Nothing Special   »   [go: up one dir, main page]

JP2019040948A - Stacked piezoelectric element - Google Patents

Stacked piezoelectric element Download PDF

Info

Publication number
JP2019040948A
JP2019040948A JP2017160335A JP2017160335A JP2019040948A JP 2019040948 A JP2019040948 A JP 2019040948A JP 2017160335 A JP2017160335 A JP 2017160335A JP 2017160335 A JP2017160335 A JP 2017160335A JP 2019040948 A JP2019040948 A JP 2019040948A
Authority
JP
Japan
Prior art keywords
piezoelectric element
external electrode
stress relaxation
layer
relaxation region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017160335A
Other languages
Japanese (ja)
Other versions
JP6940330B2 (en
Inventor
英和 真田
Hidekazu Sanada
英和 真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2017160335A priority Critical patent/JP6940330B2/en
Publication of JP2019040948A publication Critical patent/JP2019040948A/en
Application granted granted Critical
Publication of JP6940330B2 publication Critical patent/JP6940330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

To provide a stacked piezoelectric element in which deterioration of drive accuracy, due to significant deformation of an external electrode at a specific site caused by long term driving, is restrained.SOLUTION: A stacked piezoelectric element 1 includes a laminate 10 having an active part 13 where multiple piezoelectric layers 11 and internal electrode layers 12 are laminated, and an inactive part 14 connected with at least one end of the active part 13 in the lamination direction, a conductor layer 15 provided on the lateral face of the laminate 10 so as to extend in the lamination direction, and an external electrode 17 bonded onto the surface of the conductor layer 15 via a conductive bonding material 16, so as to extend in the lamination direction. A stress relaxation region 18, where the piezoelectric layer 11 is thicker than the central part of the active part 13 exists in the active part 13 near the boundary with the inactive part 14, and when viewing from the lateral face of the laminate 10, the external electrode 17 does not overlap the stress relaxation region 18, but overlaps the active part 13 excepting the stress relaxation region 18.SELECTED DRAWING: Figure 1

Description

本開示は、例えば圧電アクチュエータとして用いられる圧電素子に関する。   The present disclosure relates to a piezoelectric element used as, for example, a piezoelectric actuator.

積層型圧電素子として、圧電体層および内部電極層が複数積層された活性部、および該活性部の積層方向の少なくとも一端につながった不活性部を有する積層体と、該積層体の側面に前記積層方向に沿って延びて設けられ、前記内部電極層と電気的に接続された導体層と、該導体層の表面上に導電性接合材を介して接合され、前記積層方向に沿って延びて設けられた外部電極とを備えたものが知られている(例えば、特許文献1を参照)。   As a multilayer piezoelectric element, a multilayer body having an active portion in which a plurality of piezoelectric layers and internal electrode layers are stacked, an inactive portion connected to at least one end in the stacking direction of the active portion, and a side surface of the multilayer body, A conductor layer that extends along the laminating direction and is electrically connected to the internal electrode layer, and is joined to the surface of the conductor layer via a conductive bonding material, and extends along the laminating direction. One provided with an external electrode provided is known (see, for example, Patent Document 1).

特開2002−61551号公報JP 2002-61551 A

ここで、積層型圧電素子の駆動によって、活性部は伸縮するのに対し不活性部は伸縮しないことから、これらの境界に応力がかかる。そこで、活性部における不活性部との境界近傍に位置する領域に、活性部の積層方向の中央部よりも圧電体層の厚みが厚い応力緩和領域が設けられる場合がある。これにより、活性部における不活性部との境界近傍(応力緩和領域)では、活性部の積層方向の中央部よりも変位量(伸縮量)が少なくなることから、活性部と不活性部との境界にクラックが発生するのを抑制するのに寄与することができる。   Here, since the active portion expands and contracts by driving the multilayer piezoelectric element, the inactive portion does not expand and contract, and stress is applied to these boundaries. Therefore, a stress relaxation region in which the thickness of the piezoelectric layer is thicker than the central portion in the stacking direction of the active portion may be provided in a region located near the boundary between the active portion and the inactive portion. As a result, in the vicinity of the boundary between the active portion and the inactive portion (stress relaxation region), the amount of displacement (stretching amount) is smaller than the central portion in the stacking direction of the active portion. This can contribute to suppressing the occurrence of cracks at the boundary.

しかしながら、外部電極は伸縮の大きな活性部の積層方向の中央部から伸縮の小さな応力緩和領域にかけて接合されていることから、長期間の駆動によって変位量の異なる領域の境界付近に負荷がかかり、この部分で外部電極が変形してしまい、積層型圧電素子の駆動精度が低下するおそれがあった。   However, since the external electrode is joined from the central portion in the stacking direction of the active portion having a large expansion and contraction to the stress relaxation region having a small expansion and contraction, a load is applied near the boundary of the region having a different displacement amount due to long-term driving. The external electrode may be deformed at the portion, and the driving accuracy of the multilayer piezoelectric element may be lowered.

本開示は、上記事情に鑑みてなされたもので、長期間の駆動により外部電極が特定部位で変形して駆動精度が低下するのを抑制した積層型圧電素子を提供することを目的とする。   The present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a multilayer piezoelectric element that suppresses a reduction in driving accuracy due to deformation of an external electrode at a specific portion due to long-term driving.

本開示の積層型圧電素子は、圧電体層および内部電極層が複数積層された活性部、および該活性部の積層方向の少なくとも一端につながった不活性部を有する積層体と、該積層体の側面に前記積層方向に沿って延びて設けられ、前記内部電極層と電気的に接続された導体層と、該導体層の表面上に導電性接合材を介して接合され、前記積層方向に沿って延びて設けられた外部電極とを備え、前記活性部における前記不活性部との境界近傍には、前記活性部の中央部よりも圧電体層の厚みが厚くなっている応力緩和領域があり、前記外部電極は、前記積層体の側面から見て前記応力緩和領域に重なっておらず、当該応力緩和領域を除く前記活性部に重なって設けられている。   A multilayer piezoelectric element of the present disclosure includes a multilayer body having an active portion in which a plurality of piezoelectric layers and internal electrode layers are stacked, an inactive portion connected to at least one end in the stacking direction of the active portion, and the multilayer body. A conductor layer provided on a side surface along the laminating direction and electrically connected to the internal electrode layer is bonded to the surface of the conductor layer via a conductive bonding material, along the laminating direction. A stress relaxation region in which the piezoelectric layer is thicker than the central portion of the active portion in the vicinity of the boundary of the active portion with the inactive portion. The external electrode does not overlap the stress relaxation region as viewed from the side surface of the laminate, and is provided to overlap the active portion excluding the stress relaxation region.

本開示の積層型圧電素子によれば、長期間の駆動により外部電極が特定部位で変形して駆動精度が低下するのを抑制することができる。   According to the multilayer piezoelectric element of the present disclosure, it is possible to suppress a reduction in driving accuracy due to the external electrode being deformed at a specific portion by long-term driving.

本開示の積層型圧電素子の実施形態の一例を示す概略斜視図である。It is a schematic perspective view which shows an example of embodiment of the lamination type piezoelectric element of this indication. 本開示の積層型圧電素子の実施形態の他の例を示す概略斜視図である。It is a schematic perspective view which shows the other example of embodiment of the lamination type piezoelectric element of this indication. 本開示の積層型圧電素子の実施形態の他の例を示す概略斜視図である。It is a schematic perspective view which shows the other example of embodiment of the lamination type piezoelectric element of this indication. 本開示の積層型圧電素子の実施形態の他の例を示す概略斜視図である。It is a schematic perspective view which shows the other example of embodiment of the lamination type piezoelectric element of this indication. 本開示の積層型圧電素子の実施形態の他の例を示す概略斜視図である。It is a schematic perspective view which shows the other example of embodiment of the lamination type piezoelectric element of this indication. 本開示の積層型圧電素子の実施形態の他の例を示す概略斜視図である。It is a schematic perspective view which shows the other example of embodiment of the lamination type piezoelectric element of this indication.

以下、本実施形態の積層型圧電素子の例について図面を参照して説明する。   Hereinafter, an example of the multilayer piezoelectric element of the present embodiment will be described with reference to the drawings.

図1は本開示の積層型圧電素子の実施形態の一例を示す概略斜視図である。図1に示す本開示の積層型圧電素子1は、圧電体層11および内部電極層12が複数積層された活性部13、および該活性部13の積層方向の少なくとも一端につながった不活性部14を有する積層体10と、該積層体10の側面に積層方向に沿って延びて設けられ、内部電極層12と電気的に接続された導体層15と、該導体層15の表面上に導電性接合材16を介して接合され、積層方向に沿って延びて設けられた外部電極17とを備え、活性部13における不活性部14との境界近傍には、活性部13の中央部よりも圧電体層11の厚みが厚くなっている応力緩和領域18があり、外部電極17は、積層体10の側面から見て応力緩和領域18に重なっておらず、当該応力緩和領域18を除く活性部13に重なって設けられている。   FIG. 1 is a schematic perspective view illustrating an example of an embodiment of a multilayer piezoelectric element of the present disclosure. 1 includes an active portion 13 in which a plurality of piezoelectric layers 11 and internal electrode layers 12 are stacked, and an inactive portion 14 connected to at least one end of the active portion 13 in the stacking direction. A laminated body 10 having a conductive layer 15 extending along the laminating direction on the side surface of the laminated body 10 and electrically connected to the internal electrode layer 12, and conductive on the surface of the conductive layer 15. And an external electrode 17 which is joined through a joining material 16 and extends along the laminating direction. In the vicinity of the boundary between the active part 13 and the inactive part 14, the active part 13 is more piezoelectric than the central part. There is a stress relaxation region 18 in which the thickness of the body layer 11 is increased. The external electrode 17 does not overlap the stress relaxation region 18 when viewed from the side surface of the stacked body 10, and the active portion 13 excluding the stress relaxation region 18. It is provided to overlap.

積層型圧電素子1を構成する積層体10は、圧電体層11および内部電極層12が積層されてなるもので、例えば圧電体層11および内部電極層12が交互に複数積層されてなる活性部13と、活性部13の積層方向の少なくとも一端につながった圧電体層11からなる不活性部14とを有し、例えば縦0.5mm〜10mm、横0.5mm〜10mm、高さ5mm〜100mmの直方体状に形成されている。なお、図に示す例では、不活性部14は活性部13の積層方向両端に設けられている。   A laminated body 10 constituting the laminated piezoelectric element 1 is formed by laminating piezoelectric layers 11 and internal electrode layers 12. For example, an active portion in which a plurality of piezoelectric layers 11 and internal electrode layers 12 are alternately laminated. 13 and an inactive portion 14 composed of the piezoelectric layer 11 connected to at least one end in the stacking direction of the active portion 13, for example, 0.5 mm to 10 mm in length, 0.5 mm to 10 mm in width, and 5 mm to 100 mm in height. It is formed in a rectangular parallelepiped shape. In the example shown in the figure, the inactive portions 14 are provided at both ends of the active portion 13 in the stacking direction.

積層体10を構成する圧電体層11は、圧電特性を有するセラミックスで形成されたもので、このようなセラミックスとして、例えばチタン酸ジルコン酸鉛(PbZrO−PbTiO)からなるペロブスカイト型酸化物、ニオブ酸リチウム(LiNbO)、タンタル酸リチウム(LiTaO)などを用いることができる。この圧電体層11の厚みは、例えば3μm〜250μmとされる。 The piezoelectric layer 11 constituting the laminated body 10 is formed of ceramics having piezoelectric characteristics. As such ceramics, for example, a perovskite oxide made of lead zirconate titanate (PbZrO 3 -PbTiO 3 ), Lithium niobate (LiNbO 3 ), lithium tantalate (LiTaO 3 ), or the like can be used. The thickness of the piezoelectric layer 11 is, for example, 3 μm to 250 μm.

積層体10を構成する内部電極層12は、圧電体層11を形成するセラミックスと同時焼成により形成されたもので、圧電体層11と交互に積層されている。この材料として、例えば低温での焼成が可能な銀−パラジウム合金を主成分とする導体、あるいは銅、白金などを含む導体を用いることができる。図に示す例では、正極および負極(もしくはグランド極)がそれぞれ積層体10の対向する一対の側面に互い違いに導出されている。この内部電極層12の厚みは、例えば0.1μm〜5μmとされる。   The internal electrode layers 12 constituting the multilayer body 10 are formed by simultaneous firing with the ceramics forming the piezoelectric layer 11, and are alternately laminated with the piezoelectric layers 11. As this material, for example, a conductor mainly composed of a silver-palladium alloy that can be fired at a low temperature, or a conductor containing copper, platinum, or the like can be used. In the example shown in the figure, the positive electrode and the negative electrode (or the ground electrode) are alternately led to a pair of side surfaces facing each other of the laminate 10. The thickness of the internal electrode layer 12 is, for example, 0.1 μm to 5 μm.

積層体10を構成する活性部13における不活性部14との境界近傍には、活性部13の中央部よりも圧電体層11の厚みが厚くなっている応力緩和領域18がある。これにより、活性部13の積層方向の中央部よりも、活性部13における不活性部14との境界近傍(応力緩和領域18)の変位量(伸縮量)が小さくなるので、活性部13と不活性部14との境界にクラックが発生するのを抑制するのに寄与することができる。   In the vicinity of the boundary between the active portion 13 and the inactive portion 14 in the stacked body 10, there is a stress relaxation region 18 in which the piezoelectric layer 11 is thicker than the central portion of the active portion 13. As a result, the displacement (stretching amount) in the vicinity of the boundary between the active portion 13 and the inactive portion 14 (stress relaxation region 18) is smaller than the central portion of the active portion 13 in the stacking direction. This can contribute to suppressing the occurrence of cracks at the boundary with the active portion 14.

応力緩和領域18における圧電体層11の厚みは、活性部13の積層方向の中央部の厚みの例えば1.2倍〜3.0倍の厚みの範囲内で設定される。また、応力緩和領域18に
おいては、圧電体層11は積層方向の中央部側から外側にいくにつれて厚みが増していくのがよい。このとき、互いに隣接する圧電体層11の厚みの関係は、外側に位置する圧電体層11の厚みが積層方向の中央部側に位置する圧電体層11の厚みの例えば1.2倍〜2.0倍に設定されるのがよい。
The thickness of the piezoelectric layer 11 in the stress relaxation region 18 is set within the range of, for example, 1.2 times to 3.0 times the thickness of the central portion of the active portion 13 in the stacking direction. Further, in the stress relaxation region 18, it is preferable that the thickness of the piezoelectric layer 11 increases as it goes from the central side in the stacking direction to the outside. At this time, the relationship between the thicknesses of the piezoelectric layers 11 adjacent to each other is such that the thickness of the piezoelectric layer 11 located outside is 1.2 times to 2 times the thickness of the piezoelectric layer 11 located on the center side in the stacking direction. It should be set to 0 times.

積層体10の側面には、導体層15が積層方向に沿って延びて設けられ、内部電極層12と電気的に接続されている。具体的には、導体層15が積層体10の対向する一対の側面にそれぞれ設けられ、積層体10の対向する一対の側面に互い違いに導出された内部電極層12とそれぞれ電気的に接続されている。この導体層15は、例えば銀とガラスからなるペーストを塗布して焼き付けて形成されたもので、例えば5μm〜500μmの厚さとされる。なお、導体層15は当該導体層15が設けられた側面に導出された全ての内部電極層12と電気的に接続されることから、後述の外部電極17よりも長く形成される。   A conductor layer 15 is provided on the side surface of the multilayer body 10 so as to extend in the stacking direction, and is electrically connected to the internal electrode layer 12. Specifically, the conductor layers 15 are respectively provided on a pair of opposing side surfaces of the multilayer body 10, and are electrically connected to the internal electrode layers 12 that are alternately led to the pair of opposing side surfaces of the multilayer body 10. Yes. The conductor layer 15 is formed by applying and baking a paste made of, for example, silver and glass, and has a thickness of, for example, 5 μm to 500 μm. Since the conductor layer 15 is electrically connected to all the internal electrode layers 12 led out to the side surface on which the conductor layer 15 is provided, the conductor layer 15 is formed longer than the external electrode 17 described later.

導体層15の表面上には、導電性接合材16を介して外部電極17が設けられている。ここで用いられる導電性接合材16としては、例えばAg粉末やCu粉末など導電性の良好な金属粉末を含んだエポキシ樹脂やポリイミド樹脂からなる導電性接着剤が挙げられる。導電性接合材16は、例えば5μm〜500μmの厚さとされる。   An external electrode 17 is provided on the surface of the conductor layer 15 via a conductive bonding material 16. Examples of the conductive bonding material 16 used here include a conductive adhesive made of an epoxy resin or a polyimide resin containing a metal powder having good conductivity such as Ag powder or Cu powder. The conductive bonding material 16 has a thickness of 5 μm to 500 μm, for example.

また、外部電極17は、銅、鉄、ステンレス、リン青銅等の板状体からなり、例えば幅0.5mm〜10mm、厚み0.01mm〜1.0mmとされたものである。   The external electrode 17 is made of a plate-like body such as copper, iron, stainless steel, phosphor bronze, etc., and has a width of 0.5 mm to 10 mm and a thickness of 0.01 mm to 1.0 mm, for example.

そして、図1に示すように、外部電極17は、積層体10の側面から見て応力緩和領域18に重なっておらず、当該応力緩和領域18を除く活性部13に重なって設けられている。変位量の少ない応力緩和領域18を避けるように外部電極17を接合することで、外部電極17の動きがほぼ均一になり、変位量の異なる境界付近への伸縮時の応力集中により外部電極17がこの部位で大きく変形するのを抑制し、長期間にわたって駆動しても駆動精度が低下するのを抑制することができる。   As shown in FIG. 1, the external electrode 17 is provided so as not to overlap the stress relaxation region 18 as viewed from the side surface of the stacked body 10 and to overlap the active portion 13 excluding the stress relaxation region 18. By joining the external electrode 17 so as to avoid the stress relaxation region 18 with a small amount of displacement, the movement of the external electrode 17 becomes substantially uniform, and the external electrode 17 is caused by stress concentration during expansion and contraction near the boundary where the amount of displacement is different. It is possible to suppress large deformation at this portion, and it is possible to suppress a decrease in driving accuracy even when driven for a long time.

ここで、図2に示すように、外部電極17は、積層方向の端部において幅方向に延びる延出部171を有しており、積層体10の側面を正面にしてみたときに、延出部171は導体層15よりも幅方向に延びているのがよい。このとき、延出部171の導体層15よりも幅方向に延びている部分は、導体層15と導電性接合材16によって接合されていないのがよい。そして、導体層15と導電性接合材16によって接合されていない部分である延出部171の先端部に、例えばリード部材が接合されて外部回路と接続されるのがよい。   Here, as shown in FIG. 2, the external electrode 17 has an extending portion 171 that extends in the width direction at the end in the stacking direction, and extends when the side surface of the stacked body 10 is viewed from the front. The portion 171 may extend in the width direction from the conductor layer 15. At this time, the portion of the extending portion 171 that extends in the width direction from the conductor layer 15 is preferably not bonded to the conductor layer 15 by the conductive bonding material 16. Then, for example, a lead member may be bonded to the distal end portion of the extending portion 171 that is a portion not bonded by the conductive layer 15 and the conductive bonding material 16 and connected to an external circuit.

この構成により、外部電極17の積層方向の端部に延出部を有さずに、当該端部に直接リード部材が接合される構成に比べて、積層体10の伸縮により外部電極17とリード部材との接合部にかかる応力の負荷を小さくできる。また、積層方向に延びる延出部を有して当該延出部を介してリート部材が接合される構成に比べても、応力が分散されて外部電極17とリード部材との接合部にかかる応力の負荷を小さくできる。   With this configuration, the external electrode 17 and the lead are connected to each other by the expansion and contraction of the multilayer body 10 as compared with the configuration in which the lead member is directly joined to the end without having an extension at the end in the stacking direction of the external electrode 17 The load of stress applied to the joint with the member can be reduced. In addition, the stress is dispersed and the stress applied to the joint between the external electrode 17 and the lead member as compared with the configuration in which the extension member extending in the stacking direction is provided and the REIT member is joined through the extension. Can reduce the load.

特に、積層体10の側面を正面にしてみたときに、延出部171は当該側面よりも幅方向に延びて突出しているのがよい。リード部材の接合部の位置が積層体10の伸縮する活性部から遠ざかることとなり、接合部にかかる応力負荷がより小さくなって破損を抑制できる。また、突入電流による外部電極17の剥がれや積層体10への影響を抑制できるとともに、積層体10の自己発熱による接合部への熱的影響も抑制することができる。   In particular, when the side surface of the laminate 10 is viewed from the front, the extending portion 171 preferably extends and projects in the width direction from the side surface. Since the position of the joint portion of the lead member moves away from the active portion where the laminate 10 expands and contracts, the stress load applied to the joint portion becomes smaller and breakage can be suppressed. In addition, it is possible to suppress the peeling of the external electrode 17 due to the inrush current and the influence on the laminated body 10, and it is possible to suppress the thermal influence on the joint due to the self-heating of the laminated body 10.

ここで、外部電極17としては、図1および図2に示すような平板状のものに限られず、図3に示すように積層方向に沿って幅方向の両側から交互に切欠かれたスリット172
を有している金属板を採用することができる。これにより、積層体10が変位する際に追従性を持ち、積層型圧電素子1の変位量を長期間にわたって安定化させることができる。
Here, the external electrode 17 is not limited to a flat plate as shown in FIGS. 1 and 2, but as shown in FIG. 3, slits 172 cut out alternately from both sides in the width direction along the stacking direction.
The metal plate which has can be employ | adopted. Thereby, it has followability when the laminated body 10 is displaced, and the displacement amount of the laminated piezoelectric element 1 can be stabilized over a long period of time.

ここで、スリット172は、幅方向の一方側および他方側から交互に延びて、例えば幅0.05mm〜1mm、長さ0.3mm〜9.5mmに形成されたものである。幅方向の一方側から延びるスリット172と他方側から延びるスリット172とは、通常同じ長さになっている。このスリット172は、先端が平坦であってもよく丸みを帯びていてもよい。また、スリット172の先端が他の部位の幅よりも幅広に形成されていてもよく、スリット172の先端に向かって幅が次第に狭くなるテーパー状であってもよく、スリット172の先端に向かって幅が次第に広くなるテーパー状であってもよい。このように様々なバリエーションが挙げられる。なお、外部電極17としては、網目状に加工されたもの(図示せず)なども採用できる。   Here, the slits 172 extend alternately from one side and the other side in the width direction, and are formed to have a width of 0.05 mm to 1 mm and a length of 0.3 mm to 9.5 mm, for example. The slit 172 extending from one side in the width direction and the slit 172 extending from the other side are usually the same length. The slit 172 may have a flat tip or may be rounded. Further, the tip of the slit 172 may be formed wider than the width of the other part, may be tapered such that the width gradually decreases toward the tip of the slit 172, and toward the tip of the slit 172. The taper shape which a width | variety becomes gradually wide may be sufficient. In this way, there are various variations. In addition, as the external electrode 17, what was processed into mesh shape (not shown) etc. is employable.

また、図1乃至図3に示す外部電極17は、積層体10の側面から見て外部電極17が応力緩和領域18に近接するぎりぎりまでの長さとなっているが、これよりも短くてもよい。例えば、図4に示すように、活性部13が他の部位よりも破断しやすい予定破断層19を複数有しているとき、外部電極17は積層体10の側面から見て応力緩和領域18に最も近い予定破断層19と重なる位置まで設けられていれば、短くてもよい。   In addition, the external electrode 17 shown in FIGS. 1 to 3 has a length from the side surface of the multilayer body 10 until the external electrode 17 is close to the stress relaxation region 18, but may be shorter than this. . For example, as shown in FIG. 4, when the active portion 13 has a plurality of planned fracture layers 19 that are more likely to fracture than other portions, the external electrode 17 is located in the stress relaxation region 18 when viewed from the side surface of the laminate 10. It may be shorter as long as it is provided up to a position overlapping with the nearest planned fracture layer 19.

なお、積層体10の伸縮による応力で例えば内部電極層12を切断するようなクラックなど積層型圧電素子1の駆動に大きな影響が生じるのを抑制するために、あらかじめ破断しやすい箇所として複数の予定破断層19が設けられ、当該複数の予定破断層19で問題ない程度にクラックを生じさせて応力を積層体10の全体に分散するためのものである。ここで、外部電極17が積層体10の側面から見て応力緩和領域18に最も近い予定破断層19と重なる位置まで設けられていることで、予定破断層19に生じるクラックが進展して積層体10が破断してしまうのを抑制することができる。   It should be noted that, in order to suppress the occurrence of a large influence on the driving of the multilayer piezoelectric element 1 such as a crack that cuts the internal electrode layer 12 due to the stress due to the expansion and contraction of the multilayer body 10, a plurality of schedules are likely to be broken in advance. The rupture layer 19 is provided, and the plurality of planned rupture layers 19 are cracked to an extent that there is no problem, and the stress is dispersed throughout the laminate 10. Here, since the external electrode 17 is provided up to a position overlapping the planned fracture layer 19 closest to the stress relaxation region 18 when viewed from the side surface of the multilayer body 10, a crack generated in the planned fracture layer 19 progresses and the multilayer body. It can suppress that 10 breaks.

また、図5に示すように、導電性接合材16は外部電極17の積層方向に垂直な幅方向の中央部に対応する位置に積層方向に沿って設けられていてもよい。ここで、外部電極17の幅方向の中央部とは、外部電極17を幅方向で4等分したときの内側の2等分の領域のことを意味する。このような構成により、外部電極17が伸縮しやすく、積層体10の伸縮に追従しやすくなる。   Further, as shown in FIG. 5, the conductive bonding material 16 may be provided along the stacking direction at a position corresponding to the center portion in the width direction perpendicular to the stacking direction of the external electrodes 17. Here, the central portion in the width direction of the external electrode 17 means an inner halved region when the external electrode 17 is divided into four equal parts in the width direction. With such a configuration, the external electrode 17 easily expands and contracts, and easily follows the expansion and contraction of the laminate 10.

また、図6に示すように、外部電極17の積層方向に沿った方向の両端からはみ出す位置まで設けられているのがよい。導電性接合材16が外部電極17よりも長く設けられていることで、外部電極17が積層方向の端から剥がれにくくなるとともに、導体層15の保護および補強の効果も奏する。   Moreover, as shown in FIG. 6, it is good to provide to the position which protrudes from the both ends of the direction along the lamination direction of the external electrode 17. As shown in FIG. Since the conductive bonding material 16 is provided longer than the external electrode 17, the external electrode 17 is not easily peeled off from the end in the stacking direction, and the conductor layer 15 is protected and reinforced.

なお、積層型圧電素子1としては上述の実施形態に限定されるものではなく、種々の変更、各構成の組み合わせが可能である。   Note that the laminated piezoelectric element 1 is not limited to the above-described embodiment, and various modifications and combinations of the respective configurations are possible.

次に、本実施の形態の積層型圧電素子1の製造方法について説明する。   Next, a method for manufacturing the multilayer piezoelectric element 1 of the present embodiment will be described.

まず、圧電体層11となるセラミックグリーンシートを作製する。具体的には、圧電セラミックスの仮焼粉末と、アクリル系,ブチラール系等の有機高分子からなるバインダーと、可塑剤とを混合してセラミックスラリーを作製する。そして、ドクターブレード法、カレンダーロール法等のテープ成型法を用いることにより、このセラミックスラリーを用いてセラミックグリーンシートを作製する。圧電セラミックスとしては圧電特性を有するものであればよく、例えば、チタン酸ジルコン酸鉛(PbZrO−PbTiO)からなるペロブスカイト型酸化物等を用いることができる。また、可塑剤としては、フタル酸
ジブチル(DBP),フタル酸ジオクチル(DOP)等を用いることができる。
First, a ceramic green sheet to be the piezoelectric layer 11 is produced. Specifically, a ceramic slurry is prepared by mixing a calcined powder of piezoelectric ceramic, a binder made of an organic polymer such as acrylic or butyral, and a plasticizer. And a ceramic green sheet is produced using this ceramic slurry by using tape molding methods, such as a doctor blade method and a calender roll method. As the piezoelectric ceramic, any material having piezoelectric characteristics may be used. For example, a perovskite oxide made of lead zirconate titanate (PbZrO 3 —PbTiO 3 ) can be used. As the plasticizer, dibutyl phthalate (DBP), dioctyl phthalate (DOP), or the like can be used.

次に、内部電極層12となる導電性ペーストを作製する。具体的には、銀−パラジウム合金の金属粉末にバインダーおよび可塑剤を添加混合することによって導電性ペーストを作製する。この導電性ペーストを上記のセラミックグリーンシート上に、スクリーン印刷法を用いて内部電極層12のパターンで塗布する。さらに、この導電性ペーストが印刷されたセラミックグリーンシートを複数枚積層し、所定の温度で脱バインダー処理を行なった後、900℃〜1200℃の温度で焼成し、平面研削盤等を用いて所定の形状になるよう研削処理を施すことによって、交互に積層された圧電体層11および内部電極層12を備えた積層体10を作製する。   Next, a conductive paste to be the internal electrode layer 12 is produced. Specifically, a conductive paste is prepared by adding and mixing a binder and a plasticizer to a silver-palladium alloy metal powder. This conductive paste is applied on the ceramic green sheet in the pattern of the internal electrode layer 12 using a screen printing method. Furthermore, after laminating a plurality of ceramic green sheets printed with this conductive paste, and performing a binder removal treatment at a predetermined temperature, firing at a temperature of 900 ° C. to 1200 ° C., and using a surface grinder or the like The laminated body 10 including the piezoelectric body layers 11 and the internal electrode layers 12 that are alternately laminated is manufactured by performing a grinding process so as to have the shape of

このとき、積層体10は、圧電体層11および内部電極層12が交互に複数積層されてなる活性部13と、活性部13の積層方向の少なくとも一端、好ましくは両端に圧電体層11からなる不活性部14とを有するように作製される。また、積層体10を構成する活性部13における不活性部14との境界近傍には、活性部13の中央部よりも圧電体層11の厚みが厚くなっている応力緩和領域18を有するように作製される。ここで、圧電体層11の厚みを厚くするには、セラミックグリーンシートの厚みを厚くすればよい。   At this time, the multilayer body 10 includes the active portion 13 in which a plurality of piezoelectric layers 11 and internal electrode layers 12 are alternately stacked, and the piezoelectric layer 11 at least at one end in the stacking direction of the active portion 13, preferably at both ends. It is fabricated so as to have an inactive portion 14. Also, in the vicinity of the boundary between the active portion 13 and the inactive portion 14 in the active portion 13 constituting the multilayer body 10, there is a stress relaxation region 18 in which the thickness of the piezoelectric layer 11 is thicker than the central portion of the active portion 13. Produced. Here, in order to increase the thickness of the piezoelectric layer 11, the thickness of the ceramic green sheet may be increased.

なお、積層体10は、上記の製造方法によって作製されるものに限定されるものではなく、圧電体層11と内部電極層12とを複数積層してなる積層体10を作製できれば、どのような製造方法によって作製されてもよい。   The laminate 10 is not limited to the one produced by the above manufacturing method, and any laminate 10 can be produced as long as the laminate 10 formed by laminating a plurality of piezoelectric layers 11 and internal electrode layers 12 can be produced. It may be produced by a manufacturing method.

その後、銀を主成分とする導電性粒子とガラスとを混合したものに、バインダー,可塑剤および溶剤を加えて作製した銀ガラス含有導電性ペーストを、導体層15のパターンで積層体10の側面にスクリーン印刷法等によって印刷後、乾燥させた後、650〜750℃の温度で焼き付け処理を行ない、導体層15を形成する。   Thereafter, a silver glass-containing conductive paste prepared by adding a binder, a plasticizer, and a solvent to a mixture of conductive particles mainly containing silver and glass is used to form a side surface of the laminate 10 in the pattern of the conductor layer 15. After printing by a screen printing method or the like, after drying, a baking process is performed at a temperature of 650 to 750 ° C. to form the conductor layer 15.

次に、導体層15の表面上に導電性接合材16を介して外部電極17を接合する。   Next, the external electrode 17 is bonded onto the surface of the conductor layer 15 via the conductive bonding material 16.

ここで、導電性接合材16は、Ag粉末やCu粉末などの導電性の良好な金属粉末を含んだエポキシ樹脂やポリイミド樹脂からなる導電性接着剤のペーストを用い、例えばディスペンス方式により所定の厚みや幅、長さに制御して形成する。   Here, the conductive bonding material 16 uses a paste of a conductive adhesive made of an epoxy resin or a polyimide resin containing a metal powder having good conductivity such as Ag powder or Cu powder, and has a predetermined thickness by, for example, a dispensing method. It is formed by controlling the width and length.

また、外部電極17は、応力緩和領域18にかからない範囲で適宜長さを調整したものや、必要により幅方向の両側から交互に切欠かれたスリットを有しているものを用意して、導体層15の所望の位置に接合すればよい。   The external electrode 17 is prepared by adjusting the length as long as it does not reach the stress relaxation region 18, and by preparing a conductor layer having slits that are alternately cut from both sides in the width direction as necessary. What is necessary is just to join to 15 desired positions.

以上の方法により、積層型圧電素子1を作製することができる。   The multilayer piezoelectric element 1 can be produced by the above method.

1・・・積層型圧電素子
10・・・積層体
11・・・圧電体層
12・・・内部電極層
13・・・活性部
14・・・不活性部
15・・・導体層
16・・・導電性接合材
17・・・外部電極
171・・・延出部
172・・・スリット
18・・・応力緩和領域
19・・・予定破断層
DESCRIPTION OF SYMBOLS 1 ... Laminated piezoelectric element 10 ... Laminated body 11 ... Piezoelectric layer 12 ... Internal electrode layer 13 ... Active part 14 ... Inactive part 15 ... Conductor layer 16 ... Conductive bonding material 17 ... external electrode 171 ... extension 172 ... slit 18 ... stress relaxation region 19 ... expected fracture layer

Claims (7)

圧電体層および内部電極層が複数積層された活性部、および該活性部の積層方向の少なくとも一端につながった不活性部を有する積層体と、該積層体の側面に前記積層方向に沿って延びて設けられ、前記内部電極層と電気的に接続された導体層と、該導体層の表面上に導電性接合材を介して接合され、前記積層方向に沿って延びて設けられた外部電極とを備え、前記活性部における前記不活性部との境界近傍には、前記活性部の中央部よりも圧電体層の厚みが厚くなっている応力緩和領域があり、前記外部電極は、前記積層体の側面から見て前記応力緩和領域に重なっておらず、当該応力緩和領域を除く前記活性部に重なって設けられている積層型圧電素子。   A laminated body having an active part in which a plurality of piezoelectric layers and internal electrode layers are laminated, an inactive part connected to at least one end in the laminating direction of the active part, and a side surface of the laminated body extending along the laminating direction A conductive layer electrically connected to the internal electrode layer, and an external electrode bonded to the surface of the conductive layer via a conductive bonding material and extending along the laminating direction; A stress relaxation region in which the thickness of the piezoelectric layer is thicker than the central portion of the active portion, in the vicinity of the boundary between the active portion and the inactive portion; A laminated piezoelectric element that does not overlap the stress relaxation region as viewed from the side of the substrate but is overlapped with the active portion excluding the stress relaxation region. 前記外部電極は、前記積層方向に沿って幅方向の両側から交互に切欠かれたスリットを有している請求項1に記載の積層型圧電素子。   The multilayer piezoelectric element according to claim 1, wherein the external electrode has slits that are alternately cut from both sides in the width direction along the stacking direction. 前記活性部は他の部位よりも破断しやすい予定破断層を複数有しており、前記外部電極は、前記積層体の側面から見て前記応力緩和領域に最も近い予定破断層と重なる位置まで設けられている請求項1または請求項2に記載の積層型圧電素子。   The active part has a plurality of planned fracture layers that are more likely to fracture than other parts, and the external electrode is provided up to a position that overlaps with the planned fracture layer closest to the stress relaxation region when viewed from the side of the laminate. The multilayer piezoelectric element according to claim 1 or 2, wherein the multilayer piezoelectric element is provided. 前記導電性接合材は、前記外部電極の前記積層方向に垂直な幅方向の中央部に対応する位置に、前記積層方向に沿って設けられている請求項1乃至請求項3のうちのいずれかに記載の積層型圧電素子。   4. The conductive bonding material according to claim 1, wherein the conductive bonding material is provided along the laminating direction at a position corresponding to a central portion in a width direction perpendicular to the laminating direction of the external electrode. The laminated piezoelectric element according to 1. 前記導電性接合材は、前記外部電極の前記積層方向に沿った方向の両端からはみ出す位置まで設けられている請求項1乃至請求項4のうちのいずれかに記載の積層型圧電素子。   5. The multilayer piezoelectric element according to claim 1, wherein the conductive bonding material is provided to a position that protrudes from both ends of the external electrode in a direction along the stacking direction. 6. 前記外部電極は積層方向の端部において幅方向に延びる延出部を有しており、前記積層体の側面を正面にしてみたときに、前記延出部は前記導体層よりも幅方向に延びている請求項1乃至請求項5のうちのいずれかに記載の積層型圧電素子。   The external electrode has an extending portion extending in the width direction at an end portion in the stacking direction, and when the side surface of the stacked body is viewed from the front, the extending portion extends in the width direction from the conductor layer. The multilayer piezoelectric element according to any one of claims 1 to 5. 前記積層体の側面を正面にしてみたときに、前記延出部は当該側面よりも幅方向に延びて突出している請求項6に記載の積層型圧電素子。
The multilayer piezoelectric element according to claim 6, wherein when the side surface of the multilayer body is viewed from the front, the extension portion extends and projects in the width direction from the side surface.
JP2017160335A 2017-08-23 2017-08-23 Laminated piezoelectric element Active JP6940330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017160335A JP6940330B2 (en) 2017-08-23 2017-08-23 Laminated piezoelectric element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017160335A JP6940330B2 (en) 2017-08-23 2017-08-23 Laminated piezoelectric element

Publications (2)

Publication Number Publication Date
JP2019040948A true JP2019040948A (en) 2019-03-14
JP6940330B2 JP6940330B2 (en) 2021-09-29

Family

ID=65725836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017160335A Active JP6940330B2 (en) 2017-08-23 2017-08-23 Laminated piezoelectric element

Country Status (1)

Country Link
JP (1) JP6940330B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114551017A (en) * 2020-11-26 2022-05-27 Tdk株式会社 Laminated chip varistor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061551A (en) * 2000-06-06 2002-02-28 Denso Corp Piezoelectric element for injector
JP2006286774A (en) * 2005-03-31 2006-10-19 Taiheiyo Cement Corp Laminated electostrictive actuator and bonded product thereof
JP2008010742A (en) * 2006-06-30 2008-01-17 Denso Corp Stacked piezoelectric element
JP2010212315A (en) * 2009-03-08 2010-09-24 Fuji Ceramics:Kk Multilayer piezoelectric ceramic element and method of manufacturing the same
JP2012134377A (en) * 2010-12-22 2012-07-12 Kyocera Corp Laminated piezoelectric element, injection device and fuel injection system having the same
WO2013115341A1 (en) * 2012-01-31 2013-08-08 京セラ株式会社 Laminated piezoelectric element, injection device provided with same, and fuel injection system
WO2014025050A1 (en) * 2012-08-10 2014-02-13 京セラ株式会社 Laminated piezoelectric element, piezoelectric actuator provided with same, injection apparatus, and fuel injection system
WO2015114866A1 (en) * 2014-01-30 2015-08-06 京セラ株式会社 Laminated piezoelectric element, and injection device and fuel-injection system containing said laminated piezoelectric element

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061551A (en) * 2000-06-06 2002-02-28 Denso Corp Piezoelectric element for injector
JP2006286774A (en) * 2005-03-31 2006-10-19 Taiheiyo Cement Corp Laminated electostrictive actuator and bonded product thereof
JP2008010742A (en) * 2006-06-30 2008-01-17 Denso Corp Stacked piezoelectric element
JP2010212315A (en) * 2009-03-08 2010-09-24 Fuji Ceramics:Kk Multilayer piezoelectric ceramic element and method of manufacturing the same
JP2012134377A (en) * 2010-12-22 2012-07-12 Kyocera Corp Laminated piezoelectric element, injection device and fuel injection system having the same
WO2013115341A1 (en) * 2012-01-31 2013-08-08 京セラ株式会社 Laminated piezoelectric element, injection device provided with same, and fuel injection system
WO2014025050A1 (en) * 2012-08-10 2014-02-13 京セラ株式会社 Laminated piezoelectric element, piezoelectric actuator provided with same, injection apparatus, and fuel injection system
US20150122908A1 (en) * 2012-08-10 2015-05-07 Kyocera Corporation Multi-layer piezoelectric element and piezoelectric actuator, injection device and fuel injection system including the same
EP2889926A1 (en) * 2012-08-10 2015-07-01 Kyocera Corporation Laminated piezoelectric element, piezoelectric actuator provided with same, injection apparatus, and fuel injection system
WO2015114866A1 (en) * 2014-01-30 2015-08-06 京セラ株式会社 Laminated piezoelectric element, and injection device and fuel-injection system containing said laminated piezoelectric element
EP3101701A1 (en) * 2014-01-30 2016-12-07 Kyocera Corporation Laminated piezoelectric element, and injection device and fuel-injection system containing said laminated piezoelectric element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114551017A (en) * 2020-11-26 2022-05-27 Tdk株式会社 Laminated chip varistor
CN114551017B (en) * 2020-11-26 2023-11-07 Tdk株式会社 Laminated sheet-like varistor

Also Published As

Publication number Publication date
JP6940330B2 (en) 2021-09-29

Similar Documents

Publication Publication Date Title
JP4358220B2 (en) Multilayer piezoelectric element
JP5087914B2 (en) Multilayer piezoelectric element
JP2002203999A (en) Laminated type piezoelectric-substance element and the manufacturing method thereof
JP6711908B2 (en) Piezoelectric actuator
JPH11112046A (en) Piezoelectric actuator and its manufacture
JP6940330B2 (en) Laminated piezoelectric element
JP2006203070A (en) Lamination piezoelectric element
JP5988366B2 (en) Multilayer piezoelectric element
JP5200331B2 (en) Multilayer piezoelectric element
JP5813235B2 (en) Multilayer piezoelectric element, piezoelectric actuator including the same, injection device, and fuel injection system
JP6809822B2 (en) Piezoelectric actuator
JP5409703B2 (en) Manufacturing method of multilayer piezoelectric actuator
JP6898167B2 (en) Laminated piezoelectric element
WO2016013265A1 (en) Laminated piezoelectric element, injection device provided with laminated piezoelectric element, and fuel injection system provided with laminated piezoelectric element
JP5561247B2 (en) Piezoelectric element
JP6082002B2 (en) Multilayer piezoelectric element
JP6809818B2 (en) Piezoelectric actuator
JP5444593B2 (en) Multilayer piezoelectric element
JP6927848B2 (en) Piezoelectric actuator
JP6809845B2 (en) Piezoelectric actuator
WO2018123354A1 (en) Piezoelectric element
JP7129478B2 (en) piezoelectric actuator
WO2024080279A1 (en) Piezoelectric element
JP2010199272A (en) Laminated piezoelectric element, method of manufacturing the same, and vibrating body
JP6818466B2 (en) Piezoelectric actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210902

R150 Certificate of patent or registration of utility model

Ref document number: 6940330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150