋼吐出孔から鋳型内に流入した溶鋼
流のどの断片にも乱れのない電磁制動力を与えるので、
溶鋼流が鋳型内の溶鋼湯面に与える湯面波動を良く抑制
する。The moving magnetic flux of the linear magnetic field generator operating at the current frequency selected in the manner disclosed by the present invention causes turbulence in any piece of molten steel flow flowing into the mold from the forked molten steel discharge hole at the bottom of the immersion nozzle. Because it gives no electromagnetic braking force
The molten steel flow effectively suppresses the surface wave of the molten steel in the mold.
【0029】鋳造中に鋳型幅を変更して鋳造を継続する
連続鋳造の操業においても、本発明を用いれば、広い鋳
造幅から狭い鋳造幅まで希望の鋳造速度を維持していな
がら、安定した鋳造と安定したスラブの品質を容易に得
ることができる。In the continuous casting operation in which the casting is continued by changing the mold width during casting, the present invention can be used to maintain a stable casting speed while maintaining a desired casting speed from a wide casting width to a narrow casting width. And stable slab quality can be easily obtained.
【0030】[0030]
【実施例】以下、添付の図面を参照してこの発明の実施
例を説明する。Embodiments of the present invention will be described below with reference to the accompanying drawings.
【0031】図5は、この発明にかかる連続鋳造方法に
使用された湯面制御装置を示す縦断面図である。連続鋳
造の鋳型10の上部にタンディッシュ2が設けられ、図
示しない取鍋から溶鋼の供給を受けるようになってい
る。タンディッシュ2は、耐火物3で内張され、外側が
鉄皮4で覆われている。スライディングノズル5がタン
ディッシュ2の底部に設けられている。スライディング
ノズル5は鉄皮4に固定された固定プレート6及びこれ
に対して摺動するスライディングプレート7を有してお
り、スライディングプレート7を摺動させることにより
ノズル5が開閉するようになっている。FIG. 5 is a longitudinal sectional view showing a molten metal level control device used in the continuous casting method according to the present invention. The tundish 2 is provided on the upper part of the continuous casting mold 10, and is supplied with molten steel from a ladle (not shown). The tundish 2 is lined with a refractory 3 and the outside is covered with a steel shell 4. A sliding nozzle 5 is provided at the bottom of the tundish 2. The sliding nozzle 5 has a fixed plate 6 fixed to the steel shell 4 and a sliding plate 7 that slides on the fixed plate 6. The nozzle 5 opens and closes by sliding the sliding plate 7. .
【0032】浸漬ノズル8が、スライディングプレート
7の下面に取り付けられている。浸漬ノズル8の下端部
は鋳型10内の溶鋼1に浸漬され、その左右1対の吐出
口9から溶鋼1が吐出するようになっている。An immersion nozzle 8 is mounted on the lower surface of the sliding plate 7. The lower end of the immersion nozzle 8 is immersed in the molten steel 1 in the mold 10, and the molten steel 1 is discharged from a pair of discharge ports 9 on the left and right sides.
【0033】湯面センサー14が、鋳型内の湯面に対面
配置され、湯面の位置及びその変化が検出されるように
なっている。湯面センサー14はスライディングノズル
開度制御装置16の監視入力側に接続されている。また
湯面センサー14とは別に、鋳型短辺近傍に湯面センサ
ー17が両短辺側に1個ずつ計2個取り付けられてい
る。この湯面センサー17は、スライディングノズル開
度制御装置16には接続されておらず、本発明に係わる
磁場発生装置の湯面波動抑制効果を観察するためのもの
である。また、鋳型の両側の長辺面銅板の背後に磁場発
生装置18が取付けられている。表1は本発明の実施を
試みた鋳造に供した溶鋼の成分である。表2は本発明の
実施を試みた鋳造の操業条件である。A melt level sensor 14 is arranged facing the melt level in the mold so that the position of the melt level and its change can be detected. The level sensor 14 is connected to the monitoring input side of the sliding nozzle opening controller 16. In addition to the molten metal level sensor 14, two molten metal level sensors 17 are mounted near the short side of the mold, one on each of the two short sides. This level sensor 17 is not connected to the sliding nozzle opening degree control device 16 and is for observing the level wave suppression effect of the magnetic field generator according to the present invention. Further, a magnetic field generator 18 is mounted behind the long side copper plate on both sides of the mold. Table 1 shows the components of the molten steel provided for casting in which the present invention was attempted. Table 2 shows the operating conditions of the casting in which the present invention was attempted.
【0034】表3は本発明の実施を試みた鋳造に於て使
用した、本発明に係わる磁場発生装置の仕様である。た
だし記号Bは鋳型の厚み方向中心で測った磁束密度の時
間平均が最大値を示す点での時間平均値における磁束密
度を示す。記号Wは鋳型の厚み方向中心で測った磁束密
度の時間平均が最大値をしめす位置を中心として、その
最大値の1/2の磁束密度を時間平均値として持つ領域
の鋳型高さ方向の幅を示す。図6は、本発明に係わる磁
場発生装置のコイルの配置図である。 (第1実施例)次に上記磁場発生装置を用いて鋳型内の
湯面を制御する方法について、表2に掲げた鋳造の操業
条件で説明する。Table 3 shows the specifications of the magnetic field generator according to the present invention used in the casting for which the present invention was attempted. However, symbol B indicates the magnetic flux density at the time average value at the point where the time average of the magnetic flux density measured at the center in the thickness direction of the mold shows the maximum value. Symbol W is the width in the mold height direction of a region having a magnetic flux density of 1/2 of the maximum value as a time average value at a position where the time average of the magnetic flux density measured at the center in the thickness direction of the mold shows the maximum value. Is shown. FIG. 6 is a layout diagram of coils of the magnetic field generator according to the present invention. (First Embodiment) Next, a method for controlling the level of the molten metal in the mold using the above-described magnetic field generator will be described with reference to the operating conditions of casting listed in Table 2.
【0035】最初に、表2に掲げた鋳造の操業条件での
Vおよびθを、1/3スケールの鋳型水モデルで測定
し、測定値を実機スケールに換算した結果、V=1.1
5m/sec,θ=0.70rad という値を得た。そこで、
浸漬ノズルから吐出された溶湯流の微小断片がリニア移
動磁場の印加領域に進入して逸脱するまでに要する有効
制動時間T[sec ]は、(3)式を用いた計算により、 T=0.56 (sec ) …(9)First, V and θ under the operating conditions of casting listed in Table 2 were measured with a 1/3 scale mold water model, and the measured values were converted to the actual scale.
The value of 5 m / sec, θ = 0.70 rad was obtained. Therefore,
The effective braking time T [sec] required for a minute fragment of the molten metal stream discharged from the immersion nozzle to enter and deviate from the application region of the linear moving magnetic field is calculated by the following equation (3). 56 (sec) ... (9)
【0036】と算出される。従って、鋳造速度が比較的
速く鋳型幅の広い条件においても、鋳型内の湯面波動を
よく抑制するためには、本発明の係わる磁場発生装置に
於て、リニア移動磁場の印加領域を磁束が周期的に通過
する時間間隔P[sec ]を、(9)式で求めたT以下に
する必要がある。その時の磁場発生装置の電流周波数F
は(5)式より、 F=0.89 (Hz) …(10) 以上にする必要がある。Is calculated. Therefore, even under the condition that the casting speed is relatively high and the mold width is wide, in order to sufficiently suppress the level wave in the mold, in the magnetic field generator according to the present invention, the magnetic flux is applied to the area where the linear moving magnetic field is applied. It is necessary that the time interval P [sec] of the periodic passage be equal to or less than T obtained by the equation (9). The current frequency F of the magnetic field generator at that time
From equation (5), F = 0.89 (Hz)... (10)
【0037】上記の結果を用いて、本発明に係わる磁場
発生装置に於て、鋳造速度が比較的速く鋳型幅の広い条
件で鋳型内の湯面波動を抑制する連鋳操業を行った結果
が図7である。Using the above results, in the magnetic field generating apparatus according to the present invention, the result of performing the continuous casting operation for suppressing the surface wave motion in the mold under the condition that the casting speed is relatively high and the mold width is wide is as follows. FIG.
【0038】図7の横軸は時刻を表している。紙面の右
から左に向かって時間が流れている。縦軸は図5の湯面
センサー17で測定した鋳型短辺近傍の湯面高さを表し
ている。図7に於ける操業条件は第2表の通りである。
図7は本発明に係わる磁場発生装置を運転しない場合の
例であり、鋳型短辺近傍の湯面は大きく波動しているこ
とがわかる。この湯面の変動を抑制するために、以下の
ように磁場発生装置を運転した。The horizontal axis in FIG. 7 represents time. Time flows from right to left on the page. The vertical axis represents the level of the molten metal near the short side of the mold measured by the molten metal level sensor 17 in FIG. The operating conditions in FIG. 7 are as shown in Table 2.
FIG. 7 shows an example in which the magnetic field generator according to the present invention is not operated, and it can be seen that the molten metal surface near the short side of the mold is largely waved. The magnetic field generator was operated as follows in order to suppress the fluctuation of the molten metal level.
【0039】また、図8は、電流周波数0.5Hz、電流
値1080Aで磁場発生装置を運転した場合である。こ
の周波数は(10)式で求めた『鋳造速度が比較的速く
鋳型幅の広い条件においても、鋳型内の湯面波動をよく
抑制するための周波数の下限F』よりも低い。実際、図
8に見られるように、鋳型短辺近傍湯面波動の抑制効果
はほとんど無く、却って鋳型短辺近傍湯面波動を助長し
ている。FIG. 8 shows a case where the magnetic field generator is operated at a current frequency of 0.5 Hz and a current value of 1080 A. This frequency is lower than the "lower limit F of the frequency for well suppressing the surface wave motion in the mold even under the condition that the casting speed is relatively high and the mold width is wide" obtained by the equation (10). Actually, as shown in FIG. 8, there is almost no effect of suppressing the mold surface wave near the short side of the mold, and rather promotes the wave wave near the mold short side.
【0040】次に、図9は、電流周波数1.0Hz、電流
値1080Aで磁場発生装置を運転した場合である。こ
の周波数は(10)式で求めた『鋳造速度が比較的速く
鋳型幅の広い条件においても、鋳型内の湯面波動をよく
抑制するための周波数の下限F』よりも高い。実際、図
9に見られるように、鋳型短辺近傍湯面波動の抑制効果
が大きいことがわかる。FIG. 9 shows a case where the magnetic field generator is operated at a current frequency of 1.0 Hz and a current value of 1080 A. This frequency is higher than "the lower limit F of the frequency for well suppressing the surface wave motion in the mold even under the condition that the casting speed is relatively high and the mold width is wide" obtained by the equation (10). In fact, as shown in FIG. 9, it can be seen that the effect of suppressing the surface wave near the short side of the mold is great.
【0041】さらに、図10は、電流周波数2.0Hz、
電流値1080Aで磁場発生装置を運転した場合であ
る。この周波数は(10)式で求めた『鋳造速度が比較
的速く鋳型幅の広い条件においても、鋳型内の湯面波動
をよく抑制するための周波数の下限F』よりも高い。実
際、図10に見られるように、鋳型短辺近傍湯面波動の
抑制効果が大きいことがわかる。FIG. 10 shows a current frequency of 2.0 Hz,
This is a case where the magnetic field generator was operated at a current value of 1080 A. This frequency is higher than "the lower limit F of the frequency for well suppressing the surface wave motion in the mold even under the condition that the casting speed is relatively high and the mold width is wide" obtained by the equation (10). In fact, as shown in FIG. 10, it can be seen that the effect of suppressing the surface wave near the short side of the mold is great.
【0042】図11は、図7乃至図10に示した結果を
まとめて、横軸に電流周波数をとり、縦軸に鋳型短辺近
傍の湯面波動量をとって表したグラフ図である。上記
(10)式で求めた鋳型内の湯面変動を抑制するための
周波数下限値(0.89Hz)より大きい周波数で湯面波
動が抑制されている。 (第2実施例)FIG. 11 is a graph summarizing the results shown in FIGS. 7 to 10, with the horizontal axis representing the current frequency and the vertical axis representing the level of the surface wave near the short side of the mold. The level wave is suppressed at a frequency higher than the lower frequency limit (0.89 Hz) for suppressing the level change in the mold obtained by the above equation (10). (Second embodiment)
【0043】図12は磁場発生装置の電流値を変化させ
た時の、鋳型短辺近傍湯面波動の抑制効果の変化を表し
たものである。図12に示す結果を得るための鋳造条件
は、表2に示す通りである。図中にて、黒丸および黒四
角は、鋳造速度が比較的遅く鋳型幅の狭い条件での例で
あり、磁場発生装置の周波数が0.5Hz,1.0Hzの両
方において、電流値に見合った鋳型短辺近傍湯面波動の
抑制効果が得られている。この鋳造条件では、V=0.
67m/sec,θ=0.43rad ,W=0.48mで、
(4)式で求められる下限の電流周波数Fは0.43H
z、有効制動パラメ−タEは1.2である。一方、図中
にて白丸および白四角は、それぞれ図8、図9と同じデ
ータを示し、鋳造速度が比較的速く鋳型幅の広い鋳造条
件で、有効制動パラメ−タEは2.6である。このう
ち、白丸は下限の電流周波数F=0.89Hzよりも低い
電流周波数=0.5Hzの場合であり、電流値を増すと却
って鋳型短辺近傍湯面波動を助長する結果となることが
わかる。これに対して、白四角は下限の電流周波数F=
0.89Hzよりも高い電流周波数=1.0Hzの場合であ
り、電流値に見合った鋳型短辺近傍湯面波動の抑制効果
が得られることがわかる。FIG. 12 shows the change in the effect of suppressing the surface wave near the short side of the mold when the current value of the magnetic field generator is changed. The casting conditions for obtaining the results shown in FIG. 12 are as shown in Table 2. In the figure, black circles and black squares are examples under conditions where the casting speed is relatively slow and the mold width is narrow, and the current value is matched when the frequency of the magnetic field generator is both 0.5 Hz and 1.0 Hz. The effect of suppressing the surface wave near the short side of the mold is obtained. Under these casting conditions, V = 0.
67m / sec, θ = 0.43rad, W = 0.48m,
The lower limit current frequency F obtained by equation (4) is 0.43H
z, the effective braking parameter E is 1.2. On the other hand, the open circles and open squares in the figures indicate the same data as in FIGS. 8 and 9, respectively. The casting speed is relatively high, the casting width is wide, and the effective braking parameter E is 2.6. . Of these, the open circles indicate the case where the current frequency is lower than 0.59 Hz, which is lower than the lower limit of the current frequency F = 0.89 Hz. It can be seen that an increase in the current value results in promoting the surface wave near the short side of the mold. . On the other hand, the white square indicates the lower limit of the current frequency F =
It is a case where the current frequency higher than 0.89 Hz is 1.0 Hz, and it can be seen that an effect of suppressing the surface wave near the short side of the mold corresponding to the current value can be obtained.
【0044】図13は、鋳造幅、鋳造厚み、鋳造速度、
浸漬ノズルの種類などの鋳造条件を広く変えて、鋳型内
の湯面波動を抑制するための電流周波数の下限値を連続
鋳造機において鋳造し、観察して求めた結果を示す。電
流周波数は縦軸に、鋳造条件は横軸の有効制動パラメ−
タEおよび図中の浸漬ノズルの吐出孔の吐出方向軸が水
平面となす角度αで表わされている。FIG. 13 shows the casting width, casting thickness, casting speed,
The lower limit value of the current frequency for suppressing the surface wave motion in the mold by widely changing the casting conditions such as the type of the immersion nozzle is shown by casting a continuous casting machine and observing the results. The current frequency is on the vertical axis and the casting conditions are the effective braking parameters on the horizontal axis.
And the discharge direction axis of the discharge hole of the immersion nozzle in FIG.
【0045】浸漬ノズルから吐出する溶鋼流がリニア移
動磁界の下側に抜け出る場合、すなわち、−25°≧α
≧−60°では、有効制動パラメ−タE=A・B・C/
{N・(W−D)・S}で表わされる。一方、浸漬ノズ
ルから吐出する溶鋼流がリニア移動磁界の上側、下側に
抜け出ない場合、すなわち、+15°≧α>−25°で
は、有効制動パラメ−タE=4・B・C・(cos α)2
/(N・A・S)で表有効制動パラメ−タEの小さな値
1〜2は鋳造幅が比較的狭いかあるいは、鋳造速度が遅
い鋳造条件を代表し、湯面波動を抑制するための電流周
波数の下限値を示す線は0.8Hz以下にあるが、鋳造幅
が広くあるいは、鋳造速度が速くなるに従って、パラメ
−タEの値が3〜4に増加するとともに、湯面波動を抑
制するための電流周波数の下限値は右上がりの直線で大
きくなり、下限の電流周波数Fが高くなることがわかっ
た。ただし、透磁率低下の許容し得る電流周波数の上限
は鋳造幅や鋳造速度に関係なく一定である。When the molten steel flow discharged from the immersion nozzle escapes below the linear moving magnetic field, that is, −25 ° ≧ α
For ≧ −60 °, the effective braking parameter E = A ・ B ・ C /
It is represented by {N · (WD) · S}. On the other hand, when the molten steel flow discharged from the immersion nozzle does not escape above and below the linear moving magnetic field, that is, when + 15 ° ≧ α> −25 °, the effective braking parameter E = 4 · BC · (cos α) 2
A small value of 1 to 2 of the effective braking parameter E in /(N.A.S) represents a casting condition in which the casting width is relatively narrow or the casting speed is slow, and is used to suppress the surface wave of the molten metal. The line indicating the lower limit of the current frequency is below 0.8 Hz, but as the casting width becomes wider or the casting speed becomes faster, the value of parameter E increases to 3 or 4 and suppresses the surface wave. It has been found that the lower limit of the current frequency for performing the operation is increased by a straight line rising to the right, and the lower limit of the current frequency F is increased. However, the upper limit of the allowable current frequency of the decrease in the magnetic permeability is constant regardless of the casting width and the casting speed.
【0046】図13に図12に示された鋳造例を併せて
記入した。図13中の黒丸、黒四角、白丸、白四角は、
図12の黒丸、黒四角、白丸、白四角とそれぞれ同じ意
味である。白丸で表わされる鋳造幅1550mm、鋳造速
度2.0m/分の例は浸漬ノズルの吐出孔の角度αが4
5度で示される下限の電流周波数の直線より下側に位置
するので、浸漬ノズルから吐出された溶鋼流の断片に電
磁制動力を受けた部分と、これを受けない部分の偏りが
生じたため、鋳型内の湯面波動量が大きくなる結果であ
った。黒四角で表わされる鋳造幅950mm、鋳造速度
1.6m/分の例は下限の電流周波数値は0.43Hzで
あるが、2倍の1.0Hzの電流周波数を使用している。FIG. 13 also shows the casting example shown in FIG. Black circles, black squares, white circles, and white squares in FIG.
Black circles, black squares, white circles, and white squares in FIG. 12 have the same meanings. In the case of a casting width of 1550 mm represented by a white circle and a casting speed of 2.0 m / min, the angle α of the discharge hole of the immersion nozzle is 4
Because it is located below the lower limit of the current frequency straight line indicated by 5 degrees, the part of the molten steel flow discharged from the immersion nozzle receives the electromagnetic braking force and the part that does not receive the electromagnetic braking force is biased. The result was that the wave amount of the molten metal in the mold became large. In the example of a casting width of 950 mm represented by a black square and a casting speed of 1.6 m / min, the lower limit of the current frequency value is 0.43 Hz, but the current frequency of 1.0 Hz which is twice is used.
【0047】浸漬ノズルから吐出する溶鋼流が、リニア
移動磁界の上側、下側に抜け出ない場合は−25°≧α
≧−60°の鋳造例を図13に併せて記入した。図中の
二重丸は、鋳造幅2100mm、鋳造厚み250mm 、鋳造速度毎
分2mを浸漬ノズルの溶鋼吐出角度αが下向き15°で
鋳造した例で、有効制動パラメ−タEは1.1 の値、電流
周波数の下限値は0.40Hzである。この基準の電流周波数
でも湯面波動の抑制効果はあったが、周波数をさらに増
加しても磁束密度の二乗と周波数の積の値の増加が期待
できる範囲であるので、3倍の周波数の1.2Hz を用いて
鋳造したところ、湯面波動はさらに良く抑制された。同
じく図中の白三角は、鋳造幅700mm 、鋳造厚み250mm 、
鋳造速度毎分3mと毎分1.5mを浸漬ノズルの溶鋼吐
出角度αが下向き5°で鋳造した例で、有効制動パラメ
−タEは5.0 と2.5 の値で、電流周波数の下限値は1.30
Hzと0.65Hzである。鋳造速度毎分3mでは2倍の周波数
2.60Hz、鋳造速度毎分1.5mでは0.65Hzで湯面波動を
良く抑制できた。If the molten steel flow discharged from the immersion nozzle does not escape above and below the linear moving magnetic field, -25 ° ≧ α
An example of casting of ≧ −60 ° is also shown in FIG. The double circle in the figure is an example in which a casting width of 2100 mm, a casting thickness of 250 mm, and a casting speed of 2 m / min were cast at a molten steel discharge angle α of 15 ° downward, and the effective braking parameter E was 1.1. The lower limit of the current frequency is 0.40 Hz. Even at this reference current frequency, there was an effect of suppressing the surface wave motion, but even if the frequency was further increased, the value of the product of the square of the magnetic flux density and the frequency could be expected to increase. When casting with Hz, the surface wave was suppressed even better. Similarly, the white triangle in the figure indicates a casting width of 700 mm, a casting thickness of 250 mm,
In this example, the casting speed was 3 m / min and 1.5 m / min, and the molten steel discharge angle α of the immersion nozzle was cast downward at 5 °. The effective braking parameter E was 5.0 and 2.5, and the lower limit of the current frequency was 1.30.
Hz and 0.65 Hz. Double frequency at 3m / min casting speed
At 2.60 Hz and a casting speed of 1.5 m / min, the surface wave was successfully suppressed at 0.65 Hz.
【0048】図14にはこの関係を取り上げて、下限の
電流周波数の直線、その整数倍の電流周波数を表わす直
線と共に示した。黒四角の例では1.0Hzの電流周波数
を使用しているので、浸漬ノズルから吐出された溶鋼流
の断片はリニア移動磁場の印加領域を通過中、どの断片
も等しく2回電磁制動力を受けるので、鋳型内の湯面波
動量は満足すべき程度に抑制された。このように、周波
数の選択は下限の電流周波数に限らず、下限の電流周波
数以上の周波数、下限の電流周波数の2倍、3倍の周波
数でも、透磁率低下の許容し得る電流周波数の上限以下
であれば、鋳型内の湯面波動の抑止の効果を得ることが
できる。FIG. 14 shows this relationship together with a straight line representing the lower limit current frequency and a straight line representing an integral multiple of the current frequency. In the example of the black square, the current frequency of 1.0 Hz is used, so that the fragments of the molten steel stream discharged from the immersion nozzle receive the electromagnetic braking force twice equally while passing through the region where the linear moving magnetic field is applied. Therefore, the amount of surface wave motion in the mold was suppressed to a satisfactory level. As described above, the selection of the frequency is not limited to the lower limit current frequency. Even at a frequency higher than the lower limit current frequency, and at a frequency twice or three times the lower limit current frequency, it is equal to or lower than the upper limit of the current frequency at which the magnetic permeability can be reduced. Then, the effect of suppressing the surface wave in the mold can be obtained.
【0049】[0049]
【表1】 [Table 1]
【0050】[0050]
【表2】 [Table 2]
【0051】[0051]
【表3】 [Table 3]
【0052】[0052]
【発明の効果】以上のように、この発明における電流周
波数の範囲内で、磁場発生装置を運転することにより、
鋳造速度が比較的速く鋳型幅の広い条件においても、鋳
型内の湯面波動をよく抑制することができる。そして、
鋳型内の湯面の波動によって生じるモールドパウダーの
溶鋼中への巻き込みを防止する。また、鋳型内の湯面の
波動と共に生じる鋳型内溶鋼の激しい擾乱を防止するの
で、巻き込まれたモールドパウダーや、精練工程で生じ
た溶鋼中の非金属介在物が鋳型内で湯面に向かって浮上
することを妨げることが無く、結果として鋳型内の溶鋼
中からこれらの介在物が取り除かれることを容易にす
る。As described above, by operating the magnetic field generator within the range of the current frequency in the present invention,
Even under conditions where the casting speed is relatively high and the mold width is wide, it is possible to sufficiently suppress the surface wave motion in the mold. And
This prevents the mold powder from being caught in the molten steel caused by the wave of the molten metal in the mold. Also, since the molten steel in the mold is prevented from being violently disturbed due to the wave of the molten metal in the mold, entrained mold powder and nonmetallic inclusions in the molten steel generated in the scouring process are directed toward the molten metal in the mold. It does not prevent it from ascending, thereby facilitating removal of these inclusions from the molten steel in the mold.
【図1】磁場発生装置の電流周波数が0.5Hzの条件
で、その電流値を変化させたときの鋳型内短辺近傍湯面
の波動の大きさを表わすグラフ図である。FIG. 1 is a graph showing the magnitude of wave motion of a molten metal near a short side in a mold when the current value of a magnetic field generator is 0.5 Hz and the current value is changed.
【図2】湯面波動振幅量の定義を説明するためのグラフ
図である。FIG. 2 is a graph for explaining the definition of the level wave amplitude.
【図3】(4)式中の記号を説明するために、鋳型の一
部を長辺面側から見た模式図である。FIG. 3 is a schematic view of a part of a mold as viewed from a long side surface for explaining symbols in the formula (4).
【図4】磁場発生装置の電流周波数と計算によって求め
た鋳型内での磁束密度の時間平均の最大値との関係を示
すグラフ図である。FIG. 4 is a graph showing the relationship between the current frequency of the magnetic field generator and the maximum value of the time average of the magnetic flux density in the mold obtained by calculation.
【図5】この発明にかかる連続鋳造方法に使用された湯
面制御装置を示す縦断面図である。FIG. 5 is a longitudinal sectional view showing a molten metal level control device used in the continuous casting method according to the present invention.
【図6】本発明の実施例に係る磁場発生装置のコイルを
鋳型上面側から見て示す配線図である。FIG. 6 is a wiring diagram showing a coil of the magnetic field generator according to the embodiment of the present invention as viewed from the upper surface of the mold.
【図7】本発明の実施例に係る磁場発生装置に於て、鋳
造速度が比較的速く鋳型幅の広い条件で鋳型内短辺近傍
の湯面波動を抑制する連鋳操業を行った結果をそれぞれ
示すグラフ図である。FIG. 7 shows a result of performing a continuous casting operation in which a casting speed is relatively high and a mold width is wide and a mold surface wave near a short side in a mold is suppressed under a condition of a wide mold width in the magnetic field generator according to the embodiment of the present invention. It is a graph which shows each.
【図8】本発明の実施例に係る磁場発生装置に於て、鋳
造速度が比較的速く鋳型幅の広い条件で鋳型内短辺近傍
の湯面波動を抑制する連鋳操業を行った結果をそれぞれ
示すグラフ図である。FIG. 8 shows a result of performing a continuous casting operation in which a casting speed is relatively high and a mold width is wide near a short side in a mold, under a condition of a relatively high casting speed and a wide mold width in the magnetic field generator according to the embodiment of the present invention. It is a graph which shows each.
【図9】本発明の実施例に係る磁場発生装置に於て、鋳
造速度が比較的速く鋳型幅の広い条件で鋳型内短辺近傍
の湯面波動を抑制する連鋳操業を行った結果をそれぞれ
示すグラフ図である。FIG. 9 shows a result of performing a continuous casting operation for suppressing the surface wave motion near the short side in the mold under the condition that the casting speed is relatively high and the mold width is wide in the magnetic field generator according to the embodiment of the present invention. It is a graph which shows each.
【図10】本発明の実施例に係る磁場発生装置に於て、
鋳造速度が比較的速く鋳型幅の広い条件で鋳型内短辺近
傍の湯面波動を抑制する連鋳操業を行った結果をそれぞ
れ示すグラフ図である。FIG. 10 shows a magnetic field generator according to an embodiment of the present invention.
It is a graph figure which shows the result of having performed the continuous casting operation which suppresses the surface wave motion near the short side in a mold under the conditions where the casting speed is relatively high and the mold width is wide.
【図11】図6の結果を横軸に電流周波数をとり、縦軸
に鋳型短辺近傍の湯面波動量をとって表わすグラフ図で
ある。11 is a graph showing the results of FIG. 6 with the current frequency plotted on the horizontal axis and the level of the surface wave near the short side of the mold on the vertical axis.
【図12】磁場発生装置の電流値を変化させた時の、鋳
型短辺近傍湯面波動の抑制効果の変化を表わすグラフ図
である。FIG. 12 is a graph showing the change in the effect of suppressing the surface wave near the short side of the mold when the current value of the magnetic field generator is changed.
【図13】鋳型内の湯面波動を抑制するための電流周波
数の下限値、鋳造条件から算出した有効制動パラメ−タ
Eおよび浸漬ノズルの吐出孔の角度αの関係を示す実験
結果を示すグラフ図。FIG. 13 is a graph showing an experimental result showing a relationship between a lower limit value of a current frequency for suppressing a surface wave motion in a mold, an effective braking parameter E calculated from casting conditions, and an angle α of a discharge hole of a submerged nozzle. FIG.
【図14】鋳型内の湯面波動を抑制するための電流周波
数の下限値を示す直線、その整数倍の電流周波数を表わ
す直線と実験例を示すグラフ図である。FIG. 14 is a graph showing a straight line indicating a lower limit of the current frequency for suppressing the surface wave motion in the mold, a straight line indicating a current frequency that is an integral multiple of the straight line, and a graph showing an experimental example.
2 タンディッシュ 3 耐火物 4 鉄皮 5 スライディングノズル、 6 固定プレート 7 スライディングプレート 8 浸漬ノズル 9 吐出口 10 鋳型 14 湯面センサー 16 制御装置 17 湯面センサー 18 磁場発生装置 20 鋳型上端 21 湯面 22 鋳型下端 23 W:リニア移動磁場の印加領域の鋳型高さ方向
の幅 24 磁場発生装置のコイルの高さ方向の幅 25 D:浸漬ノズル吐出口上端がリニア移動磁場の
印加領域にある場合の、浸漬ノズル吐出口上端からリニ
ア移動磁場の印加領域の上端までの距離 26 浸漬ノズルの吐出孔の吐出方向軸が水平面とな
す角度α[度] 27 V:浸漬ノズルから吐出する溶湯流がリニア移
動磁場の印加領域(ここで印加領域とは、鋳型の厚み方
向中心で測った磁束密度の時間平均が最大値をしめす位
置を中心として、その最大値の1/2の磁束密度を時間
平均値として持つ領域をいう)を通過する際の平均流速 28 磁場発生装置のコイル 29 浸漬ノズルの吐出口 30 鋳型短辺近傍湯面波動の短周期波 31 鋳型短辺近傍湯面波動の長周期波 32 鋳型短辺近傍湯面波動振幅量 33 リニア移動磁場の印加領域の上端 34 リニア移動磁場の印加領域の下端 35 浸漬ノズルの吐出孔の孔径面積S:、吐出孔の
吐出方向軸に垂直な断面の形状、すなわち、円、楕円、
正方形、矩形、卵形、などの面積である。2 Tundish 3 Refractory 4 Steel 5 Sliding nozzle, 6 Fixing plate 7 Sliding plate 8 Immersion nozzle 9 Discharge port 10 Mold 14 Mold surface sensor 16 Controller 17 Mold surface sensor 18 Magnetic field generator 20 Mold upper end 21 Mold surface 22 Mold Lower end 23 W: width in the height direction of the mold of the application region of the linear moving magnetic field 24 width in the height direction of the coil of the magnetic field generator 25 D: immersion when the upper end of the immersion nozzle discharge port is in the application region of the linear moving magnetic field The distance from the upper end of the nozzle discharge port to the upper end of the application region of the linear moving magnetic field. 26 The angle α [degree] between the discharge direction axis of the discharge hole of the immersion nozzle and the horizontal plane. 27 V: The flow of the molten metal discharged from the immersion nozzle is the linear moving magnetic field. Application area (here, the application area is the position where the time average of the magnetic flux density measured at the center in the thickness direction of the mold shows the maximum value. The average flow velocity when passing through a region having a magnetic flux density of 1/2 of its maximum value as the time average value with the center as the center) 28 The coil of the magnetic field generator 29 The discharge port of the immersion nozzle 30 The mold near the short side of the mold Short-period wave of the wave 31 Long-period wave of the mold wave near the short side of the mold 32 Amplitude of the mold wave near the short side of the mold 33 Upper end of the application area of the linear moving magnetic field 34 Lower end of the application area of the linear moving magnetic field 35 Discharge of the immersion nozzle The hole diameter area S of the hole: the shape of the cross section perpendicular to the discharge direction axis of the discharge hole, that is, a circle, an ellipse,
The area is a square, rectangle, oval, etc.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 沖本 一生 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 森 孝志 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 平3−57542(JP,A) 特開 平2−89544(JP,A) 特開 昭57−199549(JP,A) 特開 昭59−104258(JP,A) ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Kazuo Okimoto 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Takashi Mori 1-1-2, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan (56) References JP-A-3-57542 (JP, A) JP-A-2-89544 (JP, A) JP-A-57-199549 (JP, A) JP-A-59-104258 (JP, A A)
Claims (4)
動磁場型磁場発生装置を用い、 磁束の分布がモールドの中心の浸漬ノズル吐出孔に対称
で、 磁場の移動方向が、鋳型の2つの短辺からモールド中心
の浸漬ノズルに向かう方向で、リニア移動磁場の印加領域を電流周波数Fで移動する磁
場が周期的に通過する時間間隔Pの上限 を、リニア移動磁場型磁場発生装置の発生する移動磁場が、 浸漬ノズルから吐出された溶鋼流のどの断片もリニア磁
界の印加領域を通過中に、少なくとも1回、移動磁場と
交差させるに必要な最低の電流周波数となる、 リニア移動磁場の印加領域を磁場が周期的に通過する時
間間隔以下とし、 リニア移動磁場の印加領域を電流周波数Fで移動する磁
場が周期的に通過する時間間隔Pの下限を、 リニア移動磁場型磁場発生装置の発生する移動磁場が、 その装置を構成するモールド水冷凾部材とモールド銅板
と溶鋼とによる減衰後の作用域において、 溶鋼に1200ガウスの磁束密度の磁場が付与される電
流周波数となる、 リニア移動磁場の印加領域を磁場が周期的に通過する時
間間隔以上 とする、 ことを特徴とする鋼のスラブ用鋳片の製造方法。1. A linear transfer for decelerating and adjusting the flow of molten steel in a mold.
Dynamic magnetic field typeMagnetic field generationMagnetic flux distribution is symmetrical with the immersion nozzle discharge hole in the center of the mold
And the moving direction of the magnetic field is two shortSideFrom mold center
In the direction toward the immersion nozzle ofA magnet that moves at the current frequency F in the application region of the linear moving magnetic field
The upper limit of the time interval P during which the field periodically passes ToThe moving magnetic field generated by the linear moving magnetic field type magnetic field generator is Every piece of molten steel stream discharged from the immersion nozzle
Moving magnetic field at least once during passage through the field application area
The lowest current frequency required to cross, When the magnetic field periodically passes through the application area of the linear moving magnetic field
Less than the interval, A magnet that moves at the current frequency F in the application region of the linear moving magnetic field
The lower limit of the time interval P during which the field passes periodically, The moving magnetic field generated by the linear moving magnetic field type magnetic field generator is Molded water cooling box members and molded copper plates that make up the device
In the working area after damping due toAn electric field to which a magnetic field having a magnetic flux density of 1200 Gauss is applied.
Current frequency, When the magnetic field periodically passes through the application area of the linear moving magnetic field
More than the interval A method for producing a steel slab cast slab.
Fで移動する磁場が周期的に通過する時間間隔Pの上限
の決定法において、リニア移動磁場の電流周波数Fを下
記(イ)式または(ロ)式で求められる値以上とし、か
つ、電流値を所定の範囲でそれぞれ調節することにより
鋳型内で浸漬ノズルの溶鋼の吐出流に前記電磁制動力を
生じさせることを特徴とする請求項1記載の鋼のスラブ
用鋳片の製造方法。浸漬ノズルから吐出される溶鋼流が
リニア移動磁界の下側に抜け出る場合は、下記(イ)式
により電流周波数Fを求める、 F=(V・sin θ)/{N・(W−D)} …(イ) 浸漬ノズルから吐出される溶鋼流がリニア移動磁界の上
側または下側に抜け出ない場合は、下記(ロ)式により
電流周波数Fを求める、 F=(2V・cos θ)/(N・A) …(ロ) ここで、上記(イ)式および(ロ)式において、 Fは、リニア移動磁場を発生させる電流周波数[Hz]、 Vは、浸漬ノズルから吐出する溶湯流がリニア移動磁場
の印加領域を通過する際の平均流速[m/秒]、 θは、浸漬ノズルから吐出する溶湯流がリニア移動磁場
の印加領域を通過する際に、水平線となす角度[rad
]、 Wは、リニア移動磁場の印加領域の鋳型高さ方向の幅
[m]、 Dは、浸漬ノズル吐出口上端がリニア移動磁場の印加領
域にある場合は、浸漬ノズル吐出口上端からリニア移動
磁場の印加領域の上端までの距離[m]に相当し、それ
以外はD=0[m]、 Nは、磁場発生装置の極数、 Aは鋳造幅、 をそれぞれ表わす。2. An application region of a linear moving magnetic field is set to a current frequency.
In the method of determining the upper limit of the time interval P during which the magnetic field moving at F periodically passes, the current frequency F of the linear moving magnetic field is set to be equal to or more than the value obtained by the following equation (a) or (b); 2. The steel slab casting according to claim 1, wherein the electromagnetic braking force is generated in the discharge flow of the molten steel from the immersion nozzle in the mold by adjusting a current value within a predetermined range. Method. When the molten steel flow discharged from the immersion nozzle escapes below the linear moving magnetic field, the current frequency F is obtained by the following equation (a). F = (V · sin θ) / {N · (W−D)} … (A) If the molten steel flow discharged from the immersion nozzle does not escape above or below the linear moving magnetic field, use the following equation (b).
The current frequency F is calculated as follows: F = (2V · cos θ) / (NA ·) (B) Here, in the above equations (A) and (B), F is the current frequency for generating a linear moving magnetic field. [Hz], V is the average flow rate [m / sec] when the melt flow discharged from the immersion nozzle passes through the application area of the linear moving magnetic field, θ is the application of the linear moving magnetic field when the melt flow discharged from the immersion nozzle is applied When passing through the area, the angle [rad
], W is the width [m] of the application area of the linear moving magnetic field in the height direction of the mold, D is linear movement from the upper end of the immersion nozzle discharge port when the upper end of the immersion nozzle discharge port is in the linear moving magnetic field application area. D = 0 [m], N represents the number of poles of the magnetic field generator, and A represents the casting width.
Fで移動する磁場が周期的に通過する時間間隔Pの電流
周波数の下限を、下記(ハ)式または(ニ)式で求めら
れる有効制動パラメータEと、浸漬ノズルの吐出孔の吐
出方向軸が水平面となす角度αと、リニア移動磁場の電
流周波数Fと、が下記(ホ)式の関係にあり、この
(ホ)式の関係から求められる電流周波数Fの値以上の
値とし、かつ、電流値を所定の範囲でそれぞれ調節する
ことにより鋳型内で浸漬ノズルの溶鋼の吐出流に前記電
磁制動力を生じさせることを特徴とする請求項1記載の
鋼のスラブ用鋳片の製造方法。−25°≧α≧−60°
のときは、下記(ハ)式により有効制動パラメータEを
求める、 E=A・B・C/{N・(W−D)・S} …(ハ) +15°≧α>−25°のときは、下記(ニ)式により
有効制動パラメータEを求める、 E=4・A・B・C・(cos α)2 /(N・A・S)…(ニ) ここで、上記(ハ)式および(ニ)式において、 Aは連続鋳造の鋳造幅(m)、Bは鋳造厚み(m)、C
は鋳造速度(m/秒)、 Sは浸漬ノズルの吐出孔の孔径面積(m2 )をそれぞれ
表わす、 なお、孔径面積Sは吐出孔の吐出方向軸に直交する断面
の面積に相当し、この断面形状は円、楕円、正方形、矩
形、卵形、等をなす、電流 周波数Fは下記(ホ)式により求める、 F=jE+k …(ホ) ここで、上記(ホ)式において、 −35°≧α≧−60°のときは、j=0.30,k=0 −25°≧α>−35°のときは、j=0.28,k=0 +15°≧α>−25°のときは、j=0.26,k=0 とする。3. The application region of the linear moving magnetic field is set to a current frequency.
The lower limit of the current frequency at the time interval P at which the magnetic field moving at F periodically passes is determined by the effective braking parameter E obtained by the following equation (c) or (d) and the discharge hole of the immersion nozzle. the angle α of the discharge axis makes with the horizontal plane, electric linear moving magnetic field
The current frequency F and the current frequency F are in a relationship represented by the following equation (e). The current frequency F is set to a value equal to or higher than the value of the current frequency F obtained from the equation (e), and the current value is adjusted within a predetermined range. The method for producing a steel slab slab according to claim 1, wherein the electromagnetic braking force is generated in a discharge flow of the molten steel from the immersion nozzle in the mold. -25 ° ≧ α ≧ −60 °
In the case of, the effective braking parameter E is obtained by the following equation (c). E = A.B.C / {N. (WD) .S} (c) + 15 ° ≧ α> −25 ° The effective braking parameter E is obtained by the following equation (D). E = 4 · A · B · C · (cos α) 2 / (N · A · S) (D) where the above equation (C) In formulas (A) and (D), A is the casting width (m) of continuous casting, B is the casting thickness (m), C
Represents the casting speed (m / sec), and S represents the hole diameter area (m 2 ) of the discharge hole of the immersion nozzle. The hole diameter area S corresponds to the area of the cross section orthogonal to the discharge direction axis of the discharge hole. The cross-sectional shape is a circle, an ellipse, a square, a rectangle, an oval, and the like. The current frequency F is obtained by the following equation (E). F = jE + k (E) Here, in the above equation (E), −35 ° When ≧ α ≧ −60 °, j = 0.30, k = 0 −25 ° ≧ α> −35 °, j = 0.28, k = 0 + 15 ° ≧ α> −25 ° At this time, j = 0.26, k = 0.
Fで移動する磁場が周期的に通過する時間間隔Pの電流
周波数の下限を、下記(ハ)式または(ニ)式で求めら
れる有効制動パラメータEと、浸漬ノズルの吐出孔の吐
出方向軸が水平面となす角度αと、リニア移動磁場の電
流周波数Fと、が下記(ホ)式の関係にあり、この
(ホ)式の関係から求められる最低の電流周波数Fの値
またはその整数倍の値とし、かつ、電流値を所定の範囲
でそれぞれ調節することにより鋳型内で浸漬ノズルの溶
鋼の吐出流に前記電磁制動力を生じさせることを特徴と
する請求項1記載の鋼のスラブ用鋳片の製造方法。−2
5°≧α≧−60°のときは、下記(ハ)式により有効
制動パラメータEを求める、 E=A・B・C/{N・(W−D)・S} …(ハ) +15°≧α>−25°のときは、下記(ニ)式により
有効制動パラメータEを求める、 E=4・A・B・C・(cos α)2 /(N・A・S)…(ニ) ここで、上記(ハ)式および(ニ)式において、Aは連
続鋳造の鋳造幅(m)、Bは鋳造厚み(m)、Cは鋳造
速度(m/秒)、Sは浸漬ノズルの吐出孔の孔径面積
(m2 )をそれぞれ表わす、 なお、孔径面積Sは吐出孔の吐出方向軸に直交する断面
の面積に相当し、この断面形状は円、楕円、正方形、矩
形、卵形、等をなす、電流 周波数Fは下記(ホ)式により求める、 F=jE+k …(ホ) ここで、上記(ホ)式において、 −35°≧α≧−60°のときは、j=0.30,k=0 −25°≧α>−35°のときは、j=0.28,k=0 +15°≧α>−25°のときは、j=0.26,k=0 とする。4. An application region of a linear moving magnetic field is defined by a current frequency.
The lower limit of the current frequency at the time interval P during which the magnetic field moving at F periodically passes is determined by the effective braking parameter E obtained by the following equation (c) or (d) and the discharge hole of the discharge hole of the immersion nozzle. the angle α of the discharge axis makes with the horizontal plane, electric linear moving magnetic field
And the flow frequency F is in the relationship of the following formula (e), the value of the lowest current frequency F obtained from the relationship of the formula (e) or a value of an integral multiple thereof is set, and the current value is within a predetermined range. The method for producing a steel slab slab according to claim 1, wherein the electromagnetic braking force is generated in the discharge flow of the molten steel from the immersion nozzle in the mold by adjusting each of them. -2
When 5 ° ≧ α ≧ −60 °, the effective braking parameter E is obtained by the following equation (C). E = A · B · C / {N · (W−D) · S} (C) + 15 ° When ≧ α> −25 °, the effective braking parameter E is obtained by the following equation (D). E = 4 · A · B · C · (cos α) 2 / (N · A · S) (D) Here, in the above formulas (c) and (d), A is the casting width (m) of continuous casting, B is the casting thickness (m), C is the casting speed (m / sec), and S is the discharge of the immersion nozzle. represents pore diameter hole area of (m 2) respectively, should be noted that pore size area S corresponds to the area of the cross section perpendicular to the discharge axis of the discharge hole, the cross sectional shape circular, elliptical, square, rectangular, oval, etc. The current frequency F is obtained by the following equation (E). F = jE + k (E) Here, in the above equation (E), -35 ° ≧ α ≧ −60 ° When j = 0.30, k = 0−25 ° ≧ α> −35 °, j = 0.28, and k = 0 + 15 ° ≧ α> −25 °, j = 0. 26, k = 0.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP40686290 | 1990-12-26 | ||
JP2-406862 | 1990-12-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0523804A JPH0523804A (en) | 1993-02-02 |
JP2611594B2 true JP2611594B2 (en) | 1997-05-21 |
Family
ID=18516481
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34539591A Expired - Fee Related JP2611594B2 (en) | 1990-12-26 | 1991-12-26 | Method of manufacturing slab for steel slab |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2611594B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5746268A (en) * | 1994-03-07 | 1998-05-05 | Nippon Steel Corporation | Continuous casting method and apparatus |
EP0832704A1 (en) | 1996-09-19 | 1998-04-01 | Hoogovens Staal B.V. | Continuous casting machine |
JP4539251B2 (en) * | 2004-09-14 | 2010-09-08 | Jfeスチール株式会社 | Steel continuous casting method |
JP4910357B2 (en) * | 2005-03-11 | 2012-04-04 | Jfeスチール株式会社 | Steel continuous casting method |
JP4591156B2 (en) * | 2005-03-31 | 2010-12-01 | Jfeスチール株式会社 | Steel continuous casting method |
JP5387507B2 (en) * | 2010-06-01 | 2014-01-15 | 新日鐵住金株式会社 | Continuous casting method, continuous casting control device and program |
-
1991
- 1991-12-26 JP JP34539591A patent/JP2611594B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH0523804A (en) | 1993-02-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4401777B2 (en) | Apparatus and method for continuous casting | |
KR20090033212A (en) | Method and apparatus for controlling the flow of molten steel in a mould | |
KR100641618B1 (en) | Method and device for control of metal flow during continuous casting using electromagnetic fields | |
KR20050089013A (en) | Control system, computer program product, device and method | |
US5307863A (en) | Method for continuous casting of slab | |
JP2611594B2 (en) | Method of manufacturing slab for steel slab | |
JP3188273B2 (en) | Control method of flow in mold by DC magnetic field | |
JP3262280B2 (en) | Continuous casting machine | |
JP4591156B2 (en) | Steel continuous casting method | |
JP3240927B2 (en) | Method for controlling molten steel flow in continuous casting mold | |
JPS63104758A (en) | Control method for molten surface for continuous casting | |
JP5369808B2 (en) | Continuous casting apparatus and continuous casting method | |
JP3125661B2 (en) | Steel continuous casting method | |
EP0679115A1 (en) | A.c. magnetic stirring modifier for continuous casting of metals. | |
JP3257546B2 (en) | Steel continuous casting method | |
JP4285345B2 (en) | Continuous casting method | |
JPH09168847A (en) | Method for continuously casting steel | |
KR960003711B1 (en) | Method for continuous casting of slab | |
Yang et al. | Development of the Third-Generation FC Mold by Numerical and Water Model Simulations | |
JP4910357B2 (en) | Steel continuous casting method | |
JPH06606A (en) | Controller for flow of molten steel in continuous casting mold | |
JPH0417963A (en) | Method for continuously casting steel using direct current magnetic field | |
JPH08229649A (en) | Continuous casting apparatus and method thereof | |
JPH10193056A (en) | Method for removing inclusion in continuous casting tundish | |
JP2005305536A (en) | Continuous-casting method for molten metal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 11 Free format text: PAYMENT UNTIL: 20080227 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 12 Free format text: PAYMENT UNTIL: 20090227 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 13 Free format text: PAYMENT UNTIL: 20100227 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Year of fee payment: 13 Free format text: PAYMENT UNTIL: 20100227 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110227 Year of fee payment: 14 |
|
LAPS | Cancellation because of no payment of annual fees |