JP2017178791A - Sulfonium salt, electrolytic solution for lithium secondary battery, and lithium secondary battery therewith - Google Patents
Sulfonium salt, electrolytic solution for lithium secondary battery, and lithium secondary battery therewith Download PDFInfo
- Publication number
- JP2017178791A JP2017178791A JP2016063494A JP2016063494A JP2017178791A JP 2017178791 A JP2017178791 A JP 2017178791A JP 2016063494 A JP2016063494 A JP 2016063494A JP 2016063494 A JP2016063494 A JP 2016063494A JP 2017178791 A JP2017178791 A JP 2017178791A
- Authority
- JP
- Japan
- Prior art keywords
- mol
- secondary battery
- sulfonium salt
- lithium secondary
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 title claims abstract description 32
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 26
- 239000008151 electrolyte solution Substances 0.000 title claims abstract description 15
- 239000000126 substance Substances 0.000 claims abstract description 10
- 150000001450 anions Chemical class 0.000 claims description 10
- 125000001424 substituent group Chemical group 0.000 claims description 8
- 239000000243 solution Substances 0.000 abstract description 37
- -1 Sulphonium salt Chemical class 0.000 description 30
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 24
- 230000015572 biosynthetic process Effects 0.000 description 20
- 238000003786 synthesis reaction Methods 0.000 description 18
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 17
- 229910001416 lithium ion Inorganic materials 0.000 description 17
- 238000006243 chemical reaction Methods 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 13
- 239000007774 positive electrode material Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 13
- YDVNLQGCLLPHAH-UHFFFAOYSA-N dichloromethane;hydrate Chemical compound O.ClCCl YDVNLQGCLLPHAH-UHFFFAOYSA-N 0.000 description 12
- PSLIMVZEAPALCD-UHFFFAOYSA-N ethanol;ethoxyethane Chemical compound CCO.CCOCC PSLIMVZEAPALCD-UHFFFAOYSA-N 0.000 description 12
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 12
- 239000012046 mixed solvent Substances 0.000 description 12
- 239000012074 organic phase Substances 0.000 description 12
- 230000003595 spectral effect Effects 0.000 description 12
- 239000007773 negative electrode material Substances 0.000 description 11
- ZXMGHDIOOHOAAE-UHFFFAOYSA-N 1,1,1-trifluoro-n-(trifluoromethylsulfonyl)methanesulfonamide Chemical compound FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F ZXMGHDIOOHOAAE-UHFFFAOYSA-N 0.000 description 10
- 150000001768 cations Chemical class 0.000 description 9
- AJPGNQYBSTXCJE-UHFFFAOYSA-N 2-methylthiolane Chemical compound CC1CCCS1 AJPGNQYBSTXCJE-UHFFFAOYSA-N 0.000 description 7
- 239000011230 binding agent Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 239000003792 electrolyte Substances 0.000 description 7
- CWZYVOWQQMJEMV-UHFFFAOYSA-M 1,2-dimethylthiolan-1-ium;iodide Chemical compound [I-].CC1CCC[S+]1C CWZYVOWQQMJEMV-UHFFFAOYSA-M 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 150000003863 ammonium salts Chemical class 0.000 description 6
- 238000011156 evaluation Methods 0.000 description 6
- 125000003709 fluoroalkyl group Chemical group 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- OKJPEAGHQZHRQV-UHFFFAOYSA-N Triiodomethane Natural products IC(I)I OKJPEAGHQZHRQV-UHFFFAOYSA-N 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- INQOMBQAUSQDDS-UHFFFAOYSA-N iodomethane Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 229920001940 conductive polymer Polymers 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- GSVFVFKJOAZWRU-UHFFFAOYSA-N 1,2-dimethylthiolan-1-ium Chemical compound CC1CCC[S+]1C GSVFVFKJOAZWRU-UHFFFAOYSA-N 0.000 description 3
- VLBGYQISAJHVAD-UHFFFAOYSA-N 2-methylthiane Chemical compound CC1CCCCS1 VLBGYQISAJHVAD-UHFFFAOYSA-N 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000011883 electrode binding agent Substances 0.000 description 3
- 239000002608 ionic liquid Substances 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 125000004434 sulfur atom Chemical group 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- OPOFFWCQHLVMDW-UHFFFAOYSA-M 1-butyl-2-methylthiolan-1-ium iodide Chemical compound [I-].C(CCC)[S+]1C(CCC1)C OPOFFWCQHLVMDW-UHFFFAOYSA-M 0.000 description 2
- NCNHVXIIPFWKBR-UHFFFAOYSA-M 1-methylthiolan-1-ium;iodide Chemical compound [I-].C[S+]1CCCC1 NCNHVXIIPFWKBR-UHFFFAOYSA-M 0.000 description 2
- IQRUSQUYPCHEKN-UHFFFAOYSA-N 2-iodobutane Chemical compound CCC(C)I IQRUSQUYPCHEKN-UHFFFAOYSA-N 0.000 description 2
- 229910013063 LiBF 4 Inorganic materials 0.000 description 2
- 229910013716 LiNi Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- HWAJAYOBRDSDIH-UHFFFAOYSA-M [I-].C[S+]1C(CCCC1)C Chemical compound [I-].C[S+]1C(CCCC1)C HWAJAYOBRDSDIH-UHFFFAOYSA-M 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- KMGBZBJJOKUPIA-UHFFFAOYSA-N butyl iodide Chemical compound CCCCI KMGBZBJJOKUPIA-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000002482 conductive additive Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000002687 intercalation Effects 0.000 description 2
- 238000009830 intercalation Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052758 niobium Inorganic materials 0.000 description 2
- 125000004433 nitrogen atom Chemical group N* 0.000 description 2
- 150000004714 phosphonium salts Chemical class 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 0 *C1[S+](*)CCCC1 Chemical compound *C1[S+](*)CCCC1 0.000 description 1
- XBZPPVJITJROFS-UHFFFAOYSA-N 1,2-dimethylthian-1-ium Chemical compound CC1CCCC[S+]1C XBZPPVJITJROFS-UHFFFAOYSA-N 0.000 description 1
- PRBHEGAFLDMLAL-UHFFFAOYSA-N 1,5-Hexadiene Natural products CC=CCC=C PRBHEGAFLDMLAL-UHFFFAOYSA-N 0.000 description 1
- WDRDMPHWPPZWCZ-UHFFFAOYSA-N 1-ethyl-2-methylthiolan-1-ium Chemical compound C(C)[S+]1C(CCC1)C WDRDMPHWPPZWCZ-UHFFFAOYSA-N 0.000 description 1
- NIYIFNMUTJSOMJ-UHFFFAOYSA-N 1-methylthiolan-1-ium Chemical compound C[S+]1CCCC1 NIYIFNMUTJSOMJ-UHFFFAOYSA-N 0.000 description 1
- CJFVCTVYZFTORU-UHFFFAOYSA-N 2-methyl-2-methylsulfanylpropane Chemical compound CSC(C)(C)C CJFVCTVYZFTORU-UHFFFAOYSA-N 0.000 description 1
- DXMQDKZYZBIJMM-UHFFFAOYSA-N C(CC)[S+]1C(CCC1)C Chemical compound C(CC)[S+]1C(CCC1)C DXMQDKZYZBIJMM-UHFFFAOYSA-N 0.000 description 1
- GWNUTBHQOQVVDA-UHFFFAOYSA-N CClO Chemical compound CClO GWNUTBHQOQVVDA-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910013275 LiMPO Inorganic materials 0.000 description 1
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 1
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 1
- 229910001228 Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) Inorganic materials 0.000 description 1
- ALSCEGDXFJIYES-UHFFFAOYSA-N N#CC1NCCC1 Chemical compound N#CC1NCCC1 ALSCEGDXFJIYES-UHFFFAOYSA-N 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001350 alkyl halides Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 230000031709 bromination Effects 0.000 description 1
- 238000005893 bromination reaction Methods 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 125000002897 diene group Chemical group 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- XGVXNTVBGYLJIR-UHFFFAOYSA-N fluoroiodomethane Chemical compound FCI XGVXNTVBGYLJIR-UHFFFAOYSA-N 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- PYGSKMBEVAICCR-UHFFFAOYSA-N hexa-1,5-diene Chemical compound C=CCCC=C PYGSKMBEVAICCR-UHFFFAOYSA-N 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- HVTICUPFWKNHNG-UHFFFAOYSA-N iodoethane Chemical compound CCI HVTICUPFWKNHNG-UHFFFAOYSA-N 0.000 description 1
- DEUISMFZZMAAOJ-UHFFFAOYSA-N lithium dihydrogen borate oxalic acid Chemical compound B([O-])(O)O.C(C(=O)O)(=O)O.C(C(=O)O)(=O)O.[Li+] DEUISMFZZMAAOJ-UHFFFAOYSA-N 0.000 description 1
- MHCFAGZWMAWTNR-UHFFFAOYSA-M lithium perchlorate Chemical compound [Li+].[O-]Cl(=O)(=O)=O MHCFAGZWMAWTNR-UHFFFAOYSA-M 0.000 description 1
- 229910001486 lithium perchlorate Inorganic materials 0.000 description 1
- DMEJJWCBIYKVSB-UHFFFAOYSA-N lithium vanadium Chemical compound [Li].[V] DMEJJWCBIYKVSB-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- IOPLHGOSNCJOOO-UHFFFAOYSA-N methyl 3,4-diaminobenzoate Chemical compound COC(=O)C1=CC=C(N)C(N)=C1 IOPLHGOSNCJOOO-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- KTQDYGVEEFGIIL-UHFFFAOYSA-N n-fluorosulfonylsulfamoyl fluoride Chemical compound FS(=O)(=O)NS(F)(=O)=O KTQDYGVEEFGIIL-UHFFFAOYSA-N 0.000 description 1
- PVWOIHVRPOBWPI-UHFFFAOYSA-N n-propyl iodide Chemical compound CCCI PVWOIHVRPOBWPI-UHFFFAOYSA-N 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- ZERULLAPCVRMCO-UHFFFAOYSA-N sulfure de di n-propyle Natural products CCCSCCC ZERULLAPCVRMCO-UHFFFAOYSA-N 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- RAOIDOHSFRTOEL-UHFFFAOYSA-N tetrahydrothiophene Chemical compound C1CCSC1 RAOIDOHSFRTOEL-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Heterocyclic Compounds Containing Sulfur Atoms (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、スルホニウム塩、リチウム二次電池用電解液およびこれを用いたリチウム二次電池に関する The present invention relates to a sulfonium salt, an electrolytic solution for a lithium secondary battery, and a lithium secondary battery using the same.
室温において液体状態を取る塩はイオン液体と呼ばれ、アンモニウム塩に代表されるような窒素原子をカチオンとした構造のものが多数報告されている。しかしながら、アンモニウム塩は比較的融点、粘度が高く、室温付近で粘度の低い液体となる構造はほんの一部である。加えて、窒素原子をカチオンとしたイオン液体は、還元安定性が低く、リチウム二次電池、電気二重層キャパシター、燃料電池あるいは色素増感型太陽電池、または蓄電用デバイス向け電解質、電解液あるいは添加剤としての応用に関し大きな障害となっている。 Salts that take a liquid state at room temperature are called ionic liquids, and many salts having a structure with a nitrogen atom as a cation as typified by ammonium salts have been reported. However, ammonium salts have a relatively high melting point and high viscosity, and only a part of the structure becomes a low viscosity liquid around room temperature. In addition, ionic liquids with nitrogen atoms as cations have low reduction stability and are electrolytes, electrolytes or additives for lithium secondary batteries, electric double layer capacitors, fuel cells or dye-sensitized solar cells, or power storage devices. It is a major obstacle for its application as a drug.
広範な温度範囲で液体状態であるイオン液体としては、硫黄原子をカチオンとしたスルホニウム塩が知られている。(特許文献1参照) As an ionic liquid in a liquid state over a wide temperature range, a sulfonium salt having a sulfur atom as a cation is known. (See Patent Document 1)
しかしながら、従来のスルホニウム塩の特性は各種電気デバイスへの応用を考えた上で満足できるものではなく、特に粘度が高いという課題があった。 However, the characteristics of conventional sulfonium salts are not satisfactory in consideration of application to various electric devices, and there is a problem that the viscosity is particularly high.
本発明は上記従来技術の有する課題に鑑みてなされたものであり、粘度の低いスルホニウム塩およびリチウム二次電池用電解液、およびこれを用いたリチウム二次電池を提供することを目的とする。 This invention is made | formed in view of the subject which the said prior art has, and aims at providing the sulfonium salt with low viscosity, the electrolyte solution for lithium secondary batteries, and a lithium secondary battery using the same.
上記課題を解決するため、本発明に係るスルホニウム塩は下記化学式(1)で示されることを特徴とする。 In order to solve the above problems, the sulfonium salt according to the present invention is represented by the following chemical formula (1).
[式中の置換基R1〜R5は一価の置換基、X−は一価のアニオンを示す。(ただし、R1≠R2≠R3、かつRA≠R4≠R5)] [In the formula, substituents R 1 to R 5 represent a monovalent substituent, and X − represents a monovalent anion. (However, R 1 ≠ R 2 ≠ R 3 and R A ≠ R 4 ≠ R 5 )]
これによれば、本発明に係るスルホニウム塩は、カチオン中心である硫黄原子の隣接炭素が不斉炭素であり、ジアステレオマーを形成する。スルホニウム塩のカチオン中心の結合価は3であり、アンモニウム塩やホスホニウム塩に比べて立体的に疎である。このため、カチオンとアニオン同士が接近しやすく、系全体が長周期的な秩序を形成し、粘度が増加する。しかし、ジアステレオマーを形成することで、カチオン間の立体反発が大きくなり、上記の長周期的な秩序が乱れ、粘度が低下する。 According to this, in the sulfonium salt according to the present invention, the adjacent carbon of the sulfur atom which is the cation center is an asymmetric carbon, and forms a diastereomer. The valence of the cation center of the sulfonium salt is 3, which is sterically sparse compared to the ammonium salt and phosphonium salt. For this reason, a cation and an anion are easy to approach, the whole system forms a long-period order, and a viscosity increases. However, by forming a diastereomer, the steric repulsion between cations is increased, the long-period order is disturbed, and the viscosity is lowered.
本発明に係るスルホニウム塩は、さらに、下記化学式(2)または化学式(3)で示されることが好ましい。 The sulfonium salt according to the present invention is further preferably represented by the following chemical formula (2) or chemical formula (3).
[式中の置換基R6およびR7は一価の置換基、X−は一価のアニオンを示す] [In the formula, substituents R 6 and R 7 represent a monovalent substituent, and X − represents a monovalent anion.]
これによれば、カチオンの構造としてより好ましく、粘度がより低下する。 According to this, it is more preferable as a cation structure, and the viscosity is further reduced.
本発明に係るリチウム二次電池用電解液は、上記スルホニウム塩を含むことを特徴とする。 The electrolyte solution for a lithium secondary battery according to the present invention includes the sulfonium salt.
本発明に係るリチウム二次電池は、正極と、負極と、上記正極と前記負極の間に位置するセパレータと、上記リチウム二次電池用電解液を含むことを特徴とする。 The lithium secondary battery according to the present invention includes a positive electrode, a negative electrode, a separator positioned between the positive electrode and the negative electrode, and the electrolyte solution for a lithium secondary battery.
これによれば、電解液としてスルホニウム塩を用いても、レート特性の悪化が抑制されたリチウム二次電池が提供される。 According to this, even if a sulfonium salt is used as the electrolytic solution, a lithium secondary battery in which deterioration of rate characteristics is suppressed is provided.
本発明によれば、粘度の低いスルホニウム塩、リチウム二次電池用電解液およびこれを用いたリチウム二次電池が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the sulfonium salt with low viscosity, the electrolyte solution for lithium secondary batteries, and a lithium secondary battery using the same are provided.
以下、図面を参照しながら本発明に係る好適な実施形態について説明する。なお、本発明は以下の実施形態に限定されるものではない。また以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれる。さらに以下に記載した構成要素は、適宜組み合わせることができる。 DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments according to the invention will be described with reference to the drawings. In addition, this invention is not limited to the following embodiment. The constituent elements described below include those that can be easily assumed by those skilled in the art and those that are substantially the same. Furthermore, the constituent elements described below can be appropriately combined.
<スルホニウム塩>
本実施形態に係るスルホニウム塩は、化学式(1)で示される。
<Sulphonium salt>
The sulfonium salt according to this embodiment is represented by the chemical formula (1).
本実施形態に係るスルホニウム塩は、カチオン中心である硫黄原子の隣接炭素が不斉炭素であり、ジアステレオマーを形成する。スルホニウム塩のカチオン中心の結合価は3であり、アンモニウム塩やホスホニウム塩に比べて立体的に疎である。このため、カチオンとアニオン同士が接近しやすく、系全体が長周期的な秩序を形成し、粘度が増加する。しかし、ジアステレオマーを形成することで、カチオン間の立体反発が大きくなり、上記の長周期的な秩序が乱れ、粘度が低下する。 In the sulfonium salt according to this embodiment, the adjacent carbon of the sulfur atom that is the cation center is an asymmetric carbon, and forms a diastereomer. The valence of the cation center of the sulfonium salt is 3, which is sterically sparse compared to the ammonium salt and phosphonium salt. For this reason, a cation and an anion are easy to approach, the whole system forms a long-period order, and a viscosity increases. However, by forming a diastereomer, the steric repulsion between cations is increased, the long-period order is disturbed, and the viscosity is lowered.
R1〜R5としては特に限定は無いが、アルキル基またはフルオロアルキル基であることが好ましく、直鎖のアルキル基またはフルオロアルキル基であることがより好ましい。この場合、粘度がより低下する。 R 1 to R 5 are not particularly limited, but are preferably an alkyl group or a fluoroalkyl group, and more preferably a linear alkyl group or a fluoroalkyl group. In this case, the viscosity is further reduced.
R4〜R5としては特に限定は無いが、アルキル基またはフルオロアルキル基であることが好ましく、直鎖のアルキル基またはフルオロアルキル基であることがより好ましい。この場合、炭素数は1〜3が好ましく、粘度がより低下する。 R 4 to R 5 are not particularly limited, but are preferably an alkyl group or a fluoroalkyl group, and more preferably a linear alkyl group or a fluoroalkyl group. In this case, the number of carbon atoms is preferably 1 to 3, and the viscosity is further reduced.
一価のアニオンとしては特に限定は無く、BF4 −、PF6 −、CClO4 −、N(SO2CF3)2 −、N(SO2F)2 −等、既知のアニオンを用いることができる。 The monovalent anion is not particularly limited, and a known anion such as BF 4 − , PF 6 − , CClO 4 − , N (SO 2 CF 3 ) 2 − or N (SO 2 F) 2 − may be used. it can.
本実施形態に係るアンモニウム塩は、化学式(2)または(3)であることが好ましい。 The ammonium salt according to this embodiment is preferably represented by chemical formula (2) or (3).
これによれば、カチオンの構造としてより好ましく、粘度がより低下する。 According to this, it is more preferable as a cation structure, and the viscosity is further reduced.
R6およびR7としては特に限定は無いが、アルキル基またはフルオロアルキル基であることが好ましく、直鎖のアルキル基またはフルオロアルキル基であることがより好ましい。この場合、より粘度が低下する。 R 6 and R 7 are not particularly limited, but are preferably an alkyl group or a fluoroalkyl group, and more preferably a linear alkyl group or a fluoroalkyl group. In this case, the viscosity is further reduced.
R6およびR7の炭素数は1〜3が好ましく、1〜2がより好ましい。この場合、より粘度が低下する。 The number of carbon atoms of R 6 and R 7 are 1 to 3 is preferable, 1 to 2 is more preferred. In this case, the viscosity is further reduced.
(合成方法)
本実施形態に係るスルホニウム塩の一般的な合成法は次の通りである。
(Synthesis method)
A general synthesis method of the sulfonium salt according to the present embodiment is as follows.
まず、適当なスルフィドとアルキルハライドとを混合し、必要に応じて加熱を行うことで3級スルホニウムハライドとする。なお、オートクレーブ等を用いて加圧下で反応させてもよい。得られたアンモニウムハライドを、水等の極性溶媒中に溶解し、リチウムビス(トリフルオロスルホニル)イミド等の必要とするアニオン種を発生させる試薬と反応させてアニオン交換反応を行い、所望のスルホニウム塩を得ることができる。 First, an appropriate sulfide and an alkyl halide are mixed and heated as necessary to obtain a tertiary sulfonium halide. In addition, you may make it react under pressure using an autoclave etc. The obtained ammonium halide is dissolved in a polar solvent such as water and reacted with a reagent that generates the required anion species such as lithium bis (trifluorosulfonyl) imide, and an anion exchange reaction is performed to obtain a desired sulfonium salt. Can be obtained.
<リチウムイオン二次電池>
図1に示すように、本実施形態に係るリチウムイオン二次電池100は、互いに対向する板状の負極20及び板状の正極10と、負極20と正極10との間に隣接して配置される板状のセパレータ18と、を備える積層体30と、リチウムイオンを含む電解質溶液と、これらを密閉した状態で収容するケース50と、負極20に一方の端部が電気的に接続されると共に他方の端部がケースの外部に突出されるリード62と、正極10に一方の端部が電気的に接続されると共に他方の端部がケースの外部に突出されるリード60とを備える。
<Lithium ion secondary battery>
As shown in FIG. 1, a lithium ion
負極20は、負極集電体22と、負極集電体22上に形成された負極活物質層24と、を有する。また、正極10は、正極集電体12と、正極集電体12上に形成された正極活物質層14と、を有する。セパレータ18は、負極活物質層24と正極活物質層14との間に位置している。
The
<正極>
(正極集電体)
正極集電体12は、導電性の板材であればよく、例えば、アルミニウム又はそれらの合金、ステンレス等の金属薄板(金属箔)を用いることができる。
<Positive electrode>
(Positive electrode current collector)
The positive electrode
(正極活物質層)
正極活物質層14は、正極活物質、正極用バインダー、及び、必要に応じた量の正極用導電助剤から主に構成されるものである。
(Positive electrode active material layer)
The positive electrode
(正極活物質)
正極活物質としては、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)、又は、該リチウムイオンのカウンターアニオン(例えば、PF6 −)のドープ及び脱ドープを可逆的に進行させることが可能であれば特に限定されず、公知の電極活物質を使用できる。例えば、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、リチウムマンガンスピネル(LiMn2O4)、及び、化学式:LiNixCoyMnzMaO2(x+y+z+a=1、0≦x≦1、0≦y≦1、0≦z≦1、0≦a≦1、MはAl、Mg、Nb、Ti、Cu、Zn、Crより選ばれる1種類以上の元素)で表される複合金属酸化物、リチウムバナジウム化合物(LiV2O5)、オリビン型LiMPO4(ただし、Mは、Co、Ni、Mn、Fe、Mg、Nb、Ti、Al、Zrより選ばれる1種類以上の元素又はVOを示す)、チタン酸リチウム(Li4Ti5O12)、LiNixCoyAlzO2(0.9<x+y+z<1.1)等の複合金属酸化物が挙げられる。
(Positive electrode active material)
As the positive electrode active material, lithium ion occlusion and release, lithium ion desorption and insertion (intercalation), or doping and dedoping of a counter anion (for example, PF 6 − ) of the lithium ion are reversibly performed. If it can be made to advance, it will not specifically limit, A well-known electrode active material can be used. For example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganese spinel (LiMn 2 O 4 ), and the chemical formula: LiNi x Co y Mn z MaO 2 (x + y + z + a = 1, 0 ≦ x ≦ 1) , 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, 0 ≦ a ≦ 1, and M is one or more elements selected from Al, Mg, Nb, Ti, Cu, Zn, and Cr) Product, lithium vanadium compound (LiV 2 O 5 ), olivine-type LiMPO 4 (where M is one or more elements selected from Co, Ni, Mn, Fe, Mg, Nb, Ti, Al, Zr or VO) shown), and composite metal oxides such as lithium titanate (Li 4 Ti 5 O 12) , LiNi x Co y Al z O 2 (0.9 <x + y + z <1.1)
(正極用バインダー)
正極用バインダーは、正極活物質同士を結合すると共に、正極活物質層14と正極用集電体12とを結合している。バインダーは、上述の結合が可能なものであればよく、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂や、セルロース、スチレン・ブタジエンゴム、エチレン・プロピレンゴム、ポリイミド樹脂、ポリアミドイミド樹脂等を用いてもよい。また、バインダーとして電子伝導性の導電性高分子やイオン伝導性の導電性高分子を用いてもよい。電子伝導性の導電性高分子としては、例えば、ポリアセチレン、ポリチオフェン、ポリアニリン等が挙げられる。イオン伝導性の導電性高分子としては、例えば、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物と、LiClO4、LiBF4、LiPF6等のリチウム塩とを複合化させたもの等が挙げられる。
(Binder for positive electrode)
The positive electrode binder bonds the positive electrode active materials to each other and bonds the positive electrode
正極活物質層14中のバインダーの含有量は特に限定されないが、添加する場合には正極活物質の質量に対して0.5〜5質量部であることが好ましい。
Although content of the binder in the positive electrode
(正極用導電助剤)
正極用導電助剤は、正極活物質層14の導電性を良好にするものであれば特に限定されず、公知の導電助剤を使用できる。例えば、黒鉛、カーボンブラック等の炭素系材料や、銅、ニッケル、ステンレス、鉄等の金属微粉、ITO等の導電性酸化物が挙げられる。
(Conductive aid for positive electrode)
The conductive aid for positive electrode is not particularly limited as long as it improves the conductivity of the positive electrode
<負極>
(負極集電体)
負極集電体22は、導電性の板材であればよく、例えば、銅等の金属薄板(金属箔)を用いることができる。
<Negative electrode>
(Negative electrode current collector)
The negative electrode
(負極活物質層)
負極活物質層24は、負極活物質から主に構成されるものである。
(Negative electrode active material layer)
The negative electrode
(負極活物質)
負極活物質としては、リチウムイオンの吸蔵及び放出、リチウムイオンの脱離及び挿入(インターカレーション)を可逆的に進行させることが可能であれば特に限定されず、公知の電極活物質を使用できる。例えば、グラファイト、ハードカーボン等の炭素系材料、酸化シリコン(SiOx)金属シリコン(Si)等の珪素系材料、チタン酸リチウム(LTO)等の金属酸化物、リチウム、スズ、亜鉛等の金属材料が挙げられる。
(Negative electrode active material)
The negative electrode active material is not particularly limited as long as it can reversibly advance occlusion and release of lithium ions and desorption and insertion (intercalation) of lithium ions, and a known electrode active material can be used. . For example, carbon materials such as graphite and hard carbon, silicon materials such as silicon oxide (SiO x ) metal silicon (Si), metal oxides such as lithium titanate (LTO), metal materials such as lithium, tin, and zinc Is mentioned.
この中でも特に、負極活物質としてリチウムを用いることが好ましく、充放電に伴うデンドライドの生成が抑制された負極が得られる。 Among these, in particular, lithium is preferably used as the negative electrode active material, and a negative electrode in which the formation of dendrites accompanying charge / discharge is suppressed can be obtained.
負極活物質として金属材料を用いない場合、負極活物質層24は更に、負極用バインダーおよび負極用導電助剤を含んでいてもよい。
When a metal material is not used as the negative electrode active material, the negative electrode
(負極用バインダー)
負極用バインダーとしては特に限定は無く、上記で記載した正極用バインダーと同様のものを用いることができる。
(Binder for negative electrode)
There is no limitation in particular as a binder for negative electrodes, The thing similar to the binder for positive electrodes described above can be used.
(負極用導電助剤)
負極用導電助剤としては特に限定は無く、上記で記載した正極用導電助剤と同様のものを用いることができる。
(Conductive aid for negative electrode)
There is no limitation in particular as a conductive support agent for negative electrodes, The thing similar to the conductive support agent for positive electrodes described above can be used.
<電解液>
本実施形態に係る電解液は、化学式(1)で示されるスルホニウム塩を含むものである。
<Electrolyte>
The electrolytic solution according to the present embodiment includes a sulfonium salt represented by the chemical formula (1).
電解質は、リチウムイオン二次電池の電解質として用いられるリチウム塩であれば特に限定は無く、例えば、LiPF6、LiBF4、リチウムビスオキサレートボラート等の無機酸陰イオン塩、LiCF3SO3、(CF3SO2)2NLi、(FSO2)2NLi等の有機酸陰イオン塩等を用いることができる。 The electrolyte is not particularly limited as long as it is a lithium salt used as an electrolyte of a lithium ion secondary battery. For example, inorganic acid anion salts such as LiPF 6 , LiBF 4 , lithium bisoxalate borate, LiCF 3 SO 3 , An organic acid anion salt such as (CF 3 SO 2 ) 2 NLi, (FSO 2 ) 2 NLi, or the like can be used.
以上、本発明に係る好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。 As mentioned above, although preferred embodiment which concerns on this invention was described, this invention is not limited to the said embodiment.
以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example.
[合成実施例1]
Ar雰囲気下、PFA製の耐圧容器に乾燥エタノール200mL、エチルメチルスルフィド1.00mol、2−ヨードブタン1.00molを投入して封をした後、75℃で24時間反応させた。反応後の溶液を濃縮した後、エタノール−ジエチルエーテル混合溶媒で再結晶を行い、0.900molのS−(sec−ブチル)−S−プロピル−S−メチルスルホニウムアイオダイドを得た。
[Synthesis Example 1]
Under an Ar atmosphere, 200 mL of dry ethanol, 1.00 mol of ethyl methyl sulfide, and 1.00 mol of 2-iodobutane were put into a pressure-resistant container made of PFA, sealed, and reacted at 75 ° C. for 24 hours. After concentrating the solution after the reaction, recrystallization was performed with an ethanol-diethyl ether mixed solvent to obtain 0.900 mol of S- (sec-butyl) -S-propyl-S-methylsulfonium iodide.
(スルホニウム塩の合成)
S−(sec−ブチル)−S−プロピル−S−メチルスルホニウムアイオダイド0.500molを水300mLに溶解させ、次いでリチウムビス(トリフルオロメチルスルホニル)イミド(LiTFSI)0.750molを徐々に加えた。この溶液を一晩撹拌し、得られた溶液を水−ジクロロメタンで分液を行った。有機相を回収、乾燥し、0.480molのS−(sec−ブチル)−S−プロピル−S−メチルスルホニウムビス(トリフルオロメチルスルホニル)イミドを得た。
化合物の同定はCDCl3中、核磁気共鳴分析装置(JEOL ECA−500)で行なった。スペクトルデータを表1に示す。
(Synthesis of sulfonium salt)
0.500 mol of S- (sec-butyl) -S-propyl-S-methylsulfonium iodide was dissolved in 300 mL of water, and then 0.750 mol of lithium bis (trifluoromethylsulfonyl) imide (LiTFSI) was gradually added. The solution was stirred overnight, and the resulting solution was partitioned with water-dichloromethane. The organic phase was collected and dried to obtain 0.480 mol of S- (sec-butyl) -S-propyl-S-methylsulfonium bis (trifluoromethylsulfonyl) imide.
The compound was identified with a nuclear magnetic resonance analyzer (JEOL ECA-500) in CDCl3. The spectral data is shown in Table 1.
(スルホニウム塩の粘度の測定)
合成したスルホニウム塩の粘度を、EMS粘度計(京都電子工業 EMS−1000)を用いて測定した。結果を表1に示す。
(Measurement of viscosity of sulfonium salt)
The viscosity of the synthesized sulfonium salt was measured using an EMS viscometer (Kyoto Electronics Industry EMS-1000). The results are shown in Table 1.
[合成実施例2]
Ar雰囲気下、PFA製の耐圧容器に乾燥エタノール200mL、tert−ブチルメチルスルフィド1.00mol、2−ヨードブタン1.00molを投入して封をした後、75℃で24時間反応させた。反応後の溶液を濃縮した後、エタノール−ジエチルエーテル混合溶媒で再結晶を行い、0.900molのS−(sec−ブチル)−S−(tert−ブチル)−S−メチルスルホニウムアイオダイドを得た。
[Synthesis Example 2]
Under an Ar atmosphere, 200 mL of dry ethanol, 1.00 mol of tert-butylmethylsulfide and 1.00 mol of 2-iodobutane were sealed in a pressure-resistant container made of PFA, and then reacted at 75 ° C. for 24 hours. After concentrating the solution after the reaction, recrystallization was performed with a mixed solvent of ethanol-diethyl ether to obtain 0.900 mol of S- (sec-butyl) -S- (tert-butyl) -S-methylsulfonium iodide. .
S−(sec−ブチル)−S−(tert−ブチル)−S−メチルスルホニウムアイオダイド0.500molを水300mLに溶解させ、次いでリチウムビス(トリフルオロメチルスルホニル)イミド(LiTFSI)0.750molを徐々に加えた。この溶液を一晩撹拌し、得られた溶液を水−ジクロロメタンで分液を行った。有機相を回収、乾燥し、0.480molのS−(sec−ブチル)−S−(tert−ブチル)−S−メチルスルホニウムビス(トリフルオロメチルスルホニル)イミドを得た。化合物のスペクトルデータおよび粘度を表1に示す。 S- (sec-butyl) -S- (tert-butyl) -S-methylsulfonium iodide 0.500 mol was dissolved in 300 mL of water, and then lithium bis (trifluoromethylsulfonyl) imide (LiTFSI) 0.750 mol was gradually added. Added to. The solution was stirred overnight, and the resulting solution was partitioned with water-dichloromethane. The organic phase was collected and dried to obtain 0.480 mol of S- (sec-butyl) -S- (tert-butyl) -S-methylsulfonium bis (trifluoromethylsulfonyl) imide. The spectral data and viscosities of the compounds are shown in Table 1.
[合成実施例3]
Ar雰囲気下、PFA製の耐圧容器に乾燥エタノール200mL、2−メチルテトラヒドロチオフェン1.00mol、ヨードメタン1.00molを投入して封をした後、75℃で24時間反応させた。反応後の溶液を濃縮した後、エタノール−ジエチルエーテル混合溶媒で再結晶を行い、0.900molのS−メチル−2−メチルテトラヒドロチオフェニウムアイオダイドを得た。
[Synthesis Example 3]
Under an Ar atmosphere, 200 mL of dry ethanol, 1.00 mol of 2-methyltetrahydrothiophene, and 1.00 mol of iodomethane were put into a pressure-resistant container made of PFA, sealed, and reacted at 75 ° C. for 24 hours. The solution after the reaction was concentrated and then recrystallized with a mixed solvent of ethanol-diethyl ether to obtain 0.900 mol of S-methyl-2-methyltetrahydrothiophenium iodide.
S−メチル−2−メチルテトラヒドロチオフェニウムアイオダイド0.500molを水300mLに溶解させ、次いでLiTFSI0.750molを徐々に加えた。この溶液を一晩撹拌し、得られた溶液を水−ジクロロメタンで分液を行った。有機相を回収、乾燥し、0.480molのS−メチル−2−メチルテトラヒドロチオフェニウムビス(トリフルオロメチルスルホニル)イミドを得た。化合物のスペクトルデータおよび粘度を表1に示す。 0.500 mol of S-methyl-2-methyltetrahydrothiophenium iodide was dissolved in 300 mL of water, and then 0.750 mol of LiTFSI was gradually added. The solution was stirred overnight, and the resulting solution was partitioned with water-dichloromethane. The organic phase was collected and dried to obtain 0.480 mol of S-methyl-2-methyltetrahydrothiophenium bis (trifluoromethylsulfonyl) imide. The spectral data and viscosities of the compounds are shown in Table 1.
[合成実施例4]
Ar雰囲気下、PFA製の耐圧容器に乾燥エタノール200mL、2−メチルテトラヒドロチオフェン1.00mol、ヨードエタン1.00molを投入して封をした後、75℃で24時間反応させた。反応後の溶液を濃縮した後、エタノール−ジエチルエーテル混合溶媒で再結晶を行い、0.900molのS−エチル−2−メチルテトラヒドロチオフェニウムアイオダイドを得た。
[Synthesis Example 4]
Under an Ar atmosphere, 200 mL of dry ethanol, 1.00 mol of 2-methyltetrahydrothiophene, and 1.00 mol of iodoethane were sealed in a pressure-resistant container made of PFA, and then reacted at 75 ° C. for 24 hours. The solution after the reaction was concentrated and then recrystallized with a mixed solvent of ethanol-diethyl ether to obtain 0.900 mol of S-ethyl-2-methyltetrahydrothiophenium iodide.
S−エチル−2−メチルテトラヒドロチオフェニウムアイオダイド0.500molを水300mLに溶解させ、次いでLiTFSI0.750molを徐々に加えた。この溶液を一晩撹拌し、得られた溶液を水−ジクロロメタンで分液を行った。有機相を回収、乾燥し、0.480molのS−エチル−2−メチルテトラヒドロチオフェニウムビス(トリフルオロメチルスルホニル)イミドを得た。化合物のスペクトルデータおよび粘度を表1に示す。 0.500 mol of S-ethyl-2-methyltetrahydrothiophenium iodide was dissolved in 300 mL of water, and then 0.750 mol of LiTFSI was gradually added. The solution was stirred overnight, and the resulting solution was partitioned with water-dichloromethane. The organic phase was collected and dried to obtain 0.480 mol of S-ethyl-2-methyltetrahydrothiophenium bis (trifluoromethylsulfonyl) imide. The spectral data and viscosities of the compounds are shown in Table 1.
[合成実施例5]
Ar雰囲気下、PFA製の耐圧容器に乾燥エタノール200mL、2−メチルテトラヒドロチオフェン1.00mol、1−ヨードプロパン1.00molを投入して封をした後、75℃で24時間反応させた。反応後の溶液を濃縮した後、エタノール−ジエチルエーテル混合溶媒で再結晶を行い、0.900molのS−プロピル−2−メチルテトラヒドロチオフェニウムアイオダイドを得た。
[Synthesis Example 5]
Under an Ar atmosphere, 200 mL of dry ethanol, 1.00 mol of 2-methyltetrahydrothiophene, and 1.00 mol of 1-iodopropane were put into a pressure-resistant container made of PFA, sealed, and reacted at 75 ° C. for 24 hours. The solution after the reaction was concentrated and then recrystallized with a mixed solvent of ethanol-diethyl ether to obtain 0.900 mol of S-propyl-2-methyltetrahydrothiophenium iodide.
S−プロピル−2−メチルテトラヒドロチオフェニウムアイオダイド0.500molを水300mLに溶解させ、次いでLiTFSI0.750molを徐々に加えた。この溶液を一晩撹拌し、得られた溶液を水−ジクロロメタンで分液を行った。有機相を回収、乾燥し、0.480molのS−プロピル−2−メチルテトラヒドロチオフェニウムビス(トリフルオロメチルスルホニル)イミドを得た。化合物のスペクトルデータおよび粘度を表1に示す。 0.500 mol of S-propyl-2-methyltetrahydrothiophenium iodide was dissolved in 300 mL of water, and then 0.750 mol of LiTFSI was gradually added. The solution was stirred overnight, and the resulting solution was partitioned with water-dichloromethane. The organic phase was collected and dried to obtain 0.480 mol of S-propyl-2-methyltetrahydrothiophenium bis (trifluoromethylsulfonyl) imide. The spectral data and viscosities of the compounds are shown in Table 1.
[合成実施例6]
Ar雰囲気下、PFA製の耐圧容器に乾燥エタノール200mL、2−メチルテトラヒドロチオフェン1.00mol、1−ヨードブタン1.00molを投入して封をした後、75℃で24時間反応させた。反応後の溶液を濃縮した後、エタノール−ジエチルエーテル混合溶媒で再結晶を行い、0.900molのS−ブチル−2−メチルテトラヒドロチオフェニウムアイオダイドを得た。
[Synthesis Example 6]
Under an Ar atmosphere, 200 mL of dry ethanol, 1.00 mol of 2-methyltetrahydrothiophene, and 1.00 mol of 1-iodobutane were put into a pressure-resistant container made of PFA, sealed, and reacted at 75 ° C. for 24 hours. The solution after the reaction was concentrated and then recrystallized with a mixed solvent of ethanol-diethyl ether to obtain 0.900 mol of S-butyl-2-methyltetrahydrothiophenium iodide.
S−ブチル−2−メチルテトラヒドロチオフェニウムアイオダイド0.500molを水300mLに溶解させ、次いでLiTFSI0.750molを徐々に加えた。この溶液を一晩撹拌し、得られた溶液を水−ジクロロメタンで分液を行った。有機相を回収、乾燥し、0.480molのS−ブチル−2−メチルテトラヒドロチオフェニウムビス(トリフルオロメチルスルホニル)イミドを得た。化合物のスペクトルデータおよび粘度を表1に示す。 0.500 mol of S-butyl-2-methyltetrahydrothiophenium iodide was dissolved in 300 mL of water, and then 0.750 mol of LiTFSI was gradually added. The solution was stirred overnight, and the resulting solution was partitioned with water-dichloromethane. The organic phase was collected and dried to obtain 0.480 mol of S-butyl-2-methyltetrahydrothiophenium bis (trifluoromethylsulfonyl) imide. The spectral data and viscosities of the compounds are shown in Table 1.
[合成実施例7]
Ar雰囲気下、PFA製の耐圧容器に乾燥エタノール200mL、2−メチルテトラヒドロチオフェン1.00mol、フルオロヨードメタン1.00molを投入して封をした後、75℃で24時間反応させた。反応後の溶液を濃縮した後、エタノール−ジエチルエーテル混合溶媒で再結晶を行い、0.900molのS−フルオロメチル−2−メチルテトラヒドロチオフェニウムアイオダイドを得た。
[Synthesis Example 7]
Under an Ar atmosphere, 200 mL of dry ethanol, 1.00 mol of 2-methyltetrahydrothiophene, and 1.00 mol of fluoroiodomethane were put in a pressure-resistant container made of PFA, sealed, and reacted at 75 ° C. for 24 hours. The solution after the reaction was concentrated and then recrystallized with a mixed solvent of ethanol-diethyl ether to obtain 0.900 mol of S-fluoromethyl-2-methyltetrahydrothiophenium iodide.
S−フルオロメチル−2−メチルテトラヒドロチオフェニウムアイオダイド0.500molを水300mLに溶解させ、次いでLiTFSI0.750molを徐々に加えた。この溶液を一晩撹拌し、得られた溶液を水−ジクロロメタンで分液を行った。有機相を回収、乾燥し、0.480molのS−フルオロメチル−2−メチルテトラヒドロチオフェニウムビス(トリフルオロメチルスルホニル)イミドを得た。化合物のスペクトルデータおよび粘度を表1に示す。 0.500 mol of S-fluoromethyl-2-methyltetrahydrothiophenium iodide was dissolved in 300 mL of water, and then 0.750 mol of LiTFSI was gradually added. The solution was stirred overnight, and the resulting solution was partitioned with water-dichloromethane. The organic phase was collected and dried to obtain 0.480 mol of S-fluoromethyl-2-methyltetrahydrothiophenium bis (trifluoromethylsulfonyl) imide. The spectral data and viscosities of the compounds are shown in Table 1.
[合成実施例8]
Ar雰囲気下、PFA製の耐圧容器に乾燥エタノール200mL、2−メチルテトラヒドロチオフェン1.00mol、ヨードメタン1.00molを投入して封をした後、75℃で24時間反応させた。反応後の溶液を濃縮した後、エタノール−ジエチルエーテル混合溶媒で再結晶を行い、0.900molのS−メチル−2−メチルテトラヒドロチオフェニウムアイオダイドを得た。
[Synthesis Example 8]
Under an Ar atmosphere, 200 mL of dry ethanol, 1.00 mol of 2-methyltetrahydrothiophene, and 1.00 mol of iodomethane were put into a pressure-resistant container made of PFA, sealed, and reacted at 75 ° C. for 24 hours. The solution after the reaction was concentrated and then recrystallized with a mixed solvent of ethanol-diethyl ether to obtain 0.900 mol of S-methyl-2-methyltetrahydrothiophenium iodide.
S−メチル−2−メチルテトラヒドロチオフェニウムアイオダイド0.500molを水300mLに溶解させ、次いでリチウムビス(フルオロスルホニル)イミド(LiFSI)0.750molを徐々に加えた。この溶液を一晩撹拌し、得られた溶液を水−ジクロロメタンで分液を行った。有機相を回収、乾燥し、0.480molのS−メチル−2−メチルテトラヒドロチオフェニウムビス(フルオロスルホニル)イミドを得た。化合物のスペクトルデータおよび粘度を表1に示す。 0.500 mol of S-methyl-2-methyltetrahydrothiophenium iodide was dissolved in 300 mL of water, and then 0.750 mol of lithium bis (fluorosulfonyl) imide (LiFSI) was gradually added. The solution was stirred overnight, and the resulting solution was partitioned with water-dichloromethane. The organic phase was collected and dried to obtain 0.480 mol of S-methyl-2-methyltetrahydrothiophenium bis (fluorosulfonyl) imide. The spectral data and viscosities of the compounds are shown in Table 1.
[合成実施例9]
Ar雰囲気下、PFA製の耐圧容器に乾燥エタノール200mL、2−メチルテトラヒドロチオフェン1.00mol、ヨードメタン1.00molを投入して封をした後、75℃で24時間反応させた。反応後の溶液を濃縮した後、エタノール−ジエチルエーテル混合溶媒で再結晶を行い、0.900molのS−メチル−2−メチルテトラヒドロチオフェニウムアイオダイドを得た。
[Synthesis Example 9]
Under an Ar atmosphere, 200 mL of dry ethanol, 1.00 mol of 2-methyltetrahydrothiophene, and 1.00 mol of iodomethane were put into a pressure-resistant container made of PFA, sealed, and reacted at 75 ° C. for 24 hours. The solution after the reaction was concentrated and then recrystallized with a mixed solvent of ethanol-diethyl ether to obtain 0.900 mol of S-methyl-2-methyltetrahydrothiophenium iodide.
S−メチル−2−メチルテトラヒドロチオフェニウムアイオダイド0.500molを水300mLに溶解させ、次いで過塩素酸リチウム0.750molを徐々に加えた。この溶液を一晩撹拌し、得られた溶液を水−ジクロロメタンで分液を行った。有機相を回収、乾燥し、0.480molのS−メチル−2−メチルテトラヒドロチオフェニウムパークロライドを得た。化合物のスペクトルデータおよび粘度を表1に示す。 0.500 mol of S-methyl-2-methyltetrahydrothiophenium iodide was dissolved in 300 mL of water, and then 0.750 mol of lithium perchlorate was gradually added. The solution was stirred overnight, and the resulting solution was partitioned with water-dichloromethane. The organic phase was collected and dried to obtain 0.480 mol of S-methyl-2-methyltetrahydrothiophenium perchloride. The spectral data and viscosities of the compounds are shown in Table 1.
[合成実施例10]
(アルキルチアンの合成)
1,5−ヘキサジエンを出発原料とし、Chem.Zentralbl., 1923, vol.94, #I p.1504に従い、末端ジエンの臭素化およびNaSによる環化を行い、2−メチルチアンを得た。
[Synthesis Example 10]
(Synthesis of alkyltian)
Starting from 1,5-hexadiene, Chem. Zentralbl. , 1923, vol. 94, #I p. According to 1504, bromination of the terminal diene and cyclization with NaS were performed to obtain 2-methylthiane.
Ar雰囲気下、PFA製の耐圧容器に乾燥エタノール200mL、2−メチルチアン1.00mol、ヨードメタン1.00molを投入して封をした後、75℃で24時間反応させた。反応後の溶液を濃縮した後、エタノール−ジエチルエーテル混合溶媒で再結晶を行い、0.900molのS−メチル−2−メチルチアニウムアイオダイドを得た。 Under an Ar atmosphere, 200 mL of dry ethanol, 1.00 mol of 2-methylthian, and 1.00 mol of iodomethane were put into a pressure-resistant container made of PFA, sealed, and reacted at 75 ° C. for 24 hours. The solution after the reaction was concentrated and then recrystallized with a mixed solvent of ethanol-diethyl ether to obtain 0.900 mol of S-methyl-2-methylthianium iodide.
S−メチル−2−メチルチアニウムアイオダイド0.500molを水300mLに溶解させ、次いでLiTFSI0.750molを徐々に加えた。この溶液を一晩撹拌し、得られた溶液を水−ジクロロメタンで分液を行った。有機相を回収、乾燥し、0.480molのS−メチル−2−メチルチアニウムビス(トリフルオロメチルスルホニル)イミドを得た。化合物のスペクトルデータおよび粘度を表1に示す。 0.500 mol of S-methyl-2-methylthianium iodide was dissolved in 300 mL of water, and then 0.750 mol of LiTFSI was gradually added. The solution was stirred overnight, and the resulting solution was partitioned with water-dichloromethane. The organic phase was collected and dried to obtain 0.480 mol of S-methyl-2-methylthianium bis (trifluoromethylsulfonyl) imide. The spectral data and viscosities of the compounds are shown in Table 1.
[合成実施例11]
Ar雰囲気下、PFA製の耐圧容器に乾燥エタノール200mL、2−メチルチアン1.00mol、1−ヨードブタン1.00molを投入して封をした後、75℃で24時間反応させた。反応後の溶液を濃縮した後、エタノール−ジエチルエーテル混合溶媒で再結晶を行い、0.900molのS−ブチル−2−メチルチアニウムアイオダイドを得た。
[Synthesis Example 11]
Under an Ar atmosphere, 200 mL of dry ethanol, 1.00 mol of 2-methylthian, and 1.00 mol of 1-iodobutane were put in a pressure-resistant container made of PFA, sealed, and reacted at 75 ° C. for 24 hours. The solution after the reaction was concentrated and then recrystallized with a mixed solvent of ethanol-diethyl ether to obtain 0.900 mol of S-butyl-2-methylthianium iodide.
S−ブチル−2−メチルチアニウムアイオダイド0.500molを水300mLに溶解させ、次いでLiTFSI0.750molを徐々に加えた。この溶液を一晩撹拌し、得られた溶液を水−ジクロロメタンで分液を行った。有機相を回収、乾燥し、0.480molのS−ブチル−2−メチルチアニウムビス(トリフルオロメチルスルホニル)イミドを得た。化合物のスペクトルデータおよび粘度を表1に示す。 0.500 mol of S-butyl-2-methylthianium iodide was dissolved in 300 mL of water, and then 0.750 mol of LiTFSI was gradually added. The solution was stirred overnight, and the resulting solution was partitioned with water-dichloromethane. The organic phase was collected and dried to obtain 0.480 mol of S-butyl-2-methylthianium bis (trifluoromethylsulfonyl) imide. The spectral data and viscosities of the compounds are shown in Table 1.
[合成比較例1]
Ar雰囲気下、PFA製の耐圧容器に乾燥エタノール200mL、テトラヒドロチオフェン1.00mol、ヨードメタン1.00molを投入して封をした後、75℃で24時間反応させた。反応後の溶液を濃縮した後、エタノール−ジエチルエーテル混合溶媒で再結晶を行い、0.900molのS−メチルテトラヒドロチオフェニウムアイオダイドを得た。
[Synthesis Comparative Example 1]
Under an Ar atmosphere, 200 mL of dry ethanol, 1.00 mol of tetrahydrothiophene, and 1.00 mol of iodomethane were placed in a pressure-resistant container made of PFA, sealed, and reacted at 75 ° C. for 24 hours. The solution after the reaction was concentrated and recrystallized with a mixed solvent of ethanol-diethyl ether to obtain 0.900 mol of S-methyltetrahydrothiophenium iodide.
S−メチルテトラヒドロチオフェニウムアイオダイド0.500molを水300mLに溶解させ、次いでLiTFSI0.750molを徐々に加えた。この溶液を一晩撹拌し、得られた溶液を水−ジクロロメタンで分液を行った。有機相を回収、乾燥し、0.480molのS−メチルテトラヒドロチオフェニウムビス(トリフルオロメチルスルホニル)イミドを得た。化合物のスペクトルデータおよび粘度を表1に示す。 0.500 mol of S-methyltetrahydrothiophenium iodide was dissolved in 300 mL of water, and then 0.750 mol of LiTFSI was gradually added. The solution was stirred overnight, and the resulting solution was partitioned with water-dichloromethane. The organic phase was collected and dried to obtain 0.480 mol of S-methyltetrahydrothiophenium bis (trifluoromethylsulfonyl) imide. The spectral data and viscosities of the compounds are shown in Table 1.
合成実施例1〜11で合成したスルホニウム塩は、比較例1のスルホニウム塩に対し、いずれも低い粘度を示した。ジアステレオマーを形成することで長周期的な秩序が乱され、粘度が低下したものと考えられる。 The sulfonium salt synthesized in Synthesis Examples 1 to 11 showed a lower viscosity than the sulfonium salt of Comparative Example 1. It is thought that the formation of diastereomers disturbed long-period order and reduced the viscosity.
[実施例1]
(電極の作製)
LiNi1/3Co1/3Mn1/3O2(NCM):カーボンブラック:PVDF=80:10:10(質量%)の比率となるように混合し、N−メチル−2−ピロリドン(NMP)中に均一に分散させたスラリーを、厚さ20μmのアルミ金属箔上に塗布後、NMPを蒸発させることで正極シートを得た。厚さ16μmの銅箔上に100μmのリチウム箔を貼り付けることで、負極シートを得た。
[Example 1]
(Production of electrodes)
LiNi 1/3 Co 1/3 Mn 1/3 O 2 (NCM): carbon black: PVDF = 80: 10: 10 (mass%) The mixture was mixed to obtain N-methyl-2-pyrrolidone (NMP ) Was applied to an aluminum metal foil having a thickness of 20 μm, and NMP was evaporated to obtain a positive electrode sheet. A negative electrode sheet was obtained by affixing a 100 μm lithium foil on a 16 μm thick copper foil.
(電解液の作製)
合成実施例1で作製したスルホニウム塩に1mol/LとなるようにLiFSIを溶解させ、電解液を調整した。
(Preparation of electrolyte)
LiFSI was dissolved in the sulfonium salt produced in Synthesis Example 1 to 1 mol / L to prepare an electrolyte solution.
(評価用リチウムイオン二次電池の作製)
上記で作製した正極および負極と、それらの間にポリエチレン微多孔膜からなるセパレータを挟んでアルミラミネートパックに入れ、このアルミラミネートパックに、上記で調製した電解液を注入した後、真空シールし、評価用のリチウムイオン二次電池を作製した。
(Production of evaluation lithium-ion secondary battery)
The positive electrode and negative electrode produced above, and a separator made of a polyethylene microporous film sandwiched between them and put in an aluminum laminate pack, into this aluminum laminate pack, after injecting the electrolyte prepared above, vacuum sealed, A lithium ion secondary battery for evaluation was produced.
(レート容量維持率の測定)
上記で作製した評価用リチウムイオン二次電池について、二次電池充放電試験装置(北斗電工株式会社製)を用い、電圧範囲を2.5Vから4.2Vまでとし、1C=170mAh/gとしたときの0.05Cでの電流値で充放電を行い、初期放電容量を求めた。 続いて、0.5Cの電流値での充放電を行い、レート容量維持率(0.5C放電容量/初期放電容量×100)を求めた。得られた結果を表1に示す。
(Measurement of rate capacity maintenance rate)
About the lithium ion secondary battery for evaluation produced above, using a secondary battery charge / discharge test apparatus (manufactured by Hokuto Denko Co., Ltd.), the voltage range was 2.5 V to 4.2 V, and 1 C = 170 mAh / g. The battery was charged and discharged at a current value of 0.05 C, and the initial discharge capacity was determined. Subsequently, charge and discharge were performed at a current value of 0.5 C, and a rate capacity retention rate (0.5 C discharge capacity / initial discharge capacity × 100) was obtained. The obtained results are shown in Table 1.
[実施例2〜11]
電解液の作製で用いたスルホニウム塩を、合成実施例2〜11で作製したスルホニウム塩を用いた以外は実施例1と同様として、実施例2〜11の評価用リチウムイオン二次電池を作製した。
[Examples 2 to 11]
The lithium ion secondary batteries for evaluation of Examples 2 to 11 were produced in the same manner as in Example 1 except that the sulfonium salt used in the production of the electrolytic solution was the sulfonium salt produced in Synthesis Examples 2 to 11. .
[比較例1]
電解液の作製で用いたアンモニウム塩を、合成比較例1で作製したスルホニウム塩を用いた以外は実施例1と同様として、比較例1の評価用リチウムイオン二次電池を作製した。
[Comparative Example 1]
A lithium ion secondary battery for evaluation of Comparative Example 1 was produced in the same manner as Example 1 except that the ammonium salt used in the production of the electrolytic solution was the sulfonium salt produced in Synthesis Comparative Example 1.
実施例2〜11の評価用リチウムイオン二次電池に対し、実施例1に記載されるレート容量維持率の測定を実施した結果を表1に示す。実施例1〜11は全て、比較例1に対して良好なレート容量維持率を示した。粘度の低いスルホニウム塩を用いたことで、レート特性が改善したものと推測される。
Table 1 shows the results of measurement of the rate capacity retention rate described in Example 1 for the lithium ion secondary batteries for evaluation of Examples 2 to 11. Examples 1 to 11 all showed a favorable rate capacity retention rate relative to Comparative Example 1. It is presumed that rate characteristics were improved by using a sulfonium salt having a low viscosity.
本発明により、粘度が低いスルホニウム塩が提供される。 The present invention provides a sulfonium salt having a low viscosity.
10…正極、12…正極集電体、14…正極活物質層、18…セパレータ、20…負極、22…負極集電体、24…負極活物質層、30…積層体、50…ケース、60,62…リード、100…リチウムイオン二次電池。
DESCRIPTION OF
Claims (4)
The lithium secondary battery provided with the positive electrode, the negative electrode, the separator located between the said positive electrode and the said negative electrode, and the electrolyte solution for lithium secondary batteries of Claim 3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016063494A JP2017178791A (en) | 2016-03-28 | 2016-03-28 | Sulfonium salt, electrolytic solution for lithium secondary battery, and lithium secondary battery therewith |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016063494A JP2017178791A (en) | 2016-03-28 | 2016-03-28 | Sulfonium salt, electrolytic solution for lithium secondary battery, and lithium secondary battery therewith |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017178791A true JP2017178791A (en) | 2017-10-05 |
Family
ID=60003593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016063494A Pending JP2017178791A (en) | 2016-03-28 | 2016-03-28 | Sulfonium salt, electrolytic solution for lithium secondary battery, and lithium secondary battery therewith |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017178791A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021235358A1 (en) * | 2020-05-22 | 2021-11-25 | ダイキン工業株式会社 | Electrolytic solution, electrochemical device, lithium-ion secondary battery, module, and compound |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2402016A (en) * | 1944-10-02 | 1946-06-11 | Dow Chemical Co | Sulphonium salts |
JPS50145500A (en) * | 1974-04-19 | 1975-11-21 | ||
US4167618A (en) * | 1975-04-15 | 1979-09-11 | Espe Fabrik Pharmazeutischer Praparate Gmbh | Polymerization process for aziridine compounds |
JPS57122074A (en) * | 1981-01-21 | 1982-07-29 | Taiho Yakuhin Kogyo Kk | Sulfonium compound and its preparation |
JPS57140762A (en) * | 1981-02-25 | 1982-08-31 | Taiho Yakuhin Kogyo Kk | Sulfonium compound and its preparation |
JPS57142965A (en) * | 1981-02-27 | 1982-09-03 | Taiho Yakuhin Kogyo Kk | Sulfonium compound and its preparation |
JPS57156476A (en) * | 1981-03-23 | 1982-09-27 | Taiho Yakuhin Kogyo Kk | Sulfonium compound and its preparation |
JPH04506205A (en) * | 1989-03-23 | 1992-10-29 | チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド | Polymerization initiator |
JPH06503072A (en) * | 1991-11-06 | 1994-04-07 | アーベー ヴィル−.ベッカー | Method for producing cyclic sulfonium salt |
JPH10310633A (en) * | 1997-05-14 | 1998-11-24 | Nippon Soda Co Ltd | Stabilizer for cationic curing catalyst |
JP2003345023A (en) * | 2002-05-27 | 2003-12-03 | Fuji Photo Film Co Ltd | Radiation-sensitive resin composition |
JP2013044810A (en) * | 2011-08-22 | 2013-03-04 | Fujifilm Corp | Actinic ray-sensitive or radiation-sensitive resin composition, and actinic ray-sensitive or radiation-sensitive film using the composition, and pattern formation method |
JP2014034519A (en) * | 2012-08-07 | 2014-02-24 | Sumitomo Chemical Co Ltd | Method of producing fullerene derivative |
-
2016
- 2016-03-28 JP JP2016063494A patent/JP2017178791A/en active Pending
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2402016A (en) * | 1944-10-02 | 1946-06-11 | Dow Chemical Co | Sulphonium salts |
JPS50145500A (en) * | 1974-04-19 | 1975-11-21 | ||
US4167618A (en) * | 1975-04-15 | 1979-09-11 | Espe Fabrik Pharmazeutischer Praparate Gmbh | Polymerization process for aziridine compounds |
JPS57122074A (en) * | 1981-01-21 | 1982-07-29 | Taiho Yakuhin Kogyo Kk | Sulfonium compound and its preparation |
JPS57140762A (en) * | 1981-02-25 | 1982-08-31 | Taiho Yakuhin Kogyo Kk | Sulfonium compound and its preparation |
JPS57142965A (en) * | 1981-02-27 | 1982-09-03 | Taiho Yakuhin Kogyo Kk | Sulfonium compound and its preparation |
JPS57156476A (en) * | 1981-03-23 | 1982-09-27 | Taiho Yakuhin Kogyo Kk | Sulfonium compound and its preparation |
JPH04506205A (en) * | 1989-03-23 | 1992-10-29 | チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド | Polymerization initiator |
JPH06503072A (en) * | 1991-11-06 | 1994-04-07 | アーベー ヴィル−.ベッカー | Method for producing cyclic sulfonium salt |
JPH10310633A (en) * | 1997-05-14 | 1998-11-24 | Nippon Soda Co Ltd | Stabilizer for cationic curing catalyst |
JP2003345023A (en) * | 2002-05-27 | 2003-12-03 | Fuji Photo Film Co Ltd | Radiation-sensitive resin composition |
JP2013044810A (en) * | 2011-08-22 | 2013-03-04 | Fujifilm Corp | Actinic ray-sensitive or radiation-sensitive resin composition, and actinic ray-sensitive or radiation-sensitive film using the composition, and pattern formation method |
JP2014034519A (en) * | 2012-08-07 | 2014-02-24 | Sumitomo Chemical Co Ltd | Method of producing fullerene derivative |
Non-Patent Citations (9)
Title |
---|
ACTA CHEMICA SCANDINAVICA B, vol. 31, JPN6019038694, 1977, pages 859 - 868, ISSN: 0004129002 * |
ANAL. CHEM., vol. 70, JPN6019038702, 1998, pages 3612 - 3618, ISSN: 0004129006 * |
BULL. CHEM. SOC. JPN., vol. 63, JPN6019038692, 1990, pages 2593 - 2600, ISSN: 0004129001 * |
CHEM. LETT., JPN6019038697, 1987, pages 327 - 328, ISSN: 0004129004 * |
J. AM. CHEM. SOC., vol. 74, JPN6019038707, 1952, pages 917 - 920, ISSN: 0004129008 * |
J. C. S. CHEM. COMM., JPN6019038696, 1977, pages 355 - 356, ISSN: 0004129003 * |
J. ORG. CHEM., vol. 41, JPN6019038704, 1976, pages 1052 - 1057, ISSN: 0004129007 * |
J. ORG. CHEM., vol. 54, JPN6019038699, 1989, pages 2374 - 2383, ISSN: 0004129005 * |
SCIENCE OF SYNTHESIS, vol. 39, JPN6019038709, 2007, pages 851 - 878, ISSN: 0004129009 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021235358A1 (en) * | 2020-05-22 | 2021-11-25 | ダイキン工業株式会社 | Electrolytic solution, electrochemical device, lithium-ion secondary battery, module, and compound |
JPWO2021235358A1 (en) * | 2020-05-22 | 2021-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7116311B2 (en) | Electrolyte for non-aqueous electrolyte battery and non-aqueous electrolyte battery using the same | |
US20130323571A1 (en) | Electrochemical cells with ionic liquid electrolyte | |
KR20180089530A (en) | Electrolyte for non-aqueous electrolyte cell and non-aqueous electrolyte cell using the same | |
US20130337345A1 (en) | Oxide anode materials for lithium batteries | |
TW201841426A (en) | Semisolid electrolyte layer, battery cell sheet and secondary battery | |
JP6812827B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery using it | |
JP2012014973A (en) | Electrolyte composition for secondary battery and secondary battery | |
WO2015029248A1 (en) | Negative electrode active material-coating material, negative electrode material using same, negative electrode, lithium ion secondary battery, battery system, monomer, and method for synthesizing monomer | |
JP6933260B2 (en) | Non-aqueous electrolyte solution for lithium ion secondary battery and lithium ion secondary battery using it | |
JP6992362B2 (en) | Lithium ion secondary battery | |
JP2018133284A (en) | Nonaqueous electrolyte and nonaqueous electrolyte battery using the same | |
JP2019160617A (en) | Lithium ion secondary battery | |
JP2017178791A (en) | Sulfonium salt, electrolytic solution for lithium secondary battery, and lithium secondary battery therewith | |
WO2020213268A1 (en) | Nonaqueous electrolytic solution, nonvolatile electrolyte, and secondary battery | |
JP6222389B1 (en) | Non-aqueous electrolyte and non-aqueous electrolyte battery using the same | |
JP2011034698A (en) | Nonaqueous electrolyte solution, and lithium secondary battery using nonaqueous electrolyte solution | |
CN108352571A (en) | Non-aqueous electrolyte for secondary battery and secondary cell | |
JP2017178790A (en) | Sulfonium salt, electrolytic solution, and lithium ion secondary battery | |
WO2015015598A1 (en) | Coating material for negative electrode active materials for lithium ion secondary batteries, negative electrode active material for lithium ion secondary batteries coated with said coating material, and lithium ion secondary battery using said negative electrode active material in negative electrode | |
JP2018133335A (en) | Nonaqueous electrolyte battery | |
JP2018133285A (en) | Nonaqueous electrolyte and nonaqueous electrolyte battery using the same | |
JP2019145409A (en) | Lithium ion secondary battery | |
JP2019061828A (en) | Nonaqueous electrolyte for lithium ion secondary battery and lithium ion secondary battery using the same | |
JP2019175652A (en) | Lithium ion secondary battery | |
JP2016178065A (en) | Electrolytic solution for lithium ion secondary batteries and lithium ion secondary battery arranged by use thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190926 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191008 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191127 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200114 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200707 |