Nothing Special   »   [go: up one dir, main page]

JP2023037259A - 応力センサ及び応力センサの製造方法、並びにセンサシート - Google Patents

応力センサ及び応力センサの製造方法、並びにセンサシート Download PDF

Info

Publication number
JP2023037259A
JP2023037259A JP2021143901A JP2021143901A JP2023037259A JP 2023037259 A JP2023037259 A JP 2023037259A JP 2021143901 A JP2021143901 A JP 2021143901A JP 2021143901 A JP2021143901 A JP 2021143901A JP 2023037259 A JP2023037259 A JP 2023037259A
Authority
JP
Japan
Prior art keywords
shear force
detection unit
sensing layer
base material
stress sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021143901A
Other languages
English (en)
Inventor
鴻立 張
Hongli Zhang
和彦 笹川
Kazuhiko Sasagawa
和弘 藤▲崎▼
Kazuhiro Fujisaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hirosaki University NUC
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Hirosaki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd, Hirosaki University NUC filed Critical Toppan Printing Co Ltd
Priority to JP2021143901A priority Critical patent/JP2023037259A/ja
Publication of JP2023037259A publication Critical patent/JP2023037259A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

Figure 2023037259000001
【課題】圧力及びせん断力が検知可能で、かつ、より微細化、高集積化した高精度な応力センサを提供する。
【解決手段】応力センサは、複数の検知部と、積層された複数の検知部間に配置された絶縁層又は基材と、を備え、検知部は、対向配置された2つの電極間に圧力感知層が配置されて押圧力を検知する1又は2以上の圧力検知部と、対向配置された2つの電極間にせん断力感知層が配置されてせん断力を検知する1又は2以上のせん断力検知部と、を含み、積層された複数の検知部は、1層の圧力感知層又はせん断力感知層を含む一体型検知部と、対向配置された2層の感知層が互いに接合された圧力感知層又はせん断力感知層を含む接合型検知部の2種類で構成されている。
【選択図】図1A

Description

本開示は、応力センサ及び応力センサの製造方法、並びにセンサシートに関する。
応力センサは、例えば上下2つの電極を対向させ、その2つの電極間に感知層として導電膜や絶縁層を挟み込んだ構造となっている。この応力センサは、入力された応力によって感知層が変形することで、電極間の距離や対向して配置された電極の対向面積の変化を電気信号として検知し、抵抗値変化あるいは容量値変化を押圧力やせん断力として検出する(例えば、特許文献1~3)。
こういった応力センサは、生体内のモニタリングなどへの応用が期待されている。生体内のセンシングでは、センサを埋め込んだ被測定対象に掛かる負担を軽減するため、センササイズはより微細化していることが望ましい。また、一定面積あたりの力の測定精度を上げるためには、センシング部分を集積化することが望ましい。したがって、応力センサの更なる微細化、高集積化が要求される。
特開2017-72472号公報 特開2018-115873号公報 特開2012-247297号公報
しかしながら、上述した応力センサでは、せん断力の検出ができなかったり、圧力及びせん断力の検知が可能であっても応力センサ上の押える場所によりセンシング精度が下がる可能性があった。また、上述した応力センサでは、センシング部分が平面方向に展開されていることから、更なる微細化に限界があった。
本開示は、このような点に着目してなされたものであり、圧力及びせん断力が検知可能で、かつ、より微細化、高集積化した高精度な応力センサを提供することを目的とする。
課題解決のために、本開示の一態様にかかる応力センサは、複数の検知部と、積層された複数の検知部間に配置された絶縁層又は基材と、を備え、検知部は、対向配置された2つの電極間に圧力感知層が配置されて押圧力を検知する1又は2以上の圧力検知部と、対向配置された2つの電極間にせん断力感知層が配置されてせん断力を検知する1又は2以上のせん断力検知部と、を含み、積層された複数の検知部は、1層の圧力感知層又はせん断力感知層を含む一体型検知部と、対向配置された2層の感知層が互いに接合された圧力感知層又はせん断力感知層を含む接合型検知部の2種類で構成されている、ことを要旨とする。
また、本開示の一態様にかかる応力センサの製造方法は、基材の一方の面又は両面に、第1電極と、圧力感知層又はせん断力感知層となる第1導電膜と、第2電極と、絶縁層とをこの順に積層した一体型検知部、及び第3電極と、圧力感知層又はせん断力感知層となる第2導電膜とをこの順に積層した接合型検知部構成物を形成し、複数の基材を積層するとともに、接合型検知部構成物を形成した基材を積層する場合には、接合型検知部構成物が形成された他の基材と第2導電膜同士が対向するように積層する、ことを要旨とする。
また、本開示の一態様にかかるセンサシートは、複数の検知部と、積層された複数の検知部間に配置された絶縁層又は基材と、を備え、検知部は、対向配置された2つの電極間に圧力感知層が配置されて押圧力を検知する1又は2以上の圧力検知部と、対向配置された2つの電極間にせん断力感知層が配置されてせん断力を検知する1又は2以上のせん断力検知部と、を含み、積層された複数の検知部は、1層の圧力感知層又はせん断力感知層を含む一体型検知部と、対向配置された2層の感知層が互いに接合された圧力感知層又はせん断力感知層を含む接合型検知部の2種類で構成されており、複数の検知部は、一の絶縁層又は基材の一方の面側に2次元平面状に配置されている、ことを要旨とする。
本開示の態様によれば、圧力及びせん断力が検知可能で、かつ、より微細化、高集積化した高精度な応力センサを提供することが可能となる。
本開示に基づく実施形態に係る、一体型検知部2つと接合型検知部1つとを積層した第1の構成例の応力センサを透視的に図示した斜視図である。 本開示に基づく実施形態に係る一体型検知部2つと接合型検知部1つとを積層した第2の構成例の応力センサを透視的に図示した斜視図である。 本開示に基づく実施形態に係る一体型検知部2つと接合型検知部1つとを積層した第3の構成例の応力センサを透視的に図示した斜視図である。 本開示に基づく実施形態に係る一体型検知部2つと接合型検知部1つとを積層した第4の構成例の応力センサを透視的に図示した斜視図である。 本開示に基づく実施形態に係る一体型検知部2つと接合型検知部1つとを積層した第5の構成例の応力センサを透視的に図示した斜視図である。 本開示に基づく実施形態に係る一体型検知部2つと接合型検知部1つとを積層した第6の構成例の応力センサを透視的に図示した斜視図である。 本開示に基づく実施形態に係る、一体型検知部1つと接合型検知部2つとを積層した第7の構成例の応力センサを透視的に図示した斜視図である。 本開示に基づく実施形態に係る、一体型検知部1つと接合型検知部2つとを積層した第8の構成例の応力センサを透視的に図示した斜視図である。 本開示に基づく実施形態に係る、一体型検知部1つと接合型検知部2つとを積層した第9の構成例の応力センサを透視的に図示した斜視図である。 一体型圧力検知部を説明する模式図であり、図3(a)は一体型圧力検知部の平面図、図3(b)は一体型圧力検知部の断面図である。 接合型圧力検知部を説明する模式図であり、図4(a)は下部電極と下部圧力感知層の平面図、図4(b)は上部電極と上部圧力感知層の平面図、図4(c)は接合型圧力検知部の断面図である。 一体型せん断力検知部を説明する模式図であり、図5(a)は一体型せん断力検知部の平面図、図5(b)は一体型せん断力検知部の断面図である。 接合型せん断力検知部を説明する模式図であり、図6(a)は下部電極と下部せん断力感知層の平面図、図6(b)は上部電極と上部せん断力感知層の平面図、図6(c)は接合型せん断力検知部の断面図である。 一体型直交方向せん断力検知部を説明する図であり、図7(a)は一体型直交方向せん断力検知部の平面図、図7(b)は一体型直交方向せん断力検知部の断面図である。 接合型直交方向せん断力検知部を説明する図であり、図8(a)は下部電極と下部せん断力感知層の平面図、図8(b)は上部電極と上部せん断力感知層の平面図、図8(c)は接合型直交方向せん断力検知部の断面図である。 本開示に基づく実施形態に係るセンサシートの一構成例を示す模式図であり、図9(a)はセンサシートを透視的に図示した斜視図、図9(b)はセンサシートの断面図である。 本開示に基づく実施形態に係る圧力測定方法のイメージ図である。 本開示に基づく実施形態に係るせん断力測定方法のイメージ図である。
次に、本開示の実施形態について説明する。
1.第一実施形態
以下、本開示の第一実施形態に係る応力センサについて説明する。
(1.1)応力センサの構成の概要
本実施形態の応力センサは、複数の検知部を備える。検知部は、対向配置された2つの電極間に圧力感知層が配置されて押圧力を検知する1又は2以上の圧力検知部と、対向配置された2つの電極間にせん断力感知層が配置されてせん断力を検知する1又は2以上のせん断力検知部と、を含む。複数の検知部は、厚さ方向(電極の対向方向)に向けて積層されていると共に、応力センサは、積層された複数の検知部間に配置された絶縁層又は基材を備えている。
積層される検知部の順番に特に制限はない。例えば、最下部に圧力検知部を配置しても良いし、圧力検知部とせん断力検知部とが交互に積層されていても良い。
また、積層された複数の検知部における、積層方向の一端部側及び他端部側にそれぞれ絶縁層又は基材が設けられていてもよい。すなわち、応力センサの積層構造の表層は絶縁層になっていてもよく、上下で対をなす2つの基材間に、複数の検知部が積層された状態で配置されていてもよい。
また、本実施形態にかかる応力センサの検知部は、1層の圧力感知層又はせん断力感知層を含む一体型検知部と、対向配置された2層の感知層が互いに接合された圧力感知層又はせん断力感知層を含む接合型検知部の2種類で構成されている。
一体型検知部は、一体型圧力検知部及び一体型せん断力検知部の少なくとも一方である。一体型圧力検知部は、1層で形成された圧力感知層を含んでいる。一体型せん断力検知部は、1層で形成されたせん断力感知層を含んでいる。
接合型検知部は、接合型圧力検知部及び接合型せん断力検知部の少なくとも一方である。接合型圧力検知部は、接合型圧力検知部の厚さ方向に対向配置された第1圧力感知層と第2圧力感知層とが互いに接合された圧力感知層を含んでいる。接合型せん断力検知部は、接合型せん断力検知部の厚さ方向に対向配置された第1せん断力感知層と第2せん断力感知層とが互いに接合されたせん断力感知層を含んでいる。
本実施形態の応力センサは1つ以上の一体型検知部と1つ以上の接合型検知部が積層されて構成されている。積層される一体型検知部と接合型検知部との順番や応力検知種類に特に制限はない。同じ応力検知種類の検知部を一体型のみ、又は接合型のみで配置することが可能で、一体型と接合型で同時に配置することも可能である。例えば、圧力検知部と1つのせん断力検知部が一体型で、もう1つのせん断力検知部が接合型であっても良いし、圧力検知部が一体型で、2つのせん断力検知部が接合で配置しても良い。
1つ以上の一体型検知部を配置することにより、接合界面のない場合の圧力に対する出力が得られる。1つ以上の接合型検知部を挿入することにより、圧力感知層、あるいはせん断力感知層の接合界面を活用し、応力センサの性能の向上や他機能の付与などが可能となる。接合界面の活用において、一体型検知部の出力を用い、接合界面の抵抗値を抽出する必要がある。また、複数の界面があるなら、複数の方法で界面を活用することができる。
基材の厚さ方向からみて、1又は2以上の圧力検知部と1又は2以上のせん断力検知部の位置関係、すなわち、積層された複数の検知の位置関係に特に限定はないが、センシング精度の観点から、各圧力検知部と各せん断力検知部が同軸に配置されることが好ましい。
圧力検知部は、対向配置された上下2つの圧力感知層が貼り合わせられて押圧力(基材の厚さ方向の力)を検知する。圧力検知部は、基材の厚さ方向からみて、2つの電極が重なる領域の面積が、応力センサに入力されるせん断変位に対して一定に維持されると共に、2つの電極のうちの面積が小さい側の電極の面積と等しくなるように、2つの電極が配置されている。
圧力検知部は、例えば、基材の厚さ方向からみて、2つの電極が重なる領域が、無負荷状態では面積の大きな側の電極の中央部に配置される。更に、基材における面内方向のいずれの方向においても、面積の小さい側の電極の端から面積の大きい側の電極の端までの距離が、設計上のせん断変形の最大値よりも大きくなるように、2つの電極の形状及び配置が構成される。
せん断力検知部は、対向配置された上下2つのせん断力感知層が貼り合わせられてせん断力(基材の面内方向の力)を検知する。各せん断力検知部は、対向配置された2つの電極の形状が異なり、対向配置された2つの電極は、基材の厚さ方向からみて、検知するせん断力検知方向へのせん断変位に応じて、2つの電極の重なる領域の面積が変化すると共に、検知するせん断力検知方向と直交する方向のせん断変位に対し2つの電極の重なる領域は一定に維持されるように構成されている。2以上のせん断力検知部を備える場合には、各せん断力検知部のせん断を検知するせん断力検知方向が直交した2方向に揃うように配置することが好ましい。
せん断力検知部は、例えば、基材の厚さ方向からみて、検知するせん断力検知方向には、一方の電極に対し他方の電極が、設計上のせん断変形の最大値よりも大きくはみ出している。また、せん断力検知部は、検知するせん断力検知方向と直交する方向には、前記のはみ出し部分を除き、面積が小さい側の電極は、面積の大きい側の電極の領域の内に位置するように、2つの電極の形状及び配置が構成される。
全ての検知部は、基材の厚さ方向からみて、対向配置した電極が重なる領域の面積が、0.1mm以上1.5mm以下であることが好ましい。また、応力センサを構成する全電極が重なる領域の面積が、0.1mm以上1.5mm以下であることが好ましい。
また、圧力感知層及びせん断力感知層の厚さが、1μm以上100μm以下であることが好ましい。
接合型検知部の場合、上部圧力感知層と下部圧力感知層の貼り合わせ(接合)、及び上部せん断力感知層と下部せん断力感知層の貼り合わせ(接合)は、例えば、接着剤を用いて行う。接着剤を用いた貼り合わせの方法は、例えば、対向面同士を導電性の接着剤で貼り合わせる、上部圧力感知層と下部圧力感知層との貼り合わせ部の側面部分を接着剤で固定する、感知層周辺の基材上に接着剤を塗布して固定する方式等がある。状況に応じて適宜、公知の貼合わせ方法を選択すれば良い。
また、本実施形態のセンサシートは、1つの基材の一方の面側に、前記構成の検知部が複数、2次元平面状に配置されて構成される。すなわち、センサシートは、共通の1つの基材上に、複数の応力センサが配置されている。
なお、基材の厚さ方向は、対向配置された2つ電極の対向方向、応力センサの厚さ方向と同義である。
(1.2)応力センサの具体的な構成例
以下、本実施形態にかかる応力センサ100の具体な構成例を、図1Aから図1F及び図2Aから図2Cを参照しつつ説明する。
本実施形態の応力センサ100は、複数の検知部を有している。応力センサ100は例えば3つの検知部を有しており、検知部のうちの任意の1つが圧力検知部であり、残り2つがせん断力検知部である。以下、3つの検知部を有する応力センサ100について説明する。
本実施形態の応力センサ100は、3つの検知部の種類により第1形態と第2形態に大きく分類される。第1形態の応力センサは、2つの一体型検知部と1つの接合型検知部を積層した構成となっている。また、第2形態の応力センサは、1つの一体型検知部と2つの接合型検知部を積層した構成となっている。
また、本実施形態の応力センサ100は、3つの検知部の種類と配置状態により、第1形態である第1の例の応力センサ101~第6の例の応力センサ106と、第2形態である第7の例の応力センサ107~第9の例の応力センサ109との9つの形態に分類される。
以下、各形態の応力センサ101~109についてそれぞれ説明する。応力センサ101~109のいずれかを限定せずに説明する場合には、応力センサ100と記載する場合がある。
<応力センサの第1の例>
図1Aに示すように、応力センサ101は、2つの基材(第1基材1a及び第4基材1d)と、3つの検知部とを備える第1形態の応力センサである。応力センサ101は、3つの検知部として、2つの一体型検知部(一体型圧力検知部21及び一体型せん断力検知部31)と1つの接合型検知部(接合型直交方向せん断力検知部42)とを備えている。ここで、一体型圧力検知部21は圧力検知部2の一例であり、一体型せん断力検知部31及び接合型直交方向せん断力検知部42は、せん断力検知部3,4それぞれの一例である。また、応力センサ101は、2つの絶縁層(第1絶縁層5及び第2絶縁層6、絶縁層5,6という場合がある)を備えている。
応力センサ101では、一体型圧力検知部21、一体型せん断力検知部31及び接合型直交方向せん断力検知部42が第1基材1aの一方の面(図1A中、第1基材1aの上面)側に順に設けられており、接合型直交方向せん断力検知部42が第4基材1dの一方の面(図1A中、第4基材1dの下面)側、すなわち一体型せん断力検知部31と第4基材1dとの間に配置されている。
また、一体型圧力検知部21と一体型せん断力検知部31との間には絶縁層5が形成されており、一体型せん断力検知部31と接合型直交方向せん断力検知部42との間には絶縁層6が形成されている。
すなわち、本実施形態の応力センサ101は、複数の検知部(一体型圧力検知部21、一体型せん断力検知部31及び接合型直交方向せん断力検知部42)が、絶縁層5又は絶縁層6を介して積層され、第1基材1a及び第4基材1dの間に配置された構造となっている。
<応力センサの第2の例>
図1Bに示すように、応力センサ102は、2つの基材(第2基材1b及び第4基材1d)と、3つの検知部とを備える第1形態の応力センサである。応力センサ102は、3つの検知部として、2つの一体型検知部(一体型圧力検知部21、一体型せん断力検知部31)と1つの接合型検知部(接合型直交方向せん断力検知部42)とを備えている。
応力センサ102では、一体型圧力検知部21が第2基材1bの一方の面(図1B中、第2基材1bの下面)側に設けられ、一体型せん断力検知部31が第2基材1bの反対の面(図1B中、第2基材1bの上面)側に設けられている。また、接合型直交方向せん断力検知部42が第4基材1dの一方の面(図1B中、第4基材1dの下面)側、すなわち一体型せん断力検知部31と第4基材1dとの間に設けられている。
また、一体型圧力検知部21の一方の面(図1B中、一体型圧力検知部21の下面)側には絶縁層5が設けられており、一体型せん断力検知部31と接合型直交方向せん断力検知部42との間には、絶縁層6が設けられている。
すなわち、本実施形態の応力センサ102は、2つの一体型検知部(一体型圧力検知部21、一体型せん断力検知部31)と1つの接合型検知部(接合型直交方向せん断力検知部42)が絶縁層6、第2基材1bを介して第4基材1d上に形成された構造となっている。
<応力センサの第3の例>
図1Cに示すように、応力センサ103は、2つの基材(第3基材1c及び第4基材1d)と、3つの検知部とを備える第1形態の応力センサである。応力センサ103は、3つの検知部として2つの一体型検知部(一体型圧力検知部21及び一体型せん断力検知部31)と1つの接合型検知部(接合型直交方向せん断力検知部42)とを備えている。
応力センサ103では、一体型せん断力検知部31及び一体型圧力検知部21が第3基材1cの一方の面(図1C中、第3基材1cの下面)側に順に設けられ、接合型直交方向せん断力検知部42が第3基材1cの反対の面(図1C中、第3基材1cの上面)側、すなわち第3基材1cと第4基材1dとの間に設けられている。
また、一体型圧力検知部21の一方の面(図1C中、一体型圧力検知部21の下面)側には絶縁層5が設けられており、一体型圧力検知部21と一体型せん断力検知部31との間には絶縁層6が設けられている。
すなわち、本実施形態の応力センサ103は、2つの一体型検知部(一体型圧力検知部21及び一体型せん断力検知部31)と1つの接合型検知部(接合型直交方向せん断力検知部42)が絶縁層5、6、第3基材1cを介して第4基材1d上に形成された構造となっている。
<応力センサの第4の例>
図1Dに示すように、応力センサ104は、2つの基材(第1基材1a及び第4基材1d)と、3つの検知部とを備える第1形態の応力センサである。応力センサ104は、3つの検知部として、2つの一体型検知部(一体型圧力検知部21及び一体型直交方向せん断力検知部41)と1つの接合型検知部(接合型せん断力検知部32)とを備えている。
応力センサ104では、一体型圧力検知部21が第1基材1aの一方の面(図1D中、第1基材1aの上面)側に設けられ、一体型直交方向せん断力検知部41が第4基材1dの一方の面(図1D中、第4基材1dの下面)側に設けられている。また、応力センサ104では、接合型せん断力検知部32が一体型圧力検知部21と一体型直交方向せん断力検知部41との間に配置されている。
また、一体型圧力検知部21と接合型せん断力検知部32との間には絶縁層5が設けられ、接合型せん断力検知部32と一体型直交方向せん断力検知部41との間には絶縁層6が設けられている。
すなわち、本実施形態の応力センサ104は、2つの一体型検知部(一体型圧力検知部21、接合型せん断力検知部32及び一体型直交方向せん断力検知部41が絶縁層5、6を介して第1基材1a、第41dの間に形成された構造となっている。
<応力センサの第5の例>
図1Eに示すように、応力センサ105は、2つの基材(第1基材1a及び第3基材1c)と、3つの検知部とを備える第1形態の応力センサである。応力センサ105は、3つの検知部として、2つの一体型検知部(一体型圧力検知部21及び一体型直交方向せん断力検知部41)と1つの接合型検知部(接合型せん断力検知部32)とを備えている。
応力センサ105では、一体型圧力検知部21が第1基材1aの一方の面(図1E中、第1基材1aの上面)側に設けられ、一体型直交方向せん断力検知部41が第3基材1cの一方の面(図1E中、第3基材1cの上面)側に設けられている。また、応力センサ104では、接合型せん断力検知部32が第3基材1cの他方の面(図1E中、第3基材1cの下面)側、すなわち一体型圧力検知部21と第3基材1cとの間に設けられている。
また、一体型圧力検知部21と接合型せん断力検知部32との間には、絶縁層5が設けられ、一体型直交方向せん断力検知部41の一方の面(図1E中、一体型直交方向せん断力検知部41の上面)には第3絶縁層7(絶縁層7という場合がある)が設けられている。
すなわち、本実施形態の応力センサ105は、複数の検知部(一体型圧力検知部21、接合型せん断力検知部32、一体型直交方向せん断力検知部41)が絶縁層5、第3基材1cを介して第1基材1a上に形成された構造となっている。
<応力センサの第6の例>
図1Fに示すように、応力センサ106は、2つの基材(第2基材1b及び第3基材1c)と、3つの検知部とを備える第1形態の応力センサである。応力センサ106は、3つの検知部として、2つの一体型検知部(一体型圧力検知部21及び一体型直交方向せん断力検知部41)と1つの接合型検知部(接合型せん断力検知部32)とを備えている。
応力センサ106では、一体型圧力検知部21が第2基材1bの一方の面(図1F中、第2基材1bの下面)側に設けられ、一体型直交方向せん断力検知部41が第3基材1cの一方の面(図1F中、第3基材1cの上面)側に設けられている。また、応力センサ106では、接合型せん断力検知部32が第2基材1bと第3基材1cとの間に設けられている。
また、一体型圧力検知部21の一方の面(図1F中、一体型圧力検知部21の下面)側には絶縁層5が設けられ、一体型直交方向せん断力検知部41の一方の面(図1F中、一体型直交方向せん断力検知部41の上面)側には絶縁層7が設けられている。
すなわち、本実施形態の応力センサ106は、複数の一体型圧力検知部21、接合型せん断力検知部32、一体型直交方向せん断力検知部41が第2基材1b、第3基材1cを介して形成された構造となっている。
<応力センサの第7の例>
図2Aに示すように、応力センサ107は、3つの基材(第1基材1a、第3基材1c及び第4基材1d)と、3つの検知部とを備える第2形態の応力センサである。応力センサ107は、3つの検知部として、1つの一体型検知部(一体型圧力検知部21)と2つの接合型検知部(接合型せん断力検知部32及び接合型直交方向せん断力検知部42)とを備えている。
応力センサ107では、一体型圧力検知部21が第1基材1aの一方の面(図2A中、第1基材1aの上面)側に設けられ、接合型せん断力検知部32が第3基材1cの一方の面(図2A中、第3基材1cの下面)側、すなわち一体型圧力検知部21と第3基材1cとの間に設けられている。また、応力センサ107では、接合型直交方向せん断力検知部42が第3基材1cの反対の面(図2A中、第3基材1cの上面)側、すなわち第3基材1cと第4基材1dとの間に設けられている。
また、一体型圧力検知部21と接合型せん断力検知部32との間には、絶縁層5が形成されている。
すなわち、本実施形態の応力センサ107は、複数の検知部(一体型圧力検知部21、接合型せん断力検知部32、接合型直交方向せん断力検知部42が絶縁層5、第3基材1cを介して第1基材1a、第4基材1dの間に形成された構造となっている。
<応力センサの第8の例>
図2Bに示すように、応力センサ108は、3つの基材(第1基材1a、第2基材1b及び第4基材1d)と、3つの検知部とを備える第2形態の応力センサである。応力センサ107は、3つの検知部として、1つの一体型検知部(一体型せん断力検知部31)と2つの接合型検知部(接合型圧力検知部22及び接合型直交方向せん断力検知部42)とを備えている。
応力センサ108では、接合型圧力検知部22が第1基材1aの一方の面(図2B中、第1基材1aの上面)側、すなわち第1基材1aと第2基材1bとの間に設けられている。また、応力センサ108では、一体型せん断力検知部31が第2基材1bの一方の面(図2B中、第2基材1bの上面)側、接合型直交方向せん断力検知部42が第4基材1dの一方の面(図2B中、第4基材1dの下面)側、すなわち一体型せん断力検知部31と第4基材1dとの間に設けられている。
また、一体型せん断力検知部31と接合型直交方向せん断力検知部42との間には、絶縁層6が形成されている。
すなわち、本実施形態の応力センサ108は、複数の検知部(接合型圧力検知部22、一体型せん断力検知部31、接合型直交方向せん断力検知部42)が絶縁層6、第2基材1bを介して第1基材1a、第4基材1dの間に形成された構造となっている。
<応力センサの第9の例>
図2Cに示すように、応力センサ109は、3つの基材(第1基材1a、第2基材1b及び第3基材1c)と、3つの検知部とを備える第2形態の応力センサである。応力センサ109は、3つの検知部として、1つの一体型検知部(一体型直交方向せん断力検知部41)と2つの接合型検知部(接合型圧力検知部22及び接合型せん断力検知部32)とを備えている。
応力センサでは、接合型圧力検知部22が第1基材1aの一方の面(図2C中、第1基材1aの上面)側、すなわち第1基材1aと第2基材1bとの間に設けられており、接合型せん断力検知部32が第2基材1bの一方の面(図2C中、第2基材1bの上面)側、すなわち第2基材1bと第3基材1cとの間に設けられ、一体型直交方向せん断力検知部41が第3基材1cの一方の面(図2C中、第3基材1cの上面)側に設けられている。
また、一体型直交方向せん断力検知部41の一方の面(図2C中、一体型直交方向せん断力検知部41の上面)に絶縁層7が形成されている。
すなわち、本実施形態の応力センサ109は、複数の検知部(接合型圧力検知部22及び接合型せん断力検知部32、一体型直交方向せん断力検知部41)が第2基材1b、第3基材1cを介して第1基材1aの上に形成された構造となっている。
<応力センサの各部の概要>
検知部は、例えば1つが圧力検知部2であり、残り2つがせん断力検知部3,4である。圧力検知部2は、例えば基材1の厚さ方向の押圧力を検知する。せん断力検知部3及びせん断力検知部4は、せん断力検知方向が互いに交差(本実施形態においては直交)した2種類のせん断力をそれぞれ検知する。なお、2つのせん断力検知部3及びせん断力検知部4の互いのせん断力検知方向が直交している場合について説明するが、必ずしもせん断力検知方向が直交している必要は無く、平面視で交差していればよい。以下、せん断力検知部3と直交するせん断力検知部4を、直交方向せん断力検知部4と記載する。
本実施形態にかかる応力センサ101~109は、図1Aから図1F及び図2Aから図2Cに示すように、圧力検知部2及びせん断力検知部3,4が第1基材1a、第2基材1b、第3基材1c及び第4基材1dのうちの2つ又は3つを用いて圧力又はせん断力を検出するように構成されている。ここで、圧力検知部2及びせん断力検知部3,4の配置は、図1Aから図1F及びと図2Aから図2Cに示す関係に限定されず、例えば、圧力検知部2の下方及び上方にせん断力検知部3とせん断力検知部4とが配置されていても良い。また、応力センサ100は、2以上の圧力検知部を有していても良いし、3以上のせん断力検知部を有していても良い。
基材1である第1基材1a、第2基材1b、第3基材1c及び第4基材1dは、応力センサ100が配置される生体の有する曲面に設けられることを考慮すると、可撓性を有することが好ましい。
圧力検知部2は、例えば一体型圧力検知部21又は接合型圧力検知部22であってよい。また、せん断力検知部3は、例えば一体型せん断力検知部31又は接合型せん断力検知部32であってよく、直交方向せん断力検知部4は、例えば一体型直交方向せん断力検知部41又は接合型直交方向せん断力検知部42であってよい。
(1.3)応力センサの各部の構成
図3から図8を参照して、上述した応力センサ100(101~109)を構成する各部について、詳細に説明する。なお、以下の図3から図8には、各検知部の少なくとも一方の面に配置される基材1や絶縁層5~7も併せて示している。
<圧力検知部>
圧力検知部2は、基材1の表面に対して垂直方向(基材1の厚さ方向)の圧力を検知するための層である。
圧力検知部2は、図3及び図4に示すように、第1下部電極2a及び第1上部電極2b、並びに圧力感知層2Aを備えている。
図3(a)は、一体型圧力検知部21の構成を示す平面図であり、図3(b)は、一体型圧力検知部21の構成を示す断面図である。
一体型圧力検知部21は、第1下部電極2aと第1上部電極2bとが対向配置され、圧力感知層2Aを挟み込んで構成されており、絶縁層5に被覆されている。
図4(a)は、接合型圧力検知部22の構成を示す平面図であり、図4(b)は、接合型圧力検知部22の構成を示す底面図であり、図4(c)は、接合型圧力検知部22の構成を示す断面図である。ここで、図4(c)は、第1下部導電膜2cと第1上部導電膜2dとが分離した状態で図示されているが、実際には第1下部導電膜2cと第1上部導電膜2dとが接触した状態で配置されている。
接合型圧力検知部22は、第1下部電極2a及び第1下部導電膜2cと、第1上部電極2b及び第1上部導電膜2dとを有している。接合型圧力検知部22では、第1下部導電膜2cが下部圧力感知層を構成し、第1上部導電膜2dが上部圧力感知層を構成し、第1下部導電膜2cと第1上部導電膜2dとにより圧力感知層2Aが構成されている。接合型圧力検知部22では、第1下部導電膜2cと第1上部電極2bとが対向配置され、貼り合わせられて構成されている。
応力センサ100を安定して動作可能とするため、圧力感知層2Aは、第1下部電極2aを被覆し、かつ第1下部電極2aが第1上部電極2bより大きい面積を有することが好ましい。
第1上部電極2bは、平面視で第1下部電極2aと完全に重なるように配置されていればよい。図3(a)及び図4(a)では、平面視において第1下部電極2a及び第1上部電極2bが重なる領域である電極重複領域Lap2を示している。
なお、第1上部電極2bが第1下部電極2aよりも相対的に面積が大きい構成でもよい。
第1下部電極2a及び第1上部電極2bは、応力センサ100にせん断力が入力されてせん断変位が生じても電極重複領域Lap2の面積が変化しないように配置される必要がある。このため、第1下部電極2a及び第1上部電極2bは、電極重複領域Lap2の面積が第1下部電極2a及び第1上部電極2bのうちの面積が小さい側の電極の面積と等しくなるように配置されている。
本実施形態においては、第1上部電極2bの外周が、第1下部電極2aの外周よりも内側に位置するように配置されている。このため、電極重複領域Lap2の面積は、第1上部電極2bの面積と等しくなっている。
第1下部電極2a及び第1上部電極2bは、任意の方向のせん断力が入力されても電極重複領域Lap2の面積が変化することがないように、基材1の厚さ方向において無負荷の状態で、第1下部電極2aの中心と第1上部電極2bの中心とが平面視で重なるように配置されることが望ましい。
相対的に面積が小さい第1上部電極2bの面積は、0.1mm以上1.5mm以下であることが好ましい。また、相対的に面積が大きい第1下部電極2aの面積は、0.2mm以上3.0mm以下であることが好ましい。さらに、相対的に面積が小さい第1上部電極2bの面積は、第1下部電極2aの面積の半分以上であることが好ましい。つまり、相対的に面積の大きい第1下部電極2aの面積が相対的に面積の小さい第1上部電極2b(電極重複領域Lap2)の面積の2倍以下となり、応力センサ100の小型化及び高集積化することができる。
また、第1下部電極2a及び第1上部電極2bの形状は限定されず、例えば、矩形、円形、三角形などが選択できる。
また、圧力検知部2が接合型圧力検知部22である場合、第1下部導電膜2cと第1上部導電膜2dとは、互いの対向面間に導電性の接着剤層を介して接合される。また、接着剤層は、第1下部導電膜2cと第1上部導電膜2dとの貼り合わせ部の側面部分や、第1下部導電膜2cと第1上部導電膜2dとの周辺の基材1同士の間に設けても良い。基材1間に接着剤層を設ける場合、対向する基材1間の距離を規制することに繋がるため、硬化後の接着剤が弾性を有することが好ましい。これにより、応力センサ100にかかった応力により第1下部電極2aと第1上部電極2bとの間の距離が変化することを接着剤層が妨げない。
<せん断力検知部>
せん断力検知部3は、基材1の表面に平行な方向(基材1の面内方向)のせん断力を検知するための層である。
せん断力検知部3は、図5及び図6に示すように、第2下部電極3a及び第2上部電極3b、並びにせん断力感知層3Aを備えている。
図5(a)は、一体型せん断力検知部31の構成を示す平面図であり、図3(b)は、一体型せん断力検知部31の構成を示す断面図である。
一体型せん断力検知部31は、第2下部電極3aと第2上部電極3bが対向配置され、せん断力感知層3Aを挟み込んで構成されており、絶縁層6に被覆されている。
図6(a)は、接合型せん断力検知部32の構成を示す平面図であり、図6(b)は、接合型せん断力検知部32の構成を示す底面図であり、図6(c)は、接合型せん断力検知部32の構成を示す断面図である。ここで、図6(c)では、第2下部導電膜3cと第2上部導電膜3dとが分離した状態で図示されているが、実際には第2下部導電膜3cと第2上部導電膜3dとが接触した状態で配置されている。
接合型せん断力検知部32は、第2下部電極3a及び第2下部導電膜3cと、第2上部電極3b及びと第2上部導電膜3dとを有している。接合型せん断力検知部32では、第2下部導電膜3cと第2上部導電膜3dとでせん断力感知層3Aが構成されている。接合型せん断力検知部32では、第2下部導電膜3cと第2上部導電膜3dとが対向配置され、貼り合わせられて構成されている。
応力センサ100を安定して動作可能とするため、せん断力感知層3Aは、第2下部電極3aを被覆し、かつ第2下部電極3aが第2上部電極3bより大きい面積を有することが好ましい。
なお、第2下部導電膜3cは、少なくとも第2下部電極3aと第2上部電極3bとが重なる領域である電極重複領域Lap3に存在していればよい。また、第2上部電極3bは、相対的に第2下部電極3aよりも大きくなる構成でも良い。
第2下部電極3a及び第2上部電極3bは、検出するせん断方向に直交した方向の直交せん断力が入力されても電極重複領域Lap3の面積が変化せず、且つ、検出するせん断方向に沿った方向のせん断力が入力されると電極重複領域Lap3の面積が変化する必要がある。本実施形態のせん断力検知部3の場合、直交方向において、第2上部電極3bは第2下部電極3aの内部に重なる。また、本実施形態のせん断力検知部3の場合、せん断力を感知するため、検出方向において第2上部電極3bは第2下部電極3aの片側にはみ出して部分的に重なる、すなわち電極重複面積Lap3が第2上部電極3bの面積より小さくなることが好ましい。
第2下部電極3a及び第2上部電極3bの面積は、0.2mm以上3.0mm以下であることが好ましい。また、第2下部電極3a及び第2上部電極3bが重なった電極重複領域Lap3の面積は、0.1mm以上1.5mm以下であることが好ましい。さらに、電極重複領域Lap3の面積は、第2下部電極3a又は第2上部電極3bの面積の半分以上であることが好ましい。つまり、第2下部電極3a及び第2上部電極3bの面積が電極重複領域Lap3の面積の2倍以下となり、応力センサ100の小型化及び高集積化することができる。
また、第2下部電極3a及び第2上部電極3bの形状は限定されず、例えば、矩形、円形、三角形などが選択できる。
また、せん断力検知部3が接合型せん断力検知部32である場合、第2下部導電膜3cと第2上部導電膜3dとは、互いの対向面間に導電性の接着剤層を介して接合される。接着剤層の位置はこれに限られず、接合型圧力検知部22と同様の対向面間以外の位置に設けられても良い。
<直交方向せん断力検知部>
直交方向せん断力検知部4は、基材1の表面に平行し、せん断力検知部3のせん断力検知方向と直交したせん断力を検知するための層である。
直交方向せん断力検知部4は、図7及び図8に示すように、第3下部電極4a及び第3上部電極4b、並びにせん断力感知層4Aを備えている。
図7(a)は、一体型直交方向せん断力検知部41の構成を示す平面図であり、図7(b)は、一体型直交方向せん断力検知部41の構成を示す断面図である。
一体型直交方向せん断力検知部41は、第3下部電極4aと第3上部電極4bが対向配置され、せん断力感知層4Aを挟み込んで構成されており、絶縁層7に被覆されている。
図8(a)は、接合型直交方向せん断力検知部42の構成を示す平面図であり、図8(b)は、接合型直交方向せん断力検知部42の構成を示す底面図であり、図8(c)は、接合型直交方向せん断力検知部42の構成を示す断面図である。ここで、図8(c)では、第3下部導電膜4cと第3上部導電膜4dとが分離した状態で図示されているが、実際には第3下部導電膜4cと第3上部導電膜4dとが接触した状態で配置されている。
接合型直交方向せん断力検知部42は、第3下部電極4a及び第3下部導電膜4cと、第3上部電極4b及び第3上部導電膜4dとを有している。接合型直交方向せん断力検知部42では、第3下部導電膜4cと第3上部導電膜4dとでせん断力感知層4Aが構成されている。接合型直交方向せん断力検知部42では、第3下部導電膜4cと第3上部電極4bとが対向配置され、貼り合わせられて構成されている。
せん断力検知部4は、第3下部電極4a及び第3上部電極4bの一部が重複する電極重複領域Lap4を有している。第3下部電極4a、第3上部電極4b及びせん断力感知層4Aの位置関係は、せん断力検知部3の第2下部電極3a、第2上部電極3b及びせん断力感知層3Aと同様である。すなわち、第3下部電極4a、第3上部電極4b及びせん断力感知層4Aの位置関係は、せん断力検知部3の第2下部電極3aと第2上部電極3bとが重なった領域の中央を軸として、第2下部電極3a、第2上部電極3b及びせん断力感知層3Aを90度回転した配置と同様である。ここでは、反時計回りに90度回転したが、時計回りに90度回転しても良い。また、回転角度は、90度以外の角度でも良い。
第3下部電極4a及び第3上部電極4bの面積は、0.2mm以上3.0mm以下であることが好ましい。また、第3下部電極4a及び第3上部電極4bが重なったLap4の面積は、0.1mm以上1.5mm以下であることが好ましく、0.5mm以上1.5mm以下であることがより好ましい。さらに、電極重複領域Lap4の面積は、第3下部電極4a又は第3上部電極4bの面積の半分以上であることが好ましい。つまり、第3下部電極4a及び第3上部電極4bの面積が電極重複領域Lap4の面積の2倍以下となり、応力センサ100の小型化及び高集積化することができる。
また、第3下部電極4a及び第3上部電極4bの形状は限定されず、例えば、矩形、円形、三角形などが選択できる。
また、せん断力検知部4が接合型直交方向せん断力検知部42である場合、第3下部導電膜4cと第3上部導電膜4dとは、互いの対向面間に導電性の接着剤層を介して接合される。接着剤層の位置はこれに限られず、接合型圧力検知部22と同様の対向面間以外の位置に設けられても良い。
上述した電極重複領域Lap2、Lap3、Lap4の面積が0.1mm以上1.5mm以下である場合、十分なせん断力検出機能を発揮できるとともに、応力センサ100の微細化及び高集積化を図ることができる。また、電極重複領域Lap2、Lap3、Lap4の面積が0.5mm以上1.5mm以下である場合、せん断力の検出精度がより向上する。なお、圧力検知部2の電極重複領域Lap2とせん断力検知部3の電極重複領域Lap3の面積と直交方向せん断力検知部4の電極重複領域Lap4の面積とは異なっていても構わない。
また、圧力検知部2、せん断力検知部3、直交方向せん断力検知部4のそれぞれを形成する際、任意の位置合わせマークを用いて、互いの位置合わせをする必要がある。
<基材>
第1基材1a、第2基材1b、第3基材1c、第4基材1dは、可撓性を有するシート状の部材であることが好ましい。第1基材1a、第2基材1b、第3基材1c、第4基材1dの材料としては、例えば、ポリエステル、ナイロン(登録商標)、ポリエチレン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリアミド、ポリメチルメタクリレート、ポリプロピレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリイミド、ポリエーテルエーテルケトン、エチレン-ビニルアルコール共重合体、セロファンなどのプラスチックフィルムや、シリコーンゴムのジメチルポリシロキサン、クリーンペーパー、コート紙、カレンダー紙などの加工紙を使用することができる。
ここで、応力センサ100の生体への使用を考慮する場合、第1基材1a、第2基材1b、第3基材1c、第4基材1dの材料として、ポリ乳酸、ポリグリコール酸、ポリカプロラクトン等のポリエステル及びそれらの共重合体、アクリル樹脂、シリコーン、酢酸セルロース、酢酸プロピオン酸セルロース、酢酸酪酸セルロース等のセルロース誘導体、ポリカーボネート、シクロオレフィンコポリマー、スチレン・ブタジエン系エラストマーなどを用いてもよい。
第1基材1a、第2基材1b、第3基材1c、第4基材1dは、未延伸基材及び延伸基材のいずれであってもよい。機械的強度及び寸法安定性を考慮した場合には、一軸延伸基材及び二軸延伸基材などの延伸基材、特には二軸延伸基材を使用することが有利である。基材の厚さに制限はないが、基材として十分な強度を達成し得る厚さを有している必要がある。基材の厚さは、例えば6μm以上200μm以下の範囲内とする。また、第1基材1a、第2基材1b、第3基材1c、第4基材1dの各材料や厚さは同一である必要はない。
第1基材1a、第2基材1b、第3基材1c、第4基材1dの形状に制限はない。ただし、量産性を考慮した場合には、基材は長尺物であることが有利である。
<電極>
第1下部電極2a、第2下部電極3a、第3下部電極4a及び第1上部電極2b、第2上部電極3b、第3上部電極4bには、抵抗率が低い導電性材料を用いることができる。第1下部電極2a、第2下部電極3a、第3下部電極4a及び第1上部電極2b、第2上部電極3b、第3上部電極4bは、例えば、Au、Pt、Ag、Cu、Ni、Cr、Rh、Pd、Zn、Co、Ru、W、Os、Ir、Fe、Mn、Ge、Sn、Ga、In等の金属、あるいはITO(酸化インジウムスズ)、ZnO(酸化亜鉛)、SnO2(酸化スズ)などの導電性金属酸化物の使用が可能である。
第1下部電極2a、第2下部電極3a、第3下部電極4a及び第1上部電極2b、第2上部電極3b、第3上部電極4bの厚さは、特に限定されないが、0.01μm以上10μm以下の範囲が好ましい。
第1下部電極2a、第2下部電極3a、第3下部電極4a及び第1上部電極2b、第2上部電極3b、第3上部電極4bの形成方法は、特に限定されず、一般的な成膜方法を利用することができる。電極の製造は、例えば、印刷法の場合、インクジェット印刷法、スクリーン印刷法、オフセット印刷法、グラビアオフセット印刷法、リバースオフセット印刷法を用いることができる。また、気相堆積法の場合、真空蒸着法、スパッタリング法を用いることもできる。
<感知層>
圧力感知層2A(第1下部導電膜2c、第1上部導電膜2d)やせん断力感知層3A、4A(第2下部導電膜3c、第2上部導電膜3d及び第3下部導電膜4c、第3上部導電膜4d)を構成する導電膜材料は、第1下部電極2a、第2下部電極3a、第3下部電極4a、第1上部電極2b、第2上部電極3b、及び第3上部電極4bより抵抗率が高い材料である必要がある。
圧力感知層2A、せん断力感知層3A、4Aは、入力した応力(押圧力やせん断力)により変形することで自身の抵抗値が減少する必要があり、変形することにより抵抗率が変化する材料がより好ましい。そのような材料としては、ポリエチレンジオキシチオフェン、ポリアニリン、ポリピロールなどの導電性高分子や、グラファイトやカーボンナノチューブを用いたカーボンペーストが好適に用いられる。また、想定する応力の大きさに応じて、圧力感知層2A、せん断力感知層3A、4Aは抵抗率を選ぶべきである。想定する応力が大きい場合はカーボンなど抵抗率の低い材料を選び、想定する応力が小さい場合は抵抗率の高い導電性高分子を選ぶと良い。
圧力感知層2A、せん断力感知層3A、4Aが接合型感知層の場合、第1下部導電膜2c、第1上部導電膜2d、第2下部導電膜3c、第2上部導電膜3d、及び第3下部導電膜4c、第3上部導電膜4dに使用される材料として、任意の組み合わせが適用できるが、生産性やセンシング精度などの観点から同材料を用いることが望ましい。
圧力感知層2A、せん断力感知層3A、4Aが接合型感知層の場合、第1下部導電膜2cと第1上部導電膜2dの合計、第2下部導電膜3cと第2上部導電膜3dの合計、及び第3下部導電膜4cと第3上部導電膜4dの合計厚さが、第1下部電極2a、第1上部電極2b、第2下部電極3a、第2上部電極3b、及び第3下部電極4a、第3上部電極4bより厚く、1μm以上100μm以下であることが好ましい。
圧力感知層2A、せん断力感知層3A、4Aの形成方法としては、例えば、印刷法の場合、インクジェット印刷法、スクリーン印刷法、オフセット印刷法を用いることができる。また、気相堆積法の場合、真空蒸着法、スパッタリング法、熱化学気相堆積法、プラズマ化学気相堆積法を用いることもできる。
<絶縁層>
第1絶縁層5、第2絶縁層6及び第3絶縁層7に使用する材料は、圧力感知層2A、せん断力感知層3A、4Aより抵抗率が高い絶縁材料を用いる必要がある。このような例としては、SiO(二酸化ケイ素)、Al(酸化アルミニウム)、Si(窒化ケイ素)、BN(窒化ホウ素)などの無機酸化物や無機窒化物、ウレタン、クロロスルホン化ポリエチレン、塩素化ポリエチレンなどの有機物を使用することができる。応力を印加したとき、圧力感知層2A、せん断力感知層3A、4Aの変形を損なわず、センシング精度を向上させるため、第1絶縁層5、第2絶縁層6及び第3絶縁層7には薄くて柔らかい材料を用いることがより好ましい。
第1絶縁層5、第2絶縁層6及び第3絶縁層7に使用される材料は任意の組み合わせが可能である。生産性やセンシング精度などの観点から、第1絶縁層5、第2絶縁層6及び第3絶縁層7は互いに同材料で形成されることが望ましいが、最上層の絶縁層は応力センサ100の全体を保護する役割のため、下層の絶縁層よりも硬い材料を使うことも可能である。
第1絶縁層5、第2絶縁層6及び第3絶縁層7の厚さは第1上部電極2b、第2上部電極3b、及び第3上部電極4bより厚い必要があり、1μm以上100μm以下が好ましい。
第1絶縁層5、第2絶縁層6及び第3絶縁層7の形成方法は特に限定されず、例えば、印刷法の場合、インクジェット印刷法、スクリーン印刷法、オフセット印刷法を用いることができる。また、気相堆積法の場合、真空蒸着法、スパッタリング法、熱化学気相堆積法、プラズマ化学気相堆積法を用いることもできる。更に、塗布法の場合、ディッピング法、ロールコート法、グラビアコート法、リバースコート法、エアナイフコート法、コンマコート法、ダイコート法、スプレーコート法を利用することができる。
<接着剤>
対向する感知層の対向面に塗布して貼り合わせるための接着剤は、導電性を有し、かつ抵抗率が感知層より高い材料が好ましい。対向する感知層の周辺の基材上に塗布し貼り合わせする場合、接着剤は、抵抗率には特に要求がないが、膜厚は圧力検知部2、せん断力検知部3、4より薄いことが好ましい。
接着剤の塗布方法として、例えば、印刷法の場合、インクジェット印刷法、スクリーン印刷法、オフセット印刷法を用いることができる。
2.第2実施形態
以下、図9を参照して、第2実施形態に係るセンサシート200について詳細に説明する。図9(a)は、第2実施形態に係るセンサシート200の一構成例を示す斜視図であり、図9(b)は、センサシート200の一構成例を示す断面図である。
センサシート200は、第1実施形態に係る複数の応力センサ100(101~109のいずれ)が、共通の第1基材1a、第2基材1b、第3基材1c、第4基材1dの中の2つ、又は3つを用いて形成されている。本実施形態に係るセンサシート200は、複数の検知部(圧力検知部2及びせん断力検知部3,4)が2次元平面状に配置(配列)されており、複数の検知部が平面配置される第1基材1a、第2基材1b、第3基材1cの中の2つ、又は3つの基材が共有された構造となっている。すなわち、センサシート200では、第1基材1aと第2基材1bとの間に2つ以上の圧力検知部2が配置され、第2基材1bと第3基材1cとの間に2つ以上のせん断力検知部3が配置され、第3基材1cのせん断力検知部3形成面と反対の面に2つ以上の直交方向せん断力検知部4が配置されている。
以下の説明では、センサシート200における各検知部の厚さ方向の配置が応力センサ109と同様の配置とされている。すなわち、センサシート200のうち平面視で重複する圧力検知部2及びせん断力検知部3,4と、絶縁層7と、各検知部と重複する第1基材1a、第2基材1b及び第3基材1cの一部の領域とによって応力センサ109と同様の積層構成が形成されている場合について説明する。
ここで、圧力検知部2、せん断力検知部3及び直交方向せん断力検知部4の位置関係は限定されず、任意の順番、任意の位置関係で配置することができるが、各応力センサ209毎に各検知部が同軸に配置されることが好ましい。
また、図9では、同一平面に配置される複数の検知部が同一種類の検知部(例えば第1基材1a上に配置される複数の検知部がすべて圧力検知部2)であるセンサシート200について説明しているが、このような構成に限られず、異なる種類の検知部が混合配置されていても良い。また、第2基材1bは、各応力センサ209毎に個々に(すなわち分割されて)設けられていてもよい。
ここで、センサシート200のセンシング精度は、単位面積当たりの平面視での各検知部の数に依存する。単位面積当たりの検知部の数が多ければ多いほど、検出精度(応力分布などの検出精度)が向上する。つまり、平面視における各検知部のサイズを小さくし、検知部の密度を増やせば、検出精度が高くなる。ただし、より正確に押圧力及びせん断力を検知するため、圧力検知部2の合計面積は基材面積の4分の1以上を占め、せん断力検知部3、及び直交方向せん断力検知部4の合計面積も基材面積の4分の1以上を占めることが好ましい。また、応用先の需要に応じて各検知部のサイズと密度を調整することで、センサシート200の検出精度を調整することができる。
3.動作その他
図10は、応力センサ100、又はセンサシート200における、圧力検知部2での圧力センシング(測定方法)のイメージ図である。
圧力検知部2では、第1下部電極2a及び第1上部電極2bが圧力感知層2Aを介して積層されていると見なせる。図10(a)は応力印加体(不図示)が第1上部電極2bに接触し、第1上部電極2bを第1下部電極2a側に押圧力F1で押すときを示している。第1上部電極2bに押圧力F1を掛けると、図10(b)のように圧力感知層2Aが変形し、第1下部電極2aと第1上部電極2bとの距離が減少する。圧力検知部2は、例えば、このときの第1下部電極2aと第1上部電極2bとの間の抵抗値の変化を接触圧力として出力する。
図11は、応力センサ100、又はセンサシート200における、せん断力検知部3、あるいは直交方向せん断力検知部4でのせん断力センシング(測定方法)のイメージ図である。
図11(a)は、第2下部電極3a、第3下部電極4a及び第2上部電極3b、第3上部電極4bがせん断力感知層3A、4Aを介して積層されたせん断力検知部3、4に、上部電極(第2上部電極3b、第3上部電極4b)に対し紙面左に向かってせん断力F2を与えたときを示す。このとき、せん断力感知層3A、4Aにおける第2上部電極3b、第3上部電極4bと第2下部電極3a、第3下部電極4aとに厚さ方向で挟まれた部分を、網掛けで示した重なり部分とする。せん断力F2によって、せん断力感知層3A、4Aの変形を伴って、第2上部電極3b、第3上部電極4bに対しずれ(変位)が生じ、図11(b)に示す状態となる。このとき、図11(a)の状態と比べて第2下部電極3aと第2上部電極3b、又は第3下部電極4aと第3上部電極4bとの重なり部分のせん断力F2が掛けられた方向における幅(図11の紙面左右方向における幅)が減少することで、変形前と比べて電極間の抵抗値が増加する。せん断力検知部3、あるいは直交方向せん断力検知部4は、これらの値の変化をせん断力値として出力する。そのため、応力の負荷前後で第2下部電極3aと第2上部電極3b、又は第3下部電極4aと第3上部電極4bとの重なり部分の変化量(変形量)が大きいほどせん断力も大きい。
ここで、応力センサ100、又はセンサシート200に対し、せん断力が負荷される際に、一緒に押圧力が負荷される場合もある。この場合、不図示の制御部において、圧力検知部2に基づき検知される圧力検知分を用いて、検知したせん断力を補正することが好ましい。
但し、接合型検知部の場合、圧力感知層2Aは、第1下部導電膜2cと第1上部導電膜2dとで構成され、せん断力感知層3Aは第2下部導電膜3cと第2上部導電膜3dとで構成され、せん断力感知層4Aは第3下部導電膜4cと第3上部導電膜4dとで構成されるため、間に接合界面が存在する。応力センサの設計により、接合型検知部に応力を印加すると、前述した感知層の変形による抵抗値の変化成分以外、接合界面による抵抗値の変化成分を持たせることも可能である。ここで、一体型検知部の感知層の変形による抵抗値の変化成分を用い、各感知層の接合界面で発生する抵抗値成分を単独に抽出することが可能で、接合界面の活用が可能になる。
接合界面の活用について、抵抗値の調整による応力センサの性能向上だけでなく、他機能の付与も可能である。
本開示によれば、圧力及びせん断力が検知可能で、かつより微細化、高集積化した高精度な応力センサ100及びセンサシート200を提供することができる。
<実施例1>
実施例1の応力センサの構造は、図1(a)に示すような構造とした。
第1基材及び第4基材として、厚さ125μmのポリイミドフィルムを使用した。まず、第1基材の一方の面側に、第1下部電極、圧力感知層、第1上部電極、第1絶縁層を順次に積層し、圧力検知部を形成した。続いて、圧力検知部と同軸となるように第1絶縁層上に、第2下部電極、せん断力感知層、第2上部電極、第2絶縁層を順次に積層し、せん断力検知部を形成した。その後、圧力検知部、せん断力検知部と同軸となるように第2絶縁層上に、第3下部電極、第3下部導電膜を形成し、第4基材の一方の面側に、第3上部電極、第3上部導電膜を順次に積層した。最後に、第1基材、第4基材の印刷面の任意の場所(感知層を形成していない領域)に接着剤を塗布することで、下部せん断力感知層を構成する下部導電膜と上部せん断力感知層を構成する上部導電膜とが対向になるようにして貼り合わせし、せん断力検知部を形成した。具体的には、グラビアオフセット印刷法により、上下部電極を形成すると共に、スクリーン印刷法により、圧力感知層と絶縁層を形成した。電極には銀インキ、感知層にはカーボンの導電性インキ、絶縁層はウレタン樹脂を用いた。感知層の膜厚は10μmであった。
このとき、圧力検知部については、対向する2つの電極の中央を同じ位置に配置し、重なった領域の面積を1.0mmにした。第1下部電極の電極面積を2.0mmにした。また、せん断力検知部、直交方向せん断力検知部については、対向する2つの電極の中央がずれるように配置し、2つの電極の重なった領域の面積を1.0mmにした。
以上のようにして、実施例1の応力センサを作製した。
<実施例2>
実施例2の応力センサの構造は、図2(a)に示すような構造とした。
第1基材、第3基材、第4基材として、厚さ125μmのポリイミドフィルムを使用した。まず、第1基材の一方の面側に、第1下部電極、圧力感知層、第1上部電極、第1絶縁層を順次に積層し、圧力検知部を形成した。続いて、圧力検知部と同軸となるように第1絶縁層上に、第2下部電極、第2下部導電膜を形成し、第2基材の一方の面側に、第2上部電極、第2上部導電膜を順次に積層した。その後、圧力検知部と同軸となるように、第3基材の反対の面側に、第3下部電極、第3下部導電膜を形成し、第4基材の一方の面側に、第3上部電極、第3上部導電膜を順次に積層した。最後に、第1基材、第3基材、第4基材の印刷面の任意の場所(感知層を形成していない領域)に接着剤を塗布することで、下部せん断力感知層を構成する下部導電膜と上部せん断力感知層を構成する上部導電膜、下部せん断力感知層を構成する下部導電膜と上部せん断力感知層を構成する上部導電膜がそれぞれ対向するようにして貼り合わせし、せん断力検知部、直交方向せん断力検知部を形成した。具体的には、グラビアオフセット印刷法により、上下部電極を形成すると共に、スクリーン印刷法により、圧力感知層と絶縁層を形成した。電極には銀インキ、感知層にはカーボンの導電性インキ、絶縁層はウレタン樹脂を用いた。感知層の膜厚は10μmであった。
このとき、圧力検知部については、対向する2つの電極の中央を同じ位置に配置し、重なった領域の面積を1.0mmにした。第1下部電極の電極面積を2.0mmにした。また、せん断力検知部、直交方向せん断力検知部については、対向する2つの電極の中央がずれるように配置し、2つの電極の重なった領域の面積を1.0mmにした。
以上のようにして、実施例2の応力センサを作製した。
<実施例3>
実施例3の応力センサの構造は、図2(c)に示すような構造とした。
第1基材、第2基材、第3基材として、厚さ125μmのポリイミドフィルムを使用した。まず、その第1基材の一方の面側に、第1下部電極、第1下部導電膜を形成し、第2基材の一方の面側に、第1上部電極、第1上部導電膜を順次に積層した。続いて、第1上部電極、第1上部導電膜と同軸となるように第2基材の反対の面側に、第2下部電極、第2下部導電膜を形成し、第3基材の一方の面側に、第2上部電極、第2上部導電膜を順次に積層した。その後、第2上部電極、第2上部導電膜と同軸となるように、第3基材の反対の面側に、第3下部電極、直交方向せん断力感知層、第3上部電極、第3絶縁層を順次に積層し、せん断力検知部を形成した。最後に、第1基材、第2基材、第3基材の印刷面の任意の場所(感知層を形成していない領域)に接着剤を塗布することで、下部圧力感知層を構成する下部導電膜と上部圧力感知層を構成する上部導電膜、下部せん断力感知層を構成する下部導電膜と上部せん断力感知層を構成する上部導電膜がそれぞれ対向になるようにして貼り合わせし、圧力検知部、せん断力検知部を形成した。具体的には、グラビアオフセット印刷法により、上下部電極を形成すると共に、スクリーン印刷法により、圧力感知層と絶縁層を形成した。電極には銀インキ、感知層にはカーボンの導電性インキ、絶縁層はウレタン樹脂を用いた。感知層の膜厚は10μmであった。
このとき、圧力検知部については、対向する2つの電極の中央を同じ位置に配置し、重なった領域の面積を1.0mmにした。第1下部電極の電極面積を2.0mmにした。また、せん断力検知部、直交方向せん断力検知部については、対向する2つの電極の中央がずれるように配置し、2つの電極の重なった領域の面積を1.0mmにした。
以上のようにして、実施例3の応力センサを作製した。
<比較例1>
比較例1の応力センサの構造は、各検知部を同一平面で形成する構造とした。
基材として、厚さ125μmのポリイミドフィルムを使用した。まず、基材の一方の面側上に、第1下部電極、第2下部電極、第3下部電極を形成した。続いて、第1下部電極上に、圧力感知層と第1上部電極とを順次積層した。また、第2下部電極上に、せん断力感知層と第2上部電極とを順次積層するとともに、第3下部電極上に、直交方向せん断力感知層と第3上部電極とを順次積層した。最後に、3つの検知部を被覆するように絶縁層を積層し、圧力検知部、せん断力検知部、直交方向せん断力検知部を同一平面上に形成した。具体的には、グラビアオフセット印刷法により、上下部電極を形成すると共に、スクリーン印刷法により、圧力感知層と絶縁層を形成した。電極には銀インキ、感知層にはカーボンの導電性インキ、絶縁層はウレタン樹脂を用いた。感知層の膜厚は10μmであった。
このとき、圧力検知部については、対向する2つの電極の中央を同じ位置に配置し、重なった領域の面積を1.0mmにした。第1下部電極の電極面積を2.0mmにした。また、せん断力検知部、直交方向せん断力検知部については、対向する2つの電極の中央がずれるように配置し、2つの電極の重なった領域の面積を1.0mmにした。また、平面上の電極の重なった領域の面積は3.0mmであった。
以上のようにして、比較例1の応力センサを作製した。
<比較例2>
比較例2の応力センサの構造は、圧力検知部のみの構造とした。
基材として、厚さ125μmのポリイミドフィルムを使用した。まず、基材の一方の面側上に、第1下部電極を形成し、圧力感知層を積層した。続いて、圧力感知層の上に、第1上部電極2bを形成し、第1絶縁層を積層し、圧力検知部を形成した。具体的には、グラビアオフセット印刷法により、上下部電極を形成すると共に、スクリーン印刷法により、圧力感知層と絶縁層を形成した。電極には銀インキ、感知層にはカーボンの導電性インキ、絶縁層はウレタン樹脂を用いた。感知層の膜厚は10μmであった。
このとき、圧力検知部については、対向する2つの電極の中央を同じ位置に配置し、重なった領域の面積を1.0mmにした。第1下部電極の電極面積を2.0mmにした。
以上のようにして、比較例2の応力センサを作製した。
<比較例3>
比較例3の応力センサの構造は、一体型検知部のみの構造とした。
基材として、厚さ125μmのポリイミドフィルムを使用した。まず、基材の一方の面側に、第1下部電極、圧力感知層、第1上部電極、第1絶縁層を順次に積層し、圧力検知部を形成した。続いて、圧力検知部と同軸となるように第1絶縁層上に、第2下部電極、せん断力感知層、第2上部電極、第2絶縁層を順次に積層し、せん断力検知部を形成した。その後、圧力検知部、せん断力検知部と同軸となるように第2絶縁層上に、第3下部電極、直交方向せん断力感知層、第3上部電極、第3絶縁層を順次に積層し、直交方向せん断力検知部を形成した。具体的には、グラビアオフセット印刷法により、上下部電極を形成すると共に、スクリーン印刷法により、圧力感知層と絶縁層を形成した。電極には銀インキ、感知層にはカーボンの導電性インキ、絶縁層はウレタン樹脂を用いた。感知層の膜厚は10μmであった。
このとき、圧力検知部については、対向する2つの電極の中央を同じ位置に配置し、重なった領域の面積を1.0mmにした。第1下部電極の電極面積を2.0mmにした。また、せん断力検知部、直交方向せん断力検知部については、対向する2つの電極の中央がずれるように配置し、2つの電極の重なった領域の面積を1.0mmにした。
以上のようにして、比較例3の応力センサを作製した。
<比較例4>
比較例4の応力センサの構造は、接合型検知部のみの構造とした。
第1基材、第2基材、第3基材、第4基材として、厚さ125μmのポリイミドフィルムを使用した。まず、第1基材の一方の面側に、第1下部電極、第1下部導電膜を形成し、第2基材の一方の面側に、第1上部電極、第1上部導電膜を順次に積層した。続いて、第1上部電極、第1上部導電膜と同軸となるように第2基材の反対の面側に、第2下部電極、第2下部導電膜を形成し、第3基材の一方の面側に、第2上部電極、第2上部導電膜を順次に積層した。その後、第2上部電極、第2上部導電膜と同軸となるように、第3基材の反対の面側に、第3下部電極、第3下部導電膜を形成し、第4基材の一方の面側に、第3上部電極、第3上部導電膜を順次に積層した。次に、第1基材、第2基材、第3基材、第4基材の印刷面の任意の場所(感知層を形成していない領域)に接着剤を塗布した。最後に、下部圧力感知層を構成する第1下部導電膜と上部圧力感知層を構成する第1上部導電膜、下部せん断力感知層を構成する第2下部導電膜と上部せん断力感知層を構成する第2上部導電膜、下部せん断力感知層を構成する第3下部導電膜と上部せん断力感知層を構成する第3上部導電膜がそれぞれ対向するようにして貼り合わせした。これにより、圧力検知部、せん断力検知部、直交方向せん断力検知部を形成した。具体的には、グラビアオフセット印刷法により、上下部電極を形成すると共に、スクリーン印刷法により、圧力感知層と絶縁層を形成した。電極には銀インキ、感知層にはカーボンの導電性インキ、絶縁層はウレタン樹脂を用いた。感知層の膜厚は10μmであった。
このとき、圧力検知部については、対向する2つの電極の中央を同じ位置に配置し、重なった領域の面積を1.0mmにした。第1下部電極の電極面積を2.0mmにした。また、せん断力検知部、直交方向せん断力検知部については、対向する2つの電極の中央がずれるように配置し、2つの電極の重なった領域の面積を1.0mmにした。
以上のようにして、比較例4の応力センサを作製した。
各応力センサの構成を、表1に示す。
Figure 2023037259000002
<評価>
作製した実施例1~3と比較例1~4の各応力センサについて特性評価を実行した。
[圧力検知特性]
各実施例及び比較例の応力センサをLCRメーターにつなぎ、各感知層の下部電極と上部電極との間に5Vの交流電圧を印加した状態で、応力センサの上から指で押したときの電圧値の変化を測定し、圧力検知特性の評価を行った。
圧力検知特性の判断基準は、次の通りである。
○(良好):圧力に対し、検出した電圧値が線型的に単調増加あるいは単調減少した場合
△(概ね良好):圧力に対し、検出した電圧値は線型的ではないが、単調増加あるいは単調減少した場合
×(不良):圧力に対し、検出した電圧の変化が単調ではない場合
[せん断力検知特性]
各実施例及び比較例の応力センサをLCRメーターにつなぎ、各感知層の下部電極と上部電極との間に5Vの交流電圧を印加した状態で、応力センサの上から指でなでたときの電圧値の変化を測定し、せん断力検知特性の評価を行った。
せん断力検知特性の判断基準は、次の通りである。
○(良好):せん断力に対し、検出した電圧値が線型的に単調増加あるいは単調減少した場合
△(概ね良好):せん断力に対し、検出した電圧値は線型的ではないが、単調増加あるいは単調減少した場合
×(不良):せん断力に対し、検出した電圧の変化が単調ではない場合
[微細化]
各実施例及び比較例の応力センサの各電極の寸法を測定し、微細化について評価した。なお、応力センサの微細化は、重なり面積に依存するところが大きい。
微細化の判断基準は、次の通りである。
○(良好):応力センサの電極重なり面積が1.5mm以下の場合
△(概ね良好):応力センサの電極重なり面積が1.5mmより広く2.5mm以下の場合
×(不良):応力センサの電極面積が2.5mmより広い場合
[総合評価]
応力センサの総合評価の判断基準として、全ての評価項目が良好の場合のみ、良好:○と評価した。概ね良好の項目があり、不良の項目がない場合は概ね良好:△と評価した。不良の項目がある場合は不良:×と評価した。
評価結果を表2に示す。
Figure 2023037259000003
表2から分かるように、実施例1~3の応力センサは比較例1、2に比べ、特性が優れており、かつ微細であることが確認できた。また、実施例1~3の応力センサは、一体型検知部と接合型検知部の双方を備えているため、一体型検知部のみを備える比較例3及び接合型検知部のみを備える比較例4に比べ、圧力検知特性、せん断力検知特性及び微細性のすべてが高い特性を有するため、総合評価が良好であった。
ただし、比較例1は、圧力検知部、せん断力検知部、直交方向せん断力検知部が同一平面上に形成されており、他の実施例1、2に比べて応力(圧力又はせん断力)をかける位置によって特性に相違があり、応力検出精度が低下していた。また、比較例1の電極の重なった領域の面積は実施例1、2の電極の重なった領域の面積より大きく、微細化の点で、実施例1、2よりも劣っていた。
比較例2は、せん断力検知部及び直交方向せん断力検知部を備えないため、せん断力が検出できなかった。
1 基材
1a 第1基材
1b 第2基材
1c 第3基材
1d 第4基材
2 圧力検知部
21 一体型圧力検知部
22 接合型圧力検知部
2A 圧力感知層
2a 第1下部電極
2b 第1上部電極
2c 第1下部導電膜(下部圧力感知層)
2d 第1上部導電膜(上部圧力感知層)
3 せん断力検知部
31 一体型せん断力検知部
32 接合型せん断力検知部
3A せん断力感知層
3a 第2下部電極
3b 第2上部電極
3c 第2下部導電膜(下部せん断力感知層)
3d 第2上部導電膜(上部せん断力感知層)
4 直交方向せん断力検知部(せん断力検知部)
41 一体型直交方向せん断力検知部
42 接合型直交方向せん断力検知部
4A せん断力感知層
4a 第3下部電極
4b 第3上部電極
4c 第3下部導電膜(下部せん断力感知層)
4d 第3上部導電膜(上部せん断力感知層)
5 第1絶縁層
6 第2絶縁層
7 第3絶縁層
100~109 応力センサ
200 センサシート

Claims (10)

  1. 複数の検知部と、
    積層された複数の前記検知部間に配置された絶縁層又は基材と、
    を備え、
    前記検知部は、対向配置された2つの電極間に圧力感知層が配置されて押圧力を検知する1又は2以上の圧力検知部と、対向配置された2つの電極間にせん断力感知層が配置されてせん断力を検知する1又は2以上のせん断力検知部と、を含み、
    積層された複数の前記検知部は、1層の圧力感知層又はせん断力感知層を含む一体型検知部と、対向配置された2層の感知層が互いに接合された圧力感知層又はせん断力感知層を含む接合型検知部の2種類で構成されている
    応力センサ。
  2. 前記一体型検知部は、一体型圧力検知部及び一体型せん断力検知部の少なくとも一方であり、
    前記一体型圧力検知部は、1層で形成された前記圧力感知層を含み、
    前記一体型せん断力検知部は、1層で形成された前記せん断力感知層を含む
    請求項1に記載の応力センサ。
  3. 前記接合型検知部は、接合型圧力検知部及び接合型せん断力検知部の少なくとも一方であり、
    前記接合型圧力検知部は、前記接合型圧力検知部の厚さ方向に対向配置された第1圧力感知層と第2圧力感知層とが互いに接合された前記圧力感知層を含み、
    前記接合型せん断力検知部は、前記接合型せん断力検知部の厚さ方向に対向配置された第1せん断力感知層と第2せん断力感知層とが互いに接合された前記せん断力感知層を含む
    請求項1又は請求項2に記載の応力センサ。
  4. せん断力検知方向が互いに異なる2以上の前記せん断力検知部を備える
    請求項1~請求項3のいずれか1項に記載の応力センサ。
  5. 前記圧力検知部の前記対向配置された2つの前記電極の面積が異なり、
    2つの前記電極は、前記電極の厚さ方向からみて、2つの前記電極が重なる領域の面積が、せん断変位に対して一定に維持されると共に、2つの前記電極のうちの面積が小さい側の電極の面積と等しくなるように配置されている
    請求項1~請求項4のいずれか1項に記載の応力センサ。
  6. 前記せん断力検知部の前記対向配置された2つの前記電極の形状が異なり、
    2つの前記電極は、前記電極の厚さ方向からみて、2つの前記電極の重なる領域の面積が、検知するせん断力検知方向へのせん断変位に応じて変化し、かつ前記検知するせん断力検知方向と直交する方向のせん断変位に対して一定に維持されるように配置されている
    請求項1~請求項5のいずれか1項に記載の応力センサ。
  7. 前記電極の厚さ方向からみて、前記検知部の2つの前記電極が重なる領域の面積が、0.1mm以上1.5mm以下である
    請求項1~請求項6のいずれか1項に記載の応力センサ。
  8. 前記圧力感知層及び前記せん断力感知層の厚さが、1μm以上100μm以下である
    請求項1~請求項7のいずれか1項に記載の応力センサ。
  9. 基材の一方の面又は両面に、第1電極と、圧力感知層又はせん断力感知層となる第1導電膜と、第2電極と、絶縁層とをこの順に積層した一体型検知部、及び第3電極と、圧力感知層又はせん断力感知層となる第2導電膜とをこの順に積層した接合型検知部構成物を形成し、
    複数の前記基材を積層するとともに、前記接合型検知部構成物を形成した前記基材を積層する場合には、前記接合型検知部構成物が形成された他の前記基材と前記第2導電膜同士が対向するように積層する
    応力センサの製造方法。
  10. 複数の検知部と、
    積層された複数の前記検知部間に配置された絶縁層又は基材と、
    を備え、
    前記検知部は、対向配置された2つの電極間に圧力感知層が配置されて押圧力を検知する1又は2以上の圧力検知部と、対向配置された2つの電極間にせん断力感知層が配置されてせん断力を検知する1又は2以上のせん断力検知部と、を含み、
    積層された複数の前記検知部は、1層の圧力感知層又はせん断力感知層を含む一体型検知部と、対向配置された2層の感知層が互いに接合された圧力感知層又はせん断力感知層を含む接合型検知部の2種類で構成されており、
    複数の前記検知部は、一の前記絶縁層又は前記基材の一方の面側に2次元平面状に配置されている
    センサシート。



JP2021143901A 2021-09-03 2021-09-03 応力センサ及び応力センサの製造方法、並びにセンサシート Pending JP2023037259A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021143901A JP2023037259A (ja) 2021-09-03 2021-09-03 応力センサ及び応力センサの製造方法、並びにセンサシート

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021143901A JP2023037259A (ja) 2021-09-03 2021-09-03 応力センサ及び応力センサの製造方法、並びにセンサシート

Publications (1)

Publication Number Publication Date
JP2023037259A true JP2023037259A (ja) 2023-03-15

Family

ID=85509385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021143901A Pending JP2023037259A (ja) 2021-09-03 2021-09-03 応力センサ及び応力センサの製造方法、並びにセンサシート

Country Status (1)

Country Link
JP (1) JP2023037259A (ja)

Similar Documents

Publication Publication Date Title
EP2513764B1 (en) Touch sensitive device with multilayer electrode having improved optical and electrical performance
CN105593798B (zh) 触摸传感器
TWI491860B (zh) 壓力檢測單元及壓力檢測裝置
WO2011125389A1 (ja) 透明圧電シートをそれぞれ有するフレーム付透明圧電シート、タッチパネル、および電子装置
US20140096622A1 (en) Film laminate body for pressure sensitive fingerprint sensor
KR20130005298A (ko) 투명 압전 시트, 그것을 각각 함유하는 프레임을 구비한 투명 압전 시트, 터치 패널 및 전자 기기
JP7113146B2 (ja) 湾曲した機能フィルム構造およびその作製方法
US12107243B2 (en) Battery pack
KR102342378B1 (ko) 터치 센서
WO2019202928A1 (ja) 圧力センサ及び圧力センサの製造方法
US20240258594A1 (en) Battery pack
JP6257088B2 (ja) 静電容量式3次元センサ及びその製造方法
JP2023037259A (ja) 応力センサ及び応力センサの製造方法、並びにセンサシート
JP2022076611A (ja) 応力センサ、その製造方法、及びセンサシート
JP7186685B2 (ja) 圧力センサ
JP2021143849A (ja) 触覚センサ
WO2023214544A1 (ja) 応力センサ及び応力センサの製造方法
JP2012145407A (ja) 感圧センサ
JP2022076057A (ja) 応力センサ
JP2023165253A (ja) 応力センサおよび応力センサの製造方法
JP7532828B2 (ja) 触覚センサ及びその製造方法
JP7331557B2 (ja) 触覚センサ
CN221728817U (zh) 一种可印刷式压电薄膜传感器镂空结构
CN211696234U (zh) 复合式薄膜传感器
JP7395114B2 (ja) 押圧検出可能なメンブレンスイッチおよびその製造方法