Nothing Special   »   [go: up one dir, main page]

JP2017178791A - Sulfonium salt, electrolytic solution for lithium secondary battery, and lithium secondary battery therewith - Google Patents

Sulfonium salt, electrolytic solution for lithium secondary battery, and lithium secondary battery therewith Download PDF

Info

Publication number
JP2017178791A
JP2017178791A JP2016063494A JP2016063494A JP2017178791A JP 2017178791 A JP2017178791 A JP 2017178791A JP 2016063494 A JP2016063494 A JP 2016063494A JP 2016063494 A JP2016063494 A JP 2016063494A JP 2017178791 A JP2017178791 A JP 2017178791A
Authority
JP
Japan
Prior art keywords
mol
secondary battery
sulfonium salt
lithium secondary
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016063494A
Other languages
Japanese (ja)
Inventor
長谷川 智彦
Tomohiko Hasegawa
智彦 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2016063494A priority Critical patent/JP2017178791A/en
Publication of JP2017178791A publication Critical patent/JP2017178791A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sulfonium salt having low viscosity, electrolytic solution for a lithium secondary battery and a lithium secondary battery.SOLUTION: There is provided a sulfonium salt shown by a chemical formula (1).SELECTED DRAWING: None

Description

本発明は、スルホニウム塩、リチウム二次電池用電解液およびこれを用いたリチウム二次電池に関する The present invention relates to a sulfonium salt, an electrolytic solution for a lithium secondary battery, and a lithium secondary battery using the same.

室温において液体状態を取る塩はイオン液体と呼ばれ、アンモニウム塩に代表されるような窒素原子をカチオンとした構造のものが多数報告されている。しかしながら、アンモニウム塩は比較的融点、粘度が高く、室温付近で粘度の低い液体となる構造はほんの一部である。加えて、窒素原子をカチオンとしたイオン液体は、還元安定性が低く、リチウム二次電池、電気二重層キャパシター、燃料電池あるいは色素増感型太陽電池、または蓄電用デバイス向け電解質、電解液あるいは添加剤としての応用に関し大きな障害となっている。   Salts that take a liquid state at room temperature are called ionic liquids, and many salts having a structure with a nitrogen atom as a cation as typified by ammonium salts have been reported. However, ammonium salts have a relatively high melting point and high viscosity, and only a part of the structure becomes a low viscosity liquid around room temperature. In addition, ionic liquids with nitrogen atoms as cations have low reduction stability and are electrolytes, electrolytes or additives for lithium secondary batteries, electric double layer capacitors, fuel cells or dye-sensitized solar cells, or power storage devices. It is a major obstacle for its application as a drug.

広範な温度範囲で液体状態であるイオン液体としては、硫黄原子をカチオンとしたスルホニウム塩が知られている。(特許文献1参照)   As an ionic liquid in a liquid state over a wide temperature range, a sulfonium salt having a sulfur atom as a cation is known. (See Patent Document 1)

特開2008−231033号公報Japanese Patent Laid-Open No. 2008-233103

しかしながら、従来のスルホニウム塩の特性は各種電気デバイスへの応用を考えた上で満足できるものではなく、特に粘度が高いという課題があった。   However, the characteristics of conventional sulfonium salts are not satisfactory in consideration of application to various electric devices, and there is a problem that the viscosity is particularly high.

本発明は上記従来技術の有する課題に鑑みてなされたものであり、粘度の低いスルホニウム塩およびリチウム二次電池用電解液、およびこれを用いたリチウム二次電池を提供することを目的とする。   This invention is made | formed in view of the subject which the said prior art has, and aims at providing the sulfonium salt with low viscosity, the electrolyte solution for lithium secondary batteries, and a lithium secondary battery using the same.

上記課題を解決するため、本発明に係るスルホニウム塩は下記化学式(1)で示されることを特徴とする。   In order to solve the above problems, the sulfonium salt according to the present invention is represented by the following chemical formula (1).

Figure 2017178791
[式中の置換基R〜Rは一価の置換基、Xは一価のアニオンを示す。(ただし、R≠R≠R、かつR≠R≠R)]
Figure 2017178791
[In the formula, substituents R 1 to R 5 represent a monovalent substituent, and X represents a monovalent anion. (However, R 1 ≠ R 2 ≠ R 3 and R A ≠ R 4 ≠ R 5 )]

これによれば、本発明に係るスルホニウム塩は、カチオン中心である硫黄原子の隣接炭素が不斉炭素であり、ジアステレオマーを形成する。スルホニウム塩のカチオン中心の結合価は3であり、アンモニウム塩やホスホニウム塩に比べて立体的に疎である。このため、カチオンとアニオン同士が接近しやすく、系全体が長周期的な秩序を形成し、粘度が増加する。しかし、ジアステレオマーを形成することで、カチオン間の立体反発が大きくなり、上記の長周期的な秩序が乱れ、粘度が低下する。   According to this, in the sulfonium salt according to the present invention, the adjacent carbon of the sulfur atom which is the cation center is an asymmetric carbon, and forms a diastereomer. The valence of the cation center of the sulfonium salt is 3, which is sterically sparse compared to the ammonium salt and phosphonium salt. For this reason, a cation and an anion are easy to approach, the whole system forms a long-period order, and a viscosity increases. However, by forming a diastereomer, the steric repulsion between cations is increased, the long-period order is disturbed, and the viscosity is lowered.

本発明に係るスルホニウム塩は、さらに、下記化学式(2)または化学式(3)で示されることが好ましい。   The sulfonium salt according to the present invention is further preferably represented by the following chemical formula (2) or chemical formula (3).

Figure 2017178791
[式中の置換基RおよびRは一価の置換基、Xは一価のアニオンを示す]
Figure 2017178791
[In the formula, substituents R 6 and R 7 represent a monovalent substituent, and X represents a monovalent anion.]

Figure 2017178791
Figure 2017178791

これによれば、カチオンの構造としてより好ましく、粘度がより低下する。   According to this, it is more preferable as a cation structure, and the viscosity is further reduced.

本発明に係るリチウム二次電池用電解液は、上記スルホニウム塩を含むことを特徴とする。   The electrolyte solution for a lithium secondary battery according to the present invention includes the sulfonium salt.

本発明に係るリチウム二次電池は、正極と、負極と、上記正極と前記負極の間に位置するセパレータと、上記リチウム二次電池用電解液を含むことを特徴とする。   The lithium secondary battery according to the present invention includes a positive electrode, a negative electrode, a separator positioned between the positive electrode and the negative electrode, and the electrolyte solution for a lithium secondary battery.

これによれば、電解液としてスルホニウム塩を用いても、レート特性の悪化が抑制されたリチウム二次電池が提供される。   According to this, even if a sulfonium salt is used as the electrolytic solution, a lithium secondary battery in which deterioration of rate characteristics is suppressed is provided.

本発明によれば、粘度の低いスルホニウム塩、リチウム二次電池用電解液およびこれを用いたリチウム二次電池が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the sulfonium salt with low viscosity, the electrolyte solution for lithium secondary batteries, and a lithium secondary battery using the same are provided.

本実施形態のリチウムイオン二次電池の模式断面図である。It is a schematic cross section of the lithium ion secondary battery of this embodiment.

以下、図面を参照しながら本発明に係る好適な実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではない。また以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに以下に記載した構成要素は、適宜組み合わせることができる。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments according to the invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment. The constituent elements described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined.

<スルホニウム塩>
本実施形態に係るスルホニウム塩は、化学式(1)で示される。
<Sulphonium salt>
The sulfonium salt according to this embodiment is represented by the chemical formula (1).

本実施形態に係るスルホニウム塩は、カチオン中心である硫黄原子の隣接炭素が不斉炭素であり、ジアステレオマーを形成する。スルホニウム塩のカチオン中心の結合価は3であり、アンモニウム塩やホスホニウム塩に比べて立体的に疎である。このため、カチオンとアニオン同士が接近しやすく、系全体が長周期的な秩序を形成し、粘度が増加する。しかし、ジアステレオマーを形成することで、カチオン間の立体反発が大きくなり、上記の長周期的な秩序が乱れ、粘度が低下する。   In the sulfonium salt according to this embodiment, the adjacent carbon of the sulfur atom that is the cation center is an asymmetric carbon, and forms a diastereomer. The valence of the cation center of the sulfonium salt is 3, which is sterically sparse compared to the ammonium salt and phosphonium salt. For this reason, a cation and an anion are easy to approach, the whole system forms a long-period order, and a viscosity increases. However, by forming a diastereomer, the steric repulsion between cations is increased, the long-period order is disturbed, and the viscosity is lowered.

〜Rとしては特に限定は無いが、アルキル基またはフルオロアルキル基であることが好ましく、直鎖のアルキル基またはフルオロアルキル基であることがより好ましい。この場合、粘度がより低下する。 R 1 to R 5 are not particularly limited, but are preferably an alkyl group or a fluoroalkyl group, and more preferably a linear alkyl group or a fluoroalkyl group. In this case, the viscosity is further reduced.

〜Rとしては特に限定は無いが、アルキル基またはフルオロアルキル基であることが好ましく、直鎖のアルキル基またはフルオロアルキル基であることがより好ましい。この場合、炭素数は1〜3が好ましく、粘度がより低下する。 R 4 to R 5 are not particularly limited, but are preferably an alkyl group or a fluoroalkyl group, and more preferably a linear alkyl group or a fluoroalkyl group. In this case, the number of carbon atoms is preferably 1 to 3, and the viscosity is further reduced.

一価のアニオンとしては特に限定は無く、BF 、PF 、CClO 、N(SOCF 、N(SOF) 等、既知のアニオンを用いることができる。 The monovalent anion is not particularly limited, and a known anion such as BF 4 , PF 6 , CClO 4 , N (SO 2 CF 3 ) 2 or N (SO 2 F) 2 may be used. it can.

本実施形態に係るアンモニウム塩は、化学式(2)または(3)であることが好ましい。   The ammonium salt according to this embodiment is preferably represented by chemical formula (2) or (3).

これによれば、カチオンの構造としてより好ましく、粘度がより低下する。   According to this, it is more preferable as a cation structure, and the viscosity is further reduced.

およびRとしては特に限定は無いが、アルキル基またはフルオロアルキル基であることが好ましく、直鎖のアルキル基またはフルオロアルキル基であることがより好ましい。この場合、より粘度が低下する。 R 6 and R 7 are not particularly limited, but are preferably an alkyl group or a fluoroalkyl group, and more preferably a linear alkyl group or a fluoroalkyl group. In this case, the viscosity is further reduced.

およびRの炭素数は1〜3が好ましく、1〜2がより好ましい。この場合、より粘度が低下する。 The number of carbon atoms of R 6 and R 7 are 1 to 3 is preferable, 1 to 2 is more preferred. In this case, the viscosity is further reduced.

(合成方法)
本実施形態に係るスルホニウム塩の一般的な合成法は次の通りである。
(Synthesis method)
A general synthesis method of the sulfonium salt according to the present embodiment is as follows.

まず、適当なスルフィドとアルキルハライドとを混合し、必要に応じて加熱を行うことで3級スルホニウムハライドとする。なお、オートクレーブ等を用いて加圧下で反応させてもよい。得られたアンモニウムハライドを、水等の極性溶媒中に溶解し、リチウムビス(トリフルオロスルホニル)イミド等の必要とするアニオン種を発生させる試薬と反応させてアニオン交換反応を行い、所望のスルホニウム塩を得ることができる。   First, an appropriate sulfide and an alkyl halide are mixed and heated as necessary to obtain a tertiary sulfonium halide. In addition, you may make it react under pressure using an autoclave etc. The obtained ammonium halide is dissolved in a polar solvent such as water and reacted with a reagent that generates the required anion species such as lithium bis (trifluorosulfonyl) imide, and an anion exchange reaction is performed to obtain a desired sulfonium salt. Can be obtained.

<リチウムイオン二次電池>
図1に示すように、本実施形態に係るリチウムイオン二次電池100は、互いに対向する板状の負極20及び板状の正極10と、負極20と正極10との間に隣接して配置される板状のセパレータ18と、を備える積層体30と、リチウムイオンを含む電解質溶液と、これらを密閉した状態で収容するケース50と、負極20に一方の端部が電気的に接続されると共に他方の端部がケースの外部に突出されるリード62と、正極10に一方の端部が電気的に接続されると共に他方の端部がケースの外部に突出されるリード60とを備える。
<Lithium ion secondary battery>
As shown in FIG. 1, a lithium ion secondary battery 100 according to the present embodiment is disposed adjacent to each other between a plate-like negative electrode 20 and a plate-like positive electrode 10 facing each other, and the negative electrode 20 and the positive electrode 10. A plate-like separator 18, an electrolyte solution containing lithium ions, a case 50 containing these in a sealed state, and one end of the negative electrode 20 being electrically connected. A lead 62 whose other end protrudes outside the case and a lead 60 whose one end is electrically connected to the positive electrode 10 and whose other end protrudes outside the case are provided.

負極20は、負極集電体22と、負極集電体22上に形成された負極活物質層24と、を有する。また、正極10は、正極集電体12と、正極集電体12上に形成された正極活物質層14と、を有する。セパレータ18は、負極活物質層24と正極活物質層14との間に位置している。   The negative electrode 20 includes a negative electrode current collector 22 and a negative electrode active material layer 24 formed on the negative electrode current collector 22. The positive electrode 10 includes a positive electrode current collector 12 and a positive electrode active material layer 14 formed on the positive electrode current collector 12. The separator 18 is located between the negative electrode active material layer 24 and the positive electrode active material layer 14.

<正極>
(正極集電体)
正極集電体12は、導電性の板材であればよく、例えば、アルミニウム又はそれらの合金、ステンレス等の金属薄板(金属箔)を用いることができる。
<Positive electrode>
(Positive electrode current collector)
The positive electrode current collector 12 may be a conductive plate material, and for example, a metal thin plate (metal foil) such as aluminum, an alloy thereof, or stainless steel can be used.

(正極活物質層)
正極活物質層14は、正極活物質、正極用バインダー、及び、必要に応じた量の正極用導電助剤から主に構成されるものである。
(Positive electrode active material layer)
The positive electrode active material layer 14 is mainly composed of a positive electrode active material, a positive electrode binder, and a necessary amount of positive electrode conductive additive.

(正極活物質)
正極活物質としては、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、該リチウムイオンのカウンターアニオン(例えば、PF )のドープ及び脱ドープを可逆的に進行させることが可能であれば特に限定されず、公知の電極活物質を使用できる。例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、リチウムマンガンスピネル(LiMn)、及び、化学式:LiNiCoMnMaO(x+y+z+a=1、0≦x≦1、0≦y≦1、0≦z≦1、0≦a≦1、MはAl、Mg、Nb、Ti、Cu、Zn、Crより選ばれる1種類以上の元素)で表される複合金属酸化物、リチウムバナジウム化合物(LiV)、オリビン型LiMPO(ただし、Mは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素又はVOを示す)、チタン酸リチウム(LiTi12)、LiNiCoAl(0.9<x+y+z<1.1)等の複合金属酸化物が挙げられる。
(Positive electrode active material)
As the positive electrode active material, lithium ion occlusion and release, lithium ion desorption and insertion (intercalation), or doping and dedoping of a counter anion (for example, PF 6 ) of the lithium ion are reversibly performed. If it can be made to advance, it will not specifically limit, A well-known electrode active material can be used. For example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganese spinel (LiMn 2 O 4 ), and the chemical formula: LiNi x Co y Mn z MaO 2 (x + y + z + a = 1, 0 ≦ x ≦ 1) , 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, 0 ≦ a ≦ 1, and M is one or more elements selected from Al, Mg, Nb, Ti, Cu, Zn, and Cr) Product, lithium vanadium compound (LiV 2 O 5 ), olivine-type LiMPO 4 (where M is one or more elements selected from Co, Ni, Mn, Fe, Mg, Nb, Ti, Al, Zr or VO) shown), and composite metal oxides such as lithium titanate (Li 4 Ti 5 O 12) , LiNi x Co y Al z O 2 (0.9 <x + y + z <1.1)

(正極用バインダー)
正極用バインダーは、正極活物質同士を結合すると共に、正極活物質層14と正極用集電体12とを結合している。バインダーは、上述の結合が可能なものであればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂や、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド樹脂、ポリアミドイミド樹脂等を用いてもよい。また、バインダーとして電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン、ポリチオフェン、ポリアニリン等が挙げられる。イオン伝導性の導電性高分子としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物と、LiClO、LiBF、LiPF等のリチウム塩とを複合化させたもの等が挙げられる。
(Binder for positive electrode)
The positive electrode binder bonds the positive electrode active materials to each other and bonds the positive electrode active material layer 14 to the positive electrode current collector 12. The binder is not particularly limited as long as it can be bonded as described above. For example, fluorine resin such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE), cellulose, styrene / butadiene rubber, ethylene / propylene rubber, polyimide A resin, a polyamideimide resin, or the like may be used. Alternatively, an electron conductive conductive polymer or an ion conductive conductive polymer may be used as the binder. Examples of the electron conductive conductive polymer include polyacetylene, polythiophene, and polyaniline. Examples of the ion conductive conductive polymer include those obtained by combining a polyether polymer compound such as polyethylene oxide and polypropylene oxide and a lithium salt such as LiClO 4 , LiBF 4 , and LiPF 6. It is done.

正極活物質層14中のバインダーの含有量は特に限定されないが、添加する場合には正極活物質の質量に対して0.5〜5質量部であることが好ましい。   Although content of the binder in the positive electrode active material layer 14 is not specifically limited, When adding, it is preferable that it is 0.5-5 mass parts with respect to the mass of a positive electrode active material.

(正極用導電助剤)
正極用導電助剤は、正極活物質層14の導電性を良好にするものであれば特に限定されず、公知の導電助剤を使用できる。例えば、黒鉛、カーボンブラック等の炭素系材料や、銅、ニッケル、ステンレス、鉄等の金属微粉、ITO等の導電性酸化物が挙げられる。
(Conductive aid for positive electrode)
The conductive aid for positive electrode is not particularly limited as long as it improves the conductivity of the positive electrode active material layer 14, and a known conductive aid can be used. Examples thereof include carbon-based materials such as graphite and carbon black, metal fine powders such as copper, nickel, stainless steel, and iron, and conductive oxides such as ITO.

<負極>
(負極集電体)
負極集電体22は、導電性の板材であればよく、例えば、銅等の金属薄板(金属箔)を用いることができる。
<Negative electrode>
(Negative electrode current collector)
The negative electrode current collector 22 may be a conductive plate material, and for example, a metal thin plate (metal foil) such as copper can be used.

(負極活物質層)
負極活物質層24は、負極活物質から主に構成されるものである。
(Negative electrode active material layer)
The negative electrode active material layer 24 is mainly composed of a negative electrode active material.

(負極活物質)
負極活物質としては、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)を可逆的に進行させることが可能であれば特に限定されず、公知の電極活物質を使用できる。例えば、グラファイト、ハードカーボン等の炭素系材料、酸化シリコン(SiO)金属シリコン(Si)等の珪素系材料、チタン酸リチウム(LTO)等の金属酸化物、リチウム、スズ、亜鉛等の金属材料が挙げられる。
(Negative electrode active material)
The negative electrode active material is not particularly limited as long as it can reversibly advance occlusion and release of lithium ions and desorption and insertion (intercalation) of lithium ions, and a known electrode active material can be used. . For example, carbon materials such as graphite and hard carbon, silicon materials such as silicon oxide (SiO x ) metal silicon (Si), metal oxides such as lithium titanate (LTO), metal materials such as lithium, tin, and zinc Is mentioned.

この中でも特に、負極活物質としてリチウムを用いることが好ましく、充放電に伴うデンドライドの生成が抑制された負極が得られる。   Among these, in particular, lithium is preferably used as the negative electrode active material, and a negative electrode in which the formation of dendrites accompanying charge / discharge is suppressed can be obtained.

負極活物質として金属材料を用いない場合、負極活物質層24は更に、負極用バインダーおよび負極用導電助剤を含んでいてもよい。   When a metal material is not used as the negative electrode active material, the negative electrode active material layer 24 may further include a negative electrode binder and a negative electrode conductive additive.

(負極用バインダー)
負極用バインダーとしては特に限定は無く、上記で記載した正極用バインダーと同様のものを用いることができる。
(Binder for negative electrode)
There is no limitation in particular as a binder for negative electrodes, The thing similar to the binder for positive electrodes described above can be used.

(負極用導電助剤)
負極用導電助剤としては特に限定は無く、上記で記載した正極用導電助剤と同様のものを用いることができる。
(Conductive aid for negative electrode)
There is no limitation in particular as a conductive support agent for negative electrodes, The thing similar to the conductive support agent for positive electrodes described above can be used.

<電解液>
本実施形態に係る電解液は、化学式(1)で示されるスルホニウム塩を含むものである。
<Electrolyte>
The electrolytic solution according to the present embodiment includes a sulfonium salt represented by the chemical formula (1).

電解質は、リチウムイオン二次電池の電解質として用いられるリチウム塩であれば特に限定は無く、例えば、LiPF、LiBF、リチウムビスオキサレートボラート等の無機酸陰イオン塩、LiCFSO、(CFSONLi、(FSONLi等の有機酸陰イオン塩等を用いることができる。 The electrolyte is not particularly limited as long as it is a lithium salt used as an electrolyte of a lithium ion secondary battery. For example, inorganic acid anion salts such as LiPF 6 , LiBF 4 , lithium bisoxalate borate, LiCF 3 SO 3 , An organic acid anion salt such as (CF 3 SO 2 ) 2 NLi, (FSO 2 ) 2 NLi, or the like can be used.

以上、本発明に係る好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。   As mentioned above, although preferred embodiment which concerns on this invention was described, this invention is not limited to the said embodiment.

以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.

[合成実施例1]
Ar雰囲気下、PFA製の耐圧容器に乾燥エタノール200mL、エチルメチルスルフィド1.00mol、2−ヨードブタン1.00molを投入して封をした後、75℃で24時間反応させた。反応後の溶液を濃縮した後、エタノール−ジエチルエーテル混合溶媒で再結晶を行い、0.900molのS−(sec−ブチル)−S−プロピル−S−メチルスルホニウムアイオダイドを得た。
[Synthesis Example 1]
Under an Ar atmosphere, 200 mL of dry ethanol, 1.00 mol of ethyl methyl sulfide, and 1.00 mol of 2-iodobutane were put into a pressure-resistant container made of PFA, sealed, and reacted at 75 ° C. for 24 hours. After concentrating the solution after the reaction, recrystallization was performed with an ethanol-diethyl ether mixed solvent to obtain 0.900 mol of S- (sec-butyl) -S-propyl-S-methylsulfonium iodide.

(スルホニウム塩の合成)
S−(sec−ブチル)−S−プロピル−S−メチルスルホニウムアイオダイド0.500molを水300mLに溶解させ、次いでリチウムビス(トリフルオロメチルスルホニル)イミド(LiTFSI)0.750molを徐々に加えた。この溶液を一晩撹拌し、得られた溶液を水−ジクロロメタンで分液を行った。有機相を回収、乾燥し、0.480molのS−(sec−ブチル)−S−プロピル−S−メチルスルホニウムビス(トリフルオロメチルスルホニル)イミドを得た。
化合物の同定はCDCl3中、核磁気共鳴分析装置(JEOL ECA−500)で行なった。スペクトルデータを表1に示す。
(Synthesis of sulfonium salt)
0.500 mol of S- (sec-butyl) -S-propyl-S-methylsulfonium iodide was dissolved in 300 mL of water, and then 0.750 mol of lithium bis (trifluoromethylsulfonyl) imide (LiTFSI) was gradually added. The solution was stirred overnight, and the resulting solution was partitioned with water-dichloromethane. The organic phase was collected and dried to obtain 0.480 mol of S- (sec-butyl) -S-propyl-S-methylsulfonium bis (trifluoromethylsulfonyl) imide.
The compound was identified with a nuclear magnetic resonance analyzer (JEOL ECA-500) in CDCl3. The spectral data is shown in Table 1.

(スルホニウム塩の粘度の測定)
合成したスルホニウム塩の粘度を、EMS粘度計(京都電子工業 EMS−1000)を用いて測定した。結果を表1に示す。
(Measurement of viscosity of sulfonium salt)
The viscosity of the synthesized sulfonium salt was measured using an EMS viscometer (Kyoto Electronics Industry EMS-1000). The results are shown in Table 1.

[合成実施例2]
Ar雰囲気下、PFA製の耐圧容器に乾燥エタノール200mL、tert−ブチルメチルスルフィド1.00mol、2−ヨードブタン1.00molを投入して封をした後、75℃で24時間反応させた。反応後の溶液を濃縮した後、エタノール−ジエチルエーテル混合溶媒で再結晶を行い、0.900molのS−(sec−ブチル)−S−(tert−ブチル)−S−メチルスルホニウムアイオダイドを得た。
[Synthesis Example 2]
Under an Ar atmosphere, 200 mL of dry ethanol, 1.00 mol of tert-butylmethylsulfide and 1.00 mol of 2-iodobutane were sealed in a pressure-resistant container made of PFA, and then reacted at 75 ° C. for 24 hours. After concentrating the solution after the reaction, recrystallization was performed with a mixed solvent of ethanol-diethyl ether to obtain 0.900 mol of S- (sec-butyl) -S- (tert-butyl) -S-methylsulfonium iodide. .

S−(sec−ブチル)−S−(tert−ブチル)−S−メチルスルホニウムアイオダイド0.500molを水300mLに溶解させ、次いでリチウムビス(トリフルオロメチルスルホニル)イミド(LiTFSI)0.750molを徐々に加えた。この溶液を一晩撹拌し、得られた溶液を水−ジクロロメタンで分液を行った。有機相を回収、乾燥し、0.480molのS−(sec−ブチル)−S−(tert−ブチル)−S−メチルスルホニウムビス(トリフルオロメチルスルホニル)イミドを得た。化合物のスペクトルデータおよび粘度を表1に示す。   S- (sec-butyl) -S- (tert-butyl) -S-methylsulfonium iodide 0.500 mol was dissolved in 300 mL of water, and then lithium bis (trifluoromethylsulfonyl) imide (LiTFSI) 0.750 mol was gradually added. Added to. The solution was stirred overnight, and the resulting solution was partitioned with water-dichloromethane. The organic phase was collected and dried to obtain 0.480 mol of S- (sec-butyl) -S- (tert-butyl) -S-methylsulfonium bis (trifluoromethylsulfonyl) imide. The spectral data and viscosities of the compounds are shown in Table 1.

[合成実施例3]
Ar雰囲気下、PFA製の耐圧容器に乾燥エタノール200mL、2−メチルテトラヒドロチオフェン1.00mol、ヨードメタン1.00molを投入して封をした後、75℃で24時間反応させた。反応後の溶液を濃縮した後、エタノール−ジエチルエーテル混合溶媒で再結晶を行い、0.900molのS−メチル−2−メチルテトラヒドロチオフェニウムアイオダイドを得た。
[Synthesis Example 3]
Under an Ar atmosphere, 200 mL of dry ethanol, 1.00 mol of 2-methyltetrahydrothiophene, and 1.00 mol of iodomethane were put into a pressure-resistant container made of PFA, sealed, and reacted at 75 ° C. for 24 hours. The solution after the reaction was concentrated and then recrystallized with a mixed solvent of ethanol-diethyl ether to obtain 0.900 mol of S-methyl-2-methyltetrahydrothiophenium iodide.

S−メチル−2−メチルテトラヒドロチオフェニウムアイオダイド0.500molを水300mLに溶解させ、次いでLiTFSI0.750molを徐々に加えた。この溶液を一晩撹拌し、得られた溶液を水−ジクロロメタンで分液を行った。有機相を回収、乾燥し、0.480molのS−メチル−2−メチルテトラヒドロチオフェニウムビス(トリフルオロメチルスルホニル)イミドを得た。化合物のスペクトルデータおよび粘度を表1に示す。   0.500 mol of S-methyl-2-methyltetrahydrothiophenium iodide was dissolved in 300 mL of water, and then 0.750 mol of LiTFSI was gradually added. The solution was stirred overnight, and the resulting solution was partitioned with water-dichloromethane. The organic phase was collected and dried to obtain 0.480 mol of S-methyl-2-methyltetrahydrothiophenium bis (trifluoromethylsulfonyl) imide. The spectral data and viscosities of the compounds are shown in Table 1.

[合成実施例4]
Ar雰囲気下、PFA製の耐圧容器に乾燥エタノール200mL、2−メチルテトラヒドロチオフェン1.00mol、ヨードエタン1.00molを投入して封をした後、75℃で24時間反応させた。反応後の溶液を濃縮した後、エタノール−ジエチルエーテル混合溶媒で再結晶を行い、0.900molのS−エチル−2−メチルテトラヒドロチオフェニウムアイオダイドを得た。
[Synthesis Example 4]
Under an Ar atmosphere, 200 mL of dry ethanol, 1.00 mol of 2-methyltetrahydrothiophene, and 1.00 mol of iodoethane were sealed in a pressure-resistant container made of PFA, and then reacted at 75 ° C. for 24 hours. The solution after the reaction was concentrated and then recrystallized with a mixed solvent of ethanol-diethyl ether to obtain 0.900 mol of S-ethyl-2-methyltetrahydrothiophenium iodide.

S−エチル−2−メチルテトラヒドロチオフェニウムアイオダイド0.500molを水300mLに溶解させ、次いでLiTFSI0.750molを徐々に加えた。この溶液を一晩撹拌し、得られた溶液を水−ジクロロメタンで分液を行った。有機相を回収、乾燥し、0.480molのS−エチル−2−メチルテトラヒドロチオフェニウムビス(トリフルオロメチルスルホニル)イミドを得た。化合物のスペクトルデータおよび粘度を表1に示す。   0.500 mol of S-ethyl-2-methyltetrahydrothiophenium iodide was dissolved in 300 mL of water, and then 0.750 mol of LiTFSI was gradually added. The solution was stirred overnight, and the resulting solution was partitioned with water-dichloromethane. The organic phase was collected and dried to obtain 0.480 mol of S-ethyl-2-methyltetrahydrothiophenium bis (trifluoromethylsulfonyl) imide. The spectral data and viscosities of the compounds are shown in Table 1.

[合成実施例5]
Ar雰囲気下、PFA製の耐圧容器に乾燥エタノール200mL、2−メチルテトラヒドロチオフェン1.00mol、1−ヨードプロパン1.00molを投入して封をした後、75℃で24時間反応させた。反応後の溶液を濃縮した後、エタノール−ジエチルエーテル混合溶媒で再結晶を行い、0.900molのS−プロピル−2−メチルテトラヒドロチオフェニウムアイオダイドを得た。
[Synthesis Example 5]
Under an Ar atmosphere, 200 mL of dry ethanol, 1.00 mol of 2-methyltetrahydrothiophene, and 1.00 mol of 1-iodopropane were put into a pressure-resistant container made of PFA, sealed, and reacted at 75 ° C. for 24 hours. The solution after the reaction was concentrated and then recrystallized with a mixed solvent of ethanol-diethyl ether to obtain 0.900 mol of S-propyl-2-methyltetrahydrothiophenium iodide.

S−プロピル−2−メチルテトラヒドロチオフェニウムアイオダイド0.500molを水300mLに溶解させ、次いでLiTFSI0.750molを徐々に加えた。この溶液を一晩撹拌し、得られた溶液を水−ジクロロメタンで分液を行った。有機相を回収、乾燥し、0.480molのS−プロピル−2−メチルテトラヒドロチオフェニウムビス(トリフルオロメチルスルホニル)イミドを得た。化合物のスペクトルデータおよび粘度を表1に示す。   0.500 mol of S-propyl-2-methyltetrahydrothiophenium iodide was dissolved in 300 mL of water, and then 0.750 mol of LiTFSI was gradually added. The solution was stirred overnight, and the resulting solution was partitioned with water-dichloromethane. The organic phase was collected and dried to obtain 0.480 mol of S-propyl-2-methyltetrahydrothiophenium bis (trifluoromethylsulfonyl) imide. The spectral data and viscosities of the compounds are shown in Table 1.

[合成実施例6]
Ar雰囲気下、PFA製の耐圧容器に乾燥エタノール200mL、2−メチルテトラヒドロチオフェン1.00mol、1−ヨードブタン1.00molを投入して封をした後、75℃で24時間反応させた。反応後の溶液を濃縮した後、エタノール−ジエチルエーテル混合溶媒で再結晶を行い、0.900molのS−ブチル−2−メチルテトラヒドロチオフェニウムアイオダイドを得た。
[Synthesis Example 6]
Under an Ar atmosphere, 200 mL of dry ethanol, 1.00 mol of 2-methyltetrahydrothiophene, and 1.00 mol of 1-iodobutane were put into a pressure-resistant container made of PFA, sealed, and reacted at 75 ° C. for 24 hours. The solution after the reaction was concentrated and then recrystallized with a mixed solvent of ethanol-diethyl ether to obtain 0.900 mol of S-butyl-2-methyltetrahydrothiophenium iodide.

S−ブチル−2−メチルテトラヒドロチオフェニウムアイオダイド0.500molを水300mLに溶解させ、次いでLiTFSI0.750molを徐々に加えた。この溶液を一晩撹拌し、得られた溶液を水−ジクロロメタンで分液を行った。有機相を回収、乾燥し、0.480molのS−ブチル−2−メチルテトラヒドロチオフェニウムビス(トリフルオロメチルスルホニル)イミドを得た。化合物のスペクトルデータおよび粘度を表1に示す。   0.500 mol of S-butyl-2-methyltetrahydrothiophenium iodide was dissolved in 300 mL of water, and then 0.750 mol of LiTFSI was gradually added. The solution was stirred overnight, and the resulting solution was partitioned with water-dichloromethane. The organic phase was collected and dried to obtain 0.480 mol of S-butyl-2-methyltetrahydrothiophenium bis (trifluoromethylsulfonyl) imide. The spectral data and viscosities of the compounds are shown in Table 1.

[合成実施例7]
Ar雰囲気下、PFA製の耐圧容器に乾燥エタノール200mL、2−メチルテトラヒドロチオフェン1.00mol、フルオロヨードメタン1.00molを投入して封をした後、75℃で24時間反応させた。反応後の溶液を濃縮した後、エタノール−ジエチルエーテル混合溶媒で再結晶を行い、0.900molのS−フルオロメチル−2−メチルテトラヒドロチオフェニウムアイオダイドを得た。
[Synthesis Example 7]
Under an Ar atmosphere, 200 mL of dry ethanol, 1.00 mol of 2-methyltetrahydrothiophene, and 1.00 mol of fluoroiodomethane were put in a pressure-resistant container made of PFA, sealed, and reacted at 75 ° C. for 24 hours. The solution after the reaction was concentrated and then recrystallized with a mixed solvent of ethanol-diethyl ether to obtain 0.900 mol of S-fluoromethyl-2-methyltetrahydrothiophenium iodide.

S−フルオロメチル−2−メチルテトラヒドロチオフェニウムアイオダイド0.500molを水300mLに溶解させ、次いでLiTFSI0.750molを徐々に加えた。この溶液を一晩撹拌し、得られた溶液を水−ジクロロメタンで分液を行った。有機相を回収、乾燥し、0.480molのS−フルオロメチル−2−メチルテトラヒドロチオフェニウムビス(トリフルオロメチルスルホニル)イミドを得た。化合物のスペクトルデータおよび粘度を表1に示す。   0.500 mol of S-fluoromethyl-2-methyltetrahydrothiophenium iodide was dissolved in 300 mL of water, and then 0.750 mol of LiTFSI was gradually added. The solution was stirred overnight, and the resulting solution was partitioned with water-dichloromethane. The organic phase was collected and dried to obtain 0.480 mol of S-fluoromethyl-2-methyltetrahydrothiophenium bis (trifluoromethylsulfonyl) imide. The spectral data and viscosities of the compounds are shown in Table 1.

[合成実施例8]
Ar雰囲気下、PFA製の耐圧容器に乾燥エタノール200mL、2−メチルテトラヒドロチオフェン1.00mol、ヨードメタン1.00molを投入して封をした後、75℃で24時間反応させた。反応後の溶液を濃縮した後、エタノール−ジエチルエーテル混合溶媒で再結晶を行い、0.900molのS−メチル−2−メチルテトラヒドロチオフェニウムアイオダイドを得た。
[Synthesis Example 8]
Under an Ar atmosphere, 200 mL of dry ethanol, 1.00 mol of 2-methyltetrahydrothiophene, and 1.00 mol of iodomethane were put into a pressure-resistant container made of PFA, sealed, and reacted at 75 ° C. for 24 hours. The solution after the reaction was concentrated and then recrystallized with a mixed solvent of ethanol-diethyl ether to obtain 0.900 mol of S-methyl-2-methyltetrahydrothiophenium iodide.

S−メチル−2−メチルテトラヒドロチオフェニウムアイオダイド0.500molを水300mLに溶解させ、次いでリチウムビス(フルオロスルホニル)イミド(LiFSI)0.750molを徐々に加えた。この溶液を一晩撹拌し、得られた溶液を水−ジクロロメタンで分液を行った。有機相を回収、乾燥し、0.480molのS−メチル−2−メチルテトラヒドロチオフェニウムビス(フルオロスルホニル)イミドを得た。化合物のスペクトルデータおよび粘度を表1に示す。   0.500 mol of S-methyl-2-methyltetrahydrothiophenium iodide was dissolved in 300 mL of water, and then 0.750 mol of lithium bis (fluorosulfonyl) imide (LiFSI) was gradually added. The solution was stirred overnight, and the resulting solution was partitioned with water-dichloromethane. The organic phase was collected and dried to obtain 0.480 mol of S-methyl-2-methyltetrahydrothiophenium bis (fluorosulfonyl) imide. The spectral data and viscosities of the compounds are shown in Table 1.

[合成実施例9]
Ar雰囲気下、PFA製の耐圧容器に乾燥エタノール200mL、2−メチルテトラヒドロチオフェン1.00mol、ヨードメタン1.00molを投入して封をした後、75℃で24時間反応させた。反応後の溶液を濃縮した後、エタノール−ジエチルエーテル混合溶媒で再結晶を行い、0.900molのS−メチル−2−メチルテトラヒドロチオフェニウムアイオダイドを得た。
[Synthesis Example 9]
Under an Ar atmosphere, 200 mL of dry ethanol, 1.00 mol of 2-methyltetrahydrothiophene, and 1.00 mol of iodomethane were put into a pressure-resistant container made of PFA, sealed, and reacted at 75 ° C. for 24 hours. The solution after the reaction was concentrated and then recrystallized with a mixed solvent of ethanol-diethyl ether to obtain 0.900 mol of S-methyl-2-methyltetrahydrothiophenium iodide.

S−メチル−2−メチルテトラヒドロチオフェニウムアイオダイド0.500molを水300mLに溶解させ、次いで過塩素酸リチウム0.750molを徐々に加えた。この溶液を一晩撹拌し、得られた溶液を水−ジクロロメタンで分液を行った。有機相を回収、乾燥し、0.480molのS−メチル−2−メチルテトラヒドロチオフェニウムパークロライドを得た。化合物のスペクトルデータおよび粘度を表1に示す。   0.500 mol of S-methyl-2-methyltetrahydrothiophenium iodide was dissolved in 300 mL of water, and then 0.750 mol of lithium perchlorate was gradually added. The solution was stirred overnight, and the resulting solution was partitioned with water-dichloromethane. The organic phase was collected and dried to obtain 0.480 mol of S-methyl-2-methyltetrahydrothiophenium perchloride. The spectral data and viscosities of the compounds are shown in Table 1.

[合成実施例10]
(アルキルチアンの合成)
1,5−ヘキサジエンを出発原料とし、Chem.Zentralbl., 1923, vol.94, #I p.1504に従い、末端ジエンの臭素化およびNaSによる環化を行い、2−メチルチアンを得た。
[Synthesis Example 10]
(Synthesis of alkyltian)
Starting from 1,5-hexadiene, Chem. Zentralbl. , 1923, vol. 94, #I p. According to 1504, bromination of the terminal diene and cyclization with NaS were performed to obtain 2-methylthiane.

Ar雰囲気下、PFA製の耐圧容器に乾燥エタノール200mL、2−メチルチアン1.00mol、ヨードメタン1.00molを投入して封をした後、75℃で24時間反応させた。反応後の溶液を濃縮した後、エタノール−ジエチルエーテル混合溶媒で再結晶を行い、0.900molのS−メチル−2−メチルチアニウムアイオダイドを得た。   Under an Ar atmosphere, 200 mL of dry ethanol, 1.00 mol of 2-methylthian, and 1.00 mol of iodomethane were put into a pressure-resistant container made of PFA, sealed, and reacted at 75 ° C. for 24 hours. The solution after the reaction was concentrated and then recrystallized with a mixed solvent of ethanol-diethyl ether to obtain 0.900 mol of S-methyl-2-methylthianium iodide.

S−メチル−2−メチルチアニウムアイオダイド0.500molを水300mLに溶解させ、次いでLiTFSI0.750molを徐々に加えた。この溶液を一晩撹拌し、得られた溶液を水−ジクロロメタンで分液を行った。有機相を回収、乾燥し、0.480molのS−メチル−2−メチルチアニウムビス(トリフルオロメチルスルホニル)イミドを得た。化合物のスペクトルデータおよび粘度を表1に示す。   0.500 mol of S-methyl-2-methylthianium iodide was dissolved in 300 mL of water, and then 0.750 mol of LiTFSI was gradually added. The solution was stirred overnight, and the resulting solution was partitioned with water-dichloromethane. The organic phase was collected and dried to obtain 0.480 mol of S-methyl-2-methylthianium bis (trifluoromethylsulfonyl) imide. The spectral data and viscosities of the compounds are shown in Table 1.

[合成実施例11]
Ar雰囲気下、PFA製の耐圧容器に乾燥エタノール200mL、2−メチルチアン1.00mol、1−ヨードブタン1.00molを投入して封をした後、75℃で24時間反応させた。反応後の溶液を濃縮した後、エタノール−ジエチルエーテル混合溶媒で再結晶を行い、0.900molのS−ブチル−2−メチルチアニウムアイオダイドを得た。
[Synthesis Example 11]
Under an Ar atmosphere, 200 mL of dry ethanol, 1.00 mol of 2-methylthian, and 1.00 mol of 1-iodobutane were put in a pressure-resistant container made of PFA, sealed, and reacted at 75 ° C. for 24 hours. The solution after the reaction was concentrated and then recrystallized with a mixed solvent of ethanol-diethyl ether to obtain 0.900 mol of S-butyl-2-methylthianium iodide.

S−ブチル−2−メチルチアニウムアイオダイド0.500molを水300mLに溶解させ、次いでLiTFSI0.750molを徐々に加えた。この溶液を一晩撹拌し、得られた溶液を水−ジクロロメタンで分液を行った。有機相を回収、乾燥し、0.480molのS−ブチル−2−メチルチアニウムビス(トリフルオロメチルスルホニル)イミドを得た。化合物のスペクトルデータおよび粘度を表1に示す。   0.500 mol of S-butyl-2-methylthianium iodide was dissolved in 300 mL of water, and then 0.750 mol of LiTFSI was gradually added. The solution was stirred overnight, and the resulting solution was partitioned with water-dichloromethane. The organic phase was collected and dried to obtain 0.480 mol of S-butyl-2-methylthianium bis (trifluoromethylsulfonyl) imide. The spectral data and viscosities of the compounds are shown in Table 1.

[合成比較例1]
Ar雰囲気下、PFA製の耐圧容器に乾燥エタノール200mL、テトラヒドロチオフェン1.00mol、ヨードメタン1.00molを投入して封をした後、75℃で24時間反応させた。反応後の溶液を濃縮した後、エタノール−ジエチルエーテル混合溶媒で再結晶を行い、0.900molのS−メチルテトラヒドロチオフェニウムアイオダイドを得た。
[Synthesis Comparative Example 1]
Under an Ar atmosphere, 200 mL of dry ethanol, 1.00 mol of tetrahydrothiophene, and 1.00 mol of iodomethane were placed in a pressure-resistant container made of PFA, sealed, and reacted at 75 ° C. for 24 hours. The solution after the reaction was concentrated and recrystallized with a mixed solvent of ethanol-diethyl ether to obtain 0.900 mol of S-methyltetrahydrothiophenium iodide.

S−メチルテトラヒドロチオフェニウムアイオダイド0.500molを水300mLに溶解させ、次いでLiTFSI0.750molを徐々に加えた。この溶液を一晩撹拌し、得られた溶液を水−ジクロロメタンで分液を行った。有機相を回収、乾燥し、0.480molのS−メチルテトラヒドロチオフェニウムビス(トリフルオロメチルスルホニル)イミドを得た。化合物のスペクトルデータおよび粘度を表1に示す。   0.500 mol of S-methyltetrahydrothiophenium iodide was dissolved in 300 mL of water, and then 0.750 mol of LiTFSI was gradually added. The solution was stirred overnight, and the resulting solution was partitioned with water-dichloromethane. The organic phase was collected and dried to obtain 0.480 mol of S-methyltetrahydrothiophenium bis (trifluoromethylsulfonyl) imide. The spectral data and viscosities of the compounds are shown in Table 1.

合成実施例1〜11で合成したスルホニウム塩は、比較例1のスルホニウム塩に対し、いずれも低い粘度を示した。ジアステレオマーを形成することで長周期的な秩序が乱され、粘度が低下したものと考えられる。   The sulfonium salt synthesized in Synthesis Examples 1 to 11 showed a lower viscosity than the sulfonium salt of Comparative Example 1. It is thought that the formation of diastereomers disturbed long-period order and reduced the viscosity.

[実施例1]
(電極の作製)
LiNi1/3Co1/3Mn1/3(NCM):カーボンブラック:PVDF=80:10:10(質量%)の比率となるように混合し、N−メチル−2−ピロリドン(NMP)中に均一に分散させたスラリーを、厚さ20μmのアルミ金属箔上に塗布後、NMPを蒸発させることで正極シートを得た。厚さ16μmの銅箔上に100μmのリチウム箔を貼り付けることで、負極シートを得た。
[Example 1]
(Production of electrodes)
LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM): carbon black: PVDF = 80: 10: 10 (mass%) The mixture was mixed to obtain N-methyl-2-pyrrolidone (NMP ) Was applied to an aluminum metal foil having a thickness of 20 μm, and NMP was evaporated to obtain a positive electrode sheet. A negative electrode sheet was obtained by affixing a 100 μm lithium foil on a 16 μm thick copper foil.

(電解液の作製)
合成実施例1で作製したスルホニウム塩に1mol/LとなるようにLiFSIを溶解させ、電解液を調整した。
(Preparation of electrolyte)
LiFSI was dissolved in the sulfonium salt produced in Synthesis Example 1 to 1 mol / L to prepare an electrolyte solution.

(評価用リチウムイオン二次電池の作製)
上記で作製した正極および負極と、それらの間にポリエチレン微多孔膜からなるセパレータを挟んでアルミラミネートパックに入れ、このアルミラミネートパックに、上記で調製した電解液を注入した後、真空シールし、評価用のリチウムイオン二次電池を作製した。
(Production of evaluation lithium-ion secondary battery)
The positive electrode and negative electrode produced above, and a separator made of a polyethylene microporous film sandwiched between them and put in an aluminum laminate pack, into this aluminum laminate pack, after injecting the electrolyte prepared above, vacuum sealed, A lithium ion secondary battery for evaluation was produced.

(レート容量維持率の測定)
上記で作製した評価用リチウムイオン二次電池について、二次電池充放電試験装置(北斗電工株式会社製)を用い、電圧範囲を2.5Vから4.2Vまでとし、1C=170mAh/gとしたときの0.05Cでの電流値で充放電を行い、初期放電容量を求めた。 続いて、0.5Cの電流値での充放電を行い、レート容量維持率(0.5C放電容量/初期放電容量×100)を求めた。得られた結果を表1に示す。
(Measurement of rate capacity maintenance rate)
About the lithium ion secondary battery for evaluation produced above, using a secondary battery charge / discharge test apparatus (manufactured by Hokuto Denko Co., Ltd.), the voltage range was 2.5 V to 4.2 V, and 1 C = 170 mAh / g. The battery was charged and discharged at a current value of 0.05 C, and the initial discharge capacity was determined. Subsequently, charge and discharge were performed at a current value of 0.5 C, and a rate capacity retention rate (0.5 C discharge capacity / initial discharge capacity × 100) was obtained. The obtained results are shown in Table 1.

[実施例2〜11]
電解液の作製で用いたスルホニウム塩を、合成実施例2〜11で作製したスルホニウム塩を用いた以外は実施例1と同様として、実施例2〜11の評価用リチウムイオン二次電池を作製した。
[Examples 2 to 11]
The lithium ion secondary batteries for evaluation of Examples 2 to 11 were produced in the same manner as in Example 1 except that the sulfonium salt used in the production of the electrolytic solution was the sulfonium salt produced in Synthesis Examples 2 to 11. .

[比較例1]
電解液の作製で用いたアンモニウム塩を、合成比較例1で作製したスルホニウム塩を用いた以外は実施例1と同様として、比較例1の評価用リチウムイオン二次電池を作製した。
[Comparative Example 1]
A lithium ion secondary battery for evaluation of Comparative Example 1 was produced in the same manner as Example 1 except that the ammonium salt used in the production of the electrolytic solution was the sulfonium salt produced in Synthesis Comparative Example 1.

実施例2〜11の評価用リチウムイオン二次電池に対し、実施例1に記載されるレート容量維持率の測定を実施した結果を表1に示す。実施例1〜11は全て、比較例1に対して良好なレート容量維持率を示した。粘度の低いスルホニウム塩を用いたことで、レート特性が改善したものと推測される。




Table 1 shows the results of measurement of the rate capacity retention rate described in Example 1 for the lithium ion secondary batteries for evaluation of Examples 2 to 11. Examples 1 to 11 all showed a favorable rate capacity retention rate relative to Comparative Example 1. It is presumed that rate characteristics were improved by using a sulfonium salt having a low viscosity.




Figure 2017178791
Figure 2017178791

本発明により、粘度が低いスルホニウム塩が提供される。   The present invention provides a sulfonium salt having a low viscosity.

10…正極、12…正極集電体、14…正極活物質層、18…セパレータ、20…負極、22…負極集電体、24…負極活物質層、30…積層体、50…ケース、60,62…リード、100…リチウムイオン二次電池。   DESCRIPTION OF SYMBOLS 10 ... Positive electrode, 12 ... Positive electrode collector, 14 ... Positive electrode active material layer, 18 ... Separator, 20 ... Negative electrode, 22 ... Negative electrode collector, 24 ... Negative electrode active material layer, 30 ... Laminate, 50 ... Case, 60 62 ... Lead, 100 ... Lithium ion secondary battery.

Claims (4)

下記化学式(1)で示されるスルホニウム塩。
Figure 2017178791
[式中の置換基R〜Rは一価の置換基、Xは一価のアニオンを示す。(ただし、R≠R≠R、かつR≠R≠R)]
A sulfonium salt represented by the following chemical formula (1).
Figure 2017178791
[In the formula, substituents R 1 to R 5 represent a monovalent substituent, and X represents a monovalent anion. (However, R 1 ≠ R 2 ≠ R 3 and R A ≠ R 4 ≠ R 5 )]
下記化学式(2)または(3)で示されるスルホニウム塩。
Figure 2017178791
Figure 2017178791
[式中の置換基RおよびRは一価の置換基、Xは一価のアニオンを示す。]
A sulfonium salt represented by the following chemical formula (2) or (3).
Figure 2017178791
Figure 2017178791
[In the formula, substituents R 6 and R 7 represent a monovalent substituent, and X represents a monovalent anion. ]
請求項1または2のいずれかにに記載のスルホニウム塩を含むリチウム二次電池用電解液。   The electrolyte solution for lithium secondary batteries containing the sulfonium salt in any one of Claim 1 or 2. 正極と、負極と、前記正極と前記負極の間に位置するセパレータと、請求項3に記載のリチウム二次電池用電解液とを備えたリチウム二次電池。
The lithium secondary battery provided with the positive electrode, the negative electrode, the separator located between the said positive electrode and the said negative electrode, and the electrolyte solution for lithium secondary batteries of Claim 3.
JP2016063494A 2016-03-28 2016-03-28 Sulfonium salt, electrolytic solution for lithium secondary battery, and lithium secondary battery therewith Pending JP2017178791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016063494A JP2017178791A (en) 2016-03-28 2016-03-28 Sulfonium salt, electrolytic solution for lithium secondary battery, and lithium secondary battery therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016063494A JP2017178791A (en) 2016-03-28 2016-03-28 Sulfonium salt, electrolytic solution for lithium secondary battery, and lithium secondary battery therewith

Publications (1)

Publication Number Publication Date
JP2017178791A true JP2017178791A (en) 2017-10-05

Family

ID=60003593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016063494A Pending JP2017178791A (en) 2016-03-28 2016-03-28 Sulfonium salt, electrolytic solution for lithium secondary battery, and lithium secondary battery therewith

Country Status (1)

Country Link
JP (1) JP2017178791A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021235358A1 (en) * 2020-05-22 2021-11-25 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary battery, module, and compound

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2402016A (en) * 1944-10-02 1946-06-11 Dow Chemical Co Sulphonium salts
JPS50145500A (en) * 1974-04-19 1975-11-21
US4167618A (en) * 1975-04-15 1979-09-11 Espe Fabrik Pharmazeutischer Praparate Gmbh Polymerization process for aziridine compounds
JPS57122074A (en) * 1981-01-21 1982-07-29 Taiho Yakuhin Kogyo Kk Sulfonium compound and its preparation
JPS57140762A (en) * 1981-02-25 1982-08-31 Taiho Yakuhin Kogyo Kk Sulfonium compound and its preparation
JPS57142965A (en) * 1981-02-27 1982-09-03 Taiho Yakuhin Kogyo Kk Sulfonium compound and its preparation
JPS57156476A (en) * 1981-03-23 1982-09-27 Taiho Yakuhin Kogyo Kk Sulfonium compound and its preparation
JPH04506205A (en) * 1989-03-23 1992-10-29 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Polymerization initiator
JPH06503072A (en) * 1991-11-06 1994-04-07 アーベー ヴィル−.ベッカー Method for producing cyclic sulfonium salt
JPH10310633A (en) * 1997-05-14 1998-11-24 Nippon Soda Co Ltd Stabilizer for cationic curing catalyst
JP2003345023A (en) * 2002-05-27 2003-12-03 Fuji Photo Film Co Ltd Radiation-sensitive resin composition
JP2013044810A (en) * 2011-08-22 2013-03-04 Fujifilm Corp Actinic ray-sensitive or radiation-sensitive resin composition, and actinic ray-sensitive or radiation-sensitive film using the composition, and pattern formation method
JP2014034519A (en) * 2012-08-07 2014-02-24 Sumitomo Chemical Co Ltd Method of producing fullerene derivative

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2402016A (en) * 1944-10-02 1946-06-11 Dow Chemical Co Sulphonium salts
JPS50145500A (en) * 1974-04-19 1975-11-21
US4167618A (en) * 1975-04-15 1979-09-11 Espe Fabrik Pharmazeutischer Praparate Gmbh Polymerization process for aziridine compounds
JPS57122074A (en) * 1981-01-21 1982-07-29 Taiho Yakuhin Kogyo Kk Sulfonium compound and its preparation
JPS57140762A (en) * 1981-02-25 1982-08-31 Taiho Yakuhin Kogyo Kk Sulfonium compound and its preparation
JPS57142965A (en) * 1981-02-27 1982-09-03 Taiho Yakuhin Kogyo Kk Sulfonium compound and its preparation
JPS57156476A (en) * 1981-03-23 1982-09-27 Taiho Yakuhin Kogyo Kk Sulfonium compound and its preparation
JPH04506205A (en) * 1989-03-23 1992-10-29 チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド Polymerization initiator
JPH06503072A (en) * 1991-11-06 1994-04-07 アーベー ヴィル−.ベッカー Method for producing cyclic sulfonium salt
JPH10310633A (en) * 1997-05-14 1998-11-24 Nippon Soda Co Ltd Stabilizer for cationic curing catalyst
JP2003345023A (en) * 2002-05-27 2003-12-03 Fuji Photo Film Co Ltd Radiation-sensitive resin composition
JP2013044810A (en) * 2011-08-22 2013-03-04 Fujifilm Corp Actinic ray-sensitive or radiation-sensitive resin composition, and actinic ray-sensitive or radiation-sensitive film using the composition, and pattern formation method
JP2014034519A (en) * 2012-08-07 2014-02-24 Sumitomo Chemical Co Ltd Method of producing fullerene derivative

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
ACTA CHEMICA SCANDINAVICA B, vol. 31, JPN6019038694, 1977, pages 859 - 868, ISSN: 0004129002 *
ANAL. CHEM., vol. 70, JPN6019038702, 1998, pages 3612 - 3618, ISSN: 0004129006 *
BULL. CHEM. SOC. JPN., vol. 63, JPN6019038692, 1990, pages 2593 - 2600, ISSN: 0004129001 *
CHEM. LETT., JPN6019038697, 1987, pages 327 - 328, ISSN: 0004129004 *
J. AM. CHEM. SOC., vol. 74, JPN6019038707, 1952, pages 917 - 920, ISSN: 0004129008 *
J. C. S. CHEM. COMM., JPN6019038696, 1977, pages 355 - 356, ISSN: 0004129003 *
J. ORG. CHEM., vol. 41, JPN6019038704, 1976, pages 1052 - 1057, ISSN: 0004129007 *
J. ORG. CHEM., vol. 54, JPN6019038699, 1989, pages 2374 - 2383, ISSN: 0004129005 *
SCIENCE OF SYNTHESIS, vol. 39, JPN6019038709, 2007, pages 851 - 878, ISSN: 0004129009 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021235358A1 (en) * 2020-05-22 2021-11-25 ダイキン工業株式会社 Electrolytic solution, electrochemical device, lithium-ion secondary battery, module, and compound
JPWO2021235358A1 (en) * 2020-05-22 2021-11-25

Similar Documents

Publication Publication Date Title
JP7116311B2 (en) Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same
US20130323571A1 (en) Electrochemical cells with ionic liquid electrolyte
KR20180089530A (en) Electrolyte for non-aqueous electrolyte cell and non-aqueous electrolyte cell using the same
US20130337345A1 (en) Oxide anode materials for lithium batteries
TW201841426A (en) Semisolid electrolyte layer, battery cell sheet and secondary battery
JP6812827B2 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using it
JP2012014973A (en) Electrolyte composition for secondary battery and secondary battery
WO2015029248A1 (en) Negative electrode active material-coating material, negative electrode material using same, negative electrode, lithium ion secondary battery, battery system, monomer, and method for synthesizing monomer
JP6933260B2 (en) Non-aqueous electrolyte solution for lithium ion secondary battery and lithium ion secondary battery using it
JP6992362B2 (en) Lithium ion secondary battery
JP2018133284A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery using the same
JP2019160617A (en) Lithium ion secondary battery
JP2017178791A (en) Sulfonium salt, electrolytic solution for lithium secondary battery, and lithium secondary battery therewith
WO2020213268A1 (en) Nonaqueous electrolytic solution, nonvolatile electrolyte, and secondary battery
JP6222389B1 (en) Non-aqueous electrolyte and non-aqueous electrolyte battery using the same
JP2011034698A (en) Nonaqueous electrolyte solution, and lithium secondary battery using nonaqueous electrolyte solution
CN108352571A (en) Non-aqueous electrolyte for secondary battery and secondary cell
JP2017178790A (en) Sulfonium salt, electrolytic solution, and lithium ion secondary battery
WO2015015598A1 (en) Coating material for negative electrode active materials for lithium ion secondary batteries, negative electrode active material for lithium ion secondary batteries coated with said coating material, and lithium ion secondary battery using said negative electrode active material in negative electrode
JP2018133335A (en) Nonaqueous electrolyte battery
JP2018133285A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery using the same
JP2019145409A (en) Lithium ion secondary battery
JP2019061828A (en) Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery using the same
JP2019175652A (en) Lithium ion secondary battery
JP2016178065A (en) Electrolytic solution for lithium ion secondary batteries and lithium ion secondary battery arranged by use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200114

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200707