JP2608629B2 - Temperature compensation device - Google Patents
Temperature compensation deviceInfo
- Publication number
- JP2608629B2 JP2608629B2 JP2273198A JP27319890A JP2608629B2 JP 2608629 B2 JP2608629 B2 JP 2608629B2 JP 2273198 A JP2273198 A JP 2273198A JP 27319890 A JP27319890 A JP 27319890A JP 2608629 B2 JP2608629 B2 JP 2608629B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- measuring instrument
- measurement result
- change
- container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Details Of Measuring And Other Instruments (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、計測結果が温度の影響を受ける計測器等の
温度補正を行なう装置に関し、特に計測器等が作動を開
始してから、計測可能な状態に至るまでの時間を可能な
限り短くする必要がある、例えば加速度計等を有する慣
性検出器を使用する場合の温度補正装置に関する。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a device for correcting the temperature of a measuring instrument or the like whose measurement result is affected by temperature, and in particular, to measuring after the measuring instrument or the like starts operating. The present invention relates to a temperature compensating device when an inertial detector having an accelerometer or the like is used, for which the time required to reach a possible state needs to be as short as possible.
計測装置は、一般的に温度の影響を受け易いものであ
り例えば電子回路等を有する計測器において、半導体、
抵抗器等の素子は温度の変動によりその特性が変化する
ため、計測した精度に温度が大きく影響をおよぼす。ま
た例えば慣性検出器では、電子回路以上に各種センサー
の機構部分が温度の影響を受けて測定精度の低下をまね
く。更に計測器は、一般的にそれ自体が発熱するため、
通常は計測器とその環境との熱的条件を安定させた状態
で、計測を行なっておりこのための対策が従来から種々
行なわれている。その一つは、計測器を恒温槽内に設置
し、周囲の温度に影響されず、一定温度下において計測
をおこなう方法である。この方法は、恒温槽内の温度が
常に一定に保たれるため、計測器は作動開始後ある程度
の時間が経過すると、恒温槽に対し熱平衡状態となる。
そのため計測器は安定し、高精度の計測結果が得られ
る。しかし恒温槽は、加熱器、冷却器を必要とし、複雑
で大規模になるため航空機等の移動物体に用いるには問
題が多い。しかも計測器の作動開始後、ある程度の時間
が経過して熱平衡状態になるまでは、充分な精度で計測
を行なうことはできない。The measuring device is generally susceptible to the influence of temperature, for example, in a measuring instrument having an electronic circuit or the like, a semiconductor,
Since the characteristics of elements such as resistors change due to temperature fluctuations, the temperature greatly affects the measured accuracy. In addition, for example, in an inertial detector, the mechanical parts of various sensors are affected by the temperature more than the electronic circuit, and the measurement accuracy is reduced. Furthermore, measuring instruments generally generate heat themselves,
Usually, measurement is performed in a state where the thermal conditions of the measuring instrument and its environment are stabilized, and various measures have been taken for this purpose. One of them is a method in which a measuring instrument is installed in a constant temperature bath and measurement is performed at a constant temperature without being affected by the surrounding temperature. In this method, since the temperature in the thermostat is always kept constant, the measuring instrument is in thermal equilibrium with the thermostat after a certain period of time has elapsed after the start of operation.
Therefore, the measuring instrument is stable, and a highly accurate measurement result can be obtained. However, the thermostat requires a heater and a cooler, and is complicated and large-scale, so that there are many problems in using it for a moving object such as an aircraft. Moreover, the measurement cannot be performed with sufficient accuracy until the thermal equilibrium state is reached after a certain period of time has elapsed after the operation of the measuring instrument has started.
別の対策として、計測器の温度を検出し、この検出し
た温度で計測結果を補正する方法がある。もらろん、あ
らかじめ温度の計測結果に与える影響を調べておく。こ
の方法は簡便であり、電子計測器では、良く利用される
方法である。しかしこの方法も、計測器の作動開始後一
定時間を経過し、周囲と熱平衡状態になるまでは、精度
の高い計測を行なうことができない。しかもこの方法で
は、計測器と周囲の間で直接に不規則な熱の伝播が行な
われるため、周囲の温度が変動すると充分な精度が得ら
れないという問題もある。As another countermeasure, there is a method of detecting the temperature of a measuring instrument and correcting the measurement result with the detected temperature. Of course, the effect of the temperature on the measurement results should be checked in advance. This method is simple and is often used in electronic measuring instruments. However, even with this method, high-precision measurement cannot be performed until a certain period of time has elapsed after the start of operation of the measuring instrument and the surroundings are in thermal equilibrium with the surroundings. Moreover, in this method, since irregular heat is directly transmitted between the measuring instrument and the surroundings, there is a problem that sufficient accuracy cannot be obtained if the surrounding temperature fluctuates.
いずれにしろ上述の二つの方法とも計測器の作動開始
後一定時間は、精度の高い計測が行なえないという問題
がある。この時間が短かければそれほど大きな問題では
ないが、例えば慣性検出器ではこの時間が数時間にもな
り、使用上、大きな問題となる。In any case, both of the above methods have a problem that high-precision measurement cannot be performed for a fixed time after the operation of the measuring instrument is started. If this time is short, it is not so much a problem, but for example, in an inertial detector, this time is several hours, which is a big problem in use.
このための対策として恒温槽を用いる場合には、計測
器の計測結果が、作動開始後どのように変化するかを、
あらかじめ測定しておき、この測定した特性に基づいて
計測結果を補正することが行なわれる。しかし恒温槽自
体が一定温度になるまでに長時間を要するため、この方
法では計測のための準備期間の短縮を図ることは難し
い。When using a thermostat as a countermeasure for this, how the measurement result of the measuring instrument changes after the operation starts,
Measurement is performed in advance, and the measurement result is corrected based on the measured characteristics. However, since it takes a long time for the temperature of the thermostat itself to reach a constant temperature, it is difficult to shorten the preparation period for measurement by this method.
また計測器の温度を測定し、この温度に基づいて補正
を行なう方法でも、作動開始後の計測器の計測結果の変
化を、あらかじめ測定しておき、この測定した特性に基
づいて、計測結果を補正することが考えられる。しかし
この場合、計測器表面と周囲との間で直接熱の伝播が行
なわれるためその温度分布の変動は複雑である。特に慣
性検出器のような、計測器自体が複雑な構成であり、か
つそれにより装置内に温度分布のむらが存在する場合に
は特に複雑である。そのため周囲の状況により種々の変
化状態が考えられ、測定した温度から計測結果の変化を
一義的に定めることは難しい。更にこの方法では周囲の
温度は一定とはかぎらず、当然変化することが考えられ
る。特に例えば慣性検出器のように、航空機や船舶など
の、外部環境が激しく変化する場所で使用される場合に
は、計測器も大きな影響を受け、計測結果の出力特性も
複雑に変化することになる。Also, in the method of measuring the temperature of the measuring instrument and making a correction based on this temperature, a change in the measurement result of the measuring instrument after the start of operation is measured in advance, and the measurement result is calculated based on the measured characteristics. Correction is conceivable. However, in this case, since the heat is directly transmitted between the surface of the measuring instrument and the surroundings, the fluctuation of the temperature distribution is complicated. The measuring instrument itself, especially an inertial detector, has a complicated configuration and is therefore particularly complicated when there is uneven temperature distribution in the device. For this reason, various change states are considered depending on the surrounding conditions, and it is difficult to uniquely determine a change in the measurement result from the measured temperature. Further, in this method, the ambient temperature is not always constant, but may naturally change. In particular, when used in places where the external environment changes drastically, such as in an inertial detector, such as an aircraft or a ship, the measuring instrument is also greatly affected, and the output characteristics of the measurement result also change in a complicated manner. Become.
このため計測器上の温度検出を行なう点を増加させ、
より精密に補正を行なうことも行なわれるが、上述の通
りその変化は複雑で充分な精度が得られるとはいえない
のが現状である。更にこのように温度検出を行なう点を
増加させることは、コスト増になるばかりでなく、検出
に要する時間及び検出結果から補正量を算出するための
計算量が、増加するという問題がある。For this reason, the temperature detection point on the measuring instrument is increased,
Correction may be performed more precisely, but as described above, the change is complicated and sufficient accuracy cannot be obtained at present. Further, increasing the number of temperature detection points in this manner not only increases the cost but also increases the time required for detection and the amount of calculation for calculating the correction amount from the detection result.
本発明は上記問題点に鑑みてなされたものであり、簡
単な装置で、計測器あるいは素子が熱平衡状態になる前
でも、充分な精度で計測を行なえるようにして、計測の
ための準備期間を短縮することを目的とする。The present invention has been made in view of the above problems, and allows a simple device to perform measurement with sufficient accuracy even before a measuring instrument or an element is in a thermal equilibrium state. The purpose is to shorten the.
本発明では上記問題点を解決するため、計測器あるい
は素子を周囲から熱的に絶縁することで、計測器あるい
は素子の作動開始からの温度変化、及びそれに伴う計測
結果の変化特性が一定となるようにし、充分な補正が行
えるようにする。In the present invention, in order to solve the above problems, by thermally insulating the measuring instrument or the element from the surroundings, the temperature change from the start of the operation of the measuring instrument or the element, and the change characteristic of the measurement result associated therewith become constant. So that a sufficient correction can be made.
すなわち、本発明による温度補正装置は、温度により
計測結果が影響を受ける計測器あるいは素子を支持する
支持体、計測器あるいは素子及び支持体を周囲から熱絶
縁して収容する収容体、計測器あるいは素子、支持体、
又は収容体のいずれかの温度を検出する温度検出部、及
びあらかじめ測定された、温度検出部の検出した作動開
始時点の温度である初期温度からの、計測器あるいは素
子の発熱による温度上昇に伴う計測器あるいは素子の計
測結果の作動開始後の時間変化特性を記憶しており、温
度検出部の検出した温度を初期温度として、作動開始後
の時間変化特性に基づき、計測器あるいは素子の作動開
始後の計測結果を補正する補正部を備えることにより、
上記問題点を解決するものである。That is, the temperature correction device according to the present invention is a support for supporting a measuring instrument or an element whose measurement result is affected by temperature, a container for accommodating the measuring instrument or the element and the supporting body with thermal insulation from the surroundings, a measuring instrument or Element, support,
Or, a temperature detector for detecting any temperature of the container, and a temperature rise due to heat generation of a measuring instrument or an element from an initial temperature which is a temperature measured at the start of operation detected by the temperature detector in advance. It stores the time change characteristics of the measurement results of the measuring instrument or element after the operation starts, and sets the temperature detected by the temperature detection unit as the initial temperature and starts the operation of the measuring instrument or element based on the time change characteristics after the operation starts. By providing a correction unit that corrects the later measurement result,
This is to solve the above problem.
本発明において計測器等は、収容体の内側に収容さ
れ、熱的に周囲から絶縁されている。そのため周囲との
熱伝播はほとんど無く、計測器の作動に伴う発熱だけを
考慮すれば良い。作動開始前には、計測器は周囲と同一
の温度θoになっていると考えられ、計測器が作動を開
始すると、計測器は作動に伴い熱を発生し、温度が上昇
する。その発熱量をPとし、計測器及び支持体を合せた
熱容量をCとすると、温度θは次式に従がって、初期値
θoから上昇する。In the present invention, the measuring instrument and the like are housed inside the housing and are thermally insulated from the surroundings. Therefore, there is almost no heat propagation with the surroundings, and only the heat generated by the operation of the measuring instrument needs to be considered. Before starting operation, the instrument is considered to become the same temperature theta o and surrounding, the instrument starts to operate, the instrument generates heat due to the operation, the temperature rises. Assuming that the heat value is P and the heat capacity of the measuring instrument and the support is C, the temperature θ increases from the initial value θo according to the following equation.
θ=θo+(P/C)・t…(1) (1)式において、tは時間を表わす。θ = θ o + (P / C) · t (1) In the equation (1), t represents time.
実際には完全に熱絶縁することはできないので、無限に
温度が上昇するわけではなく、いずれ飽和する。飽和す
る状態に近づくにつれて、(1)式からのずれが大きく
なるが、ある程度の範囲は(1)式で近似することが充
分可能である。In practice, it is not possible to completely insulate completely, so the temperature does not rise indefinitely, but eventually saturates. As approaching the state of saturation, the deviation from the equation (1) increases, but it is sufficiently possible to approximate a certain range by the equation (1).
しかも計測器の表面において不規則な熱伝導がないた
め、計測器内で温度分布があっても、計測器は温度の影
響を常に一定の形で受ける。そのため計測器の計測結果
と温度との間には、常に一定の関係が成り立つ。Moreover, since there is no irregular heat conduction on the surface of the measuring instrument, the measuring instrument is always affected by the temperature in a constant manner even if there is a temperature distribution in the measuring instrument. Therefore, a constant relationship always holds between the measurement result of the measuring instrument and the temperature.
以上のことから、作動開始時点で測定した温度に基づ
いて、計測器の作動開始直後から、計測結果を正確に補
正することが可能になる。また作動開始後、周囲の温度
が変動しても、計測器は影響を受けず計測が可能なこと
は明らかである。As described above, based on the temperature measured at the start of the operation, the measurement result can be accurately corrected immediately after the start of the operation of the measuring instrument. Also, it is clear that even if the ambient temperature fluctuates after the start of operation, the measuring instrument can be measured without being affected.
本発明の実施例について図に従い説明する。 An embodiment of the present invention will be described with reference to the drawings.
第1図は、本発明の一実施例を示す構成図である。 FIG. 1 is a configuration diagram showing one embodiment of the present invention.
1は、計測器であり、慣性検出器を想定しているが、
特定の計測器には限定されず、動作開始から計測に至る
時間を可能な限り短かくする必要のある計測器が対象で
ある。1 is a measuring instrument, which is assumed to be an inertial detector,
The present invention is not limited to a specific measuring instrument, and is intended for a measuring instrument that requires a time period from the start of operation to measurement as short as possible.
2は、計測器1を支持する支持体であり、温度分布を
少なくするため熱伝導性の良好で剛性の高い金属などの
材料で作られていることが望ましい。Reference numeral 2 denotes a support for supporting the measuring instrument 1, and is preferably made of a material such as a metal having good thermal conductivity and high rigidity in order to reduce the temperature distribution.
4は、計測器1及び支持体2を内側に収容する収容体
であり、熱抵抗の大きい、すなわち熱を伝えにくくかつ
剛性の高い材料で作られた部材3で、支持体2を収容体
4に保持している。収容体4の内部9は、熱を伝えにく
いように真空にされるか、又は減圧されており、かつ収
容体4の内面及び外面は赤外線の反射率を高くしてあ
る。すなわち、以上の様な構成により計測器1及び支持
体2は、周囲8より熱絶縁されている。Numeral 4 denotes a container for housing the measuring instrument 1 and the support 2 inside, and is a member 3 made of a material having high thermal resistance, that is, a material that is difficult to conduct heat and has high rigidity. Holding. The inside 9 of the container 4 is evacuated or depressurized so that heat is not easily transmitted, and the inner surface and the outer surface of the container 4 have high reflectivity of infrared rays. That is, the measuring device 1 and the support 2 are thermally insulated from the surroundings 8 by the above configuration.
5は、温度検出部であり、計測器1、支持体2、又は
収容体4のいずれかの温度を検出する。図1では支持体
2の測定点7の温度を検出するようにしている。もちろ
ん複数のものの温度を測定しても、同一物体内の複数の
箇所を測定しても良い。Reference numeral 5 denotes a temperature detection unit that detects any one of the temperature of the measuring instrument 1, the support 2, and the container 4. In FIG. 1, the temperature of the measurement point 7 of the support 2 is detected. Of course, the temperature of a plurality of objects may be measured, or a plurality of locations in the same object may be measured.
6は、補正部であり温度検出部5が測定した温度と計
測器1の温度特性に基づいて、計測結果を補正する。計
測器1又は支持体2の温度を検出する場合は、常時温度
を検出しながら、計測器1の作動に伴う温度上昇が所定
の値を示すことを確認しながら補正を行なう。収容体4
の温度検出のみを行なう時は、計測器1の作動に伴う温
度上昇特性をあらかじめ測定しておき、検出した温度と
この特性から、計測器1の温度上昇を算出して補正を行
なうことにより計測誤差を最小にするものである。A correction unit 6 corrects the measurement result based on the temperature measured by the temperature detection unit 5 and the temperature characteristics of the measuring device 1. When the temperature of the measuring device 1 or the support 2 is detected, the correction is performed while always detecting the temperature and confirming that the temperature rise accompanying the operation of the measuring device 1 shows a predetermined value. Container 4
When only temperature detection is performed, the temperature rise characteristic accompanying the operation of the measuring device 1 is measured in advance, and the temperature rise of the measuring device 1 is calculated from the detected temperature and this characteristic to perform correction. This is to minimize the error.
次にこの実施例の作用を示す。 Next, the operation of this embodiment will be described.
第2図はこの実施例における、実際の計測器1上の三
点a,b,cについての作動開始後の温度変化を示したグラ
フであり、それぞれの点の温度変化を1−a,1−b,1−c
で表わす。参考として熱絶縁を行なわない場合の各点の
温度変化を表わすのが、それぞれ2−a,2−b,2−cであ
る。更にそれぞれの場合の計測結果の変化を、それぞれ
及びで示す。FIG. 2 is a graph showing temperature changes at three points a, b, and c on the actual measuring instrument 1 after the start of operation in this embodiment. −b, 1−c
Expressed by For reference, 2-a, 2-b, and 2-c represent temperature changes at each point when thermal insulation is not performed. Further, changes in the measurement results in each case are indicated by and.
もし熱絶縁が完全ならば温度は、(1)式に基づいて
限り無く上昇するはずであるが、実際にはある程度の熱
の伝播があるため、ある程度時間が経過し温度が上昇す
ると、ずれが生じてくる。第2図からも明らかなように
熱絶縁を行った場合は、熱絶縁を行なわない場合に比べ
て、各点の間の温度差がはるかに小さいことがわかる。
熱絶縁を行なわない場合は、各点の温度の間で差が大き
く、計測結果とどのような関係にあるかを定めることも
難しいことがわかる。これに比べて熱絶縁を行った場合
は各点が比較的類似した温度変化を示し、計測結果の変
化特性もこの温度変化に一致する。これは計測器1の表
面での空気の対流等による不規則な熱伝播が無いためと
考えられる。If the thermal insulation is perfect, the temperature should rise without limit based on the equation (1). However, since there is actually a certain amount of heat propagation, when the temperature rises after a certain time, the deviation will increase. Come up. As is clear from FIG. 2, the temperature difference between each point is much smaller when heat insulation is performed than when heat insulation is not performed.
When the thermal insulation is not performed, the difference between the temperatures at the respective points is large, and it is difficult to determine how the temperatures are related to the measurement results. In contrast, when thermal insulation is performed, each point shows a relatively similar temperature change, and the change characteristics of the measurement result also match this temperature change. This is presumably because there is no irregular heat propagation due to convection of air on the surface of the measuring instrument 1.
熱絶縁を行っているため、そのまま作動を続ければ温
度は更に上昇することになるが、計測器にも使用温度の
上限があるため、この上限温度までが使用可能な範囲で
ある。よって計測後はすみやかに計測器1の作動を停止
する必要がある。また温度上昇の傾きを調整するため支
持体2の熱容量を調整する場合もある。The temperature is further increased if the operation is continued as it is because the thermal insulation is performed. However, since the measuring instrument also has an upper limit of the operating temperature, the usable temperature is up to the upper limit temperature. Therefore, it is necessary to stop the operation of the measuring device 1 immediately after the measurement. In some cases, the heat capacity of the support 2 is adjusted in order to adjust the slope of the temperature rise.
次に周囲8の温度が、作動開始後急激に変化した場合
及び計測結果の変化を、第3図に示す。この場合は温度
が急激に低下した例である。簡単のため図示したのは計
測器1上の1点についてのみで、第2図と同様に熱絶縁
した場合の温度を3−d、計測結果をで示す。熱絶縁
を行なわない場合の温度を4−d、計測結果をで示
し、更に熱絶縁を行なわないで、途中で周囲温度が変化
しなかった場合の温度、計測結果をそれぞれ5−d、
で表わす。熱絶縁した場合は当然周囲8の温度変化の影
響を受けないので、途中で周囲温度の変化が起きた場合
も、起きない場合も差は無いため、図には示さなかっ
た。Next, FIG. 3 shows a case where the temperature of the surroundings 8 suddenly changes after the start of operation and a change in the measurement result. This is an example in which the temperature suddenly drops. For simplicity, only one point on the measuring instrument 1 is shown, and the temperature in the case of thermal insulation as shown in FIG. The temperature when thermal insulation is not performed is indicated by 4-d, and the measurement result is indicated by 4-d. The temperature when the ambient temperature does not change on the way without performing thermal insulation and the measurement result are respectively 5-d,
Expressed by In the case of thermal insulation, the temperature is not affected by the temperature change of the surroundings 8, so that there is no difference between the case where the surrounding temperature changes and the case where the surrounding temperature does not change.
第3図より明らかなように、熱絶縁を行なわない場合
には、周囲温度が変化すると、温度と計測結果は、共に
複雑な変化を示し、補正は難しいことがわかる。As is clear from FIG. 3, when the thermal insulation is not performed, when the ambient temperature changes, both the temperature and the measurement result show complicated changes, and it is difficult to correct.
以上の通り熱絶縁を行なうことにより作動開始後、計
測器の温度及び計測結果とも一定の変化を示し、周囲の
状況に影響されないことがわかる。このため初期の温度
さえ検出すれば、作動に伴う温度変化及び計測結果の変
化を予測し、高精度の補正を行なうことが可能になる。
しかもそのための計算も簡単である。本実施例では、計
測器1の温度を測定して温度の初期値θoを求め、それ
に基づいて作動に伴う温度及び計測結果の変化を求めて
補正を行っている。更に、常に温度を測定して、算出し
た温度変化と一致していることを確認している。As described above, by performing the thermal insulation, the temperature of the measuring instrument and the measurement result show constant changes after the start of the operation, and it is understood that the measurement is not affected by the surrounding conditions. For this reason, if only the initial temperature is detected, it is possible to predict a temperature change and a change in the measurement result due to the operation, and to perform a highly accurate correction.
Moreover, the calculation for that is also easy. In this embodiment, by measuring the temperature of the measuring instrument 1 obtains the initial value theta o temperature, correction is performed by seeking changes in temperature and measurement results accompanying the operation accordingly. Further, the temperature is constantly measured, and it is confirmed that the temperature coincides with the calculated temperature change.
また、収容体4の温度を測定している場合は、計測器
1の温度を直接測定しているわけではないが、作動開始
前に長時間、周囲8と同一の状態にあるため、計測器1
も収容体4も同一の温度であると考えられる。そこで収
容体4の温度を測定すれば、初期値θoが求まる。しか
し周囲温度の変動も考慮すれば、計測器1又は支持体2
の温度を検出することが望ましい。When the temperature of the container 4 is measured, the temperature of the measuring device 1 is not directly measured. However, since the temperature of the container 4 is the same as that of the surroundings 8 for a long time before the operation starts, the measuring device 1 1
It is considered that both the container 4 and the container 4 have the same temperature. Therefore, if the temperature of the container 4 is measured, the initial value θo is obtained. However, considering the fluctuation of the ambient temperature, the measuring device 1 or the support 2
It is desirable to detect the temperature of
以上の説明においては、計測器1は周囲8から完全に
熱絶縁されているものとして説明して来たが、実際には
周囲と多少の熱伝導があっても、計測器1の表面での温
度分布のむらはほとんど無く、熱伝導は支持体2と部材
3を通して収容体4との間で行なわれる。そのため周囲
8、すなわち収容体4と支持体2との間の温度差をパラ
メータとして比較的一定の変化を示す。よって部材3の
熱絶縁が不完全であっても、従来よりは正確な補正が可
能である。In the above description, the measuring instrument 1 has been described as being completely thermally insulated from the surroundings 8; There is almost no unevenness in temperature distribution, and heat conduction is performed between the support 2 and the container 4 through the member 3. Therefore, a relatively constant change is exhibited with the temperature difference between the surroundings 8, that is, the container 4 and the support 2 as a parameter. Therefore, even if the thermal insulation of the member 3 is incomplete, it is possible to perform more accurate correction than before.
なお、この実施例では、計測器についての実例を示し
たが、実際には計測器のみでなく、例えば、計測器等に
使用する温度依存性のある素子に用いても同様の効果を
得ることは明らかである。Note that, in this embodiment, an actual example of a measuring instrument is shown. However, the same effect can be obtained not only in the actual measuring instrument but also in, for example, a temperature-dependent element used in the measuring instrument and the like. Is clear.
本発明により、温度の影響を受ける計測器等を、簡単
な装置に収容し、補正することで、作動開始直後から計
測を行なうことが可能になり、これによって計測器の準
備期間を短縮できるといった効果を有する。According to the present invention, by accommodating a measuring instrument or the like affected by temperature in a simple device and correcting it, it becomes possible to perform measurement immediately after the start of operation, thereby shortening the preparation period of the measuring instrument. Has an effect.
第1図は、本発明の構成図。 第2図は、熱絶縁を行なう場合と行なわない場合の、計
測器上の点の温度変化と計測結果の比較を示す相関図。 第3図は、計測器の作動開始後、途中で温度変化があっ
た場合の、計測器上の点の温度変化と計測結果の変化を
示す相関図。 図において、 1……計測器、2……支持体、3……部材、4……収容
体、5……温度検出部、6……補正部、7……温度検出
点、8……周囲、9……収容体内部(真空、又は減
圧)。FIG. 1 is a configuration diagram of the present invention. FIG. 2 is a correlation diagram showing a comparison between a temperature change at a point on a measuring instrument and a measurement result when thermal insulation is performed and when thermal insulation is not performed. FIG. 3 is a correlation diagram showing a change in the temperature of a point on the measuring instrument and a change in the measurement result when a temperature change occurs halfway after the operation of the measuring instrument starts. In the drawing, 1... Measuring instrument, 2... Support member, 3... Member, 4... Container, 5... Temperature detecting section, 6. , 9 ... inside the container (vacuum or reduced pressure).
───────────────────────────────────────────────────── フロントページの続き (72)発明者 早川 義彰 神奈川県鎌倉市上町屋345番地 三菱プ レシジョン株式会社内 (56)参考文献 実開 昭62−23352(JP,U) 実開 昭62−173015(JP,U) ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yoshiaki Hayakawa 345 Kamimachiya, Kamakura City, Kanagawa Prefecture Inside Mitsubishi Precision Co., Ltd. (JP, U)
Claims (1)
あるいは素子(1)を支持する支持体(2)、 該計測器あるいは素子(1)及び該支持体(2)を周囲
(8)から熱絶縁して収容する収容体(4)、 該計測器あるいは素子(1)、該支持体(2)、又は該
収容体(4)のいずれかの温度を検出する温度検出部
(5)、及び あらかじめ測定された、該温度検出部(5)の検出した
作動開始時点の温度である初期温度からの、該計測器あ
るいは素子(1)の発熱による温度上昇に伴う、該計測
器あるいは素子(1)の計測結果の作動開始後の時間変
化特性を記憶しており、該温度検出部(5)の検出した
作動開始時点の温度を該初期温度として、該作動開始後
の時間変化特性に基づき、該計測器あるいは素子(1)
の作動開始後の計測結果を補正する補正部(6)を備え
たことを特徴とする温度補正装置。1. A support (2) for supporting a measuring instrument or element (1) whose measurement result is affected by temperature, and the measuring instrument or element (1) and the supporting body (2) are separated from the surroundings (8). A temperature detector (5) for detecting the temperature of any one of the container (4), the measuring instrument or the element (1), the support (2), and the container (4) which is housed in a thermally insulated state; And the measuring instrument or the element (1) accompanying the temperature rise due to the heat generation of the measuring instrument or the element (1) from the initial temperature, which is the temperature at the start of operation detected by the temperature detecting section (5), measured in advance. The time change characteristic after the start of the operation of the measurement result of 1) is stored, and the temperature at the start of the operation detected by the temperature detecting section (5) is set as the initial temperature, and based on the time change characteristic after the start of the operation. , The measuring instrument or element (1)
A temperature compensating device comprising: a compensating unit (6) for compensating a measurement result after the start of the operation of (1).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2273198A JP2608629B2 (en) | 1990-10-15 | 1990-10-15 | Temperature compensation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2273198A JP2608629B2 (en) | 1990-10-15 | 1990-10-15 | Temperature compensation device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04151594A JPH04151594A (en) | 1992-05-25 |
JP2608629B2 true JP2608629B2 (en) | 1997-05-07 |
Family
ID=17524469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2273198A Expired - Lifetime JP2608629B2 (en) | 1990-10-15 | 1990-10-15 | Temperature compensation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2608629B2 (en) |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6223352U (en) * | 1985-07-25 | 1987-02-12 |
-
1990
- 1990-10-15 JP JP2273198A patent/JP2608629B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04151594A (en) | 1992-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2390728C1 (en) | Method of setting up inertial navigation system with axially symmetric vibration sensor and corresponding inertial navigation system | |
WO2015088024A1 (en) | Internal temperature sensor | |
US20150338289A1 (en) | Method and apparatus for controlling the temperature of a calibration volume of a device for comparative calibration of temperature sensors | |
US20190195694A1 (en) | Temperature measurement correction method, electronic system and method of generating correction regression coefficient table | |
CN107966211B (en) | Infrared sensor for measuring ambient air temperature | |
US20190293507A1 (en) | Method for detecting and compensating for a rapid temperature change in a pressure measuring cell | |
CN111693154B (en) | Temperature compensation method and device for infrared temperature measurement sensor | |
JP2017142249A (en) | Inertia measurement unit | |
US8192074B2 (en) | Method and apparatus for correcting the output signal of a radiation sensor and for measuring radiation | |
CN109268113A (en) | A kind of calibration method, device and urea supply spraying system | |
JP2608629B2 (en) | Temperature compensation device | |
JPWO2018123854A1 (en) | Liquid level gauge, vaporizer equipped with the same, and liquid level detection method | |
US10996124B2 (en) | High accuracy pressure transducer with improved temperature stability | |
JP2008268134A (en) | Infrared detector | |
JP3681468B2 (en) | Temperature coefficient correction type temperature detector | |
JP3328408B2 (en) | Surface temperature measurement method | |
JP2009020027A (en) | Device for measuring temperature characteristic | |
US20190293508A1 (en) | Means for implementing a method for detecting and compensating for a rapid temperature change in a pressure measuring cell | |
US8978474B2 (en) | Inertial measurement systems, and methods of use and manufacture thereof | |
JP3210222B2 (en) | Temperature measuring device | |
SU1495763A1 (en) | Method and apparatus for temperature regulation | |
JP2000310565A (en) | Method for calibrating aging change of radiation thermometer | |
JP2021064847A (en) | Imaging apparatus | |
JPH10176958A (en) | Semiconductor temperature sensor | |
JP2021117110A (en) | Pressure sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110213 Year of fee payment: 14 |