JP2018105853A - Gap measurement method - Google Patents
Gap measurement method Download PDFInfo
- Publication number
- JP2018105853A JP2018105853A JP2017235810A JP2017235810A JP2018105853A JP 2018105853 A JP2018105853 A JP 2018105853A JP 2017235810 A JP2017235810 A JP 2017235810A JP 2017235810 A JP2017235810 A JP 2017235810A JP 2018105853 A JP2018105853 A JP 2018105853A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- light
- mask plate
- measurement
- gap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000691 measurement method Methods 0.000 title claims abstract description 10
- 239000000758 substrate Substances 0.000 claims abstract description 115
- 238000005259 measurement Methods 0.000 claims abstract description 86
- 238000006073 displacement reaction Methods 0.000 claims abstract description 11
- 230000001678 irradiating effect Effects 0.000 claims abstract description 3
- 238000000034 method Methods 0.000 claims description 23
- 230000000149 penetrating effect Effects 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 5
- 230000003595 spectral effect Effects 0.000 claims description 3
- 230000003287 optical effect Effects 0.000 claims 2
- 239000010408 film Substances 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000003384 imaging method Methods 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000001771 vacuum deposition Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910001374 Invar Inorganic materials 0.000 description 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/10—Measuring as part of the manufacturing process
- H01L22/12—Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/04—Coating on selected surface areas, e.g. using masks
- C23C14/042—Coating on selected surface areas, e.g. using masks using masks
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/54—Controlling or regulating the coating process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L22/00—Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
- H01L22/20—Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
- H01L22/26—Acting in response to an ongoing measurement without interruption of processing, e.g. endpoint detection, in-situ thickness measurement
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/70—Testing, e.g. accelerated lifetime tests
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Physical Vapour Deposition (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
本発明は、ギャップ計測方法に関し、より詳しくは、基板の一方の面に、板厚方向に貫通する透孔を備えて基板への処理範囲を規定するマスクプレートを近接配置(密着させるものを含む)させたとき、基板とマスクプレートとの間のギャップを計測するためのものに関する。 The present invention relates to a gap measurement method, and more specifically, includes a mask plate that has a through-hole penetrating in the thickness direction on one surface of a substrate to closely arrange (adhere) a mask plate that defines a processing range to the substrate. ) For measuring the gap between the substrate and the mask plate.
例えば、有機ELデバイスを製造する方法の一つとして真空蒸着法が知られている。この真空蒸着法では、真空雰囲気の形成が可能な真空チャンバ内に、ガラス基板等の基板と、板厚方向に貫通する透孔(開口径が例えば20〜50μmのもの)を備えて蒸着(処理)範囲を規定するマスクプレートとを重ね合わせて配置し、蒸着源より蒸着物質を昇華または気化させ、この昇華または気化した蒸着物質をマスクプレート越しに基板の一方の面(即ち、成膜面)に付着、堆積させることで、各種の薄膜が所定のパターンで成膜される(例えば、特許文献1参照)。この場合、製品歩留まりを考慮して、マスクプレートの下方に蒸着源を配置し、所謂デポアップ式で成膜することが通常である。このとき、所謂マスクボケを可及的に抑制しつつ所定のパターンで成膜するには、真空蒸着による成膜時、基板の一方の面にマスクプレートを近接配置、より好ましくは、基板とマスクプレートとをその全面に亘って密着させることが好ましい。 For example, a vacuum deposition method is known as one of methods for manufacturing an organic EL device. In this vacuum deposition method, a vacuum chamber capable of forming a vacuum atmosphere is provided with a substrate such as a glass substrate and a through-hole (having an opening diameter of, for example, 20 to 50 μm) penetrating in the thickness direction (processed). ) A mask plate that defines the range is placed on top of each other, and the vapor deposition material is sublimated or vaporized from the vapor deposition source, and this sublimated or vaporized vapor deposition material passes through the mask plate on one side of the substrate (ie, the film formation surface). Various thin films are formed in a predetermined pattern by adhering and depositing on (see, for example, Patent Document 1). In this case, in consideration of the product yield, it is usual to form a film by a so-called deposition method by disposing an evaporation source below the mask plate. At this time, in order to form a film with a predetermined pattern while suppressing so-called mask blur as much as possible, at the time of film formation by vacuum vapor deposition, a mask plate is disposed close to one surface of the substrate, more preferably, the substrate and the mask plate Are preferably adhered over the entire surface.
このことから、マスクプレートから基板に向かう方向を上として、基板とマスクプレートとを上下方向で位置合わせして重ね、基板上にタッチプレートを介して保持手段を配置することで当該基板を挟み込むようにしてタッチプレートにマスクプレートを保持させることが一般に知られている。保持手段としては、複数個の磁石を列設してなる磁石アレイが用いられている。ここで、近年、処理すべき基板が大型化しており、これに伴い、マスクプレート自体も大型すると共に(例えば、1500mm×1800mm)、マスクプレートの各透孔を通過して基板に成膜される膜が断面略矩形の輪郭を持つように高精度に成膜するために、マスクプレートとしては数十μm〜数百μmの板厚である箔状のものが用いられるようになっている。この場合、保持手段で基板を挟み込むようにしてタッチプレートにマスクプレートを保持させたとしても、例えばマスクプレートの自重による撓みやマスクプレート面内における磁石アレイの磁場強度の相違により、マスクプレートと基板との間にギャップが局所的に生じる場合がある。この場合、マスクプレートと基板との間のギャップによっては、マスクボケが発生して製品歩留まりを低下させてしまう。 For this reason, the substrate and the mask plate are aligned and stacked in the vertical direction with the direction from the mask plate to the substrate facing upward, and the holding means is disposed on the substrate via the touch plate so as to sandwich the substrate. It is generally known that the mask plate is held on the touch plate. As the holding means, a magnet array in which a plurality of magnets are arranged in line is used. Here, in recent years, the substrate to be processed has been increased in size, and accordingly, the mask plate itself is also increased in size (for example, 1500 mm × 1800 mm), and is formed on the substrate through each through hole of the mask plate. In order to form a film with high accuracy so that the film has a substantially rectangular outline, a foil plate having a thickness of several tens to several hundreds of μm is used as the mask plate. In this case, even if the mask plate is held by the touch plate so that the substrate is sandwiched by the holding means, the mask plate and the substrate are caused by, for example, the bending due to the weight of the mask plate or the difference in the magnetic field strength of the magnet array in the mask plate surface. There may be a local gap between In this case, depending on the gap between the mask plate and the substrate, mask blur occurs and the product yield is reduced.
そこで、従来では、保持手段で基板を挟み込むようにしてタッチプレートにマスクプレートを保持させた状態で真空チャンバ内に搬送して成膜し、成膜後の基板を実際に評価することで、ギャップが発生している位置を特定していた。然し、このような方法では、ギャップの特定に多大な時間とコストが必要となる。このため、成膜後の基板を評価することなしに、マスクプレートと基板との間のギャップを計測する方法の開発が望まれていた。 Therefore, conventionally, the substrate is held by the holding means and the mask plate is held by the touch plate, and the film is transferred to the vacuum chamber and formed into a film. The position where has occurred was specified. However, such a method requires a great amount of time and cost to identify the gap. Therefore, it has been desired to develop a method for measuring the gap between the mask plate and the substrate without evaluating the substrate after film formation.
本発明は、以上の点に鑑み、保持手段で基板を挟み込むようにしてタッチプレートにマスクプレートを保持させた後、マスクプレートと基板との間のギャップを計測することができるギャップ計測方法を提供することをその課題とする。 In view of the above points, the present invention provides a gap measuring method capable of measuring a gap between a mask plate and a substrate after the mask plate is held on the touch plate so as to sandwich the substrate with holding means. The task is to do.
上記課題を解決するために、基板の一方の面に、板厚方向に貫通する透孔を備えて基板への処理範囲を規定するマスクプレートを近接配置させたとき、基板とマスクプレートとの間のギャップを計測するための本発明のギャップ計測方法は、マスクプレートから基板に向かう方向を上として、基板とマスクプレートとを上下方向で位置合わせして重ね、基板上にタッチプレートを介して保持手段を配置することで当該基板を挟み込むようにしてタッチプレートにマスクプレートを保持させた計測対象物を準備する工程と、基板の一方の面内で互いに直交する2方向をX軸方向及びY軸方向とし、投光素子と受光素子とを有する計測部を計測対象物の下方に離隔配置する工程と、投光素子からの光が基板下面で反射する位置を起点位置とし、この起点位置から計測部を計測対象物に対してX軸方向及びY軸方向の少なくとも一方向に相対的に走査し、投光素子からの光がマスクプレートで反射する計測位置にて投光素子から光を照射して受光素子でその反射光を受光することで、計測部に対するマスクプレートの変位量に応じた走査データを取得する工程と、走査データとマスクプレートの板厚とから、基板とマスクプレートとの間のギャップを計測する工程を含むことを特徴とする。 In order to solve the above problem, when a mask plate that has a through-hole penetrating in the thickness direction on one surface of the substrate and defines a processing range to the substrate is disposed close to the substrate, the space between the substrate and the mask plate The gap measuring method of the present invention for measuring the gap of the substrate is arranged by aligning the substrate and the mask plate in the vertical direction with the direction from the mask plate to the substrate facing up, and holding the substrate on the substrate via the touch plate A step of preparing a measurement object in which a mask plate is held on a touch plate so as to sandwich the substrate by arranging means, and two directions orthogonal to each other in one surface of the substrate are defined as an X-axis direction and a Y-axis. A measurement unit having a light projecting element and a light receiving element, and a position where light from the light projecting element is reflected from the lower surface of the substrate as a starting position. From the starting position, the measurement unit is scanned relative to the measurement object in at least one direction of the X axis direction and the Y axis direction, and the light from the light projecting element is reflected from the mask plate at the measurement position. The substrate and the mask are obtained from the step of acquiring the scanning data corresponding to the displacement amount of the mask plate with respect to the measurement unit by irradiating the light and receiving the reflected light by the light receiving element, and the thickness of the scanning data and the mask plate. The method includes measuring a gap between the plate and the plate.
本発明によれば、起点位置において投光素子からの光を基板下面の所定位置に対して照射し、この下面からの反射光を受光素子で受光し、これを基準とする。次に、例えば、投光素子から照射される光のスポット径を走査ピッチとして、この走査ピッチで起点位置から計測部を相対的に間欠走査し、投光素子から光を照射していくと、マスクプレート下面で反射するもの、マスクプレートの透孔の内面で反射するものや基板下面で再度反射するものが順次繰り返して受光素子で受光され、計測部に対するマスクプレートの変位量に応じた矩形波状の走査データが取得できる。そして、例えば、マスクプレートに撓みが生じているような場合には、マスクプレート下面で反射する各計測位置でのピーク値とマスクプレートの板厚とから、基板とマスクプレートとの間のギャップを計測することができる。このように本発明では、成膜後の基板を評価することなしに、基板面内において基板とマスクプレートとの間のギャップを効率よく計測することができる。本発明のギャップ計測方法は、大気中だけでなく、真空雰囲気でも実施することができ、例えば、大気圧下の基板を真空チャンバ内に搬送するために、この真空チャンバにゲートバルブを介して連設されるロードロックチャンバにて行い、真空雰囲気中で計測後のものを搬送してそのまま成膜を行うことができる。なお、本発明において、「近接配置」といった場合、基板とマスクプレートとをその全面に亘って密着させている場合を含む概念である。 According to the present invention, the light from the light projecting element is irradiated to a predetermined position on the lower surface of the substrate at the starting position, and the reflected light from the lower surface is received by the light receiving element, which is used as a reference. Next, for example, when the spot diameter of light emitted from the light projecting element is set as a scanning pitch, the measurement unit is relatively intermittently scanned from the starting position at this scanning pitch, and light is emitted from the light projecting element. A rectangular wave shape corresponding to the amount of displacement of the mask plate with respect to the measurement unit, which is reflected on the mask plate bottom surface, one reflected on the inner surface of the through hole of the mask plate, and one reflected again on the bottom surface of the substrate is sequentially received by the light receiving element. Can be obtained. For example, when the mask plate is bent, the gap between the substrate and the mask plate is determined from the peak value at each measurement position reflected on the lower surface of the mask plate and the plate thickness of the mask plate. It can be measured. As described above, in the present invention, the gap between the substrate and the mask plate can be efficiently measured within the substrate surface without evaluating the substrate after film formation. The gap measurement method of the present invention can be performed not only in the air but also in a vacuum atmosphere. For example, in order to transport a substrate under atmospheric pressure into the vacuum chamber, the gap measurement method is connected to the vacuum chamber via a gate valve. It is possible to carry out the film formation as it is by transporting the measured material in a vacuum atmosphere. In the present invention, “proximity arrangement” is a concept including the case where the substrate and the mask plate are in close contact over the entire surface.
ところで、マスクプレートに設けられる透孔の中には、例えば成膜レートの向上等の目的でマスクプレートの各透孔が下方向に向けて末拡がり内面を持つようにしたものがある。このような透孔をマスクプレートにエッチング等により形成すると、各透孔の末拡がり内面が歪んでいる場合があり、これに起因して、基板とマスクプレートとの間に、測定誤差に起因する見かけ上のギャップが生じることがある。そこで、本発明では、前記計測位置に、透孔の下面内縁部で反射する光(つまり、透孔のエッジでの反射光)を受光するものを含むことが可能な方式である。これにより、当該計測位置でのピーク値とマスクプレートと板厚とが一致すれば、基板とマスクプレートとの間のギャップは生じていないと判断でき、矩形波のピーク値とマスクプレートの板厚との間に差があれば、この差が基板とマスクプレートとの間のギャップとして計測することができる。この場合、より正確な計測を行うには、投光素子から基板に対して垂直に光を照射することが好ましいため、投光素子からの光が基板下面で反射する位置を起点位置とし、この起点位置から計測部を計測対象物に対してX軸方向及びY軸方向の少なくとも一方向に相対的に走査し、投光素子からの光が基板下面で反射する複数の位置にて受光素子でその反射光を受光し、XY平面に対する基板の傾きを計測する工程と、投光素子からの光が基板に対して直角に入射するように、計測した基板の傾きに応じて計測部を傾動させる工程とを更に含む構成を採用してもよい。なお、本発明においては、前記計測部は、広帯域レーザーを使用して分光干渉法により前記変位量を計測することが好ましい。 By the way, among the through holes provided in the mask plate, for example, each through hole of the mask plate has an inner surface that extends downwardly for the purpose of improving the film formation rate. When such a through hole is formed in the mask plate by etching or the like, the end-spreading inner surface of each through hole may be distorted, resulting in a measurement error between the substrate and the mask plate. Apparent gaps can occur. Therefore, in the present invention, the measurement position can include a light receiving light reflected from the inner edge of the bottom surface of the through hole (that is, a light reflected from the edge of the through hole). As a result, if the peak value at the measurement position matches the mask plate and the plate thickness, it can be determined that there is no gap between the substrate and the mask plate, and the peak value of the rectangular wave and the plate thickness of the mask plate can be determined. This difference can be measured as a gap between the substrate and the mask plate. In this case, in order to perform more accurate measurement, it is preferable to irradiate light perpendicularly to the substrate from the light projecting element. Therefore, the position where the light from the light projecting element is reflected by the lower surface of the substrate is set as the starting position. The measurement unit is scanned relative to the measurement object in at least one of the X-axis direction and the Y-axis direction from the starting position, and the light-receiving element at a plurality of positions where the light from the light projecting element is reflected by the lower surface of the substrate. The step of receiving the reflected light and measuring the tilt of the substrate with respect to the XY plane and tilting the measuring unit according to the measured tilt of the substrate so that the light from the light projecting element is incident at a right angle to the substrate. You may employ | adopt the structure which further includes a process. In the present invention, it is preferable that the measurement unit measures the displacement amount by spectral interference using a broadband laser.
ところで、上記の如く、計測対象物に対し、例えば透孔の径より小さいスポット径のレーザー光を照射し、そのスポット径を走査ピッチとして、この走査ピッチで計測部をマスクプレートに対してその透孔を横切るように相対的に走査させて、計測部に対するマスクプレートの変位量を計測していく場合、視野角が非常に小さくなるため、マスクプレートのどの位置を実際に測定しているかを確認できず、マスクボケを招くマスクプレートと基板との間に生じたギャップを特定できない虞がある。そこで、本発明においては、前記計測部の投光素子から計測対象物に対して光を照射した領域を拡大して表示する工程を更に含むことが好ましい。 By the way, as described above, the measurement object is irradiated with laser light having a spot diameter smaller than the diameter of the through-hole, for example, and the spot diameter is set as the scanning pitch. When measuring the displacement of the mask plate relative to the measurement part by scanning relatively across the hole, the viewing angle is very small, so check which position on the mask plate is actually measured. There is a possibility that a gap generated between the mask plate and the substrate that causes mask blur cannot be specified. Therefore, in the present invention, it is preferable that the method further includes a step of enlarging and displaying a region irradiated with light from the light projecting element of the measurement unit to the measurement object.
以下、図面を参照して、基板を矩形のガラス基板とし(以下、単に基板Swとする)、基板Swの一方の面に、板厚方向に貫通する透孔Mfを備えて基板Swへの処理範囲を規定するマスクプレートMpを密着させたとき、基板SwとマスクプレートMpとの間のギャップGpを計測するための本発明のギャップ計測方法の実施形態を説明する。以下においては、マスクプレートMpから基板Swに向かう方向をZ軸方向の上として、Z軸方向に直交する基板の一方の面内で互いに直交する2方向をX軸方向及びY軸方向とする。 Hereinafter, with reference to the drawings, the substrate is a rectangular glass substrate (hereinafter simply referred to as “substrate Sw”), and one surface of the substrate Sw is provided with a through-hole Mf penetrating in the plate thickness direction to process the substrate Sw. An embodiment of the gap measuring method of the present invention for measuring the gap Gp between the substrate Sw and the mask plate Mp when the mask plate Mp defining the range is brought into close contact will be described. In the following, the direction from the mask plate Mp toward the substrate Sw is defined as the Z-axis direction, and two directions orthogonal to each other within one surface of the substrate orthogonal to the Z-axis direction are defined as the X-axis direction and the Y-axis direction.
図1を参照して、LCは、基板Swに対して真空蒸着法による成膜が実施できる真空チャンバ(図示省略)にゲートバルブ(図示省略)を介して連設された予備チャンバである。予備チャンバLCには真空ポンプ10が接続され、その内部を大気圧から所定圧力まで真空引きできるようになっている。予備チャンバLCには、本実施形態のギャップ計測方法を実施する計測装置1が設けられている。計測装置1は計測部11と計測部11をX軸方向及びY軸方向の少なくとも一方向に移動可能な移動部12とで構成されている。移動部12は、予備チャンバLCの底面にX軸方向に沿って敷設された2本のレール2,2に摺動自在に係合するスライダ(図示せず)を有する門型のフレーム3を備え、図示省略のモータにより所定のピッチでX軸方向にフレーム3が進退できるようになっている。また、フレーム3には、Y軸方向にのびる送りねじ4が設けられ、送りねじ4には支持台5の図示省略する取付部が螺合し、支持台5が図示省略のモータにより所定のピッチでY軸方向に進退できるようになっている。そして、支持台5に計測部11が設けられている。
Referring to FIG. 1, LC is a spare chamber connected to a vacuum chamber (not shown) through a gate valve (not shown) in which a film can be formed on the substrate Sw by a vacuum deposition method. A
計測部11は、投光素子6と受光素子7とを有する変位センサで構成される。この場合、投光素子6としては、半導体レーザーやファイバーヘッド等を用いることができ、受光素子7としては、CMOSやCCDを用いることができ、また、その計測方法としては、反射光をもとに三角測量の原理で計測するものや、投影したレーザーとその反射光の位相差で計測するものが利用できる。また、μmオーダーのギャップGpを効率よく計測するために、広帯域レーザーを使用して分光干渉法により変位量を計測できるものが好ましい。なお、計測部11自体は公知のものであるため、これ以上の詳細な説明は省略する。また、特に図示して説明しないが、計測装置1は、計測部11や移動部12の作動や計測処理を統括制御するコントローラを備え、コントローラが、例えば、後述の走査データを取得したり、基板SwとマスクプレートMpとの間のギャップGpを計測したりするようになっている。
The
計測部11から離隔した予備チャンバLCの上部空間には支持枠8が設けられ、支持枠8で計測対象物Moが後述のマスクプレートMpを下側にした姿勢で支持される。図2を参照して、計測対象物Moは、マスクプレートMpと基板SwとタッチプレートTpと保持手段たる磁石アレイMaとで構成される。マスクプレートMpは、常温付近で熱膨張率が小さい金属材料から選択され、例えばインバーで作製される。マスクプレートMpには、板厚方向に貫通する複数の透孔Mfが所定のパターンで開設されている。この場合、マスクプレートMpとしては、透孔Mfを通過して基板Swに成膜される膜が断面略矩形の輪郭を持ち、かつ、このような膜を高精度に成膜するために、数十μm〜数百μmの板厚である箔状のものが用いられ、マスクプレートMpより板厚の厚い支持枠8で保持されるようになっている。また、透孔Mfの内面は、成膜レートを向上させる目的で、下方に向けて末広がりなすり鉢状に開設されている(図3参照)。この場合、マスクプレートMpの上面での透孔Mfの輪郭は、円形や長円等、成膜しようとするパターンに応じて適宜設定される。なお、このような透孔Mfを開設すると、各透孔Mfの末拡がり内面が歪んでいる場合があり、これに起因して、基板SwとマスクプレートMpとの間に、測定誤差に起因する見かけ上のギャップが生じることがある。
A
タッチプレートTpは、透磁率が小さい金属材料でから選択され、例えば、オーステナイト系ステンレスが用いられる。この場合、基板Swが密着するタッチプレートTpの下面は、所定の平坦度を有するように加工され、タッチプレートTpに基板Swがその全面に亘って密着したとき、基板Swを平坦に保持する役割を果たすようにしている。磁石アレイMaは、板状のヨークYoと、ヨークYoの下面に、同一形状かつ同種のY軸方向に長手の棒状磁石BmをX軸方向に間隔を存してかつ下側の磁極を交互に変えて列設して構成されている。以下に、本実施形態のギャップ計測方法を具体的に説明する。 The touch plate Tp is selected from a metal material having a low magnetic permeability, and for example, austenitic stainless steel is used. In this case, the lower surface of the touch plate Tp with which the substrate Sw is in close contact is processed to have a predetermined flatness, and when the substrate Sw is in close contact with the entire surface of the touch plate Tp, the substrate Sw is held flat. To fulfill. The magnet array Ma has a plate-like yoke Yo and a bar magnet Bm having the same shape and the same kind of longitudinally long Y-axis on the lower surface of the yoke Yo, with the lower magnetic poles alternately spaced in the X-axis direction. They are arranged in line. Below, the gap measuring method of this embodiment is demonstrated concretely.
先ず、予備チャンバLC内で計測対象物Moを準備する。予備チャンバLCに設けた支持枠8上にマスクプレートMpを設置する。次に、マスクプレートMp上に位置合わせして基板Swを重ね合わせる。この場合、マスクプレートMpと基板Swとの所定位置にはアライメントマーク(図示せず)が設けられ、アライメントマークをCCDカメラ等で撮像しながら、マスクプレートMpに対する基板Swの位置が調整される。そして、基板Sw上に、その上方から下降させてタッチプレートTpを載置した後、その上方から下降させてタッチプレートTp上に磁石アレイMaを設置する。これにより、基板Swを挟み込むようにしてタッチプレートTpにマスクプレートMpが密着保持され、計測対象物Moが準備される。
First, the measurement object Mo is prepared in the preliminary chamber LC. A mask plate Mp is installed on the
次に、計測対象物Moが準備されると、投光素子6からの光が基板下面Sw1で反射する位置を起点位置とし(図3(a)中、計測部11が最左端にある位置)、この起点位置にて、投光素子6から光を基板下面Sw1の所定位置(光がマスクプレートMpの透孔Mfを通過する位置)に対して照射し、この基板下面Sw1からの反射光を受光素子7で受光し、これを基準とする。そして、移動部12により計測部11を起点位置からX軸方向及びY軸方向の少なくとも一方向に相対的に走査する。ここで、例えば、投光素子6から照射される光のスポット径を走査ピッチとし、この走査ピッチで起点位置から、図3(a)中右側に向かって計測部11を相対的に間欠走査し、投光素子6から光を照射していくと、マスクプレートMpの透孔Mfの内面で反射する光、透孔Mfの下面内縁部Mp2で反射する光(つまり、図3(a)中、透孔Mfの左側のエッジでの反射光)、マスクプレート下面Mp1で反射する光、透孔Mfの他の下面内縁部Mp2で反射する光(つまり、図3(a)中、透孔Mfの右側のエッジでの反射光)が、透孔Mfの他の下面内縁部Mp2で反射する光(つまり、透孔Mfのエッジでの反射光)が順次受光素子7で受光され、これを一周期としてこの操作が繰り返される(図3(a)参照)。これにより、計測部11に対するマスクプレートMpの変位量に応じた矩形波状の走査データ(図3(b)参照)を取得できる。マスクプレートMpに撓みが生じているような場合には、例えば、マスクプレート下面Mp1で反射する各計測位置でのピーク値とマスクプレートMpの板厚とから、基板SwとマスクプレートMpとの間のギャップGpを計測することができる。計測後、基板SwとマスクプレートMpとの間のギャップGpが全て所定の範囲である場合には、計測対象物Moを予備チャンバLCから真空チャンバ(図示省略)に搬送して所定の蒸着処理が行われる。
Next, when the measurement object Mo is prepared, a position where the light from the light projecting element 6 is reflected by the substrate lower surface Sw1 is set as a starting position (a position where the
このように本実施形態では、成膜後の基板Swを評価することなしに、基板Sw面内において基板SwとマスクプレートMpとの間のギャップGpを効率よく計測することができる。この場合、計測部11を計測対象物Moの下方に離隔配置する構成を採用したため、ギャップGpの計測時にマスクプレートMpに計測部11が接触して傷を付けるといった不具合は生じない。
As described above, in this embodiment, the gap Gp between the substrate Sw and the mask plate Mp can be efficiently measured in the surface of the substrate Sw without evaluating the substrate Sw after film formation. In this case, since the configuration in which the
以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限定されるものではなく、本発明の範囲を逸脱しない範囲で適宜変形が可能である。上記実施形態では、保持手段として磁石アレイMaを用いるものを例に説明したが、基板Swを挟み込むようにしてタッチプレートTpにマスクプレートMpを保持できるものであれば、その形態は問わない。また、上記実施形態では、計測装置1の移動部12として、フレーム3や送りねじ4を備えるものを例に説明したが、これに限定されるものではなく、計測部11が計測対象物MoからZ軸方向に一定の間隔を保持したまま、X軸方向及びY軸方向に移動できるものであれば、その形態は問わない。他方、計測部11を固定とし、計測対象物MoをX軸方向及びY軸方向に移動できるように構成することもできる。
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention. In the above-described embodiment, the example using the magnet array Ma as the holding unit has been described as an example. However, as long as the mask plate Mp can be held on the touch plate Tp so as to sandwich the substrate Sw, the form is not limited. Moreover, in the said embodiment, although the thing provided with the flame |
また、上記実施形態では、計測部11のZ軸方向の位置は変更できないが、計測部11をZ軸方向に昇降自在に構成し、計測対象物Moを所定位置に設置する場合には、下方に離れた位置に退避させ、ギャップ計測時には、計測対象物Moに近接できるように構成してもよい。更に、発光素子6や受光素子7に角度調整機構を付設し、マスクプレートMpに対する光の入射角やマスクプレートMpでの反射角を調整できるように構成することができる。計測部11の昇降機構や、角度調整機構としては、公知のものを用いることができるため、ここでは詳細な説明を省略する。
In the above embodiment, the position of the
ところで、図2及び図3(a)に示すような下方に向けて末広がりな内面を持つ透孔MfをマスクプレートMpにエッチング等により形成すると、各透孔Mfの末拡がり内面が歪んでいる場合があり、これに起因して、基板SwとマスクプレートMpとの間に、測定誤差に起因する見かけ上のギャップが生じることがある。このような場合には、計測位置として、透孔Mfの下面内縁部Mp2で反射する光を含むことで、当該計測位置でのピーク値とマスクプレートMpの板厚とが一致すれば、基板SwとマスクプレートMpとの間のギャップGpは生じていないと判断でき、矩形波のピーク値とマスクプレートMpの板厚との間に差があれば、この差を基板SwとマスクプレートMpとの間のギャップGpとして計測することができる。 By the way, when the through-holes Mf having inner surfaces that are diverging downward as shown in FIGS. 2 and 3A are formed in the mask plate Mp by etching or the like, the divergent inner surfaces of the respective through-holes Mf are distorted. As a result, an apparent gap due to a measurement error may occur between the substrate Sw and the mask plate Mp. In such a case, if the light reflected by the lower surface inner edge portion Mp2 of the through hole Mf is included as the measurement position, the substrate Sw can be obtained if the peak value at the measurement position matches the plate thickness of the mask plate Mp. If there is a difference between the peak value of the rectangular wave and the plate thickness of the mask plate Mp, this difference is calculated between the substrate Sw and the mask plate Mp. It can be measured as the gap Gp.
また、計測位置として、透孔Mfの下面内縁部Mp2で反射する光を含む場合、精度よく計測するには、投光素子6から基板Swに対して垂直に光を照射する必要がある。そこで、投光素子6からの光が基板下面Sw1で反射する位置を起点位置とし、この起点位置から計測部11を計測対象物Moに対してX軸方向及びY軸方向の少なくとも一方向に相対的に走査し、投光素子6からの光が基板下面Sw1で反射する複数の位置(少なくとも3点)にて受光素子7でその反射光を受光し、XY平面に対する基板Swの傾きを計測する。そして、計測した基板Swの傾きに応じて、公知のチルト機構等を用いて計測部11を傾動させれば、投光素子6からの光を基板Swに対して直角に入射させることができ、有利である。なお、計測部11を移動させるものとして、5軸以上の多関節式ロボットを用いることもできる。
Further, in the case where the measurement position includes light reflected by the lower surface inner edge portion Mp2 of the through hole Mf, it is necessary to irradiate light perpendicularly to the substrate Sw from the light projecting element 6 in order to accurately measure. Therefore, a position where the light from the light projecting element 6 is reflected by the substrate lower surface Sw1 is set as a starting position, and the measuring
なお、計測部11として分解能の高いものを用いる場合、計測部11とマスクプレートMpとの距離を短くする必要がある。このため、マスクプレートMpの撓み量が多い場合等には、計測部11を移動させると、計測部11がマスクプレートMpに接触する虞がある。そこで、計測部11とは別に、計測部11とマスクプレートMpとの距離を長くできる分解能の低い他の計測部を更に設け、この他の計測部により基板Swの傾きや撓みを上記と同様にして測定し、計測部11を移動させてもマスクプレートMpに接触しないことを確認して走査するようにしてもよい。
In addition, when using what has high resolution as the
ところで、上記の如く、計測対象物Moに対し、投光素子6により例えば透孔Mfの径より小さいスポット径のレーザー光を照射し、そのスポット径を走査ピッチとして、この走査ピッチで計測部11をマスクプレートMpに対してその透孔Mfを横切るように相対的に走査させて(図3(a)参照)、計測部に対するマスクプレートの変位量を計測していく場合、視野角が非常に小さくなるため、マスクプレートMpのどの部分を実際に測定しているかを確認できない虞がある(例えば、測定を開始しようとする起点位置に投光素子6からの光が正確に照射されているかを判断できない)。 By the way, as described above, the measuring object Mo is irradiated with laser light having a spot diameter smaller than the diameter of the through hole Mf, for example, by the light projecting element 6 and the spot diameter is set as the scanning pitch. Is scanned relative to the mask plate Mp so as to cross the through-hole Mf (see FIG. 3A), and the displacement of the mask plate relative to the measurement unit is measured, the viewing angle is very high. Therefore, there is a possibility that it is not possible to confirm which part of the mask plate Mp is actually measured (for example, whether the light from the light projecting element 6 is accurately irradiated to the starting position where measurement is to be started). I cannot judge).
そこで、上記実施形態の変形例にかかる計測装置1では、計測部11の投光素子6や受光素子7が設置される支持台5に、例えば、CCDカメラやマイクロスコープを備えた撮像手段20が更に設けられている。そして、撮像手段20により、投光素子6から計測対象物Moに光を照射したとき、光の照射位置を含む所定領域を撮像し、これを画像処理してディスプレイ等の表示手段(図示せず)に拡大して表示できるようにしている。この場合、計測対象物Moに対して投光素子6により光を照射した後、マスクプレートMpに対して計測部11を相対走査するのに先立って、撮像手段20により光の照射位置を含む所定領域を撮像する工程が更に設けられ、例えば、測定を開始しようとする起点位置の確認が行われる。これにより、マスクプレートMpのどの部分を実際に測定しているかを確実に把握でき、マスクボケを招くマスクプレートMpと基板Swとの間に生じたギャップGpを確実に特定できる。
Therefore, in the measuring
Gp…ギャップ、Sw…基板、Mf…透孔、Mp…マスクプレート、Tp…タッチプレート、Ma…磁石アレイ,保持手段、Mo…計測対象物、11…計測部、6…投光素子、7…受光素子、Bm…磁石。
Gp ... Gap, Sw ... Substrate, Mf ... Through hole, Mp ... Mask plate, Tp ... Touch plate, Ma ... Magnet array, holding means, Mo ... Measurement object, 11 ... Measurement unit, 6 ... Light projecting element, 7 ... Light receiving element, Bm ... magnet.
Claims (5)
マスクプレートから基板に向かう方向を上として、基板とマスクプレートとを上下方向で位置合わせして重ね、基板上にタッチプレートを介して保持手段を配置することで当該基板を挟み込むようにしてタッチプレートにマスクプレートを保持させた計測対象物を準備する工程と、
基板の一方の面内で互いに直交する2方向をX軸方向及びY軸方向とし、投光素子と受光素子とを有する計測部を計測対象物の下方に離隔配置する工程と、
投光素子からの光が基板下面で反射する位置を起点位置とし、この起点位置から計測部を計測対象物に対してX軸方向及びY軸方向の少なくとも一方向に相対的に走査し、投光素子からの光がマスクプレートで反射する計測位置にて投光素子から光を照射して受光素子でその反射光を受光することで、計測部に対するマスクプレートの変位量に応じた走査データを取得する工程と、
走査データとマスクプレートの板厚とから、基板とマスクプレートとの間のギャップを計測する工程を含むことを特徴とするギャップ計測方法。 A gap for measuring the gap between the substrate and the mask plate when a mask plate that has a through-hole penetrating in the thickness direction on one side of the substrate and that defines the processing range for the substrate is placed close to the substrate. Measuring method,
With the direction from the mask plate to the substrate facing up, the substrate and the mask plate are aligned and stacked in the vertical direction, and the holding means is arranged on the substrate via the touch plate so as to sandwich the substrate. Preparing a measurement object with a mask plate held on,
A step in which two directions orthogonal to each other in one surface of the substrate are set as an X-axis direction and a Y-axis direction, and a measuring unit having a light projecting element and a light receiving element is separately arranged below the measurement object;
The position where the light from the light projecting element is reflected from the lower surface of the substrate is set as a starting position, and the measuring unit is scanned relative to the measurement object in at least one of the X-axis direction and the Y-axis direction from this starting position. By irradiating light from the light projecting element at the measurement position where the light from the optical element is reflected by the mask plate and receiving the reflected light by the light receiving element, scanning data corresponding to the amount of displacement of the mask plate relative to the measurement unit is obtained. A process of acquiring;
A gap measuring method comprising a step of measuring a gap between a substrate and a mask plate from scanning data and a plate thickness of the mask plate.
前記計測位置に、透孔の下面内縁部で反射する光を受光するものを含むことを特徴とするギャップ計測方法。 The gap measuring method according to claim 1, wherein each through hole of the mask plate has an inner surface that is diverging downward.
The gap measurement method characterized by including what receives the light reflected in the lower surface inner edge part of a through-hole in the said measurement position.
投光素子からの光が基板下面で反射する位置を起点位置とし、この起点位置から計測部を計測対象物に対してX軸方向及びY軸方向の少なくとも一方向に相対的に走査し、投光素子からの光が基板下面で反射する複数の位置にて受光素子でその反射光を受光し、XY平面に対する基板の傾きを計測する工程と、投光素子からの光が基板に対して直角に入射するように、計測した基板の傾きに応じて計測部を傾動させる工程とを更に含むことを特徴とするギャップ計測方法。 The gap measuring method according to claim 2, wherein the light is irradiated from the light projecting element perpendicularly to the substrate.
The position where the light from the light projecting element is reflected from the lower surface of the substrate is set as a starting position, and the measuring unit is scanned relative to the measurement object in at least one of the X-axis direction and the Y-axis direction from this starting position. The light receiving element receives the reflected light at a plurality of positions where the light from the optical element reflects on the lower surface of the substrate, measures the inclination of the substrate with respect to the XY plane, and the light from the light projecting element is perpendicular to the substrate. And a step of tilting the measurement unit according to the measured tilt of the substrate so as to be incident on the gap.
The gap according to any one of claims 1 to 4, further comprising a step of enlarging and displaying a region irradiated with light from the light projecting element of the measurement unit to the measurement object. Measurement method.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170179794A KR101921983B1 (en) | 2016-12-27 | 2017-12-26 | Gap measurement method |
CN201711430447.2A CN108239744B (en) | 2016-12-27 | 2017-12-26 | Gap metering method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016252354 | 2016-12-27 | ||
JP2016252354 | 2016-12-27 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6342570B1 JP6342570B1 (en) | 2018-06-13 |
JP2018105853A true JP2018105853A (en) | 2018-07-05 |
Family
ID=62556014
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017235810A Active JP6342570B1 (en) | 2016-12-27 | 2017-12-08 | Gap measurement method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6342570B1 (en) |
KR (1) | KR101921983B1 (en) |
CN (1) | CN108239744B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020183552A1 (en) * | 2019-03-08 | 2020-09-17 | シャープ株式会社 | Deposition device and method for manufacturing display device |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10170929A (en) * | 1996-12-11 | 1998-06-26 | Hitachi Ltd | Production of liquid crystal display cell and apparatus therefor |
US20040053146A1 (en) * | 2000-07-16 | 2004-03-18 | University Of Texas System Board Of Regents, Ut System | Method of varying template dimensions to achieve alignment during imprint lithography |
JP2004095708A (en) * | 2002-08-30 | 2004-03-25 | Tokyo Electron Ltd | Liquid processing apparatus |
JP2006329729A (en) * | 2005-05-25 | 2006-12-07 | Matsushita Electric Ind Co Ltd | Measurement method for gap between substrate and mask, gap measurement means, and printer |
JP2013093278A (en) * | 2011-10-27 | 2013-05-16 | Hitachi High-Technologies Corp | Organic el device manufacturing apparatus |
JP2014222292A (en) * | 2013-05-13 | 2014-11-27 | 株式会社ブイ・テクノロジー | Exposure device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10289852A (en) * | 1997-04-14 | 1998-10-27 | Toray Ind Inc | Method for measuring clearance and device therefor and exposing method and device therefor |
JP3974319B2 (en) * | 2000-03-30 | 2007-09-12 | 株式会社東芝 | Etching method |
US7511800B2 (en) * | 2005-11-28 | 2009-03-31 | Robert Bosch Company Limited | Distance measurement device with short range optics |
KR101415386B1 (en) * | 2009-11-25 | 2014-07-04 | 엔에스케이 테쿠노로지 가부시키가이샤 | Exposure unit and method for exposing substrate |
JP5932498B2 (en) * | 2012-06-05 | 2016-06-08 | ルネサスエレクトロニクス株式会社 | Semiconductor device manufacturing method and mask |
-
2017
- 2017-12-08 JP JP2017235810A patent/JP6342570B1/en active Active
- 2017-12-26 CN CN201711430447.2A patent/CN108239744B/en active Active
- 2017-12-26 KR KR1020170179794A patent/KR101921983B1/en active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10170929A (en) * | 1996-12-11 | 1998-06-26 | Hitachi Ltd | Production of liquid crystal display cell and apparatus therefor |
US20040053146A1 (en) * | 2000-07-16 | 2004-03-18 | University Of Texas System Board Of Regents, Ut System | Method of varying template dimensions to achieve alignment during imprint lithography |
JP2004095708A (en) * | 2002-08-30 | 2004-03-25 | Tokyo Electron Ltd | Liquid processing apparatus |
JP2006329729A (en) * | 2005-05-25 | 2006-12-07 | Matsushita Electric Ind Co Ltd | Measurement method for gap between substrate and mask, gap measurement means, and printer |
JP2013093278A (en) * | 2011-10-27 | 2013-05-16 | Hitachi High-Technologies Corp | Organic el device manufacturing apparatus |
JP2014222292A (en) * | 2013-05-13 | 2014-11-27 | 株式会社ブイ・テクノロジー | Exposure device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020183552A1 (en) * | 2019-03-08 | 2020-09-17 | シャープ株式会社 | Deposition device and method for manufacturing display device |
Also Published As
Publication number | Publication date |
---|---|
KR20180076347A (en) | 2018-07-05 |
CN108239744A (en) | 2018-07-03 |
JP6342570B1 (en) | 2018-06-13 |
KR101921983B1 (en) | 2018-11-26 |
CN108239744B (en) | 2019-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5331828B2 (en) | Charged particle beam equipment | |
KR101367485B1 (en) | Method and apparatus for measuring dimensional changes in transparent substrates | |
KR101339546B1 (en) | Drawing apparatus and focus adjusting method of the drawing apparatus | |
TWI360647B (en) | Surface form measuring apparatus and stress measur | |
TWI468273B (en) | Metrology system for imaging workpiece surfaces at high robot transfer speeds | |
JP2018004378A (en) | Automated imaging device | |
JP2010231062A (en) | Drawing apparatus and drawing method | |
JP6342570B1 (en) | Gap measurement method | |
JP5096852B2 (en) | Line width measuring apparatus and inspection method of line width measuring apparatus | |
JP4434446B2 (en) | Scanning electron microscope calibration method | |
JP2019113341A (en) | Gap measurement method | |
JP6871034B2 (en) | Evaluation method and measuring device | |
US20200094482A1 (en) | Method for calibrating an apparatus for additively manufacturing three-dimensional objects | |
US8149383B2 (en) | Method for determining the systematic error in the measurement of positions of edges of structures on a substrate resulting from the substrate topology | |
TWI698953B (en) | Calibration laser printing method | |
JP2012133122A (en) | Proximity exposing device and gap measuring method therefor | |
WO2019155954A1 (en) | Laser marking apparatus | |
US9115427B2 (en) | Thin film deposition apparatus and method of forming thin film using the same | |
KR101914101B1 (en) | Apparatus and method of controlling chuck, and exposure apparatus and control method thereof | |
JP7440356B2 (en) | Alignment equipment, film forming equipment, alignment method, electronic device manufacturing method, program and storage medium | |
JP6101603B2 (en) | Stage device and charged particle beam device | |
KR20160006683A (en) | Exposure device | |
JP2007064748A (en) | Method for measuring systematic error unique to shape measuring apparatus and upright shape measuring apparatus | |
JP2005049590A (en) | Method for adjusting imaging apparatus and detection tool used in the same | |
JP2007299805A (en) | Calibration method of detected gap value |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20180330 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20180330 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20180425 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180508 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180516 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6342570 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |