Nothing Special   »   [go: up one dir, main page]

JP2017171132A - On-vehicle air conditioning device - Google Patents

On-vehicle air conditioning device Download PDF

Info

Publication number
JP2017171132A
JP2017171132A JP2016059826A JP2016059826A JP2017171132A JP 2017171132 A JP2017171132 A JP 2017171132A JP 2016059826 A JP2016059826 A JP 2016059826A JP 2016059826 A JP2016059826 A JP 2016059826A JP 2017171132 A JP2017171132 A JP 2017171132A
Authority
JP
Japan
Prior art keywords
air
air conditioning
exhaust
blower
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016059826A
Other languages
Japanese (ja)
Inventor
健太朗 黒田
Kentaro Kuroda
健太朗 黒田
智裕 寺田
Tomohiro Terada
智裕 寺田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2016059826A priority Critical patent/JP2017171132A/en
Priority to PCT/JP2017/002251 priority patent/WO2017163580A1/en
Priority to CN201780016518.6A priority patent/CN108778802A/en
Publication of JP2017171132A publication Critical patent/JP2017171132A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve comfort in air conditioning using a Peltier module.SOLUTION: A Peltier module 14 cools or heats air flowing through an air conditioning flow passage 40, and wastes heat to air flowing through a first exhaust flow passage 48 due to the cooling or the heating. An air distribution control door 34 adjusts the amount of air sent to the air conditioning flow passage 40 from a blower 22, and the amount of air sent to the first exhaust flow passage 48 from the blower 22. The air conditioning device 10 controls an air distribution control door 34 so as to send the air to both the air conditioning flow passage 40 and the first exhaust flow passage 48, and controls the air distribution control door 34 so as to reduce the amount of the air sent to the air conditioning flow passage 40 and increase the amount of the air sent to the first exhaust flow passage 48.SELECTED DRAWING: Figure 10

Description

本発明は、車両に搭載される空調装置に関する。   The present invention relates to an air conditioner mounted on a vehicle.

ペルチェ素子を用いたシート空調ユニットにおいて、通常モードとドラフトモードを設け、ドラフトモードでは、ペルチェ素子をオフ状態として、吹出口から吹き出す風量を増加させることが提案されている(例えば、特許文献1参照)。   In a seat air-conditioning unit using a Peltier element, it is proposed to provide a normal mode and a draft mode, and in the draft mode, the Peltier element is turned off to increase the amount of air blown from the outlet (for example, see Patent Document 1). ).

特開2006−341840号公報JP 2006-341840 A

上記特許文献1のシート空調ユニットでは、冷房運転時において低風量かつ低温の冷風を送出することはできない。   In the seat air-conditioning unit of Patent Document 1 described above, it is not possible to send out a low-air-volume and low-temperature cold air during the cooling operation.

本発明はこうした状況に鑑みてなされたものであり、主な目的は、ペルチェモジュールを使用した空調における快適性を向上させることである。   The present invention has been made in view of such circumstances, and a main object is to improve comfort in air conditioning using a Peltier module.

上記課題を解決するために、本発明のある態様の車載空調装置は、送風機と、送風機から送られた空気を車室内へ送出する吹出口と、送風機から送られた空気を車外へ送出する排気口と、送風機から吹出口へ至る空調流路と、送風機から排気口へ至る排気流路と、空調流路を流れる空気を冷却または加温し、その冷却または加温に伴い排気流路を流れる空気に排熱するペルチェモジュールと、送風機から空調流路へ送る空気の量と、送風機から排気流路へ送る空気の量とを調整するドアと、空調流路と排気流路の両方へ空気を送るようにドアを制御し、空調効果を高めるべき所定の条件が満たされた場合、空調流路へ送る空気の量を低減し、排気流路へ送る空気の量を増加させるようにドアを制御する制御部と、を備える。   In order to solve the above problems, an in-vehicle air conditioner according to an aspect of the present invention includes a blower, an air outlet that sends out air sent from the blower to the vehicle interior, and an exhaust that sends out air sent from the blower to the outside of the vehicle. Cooling or warming the air flowing through the opening, the air conditioning channel from the blower to the outlet, the exhaust channel from the blower to the exhaust port, and the air conditioning channel, and flowing through the exhaust channel with the cooling or heating Peltier module that exhausts heat to air, the amount of air sent from the blower to the air conditioning flow path, the door that adjusts the amount of air sent from the blower to the exhaust flow path, and air to both the air conditioning flow path and the exhaust flow path Control the door to send, and if the predetermined conditions to enhance the air conditioning effect are met, control the door to reduce the amount of air sent to the air conditioning channel and increase the amount of air sent to the exhaust channel A control unit.

なお、以上の構成要素の任意の組合せ、本発明の表現をシステム、コンピュータプログラム、コンピュータプログラムを記録した記録媒体、本装置を搭載した車両などの間で変換したものもまた、本発明の態様として有効である。   Note that any combination of the above components, the expression of the present invention converted between a system, a computer program, a recording medium recording the computer program, a vehicle equipped with the present apparatus, and the like are also included as an aspect of the present invention. It is valid.

本発明によれば、ペルチェモジュールを使用した空調における快適性を向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, the comfort in the air conditioning which uses a Peltier module can be improved.

実施例に係る空調装置の断面図である。It is sectional drawing of the air conditioning apparatus which concerns on an Example. 実施例に係る車両の機能構成を示すブロック図である。It is a block diagram which shows the function structure of the vehicle which concerns on an Example. 冷房運転時の基本的な空気の流れを示す図である。It is a figure which shows the basic flow of air at the time of air_conditionaing | cooling operation. 暖房運転時の基本的な空気の流れを示す図である。It is a figure which shows the basic flow of air at the time of heating operation. 第1実施例のペルチェモジュールの上面図である。It is a top view of the Peltier module of 1st Example. 第1実施例のペルチェモジュールの断面図である。It is sectional drawing of the Peltier module of 1st Example. 第2実施例のペルチェモジュールの断面図である。It is sectional drawing of the Peltier module of 2nd Example. 第3実施例に係る空調装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the air conditioning apparatus which concerns on 3rd Example. クリーニング処理時の空気の流れを示す図である。It is a figure which shows the flow of the air at the time of a cleaning process. 冷房運転時に空調変更条件が満たされた後の空気の流れを示す図である。It is a figure which shows the flow of the air after the air-conditioning change conditions are satisfy | filled at the time of air_conditionaing | cooling operation. 暖房運転時に空調変更条件が満たされた後の空気の流れを示す図である。It is a figure which shows the flow of the air after the air-conditioning change conditions are satisfy | filled at the time of heating operation. 第5実施例に係る空調装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the air conditioning apparatus which concerns on 5th Example. 図12のステップS36の自動空調制御を詳細に示すフローチャートである。It is a flowchart which shows the automatic air conditioning control of step S36 of FIG. 12 in detail. 図13のステップS52の最大風量モードでの空調制御を詳細に示すフローチャートである。It is a flowchart which shows in detail the air-conditioning control in the maximum air volume mode of step S52 of FIG. 最大風量モードでの冷房運転時の空気の流れを示す図である。It is a figure which shows the flow of the air at the time of the cooling operation in maximum air volume mode. 図13のステップS58の中風量・中冷モードでの空調制御を詳細に示すフローチャートである。It is a flowchart which shows in detail the air-conditioning control in medium air quantity and medium cooling mode of step S58 of FIG. 図13のステップS60の低風量・強冷モードでの空調制御を詳細に示すフローチャートである。It is a flowchart which shows in detail the air conditioning control in the low air volume and strong cooling mode of step S60 of FIG. 低風量・強冷モードでの冷房運転時の空気の流れを示す図である。It is a figure which shows the flow of the air at the time of air_conditionaing | cooling operation in low air volume and strong cooling mode.

本実施例は、車両に搭載される空調装置に関し、特に「コミューター」と呼ばれる小型の電気自動車に搭載される空調装置に関する。コミューターでは、フロントガラスの曇りを防止して視認性を確保するために、車室が密閉空間にならないことがある。本発明者は、コミューターの車室全体の空調では、その効果が薄いと考えた。本実施例の空調装置は、車室全体の空調ではなく、座席等のシート個別の空調を実行する。   The present embodiment relates to an air conditioner mounted on a vehicle, and more particularly to an air conditioner mounted on a small electric vehicle called a “commuter”. In a commuter, the passenger compartment may not become a sealed space in order to prevent fogging of the windshield and ensure visibility. The present inventor considered that the effect of the air conditioning of the entire commuter cabin is small. The air conditioner according to the present embodiment performs air conditioning of individual seats such as seats, not air conditioning of the entire passenger compartment.

また、一般的なコンプレッサおよび熱交換器をコミューターに搭載することは、サイズおよび振動の観点から難しい。そのため、本実施例の空調装置は、ペルチェモジュールを熱交換器として使用する。さらに、コミューターには軽量化および省電力化が求められる。そのため、本実施例の空調装置では単一のブロアを使用する。このように、本実施例では、ペルチェモジュールおよび単一のブロアという制約の下、シート個別の空調における快適性を向上させる車載空調装置を提案する。   In addition, it is difficult to mount a general compressor and heat exchanger in a commuter from the viewpoint of size and vibration. Therefore, the air conditioner of the present embodiment uses the Peltier module as a heat exchanger. Furthermore, the commuter is required to be lighter and save power. For this reason, the air conditioner of this embodiment uses a single blower. As described above, this embodiment proposes an in-vehicle air conditioner that improves comfort in air conditioning for individual seats under the constraints of a Peltier module and a single blower.

なお、実施例に係る車両はコミューターとするが、実施例で提案する空調装置は、コミューター以外の電気自動車、ガソリン車、ハイブリッド車等にも適用可能である。特に、ペルチェモジュールを用いた冷房および暖房に広く適用可能である。以下では、本発明者が提案する空調装置の特徴を、第1実施例から第5実施例に亘り説明するが、まず、各実施例に共通の構成と動作を説明する。   Although the vehicle according to the embodiment is a commuter, the air conditioner proposed in the embodiment can be applied to an electric vehicle, a gasoline vehicle, a hybrid vehicle, and the like other than the commuter. In particular, it can be widely applied to cooling and heating using a Peltier module. Below, although the characteristic of the air conditioner which this inventor proposes is demonstrated ranging from 1st Example to 5th Example, the structure and operation | movement common to each Example are demonstrated first.

図1は、実施例に係る空調装置10の断面図である。空調装置10は、車両のシートクッション12aとシートバック12b(以下、総称する場合「シート12」と呼ぶ。)の下位置および背後に設けられる。空調装置10は、ペルチェモジュール14、ブロア22、肩口吹出口24、足元吹出口28、排気口32、および、これら部材間での空気流路を構成する通風管33を備える。   FIG. 1 is a cross-sectional view of an air conditioner 10 according to an embodiment. The air conditioner 10 is provided below and behind a vehicle seat cushion 12a and a seat back 12b (hereinafter collectively referred to as "seat 12"). The air conditioner 10 includes a Peltier module 14, a blower 22, a shoulder outlet 24, a foot outlet 28, an exhaust outlet 32, and a ventilation pipe 33 that forms an air flow path between these members.

肩口吹出口24は、冷房運転時に冷風を吹き出す吹出口である。肩口吹出口24は、シートバック12bの上部、典型的には乗員の肩口付近に設置される。肩口吹出口24には温度センサ26が設置される。温度センサ26は、肩口吹出口24から空調装置10の外部へ吹き出される空気の温度を検知する。足元吹出口28は、シートクッション12aの下位置、典型的には乗員の足元付近に設置される。足元吹出口28には温度センサ30が設置される。温度センサ30は、足元吹出口28から空調装置10の外部へ吹き出される空気の温度を検知する。排気口32は、ペルチェモジュール14からの排熱を含む空気を車外へ吹き出す吹出口である。排気口32は、典型的には車外に面して設置される。   The shoulder opening 24 is an outlet that blows out cool air during cooling operation. The shoulder opening 24 is installed in the upper part of the seat back 12b, typically near the shoulder of the passenger. A temperature sensor 26 is installed at the shoulder outlet 24. The temperature sensor 26 detects the temperature of air blown from the shoulder opening 24 to the outside of the air conditioner 10. The foot outlet 28 is installed below the seat cushion 12a, typically near the feet of the occupant. A temperature sensor 30 is installed at the foot outlet 28. The temperature sensor 30 detects the temperature of air blown out from the foot outlet 28 to the outside of the air conditioner 10. The exhaust port 32 is a blow-out port that blows out air including exhaust heat from the Peltier module 14 to the outside of the vehicle. The exhaust port 32 is typically installed facing the outside of the vehicle.

ブロア22およびペルチェモジュール14は、シート12の下位置に設けられ、ブロア22は、ペルチェモジュール14の前方(シート12の前方側)に配置される。ブロア22は、吸気口21から取り込んだ空気を送風口23から送出する送風機である。ブロア22は、例えば、シロッコファンでもよい。ブロア22から送出された空気は、ペルチェモジュール14を介して、肩口吹出口24、足元吹出口28、排気口32の少なくとも1つから送出される。   The blower 22 and the Peltier module 14 are provided below the seat 12, and the blower 22 is disposed in front of the Peltier module 14 (the front side of the seat 12). The blower 22 is a blower that sends out air taken in from the intake port 21 through the blower port 23. The blower 22 may be a sirocco fan, for example. The air sent from the blower 22 is sent from at least one of the shoulder outlet 24, the foot outlet 28, and the exhaust outlet 32 via the Peltier module 14.

ペルチェモジュール14は、ペルチェ素子により構成された利用熱面16と排熱面18を含む。利用熱面16は、印加電圧の極性に応じて、肩口吹出口24または足元吹出口28から吹き出される空調用の空気を冷却または加温する。排熱面18は、排気口32から車外へ送出される空気を冷却または加温する。排熱面18は、利用熱面16における冷却または加温に伴い発生した排熱を、車外へ排気される空気に伝える。冷房運転時、利用熱面16が冷却面として機能する一方、排熱面18は加熱面として機能する。逆に暖房運転時、利用熱面16が加熱面として機能する一方、排熱面18は冷却面として機能する。   The Peltier module 14 includes a heat utilization surface 16 and a heat exhaust surface 18 that are configured by Peltier elements. The heat utilization surface 16 cools or heats air for air conditioning blown out from the shoulder outlet 24 or the foot outlet 28 according to the polarity of the applied voltage. The heat exhaust surface 18 cools or heats the air sent out of the vehicle through the exhaust port 32. The exhaust heat surface 18 transmits the exhaust heat generated by the cooling or heating on the use heat surface 16 to the air exhausted outside the vehicle. During the cooling operation, the heat utilization surface 16 functions as a cooling surface, while the exhaust heat surface 18 functions as a heating surface. Conversely, during heating operation, the heat utilization surface 16 functions as a heating surface, while the heat exhaust surface 18 functions as a cooling surface.

空調装置10の通風管33は、エアダクトとも言え、その内部に、空気を流す方向と量を調節するための複数のドアを備える。本実施例では、配風制御ドア34、風路切替ドア36、排気制御ドア37、帰還制御ドア38が設けられる。各ドアは、弁またはエアダンパとも言え、例えば、モータダンパであってもよい。各ドアは、通風管33内部の空気流路の分岐点に設けられる。各ドアは、後述の制御部64から受け付けた信号に応じて、分岐元流路と分岐先流路とを連通させ、さらに、1つ以上の分岐先流路のそれぞれへ送る風量を機械的に調整可能に構成される。   The ventilation pipe 33 of the air conditioner 10 can also be referred to as an air duct, and includes therein a plurality of doors for adjusting the direction and amount of air flow. In this embodiment, an air distribution control door 34, an air path switching door 36, an exhaust control door 37, and a return control door 38 are provided. Each door may be referred to as a valve or an air damper, and may be, for example, a motor damper. Each door is provided at a branch point of the air flow path inside the ventilation pipe 33. Each door communicates a branch source channel and a branch destination channel according to a signal received from the control unit 64 described later, and mechanically sends an air volume sent to each of the one or more branch destination channels. Configured to be adjustable.

通風管33内部の空気流路は、送風流路39、空調流路40、肩口吹出流路42、第1帰還流路44、足元吹出流路45、第2帰還流路46、第1排気流路48、第2排気流路50を含む。送風流路39は、ブロア22の送風口23から配風制御ドア34の間の空気流路であり、ブロア22からの送風をペルチェモジュール14側へ導く。空調流路40は、配風制御ドア34から風路切替ドア36の間の空気流路であり、ブロア22からの送風を、ペルチェモジュール14の利用熱面16へ導く。第1排気流路48は、配風制御ドア34から排気口32の間の空気流路であり、ブロア22からの送風を、ペルチェモジュール14の排熱面18を介して排気口32へ導く。   The air flow path inside the ventilation pipe 33 includes the air flow path 39, the air conditioning flow path 40, the shoulder outlet flow path 42, the first return flow path 44, the foot blow flow path 45, the second return flow path 46, and the first exhaust flow. A passage 48 and a second exhaust passage 50 are included. The air flow path 39 is an air flow path between the air outlet 23 of the blower 22 and the air distribution control door 34, and guides air blown from the blower 22 to the Peltier module 14 side. The air conditioning channel 40 is an air channel between the air distribution control door 34 and the air channel switching door 36, and guides the air blown from the blower 22 to the heat utilization surface 16 of the Peltier module 14. The first exhaust channel 48 is an air channel between the air distribution control door 34 and the exhaust port 32, and guides the air blown from the blower 22 to the exhaust port 32 through the heat exhaust surface 18 of the Peltier module 14.

肩口吹出流路42は、風路切替ドア36から肩口吹出口24の間の空気流路であり、空調流路40を流れた空気を肩口吹出口24へ導く。第1帰還流路44は、風路切替ドア36から帰還制御ドア38の間の空気流路であり、空調流路40を流れた空気を足元吹出口28またはブロア22へ導く。第2排気流路50は、風路切替ドア36から排気制御ドア37の間の空気流路であり、空調流路40を流れた空気を排気口32へ導く。   The shoulder opening air flow passage 42 is an air passage between the air passage switching door 36 and the shoulder opening air outlet 24, and guides the air flowing through the air conditioning passage 40 to the shoulder opening air outlet 24. The first return passage 44 is an air passage between the air passage switching door 36 and the return control door 38, and guides the air flowing through the air conditioning passage 40 to the foot outlet 28 or the blower 22. The second exhaust passage 50 is an air passage between the air passage switching door 36 and the exhaust control door 37, and guides the air flowing through the air conditioning passage 40 to the exhaust port 32.

足元吹出流路45は、帰還制御ドア38から足元吹出口28の間の空気流路であり、第1帰還流路44を流れた空気を足元吹出口28へ導く。第2帰還流路46は、帰還制御ドア38からブロア22の間の空気流路であり、第1帰還流路44を流れた空気をブロア22へ導く。第1帰還流路44と第2帰還流路46は、ブロア22から送出されて、ペルチェモジュール14により冷却または加温された空気を再びブロア22へ戻す流路を形成する。ブロア22は、第2帰還流路46を流れる空気を取り込む吸気口(不図示)を備える。   The foot outlet passage 45 is an air passage between the return control door 38 and the foot outlet 28, and guides the air flowing through the first return passage 44 to the foot outlet 28. The second return flow path 46 is an air flow path between the return control door 38 and the blower 22, and guides the air flowing through the first return flow path 44 to the blower 22. The first return channel 44 and the second return channel 46 form a channel that is sent from the blower 22 and returns the air cooled or heated by the Peltier module 14 to the blower 22 again. The blower 22 includes an intake port (not shown) that takes in air flowing through the second return flow path 46.

配風制御ドア34は、送風流路39、空調流路40、および第1排気流路48の分岐点に設けられる。配風制御ドア34は、送風流路39から流入した空気が、空調流路40と第1排気流路48の少なくとも1つに流れるよう調整する。風路切替ドア36は、空調流路40、肩口吹出流路42、第1帰還流路44、および第2排気流路50の分岐点に設けられる。風路切替ドア36は、空調流路40から流入した空気が、肩口吹出流路42、第1帰還流路44、第2排気流路50の少なくとも1つに流れるよう調整する。   The air distribution control door 34 is provided at a branch point of the air flow path 39, the air conditioning flow path 40, and the first exhaust flow path 48. The air distribution control door 34 adjusts so that the air flowing in from the air flow path 39 flows into at least one of the air conditioning flow path 40 and the first exhaust flow path 48. The air path switching door 36 is provided at a branch point of the air conditioning channel 40, the shoulder outlet channel 42, the first return channel 44, and the second exhaust channel 50. The air path switching door 36 adjusts so that the air flowing in from the air conditioning channel 40 flows into at least one of the shoulder outlet channel 42, the first return channel 44, and the second exhaust channel 50.

帰還制御ドア38は、第1帰還流路44、足元吹出流路45、および第2帰還流路46の分岐点に設けられる。帰還制御ドア38は、第1帰還流路44から流入した空気が、足元吹出流路45と第2帰還流路46の少なくとも1つに流れるよう調整する。排気制御ドア37は、第1排気流路48と第2排気流路50との合流点に設けられる。排気制御ドア37は、逆止弁であり、第2排気流路50から第1排気流路48へ空気を流入させる一方、第1排気流路48から第2排気流路50への空気の流入を防止する。   The return control door 38 is provided at a branch point of the first return flow path 44, the foot outlet flow path 45, and the second return flow path 46. The return control door 38 adjusts so that the air flowing in from the first return flow path 44 flows into at least one of the foot outlet flow path 45 and the second return flow path 46. The exhaust control door 37 is provided at the junction of the first exhaust passage 48 and the second exhaust passage 50. The exhaust control door 37 is a check valve and allows air to flow from the second exhaust flow path 50 to the first exhaust flow path 48, while air flows from the first exhaust flow path 48 to the second exhaust flow path 50. To prevent.

なお、図1では便宜的に、空調流路40と、ペルチェモジュール14の利用熱面16とを離して描いたが、ペルチェモジュール14の利用熱面16は、空調流路40を流れる空気に直接触れるように構成されてもよい。同様に、ペルチェモジュール14の排熱面18も、第1排気流路48を流れる空気に直接触れるように構成されてもよい。また、利用熱面16および排熱面18は、効率的な放熱のための放熱部材(効率的な熱交換のための熱交換部材)を含んでもよい。   In FIG. 1, for convenience, the air-conditioning flow path 40 and the heat utilization surface 16 of the Peltier module 14 are drawn apart from each other, but the heat utilization surface 16 of the Peltier module 14 is directly connected to the air flowing through the air-conditioning flow path 40. It may be configured to touch. Similarly, the exhaust heat surface 18 of the Peltier module 14 may be configured to directly contact the air flowing through the first exhaust flow path 48. Moreover, the heat utilization surface 16 and the exhaust heat surface 18 may include a heat radiation member for efficient heat radiation (a heat exchange member for efficient heat exchange).

図2は、実施例に係る車両100の機能構成を示すブロック図である。本明細書のブロック図の各ブロックは、ハードウェア的には、コンピュータのCPUやメモリをはじめとする素子や機械装置で実現でき、ソフトウェア的にはコンピュータプログラム等によって実現されるが、ここでは、それらの連携によって実現される機能ブロックを描いている。したがって、これらの機能ブロックはハードウェア、ソフトウェアの組合せによっていろいろなかたちで実現できることは、当業者には理解されるところである。   FIG. 2 is a block diagram illustrating a functional configuration of the vehicle 100 according to the embodiment. Each block in the block diagram of the present specification can be realized in hardware by an element and a mechanical device including a computer CPU and memory, and in software by a computer program or the like. Here, The functional block realized by those cooperation is drawn. Therefore, those skilled in the art will understand that these functional blocks can be realized in various forms by a combination of hardware and software.

車両100は、図1に示した空調装置10と、図1には不図示のIGスイッチ102、電源管理装置104、運転管理装置106を備える。これらの各装置の間は、専用線またはCAN(Controller Area Network)等の有線通信で接続されてもよい。また、USB、Ethernet(登録商標)、Wi−Fi(登録商標)、Bluetooth(登録商標)等の有線通信または無線通信で接続されてもよい。   The vehicle 100 includes the air conditioner 10 illustrated in FIG. 1, an IG switch 102, a power management device 104, and an operation management device 106 that are not illustrated in FIG. 1. These devices may be connected by wired communication such as a dedicated line or CAN (Controller Area Network). Further, the communication may be performed by wired communication or wireless communication such as USB, Ethernet (registered trademark), Wi-Fi (registered trademark), or Bluetooth (registered trademark).

IGスイッチ102は、車両100のモーターまたはエンジンのオン・オフを乗員が制御するためのイグニッションスイッチである。電源管理装置104は、車両100の電源の状態を管理する。例えば、電源管理装置104は、IGスイッチ102が現在オン状態か、または、現在オフ状態かを示す情報を保持する。また、電源管理装置104は、車両100が現在充電中の状態か否かを示す情報も保持する。   The IG switch 102 is an ignition switch for the occupant to control on / off of the motor or engine of the vehicle 100. The power management device 104 manages the power state of the vehicle 100. For example, the power management apparatus 104 holds information indicating whether the IG switch 102 is currently on or currently off. The power management apparatus 104 also holds information indicating whether or not the vehicle 100 is currently being charged.

運転管理装置106は、各種検出装置(不図示)からの信号、および、運転操作部(不図示)からの信号に基づいて、車両100の運転状態(挙動等)を管理する。検出装置は、例えば、速度センサ、位置検出装置(GPS:Global Positioning System)を含む。運転操作部は、ステアリング、アクセルペダル、ブレーキペダルを含む。例えば、運転管理装置106は、車両100の現在速度(車両速度)を示す情報を保持する。また、運転管理装置106は、車両100の運転開始からの経過時間(以下、「運転時間」と呼ぶ。)を示す情報を保持する。例えば、運転管理装置106は、電源管理装置104からIGスイッチ102がオンになったことを示す情報を取得し、その情報取得から現在までの経過時間を、運転開始からの経過時間として計測してもよい。   The driving management device 106 manages the driving state (behavior, etc.) of the vehicle 100 based on signals from various detection devices (not shown) and signals from the driving operation unit (not shown). The detection device includes, for example, a speed sensor and a position detection device (GPS: Global Positioning System). The driving operation unit includes a steering, an accelerator pedal, and a brake pedal. For example, the operation management device 106 holds information indicating the current speed (vehicle speed) of the vehicle 100. In addition, the operation management device 106 holds information indicating an elapsed time from the start of operation of the vehicle 100 (hereinafter referred to as “operation time”). For example, the operation management device 106 acquires information indicating that the IG switch 102 is turned on from the power management device 104, and measures the elapsed time from the acquisition of the information to the present as the elapsed time from the start of operation. Also good.

空調装置10は、図1で示したペルチェモジュール14、ブロア22、配風制御ドア34、風路切替ドア36、帰還制御ドア38、温度センサ26、温度センサ30を備える。空調装置10は、さらに、図1には不図示の操作入力部60、情報取得部62、制御部64を備える。   The air conditioner 10 includes the Peltier module 14, the blower 22, the air distribution control door 34, the air path switching door 36, the feedback control door 38, the temperature sensor 26, and the temperature sensor 30 shown in FIG. The air conditioner 10 further includes an operation input unit 60, an information acquisition unit 62, and a control unit 64 not shown in FIG.

操作入力部60は、空調装置10の動作を指示する乗員の操作を受け付けるユーザインタフェース装置である。操作入力部60は、ボタンまたはタッチパネルディスプレイを含み、また、カーナビゲーションシステムの画面と一体化されてもよい。操作入力部60は、乗員により入力された空調動作の指示を示す操作信号を制御部64へ入力する。   The operation input unit 60 is a user interface device that receives an occupant's operation that instructs the operation of the air conditioner 10. The operation input unit 60 includes a button or a touch panel display, and may be integrated with a screen of the car navigation system. The operation input unit 60 inputs an operation signal indicating an air conditioning operation instruction input by the occupant to the control unit 64.

情報取得部62は、電源管理装置104に保持された車両100の電源状態を示す情報を定期的に取得する。電源状態を示す情報は、IGスイッチ102のオン・オフ状態を示す情報を含み、車両100が現在充電中か否かを示す情報を含む。また、情報取得部62は、運転管理装置106に保持された車両100の運転状態を示す情報を定期的に取得する。車両100の運転状態を示す情報は、運転時間を示す情報を含み、車両速度を示す情報を含む。情報取得部62は、取得した情報を制御部64へ入力する。   The information acquisition unit 62 periodically acquires information indicating the power state of the vehicle 100 held in the power management device 104. The information indicating the power state includes information indicating the on / off state of the IG switch 102 and includes information indicating whether or not the vehicle 100 is currently being charged. In addition, the information acquisition unit 62 periodically acquires information indicating the driving state of the vehicle 100 held in the driving management device 106. The information indicating the driving state of the vehicle 100 includes information indicating the driving time and includes information indicating the vehicle speed. The information acquisition unit 62 inputs the acquired information to the control unit 64.

制御部64は、操作入力部60からの操作信号入力、および、情報取得部62からの情報入力を受け付ける。また、制御部64は、温度センサ26および温度センサ30から、各センサで検知された温度を示す信号を受け付ける。制御部64は、これらの入力データに応じて、空調装置10の動作態様を決定する。制御部64は、決定した動作態様に応じて、ペルチェモジュール14、ブロア22、配風制御ドア34、風路切替ドア36、帰還制御ドア38を制御する。   The control unit 64 receives an operation signal input from the operation input unit 60 and an information input from the information acquisition unit 62. In addition, the control unit 64 receives a signal indicating the temperature detected by each sensor from the temperature sensor 26 and the temperature sensor 30. The control unit 64 determines the operation mode of the air conditioner 10 according to these input data. The control unit 64 controls the Peltier module 14, the blower 22, the air distribution control door 34, the air path switching door 36, and the return control door 38 according to the determined operation mode.

例えば、制御部64は、ペルチェモジュール14への電圧印加の有無、および、印加電圧の極性を制御する。また、制御部64は、ブロア22への電圧印加の有無を制御する。また、制御部64は、配風制御ドア34、風路切替ドア36、帰還制御ドア38それぞれのアクチュエータを制御することで、各ドアにおける通風の方向と量を制御する。言い換えれば、制御部64は、各ドアの開口方向と開口量を制御する。   For example, the control unit 64 controls the presence / absence of voltage application to the Peltier module 14 and the polarity of the applied voltage. Further, the control unit 64 controls the presence / absence of voltage application to the blower 22. Moreover, the control part 64 controls the direction and amount of the ventilation in each door by controlling each actuator of the air distribution control door 34, the air path switching door 36, and the return control door 38. In other words, the control unit 64 controls the opening direction and the opening amount of each door.

ここで、空調装置10の冷房運転時の基本的な動作を説明する。冷房運転開始時、制御部64は、ペルチェモジュール14の利用熱面16を冷却面として機能させる極性にてペルチェモジュール14へ電圧を印加する。さらに、制御部64は、ブロア22から送られた空気を、空調流路40と第1排気流路48の両方へ流すように配風制御ドア34を調整する。さらに、制御部64は、空調流路40と肩口吹出流路42を連通させ、すなわち、空調流路40からの空気を全て肩口吹出流路42へ流すように風路切替ドア36を調整する。さらに、制御部64は、ブロア22に電圧を印加して送風を開始させる。   Here, a basic operation during the cooling operation of the air conditioner 10 will be described. At the start of the cooling operation, the control unit 64 applies a voltage to the Peltier module 14 with a polarity that allows the use heat surface 16 of the Peltier module 14 to function as a cooling surface. Further, the control unit 64 adjusts the air distribution control door 34 so that the air sent from the blower 22 flows through both the air conditioning channel 40 and the first exhaust channel 48. Furthermore, the control unit 64 causes the air-conditioning flow path 40 and the shoulder outlet flow path 42 to communicate with each other, that is, adjusts the air path switching door 36 so that all the air from the air-conditioning flow path 40 flows to the shoulder opening outlet flow path 42. Furthermore, the control unit 64 applies a voltage to the blower 22 to start blowing.

図3は、冷房運転時の基本的な空気の流れを示す。ブロア22から送出された空気は、空調流路40と第1排気流路48の両方に流れる。空調流路40へ流れた空気は、ペルチェモジュール14の利用熱面16により冷却され、冷却された空気は、肩口吹出流路42を介して肩口吹出口24から送出される。その一方、第1排気流路48へ流れた空気は、ペルチェモジュール14の排熱面18により加温され、加温された空気は、排気口32から車外へ排出される。   FIG. 3 shows a basic air flow during the cooling operation. The air sent from the blower 22 flows through both the air conditioning channel 40 and the first exhaust channel 48. The air that has flowed into the air conditioning channel 40 is cooled by the heat utilization surface 16 of the Peltier module 14, and the cooled air is sent out from the shoulder outlet 24 through the shoulder outlet channel 42. On the other hand, the air that has flowed into the first exhaust passage 48 is heated by the exhaust heat surface 18 of the Peltier module 14, and the heated air is discharged from the exhaust port 32 to the outside of the vehicle.

次に、空調装置10の暖房運転時の基本的な動作を説明する。暖房運転開始時、制御部64は、ペルチェモジュール14の利用熱面16を加熱面として機能させる極性にてペルチェモジュール14へ電圧を印加する。さらに、制御部64は、ブロア22から送られた空気を、空調流路40と第1排気流路48の両方へ流すように配風制御ドア34を調整する。さらに、制御部64は、空調流路40と第1帰還流路44を連通させ、すなわち、空調流路40からの空気を全て第1帰還流路44へ流すように風路切替ドア36を調整する。さらに、制御部64は、第1帰還流路44と足元吹出流路45を連通させ、すなわち、第1帰還流路44からの空気を全て足元吹出流路45へ流すように帰還制御ドア38を調整する。さらに、制御部64は、ブロア22に電圧を印加して送風を開始させる。   Next, a basic operation during the heating operation of the air conditioner 10 will be described. At the start of heating operation, the control unit 64 applies a voltage to the Peltier module 14 with a polarity that allows the use heat surface 16 of the Peltier module 14 to function as a heating surface. Further, the control unit 64 adjusts the air distribution control door 34 so that the air sent from the blower 22 flows through both the air conditioning channel 40 and the first exhaust channel 48. Further, the control unit 64 causes the air conditioning flow path 40 and the first return flow path 44 to communicate with each other, that is, adjusts the air path switching door 36 so that all the air from the air conditioning flow path 40 flows to the first return flow path 44. To do. Further, the control unit 64 causes the first return flow path 44 and the foot outlet flow path 45 to communicate with each other, that is, the feedback control door 38 is set so that all the air from the first return flow path 44 flows to the foot outlet flow path 45. adjust. Furthermore, the control unit 64 applies a voltage to the blower 22 to start blowing.

図4は、暖房運転時の基本的な空気の流れを示す。ブロア22から送出された空気は、空調流路40と第1排気流路48の両方に流れる。空調流路40へ流れた空気は、ペルチェモジュール14の利用熱面16により加温され、加温された空気は、第1帰還流路44および足元吹出流路45を介して、足元吹出口28から送出される。その一方、第1排気流路48へ流れた空気は、ペルチェモジュール14の排熱面18により冷却され、冷却された空気は、排気口32から車外へ排出される。   FIG. 4 shows a basic air flow during heating operation. The air sent from the blower 22 flows through both the air conditioning channel 40 and the first exhaust channel 48. The air that has flowed into the air conditioning channel 40 is heated by the heat utilization surface 16 of the Peltier module 14, and the heated air passes through the first return channel 44 and the foot outlet channel 45, and the foot outlet 28. Is sent from. On the other hand, the air flowing into the first exhaust passage 48 is cooled by the heat exhaust surface 18 of the Peltier module 14, and the cooled air is discharged from the exhaust port 32 to the outside of the vehicle.

以下、第1実施例から第5実施例における空調装置のそれぞれの特徴を説明する。
(第1実施例)
まず第1実施例の概要を述べる。冷房運転時、ペルチェモジュール14の利用熱面16は冷却面となり、結露が生じる。利用熱面16に生じた水をそのままにすると、カビ等が繁殖し、その後の空調運転時に不快な臭いを生じることがある。ペルチェモジュール14の利用熱面16から車外へ水を排出するダクトを設置することは、車両構造の変更が必要となり、困難である。また、電気自動車では、車両の底面に電池が搭載されることが多く、電池の近くに水を流すことは好ましくないという問題もある。
Hereinafter, each characteristic of the air conditioner in the first to fifth embodiments will be described.
(First embodiment)
First, the outline of the first embodiment will be described. During the cooling operation, the heat utilization surface 16 of the Peltier module 14 becomes a cooling surface and condensation occurs. If the water generated on the heat utilization surface 16 is left as it is, mold and the like may propagate and an unpleasant odor may be produced during the subsequent air conditioning operation. It is difficult to install a duct that discharges water from the use heat surface 16 of the Peltier module 14 to the outside of the vehicle because it requires a change in the vehicle structure. In addition, in an electric vehicle, a battery is often mounted on the bottom surface of the vehicle, and there is a problem that it is not preferable to flow water near the battery.

このような課題を解決するために、第1実施例では、ペルチェモジュール14の利用熱面16で生じた水を除去する技術を提案する。具体的には、第1実施例のペルチェモジュール14では、利用熱面16から排熱面18へ貫通した貫通孔(以下、「通水管」と呼ぶ。)20を設けることで、利用熱面16で生じた水を排熱面18へ移動させる。   In order to solve such a problem, the first embodiment proposes a technique for removing water generated on the heat utilization surface 16 of the Peltier module 14. Specifically, in the Peltier module 14 of the first embodiment, the use heat surface 16 is provided by providing a through hole 20 (hereinafter referred to as “water pipe”) that penetrates from the use heat surface 16 to the heat removal surface 18. The water generated in step 1 is moved to the heat exhaust surface 18.

図5は、第1実施例に係るペルチェモジュール14の上面図である。同図は、ペルチェモジュール14の利用熱面16を示している。ペルチェモジュール14の利用熱面16には、ペルチェ効果により生じた利用熱を、空調流路40を流れる空気へ伝えるための複数の放熱部材53が設けられる。放熱部材53は、金属が棒状または板状に形成される。また、利用熱面16には、放熱部材53の間の所定の位置に、複数の入水口52が設けられる(図では5つ)。また、利用熱面16では、入水口52へ向けて傾斜を設けることが好ましい。これにより、利用熱面16で生じた水が入水口52側へ移動しやすくなり、利用熱面16からの水の排出を促進できる。   FIG. 5 is a top view of the Peltier module 14 according to the first embodiment. The figure shows the heat utilization surface 16 of the Peltier module 14. The heat utilization surface 16 of the Peltier module 14 is provided with a plurality of heat dissipating members 53 for transmitting heat generated by the Peltier effect to the air flowing through the air conditioning channel 40. The heat dissipating member 53 is formed of a metal rod or plate. The utilization heat surface 16 is provided with a plurality of water inlets 52 at predetermined positions between the heat radiation members 53 (five in the figure). Further, it is preferable that the use heat surface 16 is inclined toward the water inlet 52. Thereby, the water generated on the use heat surface 16 can easily move to the water inlet 52 side, and the discharge of water from the use heat surface 16 can be promoted.

図6は、第1実施例に係るペルチェモジュール14の断面図である。同図は、図5のA−A線断面図である。空調装置10では、利用熱面16が上側となり、排熱面18が下側となるように、ペルチェモジュール14が設置される。図5で示したように、利用熱面16に、複数の入水口52を設ける。また、排熱面18に、水を排出する排水口54を設ける(図では2つ)。   FIG. 6 is a cross-sectional view of the Peltier module 14 according to the first embodiment. FIG. 5 is a cross-sectional view taken along line AA in FIG. In the air conditioner 10, the Peltier module 14 is installed so that the heat utilization surface 16 is on the upper side and the heat removal surface 18 is on the lower side. As shown in FIG. 5, a plurality of water inlets 52 are provided on the heat utilization surface 16. In addition, drainage ports 54 for discharging water are provided on the heat exhaust surface 18 (two in the figure).

ペルチェモジュール14の内部に、利用熱面16から排熱面18へ貫通した管(孔)であり、入水口52から排水口54まで連通した通水管20を設ける。また、通水管20には、排水口54へ向けて傾斜を設けることが好ましい。これにより、通水管20内部の水が排水口54まで移動することを促進できる。   Inside the Peltier module 14, a water pipe 20 that is a pipe (hole) penetrating from the heat utilization surface 16 to the heat exhaust surface 18 and communicated from the water inlet 52 to the water outlet 54 is provided. Further, the water pipe 20 is preferably provided with an inclination toward the drain port 54. Thereby, it is possible to promote the movement of the water inside the water pipe 20 to the drain port 54.

ペルチェモジュール14の排熱面18には、ペルチェ効果により生じた排熱を、第1排気流路48を流れる空気へ伝えるための複数の放熱部材56(放熱フィンとも呼ばれる)が設けられる。放熱部材56は、金属が棒状または板状に形成される。なお、排熱面18の放熱部材56と、利用熱面16の放熱部材53とは、同じ構造物であってもよいし、互いに異なる構造物であってもよい。本実施例における空調装置10では、特に排熱面18の放熱部材56の表面に、付着した水の表面積を大きくするための構造物を設ける。この構造物は、本実施例では溝であるが、凹凸の構造物であってもよい。   The heat exhaust surface 18 of the Peltier module 14 is provided with a plurality of heat radiating members 56 (also referred to as heat radiating fins) for transmitting the heat exhausted by the Peltier effect to the air flowing through the first exhaust flow path 48. The heat dissipating member 56 is formed of a metal rod or plate. The heat radiating member 56 on the heat exhaust surface 18 and the heat radiating member 53 on the heat utilization surface 16 may be the same structure or may be different structures. In the air conditioner 10 in the present embodiment, a structure for increasing the surface area of the attached water is provided particularly on the surface of the heat radiating member 56 of the exhaust heat surface 18. This structure is a groove in this embodiment, but may be an uneven structure.

図6の破線は、第1排気流路48における空気の流れを示している。ペルチェモジュール14の通水管20は、通水管20の内部を通った水が放熱部材56に付着するように構成される。具体的には、通水管20の排水口54を、放熱部材56の近傍位置、かつ、少なくとも1つの放熱部材56より第1排気流路48における気流の上流側に設置する。   The broken lines in FIG. 6 indicate the air flow in the first exhaust flow path 48. The water pipe 20 of the Peltier module 14 is configured such that water that has passed through the water pipe 20 adheres to the heat radiating member 56. Specifically, the drain port 54 of the water pipe 20 is installed in the vicinity of the heat radiating member 56 and on the upstream side of the air flow in the first exhaust passage 48 from the at least one heat radiating member 56.

以上のペルチェモジュール14の構成による作用を説明する。既述したように、冷房運転中、ペルチェモジュール14の利用熱面16は冷却面となり、利用熱面16に結露が生じる。利用熱面16で生じた水は、自重により、入水口52および通水管20を介して排熱面18へ移動する。排熱面18の排水口54から排出された水は、第1排気流路48の気流によって放熱部材56に吹き付けられる。放熱部材56に吹き付けられた水は、第1排気流路48を流れる温風と、放熱部材56自身の熱により蒸発する。   The effect | action by the structure of the above Peltier module 14 is demonstrated. As described above, during the cooling operation, the heat utilization surface 16 of the Peltier module 14 becomes a cooling surface, and condensation occurs on the heat utilization surface 16. The water generated on the heat utilization surface 16 moves to the heat removal surface 18 through the water inlet 52 and the water pipe 20 due to its own weight. The water discharged from the drain outlet 54 of the heat exhaust surface 18 is blown to the heat radiating member 56 by the air flow in the first exhaust passage 48. The water sprayed on the heat radiating member 56 evaporates due to the warm air flowing through the first exhaust passage 48 and the heat of the heat radiating member 56 itself.

第1実施例の空調装置10によると、ペルチェモジュール14の利用熱面16から排熱面18へ貫通した通水管20を設けたので、冷房運転時に利用熱面16で生じた水を、利用熱面16から除去しやすくなる。これにより、空調時の不快な臭いの発生を防止しやすくなる。   According to the air conditioner 10 of the first embodiment, since the water flow pipe 20 penetrating from the heat utilization surface 16 of the Peltier module 14 to the heat removal surface 18 is provided, the water generated on the heat utilization surface 16 during the cooling operation is used as heat for utilization. It becomes easy to remove from the surface 16. Thereby, it becomes easy to prevent generation | occurrence | production of the unpleasant smell at the time of an air conditioning.

また、空調装置10によると、利用熱面16で生じた水を排熱面18の放熱部材56へ流すことにより、水の蒸発を促進させるとともに、蒸発潜熱によりペルチェ効果を向上させ、空調効果を高めることができる。さらに、空調装置10によると、放熱部材56に溝を設けたことにより、放熱部材56に付着した水の表面積が大きくなり、水の蒸発を一層促進できる。   Further, according to the air conditioner 10, the water generated on the heat utilization surface 16 is caused to flow to the heat radiating member 56 on the heat exhaust surface 18, thereby promoting the evaporation of the water and improving the Peltier effect by the latent heat of vaporization. Can be increased. Furthermore, according to the air conditioner 10, since the groove is provided in the heat radiating member 56, the surface area of the water adhering to the heat radiating member 56 is increased, and the evaporation of water can be further promoted.

(第2実施例)
第2実施例に係る空調装置10のペルチェモジュール14においても、利用熱面16から排熱面18へ貫通した通水管20を設ける。ただし、ペルチェモジュール14の排熱面18側の構成が第1実施例とは異なる。以下、第1実施例と異なる点を説明する。
(Second embodiment)
Also in the Peltier module 14 of the air conditioner 10 according to the second embodiment, a water pipe 20 penetrating from the heat utilization surface 16 to the heat exhaust surface 18 is provided. However, the structure on the heat exhaust surface 18 side of the Peltier module 14 is different from that of the first embodiment. Hereinafter, differences from the first embodiment will be described.

図7は、第2実施例に係るペルチェモジュール14の断面図である。第1実施例と同じ部材には同じ符号を付している。第2実施例では、ペルチェモジュール14の排熱面18に、保水部材58をさらに設ける。通水管20は、通水管20内部を伝った水が保水部材58へ流れるように構成される。具体的には、通水管20の排水口54を、保水部材58の上位置に設ける。   FIG. 7 is a cross-sectional view of the Peltier module 14 according to the second embodiment. The same members as those in the first embodiment are denoted by the same reference numerals. In the second embodiment, a water retaining member 58 is further provided on the heat exhaust surface 18 of the Peltier module 14. The water pipe 20 is configured such that water transmitted through the water pipe 20 flows to the water retention member 58. Specifically, the drain port 54 of the water pipe 20 is provided above the water retention member 58.

保水部材58は、保水性および通気性が高い素材により形成されることが好ましく、例えば、高吸水性高分子によるフィルタであってもよい。ペルチェモジュール14の排熱面18では、保水部材58を、放熱部材56により加温された空気が当たる位置に設ける。具体的には、放熱部材56とは異なる位置であり、放熱部材56よりも第1排気流路48における気流の下流側の位置に保水部材58を設置する。図7の例では、いずれの放熱部材56よりも下流に保水部材58を設置している。   The water retention member 58 is preferably formed of a material having high water retention and air permeability, and may be, for example, a filter made of a highly water absorbent polymer. On the heat exhaust surface 18 of the Peltier module 14, the water retaining member 58 is provided at a position where the air heated by the heat radiating member 56 hits. Specifically, the water retention member 58 is installed at a position different from the heat dissipation member 56 and at a position downstream of the airflow in the first exhaust flow channel 48 with respect to the heat dissipation member 56. In the example of FIG. 7, a water retaining member 58 is installed downstream of any heat radiating member 56.

以上のペルチェモジュール14の構成による作用を説明する。既述したように、冷房運転中、ペルチェモジュール14の利用熱面16は冷却面となり、利用熱面16に結露が生じる。利用熱面16で生じた水は、自重により、入水口52および通水管20を介して排熱面18へ移動する。排熱面18側の排水口54から排出された水は、保水部材58へ流れ、保水部材58により保持される。保水部材58に保持された水は、第1排気流路48において放熱部材56により加温された温風が当たることで蒸発する。   The effect | action by the structure of the above Peltier module 14 is demonstrated. As described above, during the cooling operation, the heat utilization surface 16 of the Peltier module 14 becomes a cooling surface, and condensation occurs on the heat utilization surface 16. The water generated on the heat utilization surface 16 moves to the heat removal surface 18 through the water inlet 52 and the water pipe 20 due to its own weight. The water discharged from the drain port 54 on the heat exhaust surface 18 side flows to the water retaining member 58 and is retained by the water retaining member 58. The water held in the water retaining member 58 evaporates when the hot air heated by the heat radiating member 56 hits the first exhaust passage 48.

第2実施例の空調装置10によると、第1実施例と同様に、冷房運転時に利用熱面16で生じた水を、利用熱面16から除去しやすくなる。また、放熱部材56により十分加温された空気を保水部材58に当てることで、保水部材58に保持された水の蒸発を促進する。さらに、利用熱面16で生じた水を放熱部材56に直接当てないため、放熱部材56の汚れおよび傷みを防止できる。   According to the air conditioner 10 of the second embodiment, water generated on the use heat surface 16 during the cooling operation can be easily removed from the use heat surface 16 as in the first embodiment. Further, the air sufficiently heated by the heat radiating member 56 is applied to the water retaining member 58 to promote the evaporation of the water retained by the water retaining member 58. Furthermore, since the water generated on the heat utilization surface 16 is not directly applied to the heat radiating member 56, the heat radiating member 56 can be prevented from being stained and damaged.

(第3実施例)
第3実施例でも、第1実施例と同様の課題を解決するために、ペルチェモジュール14の利用熱面16で生じた水を除去する技術を提案する。具体的には、第3実施例に係る空調装置10は、IGスイッチ102がオフになった際に冷房運転を実行中であれば、IGスイッチ102がオフの間に、ペルチェモジュール14のクリーニング処理として暖房運転を自律的に実行する。以下、第3実施例の空調装置10の構成を詳細に説明する。
(Third embodiment)
The third embodiment also proposes a technique for removing water generated on the heat utilization surface 16 of the Peltier module 14 in order to solve the same problem as in the first embodiment. Specifically, if the air conditioner 10 according to the third embodiment is performing a cooling operation when the IG switch 102 is turned off, the cleaning process for the Peltier module 14 is performed while the IG switch 102 is turned off. As a heating operation autonomously. Hereinafter, the structure of the air conditioner 10 of 3rd Example is demonstrated in detail.

操作入力部60には、ペルチェモジュール14の自動クリーニングの実行有無を乗員に選択させるボタン(以下、「クリーニングボタン」と呼ぶ。)を設ける。クリーニングボタンは、物理的なボタンであってもよく、タッチパネルディスプレイ上に表示されるボタンイメージであってもよい。操作入力部60は、クリーニングボタンのオンまたはオフ(すなわち自動クリーニングの実行有無)を示す操作信号を制御部64へ入力する。   The operation input unit 60 is provided with a button (hereinafter referred to as “cleaning button”) that allows an occupant to select whether or not to perform automatic cleaning of the Peltier module 14. The cleaning button may be a physical button or a button image displayed on the touch panel display. The operation input unit 60 inputs an operation signal indicating whether the cleaning button is on or off (that is, whether or not automatic cleaning is performed) to the control unit 64.

情報取得部62は、IGスイッチ102がオフされた場合に、そのことを示す情報を電源管理装置104から取得し、制御部64へ入力する。また、情報取得部62は、外部装置からの給電により車両100が充電状態になった場合に、そのことを示す情報を電源管理装置104から取得し、制御部64へ入力する。   When the IG switch 102 is turned off, the information acquisition unit 62 acquires information indicating that from the power management device 104 and inputs the information to the control unit 64. Further, the information acquisition unit 62 acquires information indicating that from the power management device 104 and inputs the information to the control unit 64 when the vehicle 100 is in a charged state due to power supply from an external device.

制御部64は、IGスイッチ102がオフされたことが通知されると、その直前まで冷房運転を実行中であったか否かを記憶する。言い換えれば、制御部64は、IGスイッチ102オフの直前まで、ペルチェモジュール14の利用熱面16を冷却面として機能させていたか否かを識別する。また、制御部64は、クリーニングボタンのオンを示す操作信号を受付済か否かを判定する。さらに、制御部64は、車両100が充電状態であることを示す情報が入力済か否かを判定する。   When notified that the IG switch 102 has been turned off, the control unit 64 stores whether or not the cooling operation has been executed immediately before that. In other words, the control unit 64 identifies whether or not the use heat surface 16 of the Peltier module 14 is functioning as a cooling surface until immediately before the IG switch 102 is turned off. Further, the control unit 64 determines whether or not an operation signal indicating that the cleaning button is turned on has been received. Furthermore, control unit 64 determines whether or not information indicating that vehicle 100 is in a charged state has been input.

制御部64は、(1)IGスイッチ102がオフ、(2)IGスイッチ102オフ時に冷房運転実行中、(3)クリーニングボタンがオン、(4)車両100が充電中、のいずれもが満たされた場合に、クリーニング実行条件が満たされたと判定する。クリーニング実行条件が満たされると、制御部64は、ペルチェモジュール14に対するクリーニング処理を実行する。具体的には、制御部64は、ペルチェモジュール14の利用熱面16を加熱面として機能させ、空調流路40を流れる空気を加温させる。   The control unit 64 satisfies (1) the IG switch 102 is OFF, (2) the cooling operation is being executed when the IG switch 102 is OFF, (3) the cleaning button is ON, and (4) the vehicle 100 is being charged. If the cleaning execution condition is satisfied, it is determined that the cleaning execution condition is satisfied. When the cleaning execution condition is satisfied, the control unit 64 executes a cleaning process for the Peltier module 14. Specifically, the control unit 64 causes the heat utilization surface 16 of the Peltier module 14 to function as a heating surface, and heats the air flowing through the air conditioning channel 40.

以上の構成による第3実施例に係る空調装置10の動作を説明する。既述したように、冷房運転中、ペルチェモジュール14の利用熱面16は冷却面となり、利用熱面16に結露が生じる。   The operation of the air conditioner 10 according to the third embodiment having the above configuration will be described. As described above, during the cooling operation, the heat utilization surface 16 of the Peltier module 14 becomes a cooling surface, and condensation occurs on the heat utilization surface 16.

図8は、第3実施例に係る空調装置10の動作を示すフローチャートである。同図は、ペルチェモジュール14に対するクリーニング処理を示している。IGスイッチ102がオンの間は(S10のN)、以降の動作をスキップして本図のフローを終了する。制御部64は、IGスイッチ102がオフであり(S10のY)、クリーニング処理を実行済でなく(S12のN)、クリーニング処理を実行中でもなければ(S14のN)、クリーニング実行条件の充足有無を判定する。制御部64は、クリーニングボタンがオンであり(S16のY)、IGスイッチ102がオフにされた際に冷房運転中であり(S18のY)、車両100が充電中であれば(S20のY)、クリーニング実行条件が満たされたと判定する。   FIG. 8 is a flowchart showing the operation of the air conditioner 10 according to the third embodiment. This figure shows the cleaning process for the Peltier module 14. While the IG switch 102 is on (N in S10), the subsequent operation is skipped and the flow of FIG. If the IG switch 102 is off (Y in S10), the cleaning process has not been executed (N in S12), and the cleaning process is not being executed (N in S14), the control unit 64 satisfies whether the cleaning execution condition is satisfied. Determine. If the cleaning button is on (Y in S16), the controller 64 is in cooling operation when the IG switch 102 is turned off (Y in S18), and the vehicle 100 is being charged (Y in S20). ), It is determined that the cleaning execution condition is satisfied.

クリーニング実行条件が満たされると、制御部64は、暖房運転を開始する(S22)。具体的には、制御部64は、ペルチェモジュール14の利用熱面16を加熱面として機能させる極性であり、すなわち冷房運転時とは逆の極性で、ペルチェモジュール14へ電圧を印加する。さらに、制御部64は、ブロア22から送られた空気を空調流路40と第1排気流路48の両方へ流すように配風制御ドア34を調整する。さらに、制御部64は、空調流路40と第2排気流路50を連通させ、すなわち、空調流路40からの空気を全て第2排気流路50へ流すように風路切替ドア36を調整する。さらに、制御部64は、ブロア22に電圧を印加して送風を開始させる。   When the cleaning execution condition is satisfied, the control unit 64 starts the heating operation (S22). Specifically, the control unit 64 applies a voltage to the Peltier module 14 with a polarity that allows the use heat surface 16 of the Peltier module 14 to function as a heating surface, that is, with a polarity opposite to that during cooling operation. Further, the control unit 64 adjusts the air distribution control door 34 so that the air sent from the blower 22 flows to both the air conditioning channel 40 and the first exhaust channel 48. Further, the control unit 64 causes the air conditioning channel 40 and the second exhaust channel 50 to communicate with each other, that is, adjusts the air path switching door 36 so that all the air from the air conditioning channel 40 flows to the second exhaust channel 50. To do. Furthermore, the control unit 64 applies a voltage to the blower 22 to start blowing.

図9は、クリーニング処理時の空気の流れを示す。ブロア22から送出された空気は、空調流路40と第1排気流路48の両方に流れる。空調流路40へ流れた空気は、ペルチェモジュール14の利用熱面16により加温される。そして、空調流路40にて加温された空気は、風路切替ドア36〜第2排気流路50〜排気制御ドア37〜第1排気流路48を辿り、排気口32から車外へ送出される。冷房運転によって利用熱面16(言い換えれば、空調流路40)に生じた水は、クリーニング処理時に、空調流路40を流れる温風と、利用熱面16の熱とにより蒸発し、車外へ排出される。   FIG. 9 shows the air flow during the cleaning process. The air sent from the blower 22 flows through both the air conditioning channel 40 and the first exhaust channel 48. The air that has flowed into the air conditioning channel 40 is heated by the heat utilization surface 16 of the Peltier module 14. The air heated in the air conditioning channel 40 follows the air path switching door 36-the second exhaust channel 50-the exhaust control door 37-the first exhaust channel 48 and is sent out of the vehicle from the exhaust port 32. The The water generated on the heat utilization surface 16 (in other words, the air conditioning flow path 40) by the cooling operation is evaporated by the hot air flowing through the air conditioning flow path 40 and the heat of the heat utilization surface 16 during the cleaning process, and is discharged outside the vehicle. Is done.

図8に戻り、暖房運転を所定の規定時間実行した場合(S24のY)、または、暖房運転の実行時間が規定時間未満であっても(S24のN)、IGスイッチ102がオンにされた場合(S26のY)、制御部64は暖房運転を終了する(S28)。具体的には、ステップS24のYでは、制御部64は、ペルチェモジュール14およびブロア22への電圧印加を停止する。その一方、ステップS26のYでは、制御部64は、IGスイッチ102オフ時の空調処理である冷房運転を再開する。なお、ステップS28において、制御部64は、クリーニング処理を実行済であることを記憶する。暖房運転の終了条件である規定時間は、利用熱面16の水が蒸発するために必要と想定される値が設定されてよい。例えば、開発者の知見、または、空調装置10を用いた実験に基づいて適切な規定時間が定められてよい。   Returning to FIG. 8, the IG switch 102 is turned on when the heating operation is performed for a predetermined specified time (Y in S24) or even when the execution time of the heating operation is less than the specified time (N in S24). In the case (Y of S26), the control part 64 complete | finishes heating operation (S28). Specifically, in Y of step S24, the control unit 64 stops the voltage application to the Peltier module 14 and the blower 22. On the other hand, in Y of step S26, the control part 64 restarts the air_conditionaing | cooling operation which is an air-conditioning process at the time of IG switch 102 OFF. In step S28, the control unit 64 stores that the cleaning process has been executed. A value that is assumed to be necessary for the specified time, which is an end condition of the heating operation, to evaporate the water on the heat utilization surface 16 may be set. For example, an appropriate specified time may be determined based on the knowledge of the developer or an experiment using the air conditioner 10.

暖房運転の実行時間が規定時間未満であり、IGスイッチ102がオフのままであれば(S26のN)、本図のフローを終了し、すなわち暖房運転を継続する。IGスイッチ102がオフの間、空調装置10は、図8に示す動作を定期的に繰り返す。クリーニング処理を実行中であれば(S14のY)、ステップS16〜ステップS22の処理をスキップして、暖房運転の実行時間を判定するステップS24へ進む。クリーニング処理を実行済(S12のY)、クリーニングボタンがオフ(S16のN)、IGスイッチ102がオフにされた際に冷房運転中でなく(S18のN)、または、車両100が充電中でなければ(S20のN)、本図のフローを終了し、すなわちクリーニング処理を実行しない。   If the execution time of the heating operation is less than the specified time and the IG switch 102 remains off (N in S26), the flow of this figure is terminated, that is, the heating operation is continued. While the IG switch 102 is off, the air conditioner 10 periodically repeats the operation shown in FIG. If the cleaning process is being executed (Y in S14), the process of steps S16 to S22 is skipped, and the process proceeds to step S24 where the execution time of the heating operation is determined. The cleaning process has been executed (Y in S12), the cleaning button is turned off (N in S16), the cooling operation is not performed when the IG switch 102 is turned off (N in S18), or the vehicle 100 is being charged. If not (N in S20), the flow of this figure is terminated, that is, the cleaning process is not executed.

第3実施例の空調装置10によると、IGスイッチ102オフの直前まで冷房運転を実行していれば、IGスイッチ102がオフの間に暖房運転を自動実行するため、ペルチェモジュール14の利用熱面16に生じた水を早期に乾燥させることができる。また、空調装置10によると、充電中であることを条件として、ペルチェモジュール14のクリーニング処理を実行するため、IGスイッチ102がオフであることを確実に担保できる。また、車両100の電池切れを防止できる。また、乗員は充電中に車両を離れることが多いため、クリーニング処理中に高温・高湿度の風を乗員に当ててしまうことを回避しやすくなる。   According to the air conditioner 10 of the third embodiment, if the cooling operation is performed immediately before the IG switch 102 is turned off, the heating operation is automatically performed while the IG switch 102 is turned off. The water produced in 16 can be dried early. Moreover, according to the air conditioner 10, since the cleaning process of the Peltier module 14 is performed on the condition that it is charging, it can be ensured that the IG switch 102 is OFF. In addition, the battery of the vehicle 100 can be prevented from running out. In addition, since the occupant often leaves the vehicle during charging, it is easy to avoid applying high-temperature and high-humidity wind to the occupant during the cleaning process.

また、空調装置10によると、ペルチェモジュール14のクリーニング時には、利用熱面16で加温された空気を排気口32から車外へ排出する。これにより、高温・高湿度の風を乗員に当ててしまうことを確実に防止できる。また、高温・高湿度の空気が車室内にこもることも防止できる。   Further, according to the air conditioner 10, when the Peltier module 14 is cleaned, the air heated by the heat utilization surface 16 is discharged from the exhaust port 32 to the outside of the vehicle. Thereby, it can prevent reliably that a wind of high temperature and high humidity hits a passenger | crew. Moreover, it is possible to prevent high-temperature and high-humidity air from being trapped in the passenger compartment.

なお、第1実施例と第3実施例の組み合わせ、および、第2実施例と第3実施例の組み合わせも有用である。第1実施例または第2実施例の構成により、IGスイッチ102がオンの間の冷房運転実行時における利用熱面16の排水を実現できるが、第3実施例の構成により、IGスイッチ102がオフの間の排水もさらに実現できるからである。   A combination of the first embodiment and the third embodiment and a combination of the second embodiment and the third embodiment are also useful. According to the configuration of the first embodiment or the second embodiment, drainage of the heat utilization surface 16 during the cooling operation while the IG switch 102 is on can be realized. However, the configuration of the third embodiment allows the IG switch 102 to be turned off. It is because the drainage between can also be realized.

(第4実施例)
まず、第4実施例の概要を述べる。既述したように、空調装置10では、冷房運転時にペルチェモジュール14の利用熱面16を冷却面として機能させ、空調流路40を流れる空気を利用熱面16にて冷却する。また、暖房運転時にペルチェモジュール14の利用熱面16を加熱面として機能させ、空調流路40を流れる空気を利用熱面16にて加温する。これまで、ペルチェモジュール14を用いる空調装置において、空調効果を高めるための具体的な方法は、十分に提案されていなかった。
(Fourth embodiment)
First, the outline of the fourth embodiment will be described. As described above, in the air conditioner 10, the use heat surface 16 of the Peltier module 14 functions as a cooling surface during the cooling operation, and the air flowing through the air conditioning channel 40 is cooled by the use heat surface 16. Further, the heating surface 16 of the Peltier module 14 functions as a heating surface during the heating operation, and the air flowing through the air conditioning channel 40 is heated by the heating surface 16. Until now, in the air conditioner using the Peltier module 14, a specific method for enhancing the air conditioning effect has not been sufficiently proposed.

第4実施例に係る空調装置10は、ブロア22から送出された空気のうち、ペルチェモジュール14の利用熱面16側へ流す空気の量と、ペルチェモジュール14の排熱面18側へ流す空気の量との比を制御する。言い換えれば、空調装置10は、ブロア22から送出された空気のうち、空調流路40への空気流入量と、第1排気流路48への空気流入量との比を制御する。これにより、ペルチェモジュール14を用いた空調装置10による空調効果を一層高める。   The air conditioner 10 according to the fourth embodiment includes the amount of air that flows from the blower 22 to the heat utilization surface 16 side of the Peltier module 14 and the amount of air that flows to the heat removal surface 18 side of the Peltier module 14. Control the ratio with quantity. In other words, the air conditioner 10 controls the ratio of the air inflow amount to the air conditioning channel 40 and the air inflow amount to the first exhaust channel 48 in the air sent from the blower 22. Thereby, the air conditioning effect by the air conditioner 10 using the Peltier module 14 is further enhanced.

なお、ペルチェモジュール14の利用熱面16を十分に冷却または加熱するためには、排熱面18からの排熱を促進して、ペルチェ効果を高める必要がある。そこで、第4実施例に係る空調装置10では、冷房運転中および暖房運転中は常時、ブロア22から送出された空気を空調流路40と第1排気流路48の両方へ流す。例えば、第1排気流路48への空気送出を止めることはしない。   In addition, in order to fully cool or heat the use heat surface 16 of the Peltier module 14, it is necessary to promote the heat exhaust from the heat exhaust surface 18 and enhance the Peltier effect. Therefore, in the air conditioner 10 according to the fourth embodiment, the air sent from the blower 22 is always supplied to both the air conditioning channel 40 and the first exhaust channel 48 during the cooling operation and the heating operation. For example, the air delivery to the first exhaust passage 48 is not stopped.

以下、第4実施例に係る空調装置10の構成を詳細に説明する。図2に示した空調装置10の制御部64は、空調装置10における冷房運転時または暖房運転時に、空調流路40と第1排気流路48の両方へ向けて開口するように配風制御ドア34を制御する。例えば、配風制御ドア34における空調流路40への開度と、第1排気流路48への開度のいずれも常時0%より大きくするように制御する。   Hereinafter, the configuration of the air conditioner 10 according to the fourth embodiment will be described in detail. The control unit 64 of the air conditioner 10 shown in FIG. 2 has an air distribution control door that opens toward both the air conditioning channel 40 and the first exhaust channel 48 during the cooling operation or the heating operation in the air conditioner 10. 34 is controlled. For example, both the opening to the air conditioning flow path 40 and the opening to the first exhaust flow path 48 in the air distribution control door 34 are controlled so as to be always larger than 0%.

制御部64は、空調装置10による空調効果を高めるべき所定の条件(ここでは「空調変更条件」と呼ぶ。)が満たされた場合、空調流路40へ送る空気の量を低減する一方、第1排気流路48へ送る空気の量を増加させるように配風制御ドア34を制御する。例えば、制御部64は、空調変更条件が満たされる前よりも、空調流路40へ送る空気の量を低減し、かつ、第1排気流路48へ送る空気の量を増加させるように指示する信号を配風制御ドア34へ送信してもよい。また、制御部64は、配風制御ドア34における空調流路40への開度を、0%より大きく、かつ、第1排気流路48への開度よりも小さくするように指示する信号を配風制御ドア34へ送信してもよい。   The control unit 64 reduces the amount of air sent to the air-conditioning flow path 40 when a predetermined condition (herein referred to as “air-conditioning change condition”) that should enhance the air-conditioning effect by the air-conditioning apparatus 10 is satisfied. The air distribution control door 34 is controlled so as to increase the amount of air sent to the one exhaust passage 48. For example, the control unit 64 instructs to reduce the amount of air sent to the air conditioning channel 40 and increase the amount of air sent to the first exhaust channel 48 than before the air conditioning change condition is satisfied. A signal may be transmitted to the air distribution control door 34. In addition, the control unit 64 gives a signal instructing the opening degree of the air distribution control door 34 to the air conditioning flow path 40 to be larger than 0% and smaller than the opening degree to the first exhaust flow path 48. You may transmit to the wind distribution control door 34. FIG.

冷房運転時における空調変更条件は、肩口吹出口24から送出する空気の温度を一層低下させるべきか否かを判定するための条件である。その一方、暖房運転時における空調変更条件は、足元吹出口28から送出する空気の温度を一層高めるべきか否かを判定するための条件である。なお、空調変更条件は、開発者の知見、または、空調装置10を用いた実験等に基づいて適切な内容が設定されてよい。   The air conditioning change condition during the cooling operation is a condition for determining whether or not the temperature of the air delivered from the shoulder outlet 24 should be further reduced. On the other hand, the air conditioning change condition during the heating operation is a condition for determining whether or not the temperature of the air sent from the foot outlet 28 should be further increased. Note that the air conditioning change condition may be appropriately set based on the knowledge of the developer or an experiment using the air conditioner 10.

本実施例の空調変更条件は、温度をパラメータとして、充足の有無が決まるように定められる。例えば、(1)制御部64は、車両100の車室内の温度を検知する温度センサ(不図示)から、現在の車室内温度を示す信号を受け付けてもよい。空調変更条件は、操作入力部60から入力された乗員による設定温度と、車室内温度との差が所定値以上の場合に満たされてもよい。また、(2)制御部64は、車両100外部の気温を検知する温度センサ(不図示)から、車両100外部の気温を示す信号を受け付けてもよい。空調変更条件は、車両100外部の気温が所定値以上(冷房運転時)、または、所定値以下(暖房運転時)の場合に満たされてもよい。   The air conditioning change condition of the present embodiment is determined so as to determine whether or not the air condition is satisfied using temperature as a parameter. For example, (1) the control unit 64 may receive a signal indicating the current vehicle interior temperature from a temperature sensor (not shown) that detects the temperature in the vehicle interior of the vehicle 100. The air conditioning change condition may be satisfied when the difference between the set temperature by the occupant input from the operation input unit 60 and the passenger compartment temperature is equal to or greater than a predetermined value. (2) The control unit 64 may receive a signal indicating the temperature outside the vehicle 100 from a temperature sensor (not shown) that detects the temperature outside the vehicle 100. The air conditioning change condition may be satisfied when the temperature outside the vehicle 100 is equal to or higher than a predetermined value (during cooling operation) or equal to or lower than a predetermined value (during heating operation).

また、(3)制御部64は、肩口吹出口24の温度センサ26から、肩口吹出口24における吹き出し温度を示す信号を受け付けてもよい。また、制御部64は、足元吹出口28の温度センサ30から、足元吹出口28における吹き出し温度を示す信号を受け付けてもよい。冷房運転時の空調変更条件は、肩口吹出口24における吹き出し温度が所定値以上の場合、または、その吹き出し温度と、操作入力部60から入力された設定温度との差が所定値以上の場合に満たされてもよい。また、暖房運転時の空調変更条件は、足元吹出口28における吹き出し温度が所定値以下の場合、または、その吹き出し温度と、操作入力部60から入力された設定温度との差が所定値以上の場合に満たされてもよい。   Further, (3) the control unit 64 may receive a signal indicating the blowing temperature at the shoulder opening 24 from the temperature sensor 26 of the shoulder opening 24. Moreover, the control part 64 may receive the signal which shows the blowing temperature in the foot outlet 28 from the temperature sensor 30 of the foot outlet 28. The air conditioning change condition during the cooling operation is when the blowing temperature at the shoulder outlet 24 is a predetermined value or more, or when the difference between the blowing temperature and the set temperature input from the operation input unit 60 is a prescribed value or more. May be satisfied. The air conditioning change condition during the heating operation is that the temperature at the foot outlet 28 is equal to or lower than a predetermined value, or the difference between the temperature at the outlet and the set temperature input from the operation input unit 60 is equal to or larger than the predetermined value. You may be satisfied if.

また、(4)空調変更条件のパラメータとなる温度は、公知のセンサにより検知可能な他の温度であってもよい。例えば、シート12の表面温度であってもよく、シート12に座る乗員の皮膚温度であってもよい。皮膚温度は、赤外線センサなどを用いてセンシングすることができ、皮膚温度を空調変更条件のパラメータとすることで、乗員に対してより快適となる制御を実現できる。   Further, (4) the temperature that is a parameter of the air conditioning change condition may be another temperature that can be detected by a known sensor. For example, the surface temperature of the seat 12 or the skin temperature of an occupant sitting on the seat 12 may be used. The skin temperature can be sensed by using an infrared sensor or the like, and by making the skin temperature a parameter of the air conditioning change condition, it is possible to realize control that is more comfortable for the passenger.

さらに、(5)空調変更条件のパラメータとしては、温度以外のパラメータを用いてもよい。例えば、日射量をパラメータとして、空調変更条件の充足の有無が決まるように定めてもよい。この場合、制御部64は、シート12に座る乗員への日射量を検出する日射センサ(不図示)から、乗員への日射量を示す信号を受け付ける。空調変更条件は、乗員への日射量が所定値以上(冷房運転時)、または、所定値以下(暖房運転時)の場合に満たされてもよい。さらに、(6)シート12に座る乗員の衣服の断熱・保温性を示す指標であるclo値をパラメータとして用いてもよい。こうしたパラメータを空調変更条件とすることで、乗員に対してより快適となる制御を実現できる。   Furthermore, parameters other than temperature may be used as the parameter of (5) air conditioning change condition. For example, the amount of solar radiation may be set as a parameter so that whether or not the air conditioning change condition is satisfied is determined. In this case, the control unit 64 receives a signal indicating the amount of solar radiation to the occupant from a solar radiation sensor (not shown) that detects the amount of solar radiation to the occupant sitting on the seat 12. The air conditioning change condition may be satisfied when the amount of solar radiation to the occupant is not less than a predetermined value (during cooling operation) or not more than a predetermined value (during heating operation). Further, (6) a clo value that is an index indicating the heat insulation and heat retention of the occupant's clothes sitting on the seat 12 may be used as a parameter. By using these parameters as air conditioning change conditions, it is possible to realize control that is more comfortable for passengers.

また、制御部64は、冷房運転時と暖房運転時のいずれにおいても、空調変更条件の充足有無に関わらず、ブロア22への印加電圧およびペルチェモジュール14への印加電圧を変更しない。例えば、制御部64は、空調変更条件の充足前と充足後のいずれにおいても、予め定められた印加電圧を維持する。この印加電圧は、車両100において電装品に供給される標準電圧、例えば、バッテリーの電圧であり、12Vであってもよい。   In addition, the control unit 64 does not change the applied voltage to the blower 22 and the applied voltage to the Peltier module 14 regardless of whether the air conditioning change condition is satisfied in both the cooling operation and the heating operation. For example, the control unit 64 maintains a predetermined applied voltage both before and after the air conditioning change condition is satisfied. This applied voltage is a standard voltage supplied to electrical components in the vehicle 100, for example, a battery voltage, and may be 12V.

以上の構成による第4実施例に係る空調装置10の動作を説明する。冷房運転時に空調変更条件が満たされる前の、空調装置10の動作および空調装置10における空気の流れは、図3に関連して既述したとおりである。空調変更条件が満たされる前、空調装置10の制御部64は、空調流路40へ送る空気の量と、第1排気流路48へ送る空気の量の比が1対1(50%:50%)となるように開度調整を指示する信号を配風制御ドア34へ送信してもよい。   The operation of the air conditioner 10 according to the fourth embodiment having the above configuration will be described. The operation of the air conditioner 10 and the air flow in the air conditioner 10 before the air conditioning change condition is satisfied during the cooling operation are as described above with reference to FIG. Before the air conditioning change condition is satisfied, the control unit 64 of the air conditioner 10 has a one-to-one (50%: 50) ratio of the amount of air sent to the air conditioning channel 40 and the amount of air sent to the first exhaust channel 48. %)) May be transmitted to the air distribution control door 34 to instruct the opening adjustment.

冷房運転中、制御部64は、空調変更条件が満たされたか否かを定期的に判定する。冷房運転中に空調変更条件が満たされた場合、制御部64は、ブロア22から送出された空気のうち空調流路40へ送る空気の量を低減し、第1排気流路48へ送る空気の量を増加させるように配風制御ドア34を制御する。例えば、制御部64は、空調流路40へ送る空気の量と、第1排気流路48へ送る空気の量の比が1対2(33.3%:66.7%)となるように開度調整を指示する信号を配風制御ドア34へ送信してもよい。   During the cooling operation, the control unit 64 periodically determines whether or not the air conditioning change condition is satisfied. When the air conditioning change condition is satisfied during the cooling operation, the control unit 64 reduces the amount of air sent from the blower 22 to the air conditioning channel 40 and reduces the amount of air sent to the first exhaust channel 48. The air distribution control door 34 is controlled so as to increase the amount. For example, the control unit 64 may set the ratio of the amount of air sent to the air conditioning channel 40 and the amount of air sent to the first exhaust channel 48 to 1 to 2 (33.3%: 66.7%). A signal instructing opening adjustment may be transmitted to the air distribution control door 34.

図10は、冷房運転時に空調変更条件が満たされた後の空気の流れを示す。ブロア22から送出された空気は、空調流路40と第1排気流路48の両方に流れるが、空調流路40へ流れる空気の量は、空調変更条件の充足前より少なくなる。その一方、第1排気流路48へ流れる空気の量は、空調変更条件の充足前より多くなる。すなわち、空調変更条件の充足後は、空調流路40へ流れる空気の量と、第1排気流路48へ流れる空気の量との差が大きくなる。この結果、ペルチェモジュール14の利用熱面16により冷却されて、肩口吹出口24から吹き出される冷風の量が、空調変更条件の充足前より少なくなる。   FIG. 10 shows the air flow after the air conditioning change condition is satisfied during the cooling operation. The air sent from the blower 22 flows through both the air conditioning channel 40 and the first exhaust channel 48, but the amount of air flowing into the air conditioning channel 40 is smaller than before the air conditioning change condition is satisfied. On the other hand, the amount of air flowing to the first exhaust passage 48 is greater than before the air conditioning change condition is satisfied. That is, after the air conditioning change condition is satisfied, the difference between the amount of air flowing to the air conditioning channel 40 and the amount of air flowing to the first exhaust channel 48 becomes large. As a result, the amount of cool air that is cooled by the heat utilization surface 16 of the Peltier module 14 and blown out from the shoulder outlet 24 becomes smaller than before the air conditioning change condition is satisfied.

このように、空調流路40を流れる空気の量を少なくすることで、空調流路40を流れる空気に対するペルチェモジュール14の利用熱面16による冷却効果を一層高めることができる。さらに、第1排気流路48を流れる空気の量を多くすることで、ペルチェモジュール14の排熱面18における排熱効率が高まってペルチェ効果が増進し、利用熱面16を一層冷却することができる。これにより、空調変更条件の充足前より一層低温の空気を肩口吹出口24から送出させることができる。すなわち、空調装置10では、低風速かつ強冷の冷房を実現でき、空調の快適性向上を実現できる。   In this way, by reducing the amount of air flowing through the air conditioning channel 40, the cooling effect by the heat utilization surface 16 of the Peltier module 14 on the air flowing through the air conditioning channel 40 can be further enhanced. Furthermore, by increasing the amount of air flowing through the first exhaust passage 48, the exhaust heat efficiency at the exhaust heat surface 18 of the Peltier module 14 is increased, the Peltier effect is enhanced, and the heat utilization surface 16 can be further cooled. . Thereby, it is possible to send air at a lower temperature from the shoulder outlet 24 before satisfying the air conditioning change condition. That is, in the air conditioner 10, it is possible to realize low air speed and strong cooling, and to improve the comfort of air conditioning.

暖房運転時に空調変更条件が満たされる前の、空調装置10の動作および空調装置10における空気の流れは、図4に関連して既述したとおりである。空調変更条件が満たされる前、空調装置10の制御部64は、空調流路40へ送る空気の量と、第1排気流路48へ送る空気の量の比が1対1(50%:50%)となるように開度調整を指示する信号を配風制御ドア34へ送信してもよい。   The operation of the air conditioner 10 and the air flow in the air conditioner 10 before the air conditioning change condition is satisfied during the heating operation are as described above with reference to FIG. Before the air conditioning change condition is satisfied, the control unit 64 of the air conditioner 10 has a one-to-one (50%: 50) ratio of the amount of air sent to the air conditioning channel 40 and the amount of air sent to the first exhaust channel 48. %)) May be transmitted to the air distribution control door 34 to instruct the opening adjustment.

暖房運転中、制御部64は、空調変更条件が満たされたか否かを定期的に判定する。暖房運転中に空調変更条件が満たされた場合、制御部64は、ブロア22から送出された空気のうち空調流路40へ送る空気の量を低減し、第1排気流路48へ送る空気の量を増加させるように配風制御ドア34を制御する。例えば、制御部64は、空調流路40へ送る空気の量と、第1排気流路48へ送る空気の量の比が1対2(33.3%:66.7%)になるように開度調整を指示する信号を配風制御ドア34へ送信してもよい。   During the heating operation, the control unit 64 periodically determines whether or not the air conditioning change condition is satisfied. When the air conditioning change condition is satisfied during the heating operation, the control unit 64 reduces the amount of air sent from the blower 22 to the air conditioning passage 40 and reduces the amount of air sent to the first exhaust passage 48. The air distribution control door 34 is controlled so as to increase the amount. For example, the control unit 64 sets the ratio of the amount of air sent to the air conditioning channel 40 and the amount of air sent to the first exhaust channel 48 to 1 to 2 (33.3%: 66.7%). A signal instructing opening adjustment may be transmitted to the air distribution control door 34.

図11は、暖房運転時に空調変更条件が満たされた後の空気の流れを示す。ブロア22から送出された空気は、空調流路40と第1排気流路48の両方に流れるが、空調流路40へ流れる空気の量は、空調変更条件の充足前より少なくなる。その一方、第1排気流路48へ流れる空気の量は、空調変更条件の充足前より多くなる。すなわち、空調変更条件の充足後は、空調流路40へ流れる空気の量と、第1排気流路48へ流れる空気の量との差が大きくなる。この結果、ペルチェモジュール14の利用熱面16により加温されて、足元吹出口28から吹き出される温風の量が、空調変更条件の充足前より少なくなる。   FIG. 11 shows the air flow after the air conditioning change condition is satisfied during the heating operation. The air sent from the blower 22 flows through both the air conditioning channel 40 and the first exhaust channel 48, but the amount of air flowing into the air conditioning channel 40 is smaller than before the air conditioning change condition is satisfied. On the other hand, the amount of air flowing to the first exhaust passage 48 is greater than before the air conditioning change condition is satisfied. That is, after the air conditioning change condition is satisfied, the difference between the amount of air flowing to the air conditioning channel 40 and the amount of air flowing to the first exhaust channel 48 becomes large. As a result, the amount of warm air heated by the heat utilization surface 16 of the Peltier module 14 and blown out from the foot outlet 28 becomes smaller than before the air conditioning change condition is satisfied.

このように、空調流路40を流れる空気の量を少なくすることで、空調流路40を流れる空気に対するペルチェモジュール14の利用熱面16による加温効果を一層高めることができる。さらに、第1排気流路48を流れる空気の量を多くすることで、ペルチェモジュール14の排熱面18における排熱効率が高まってペルチェ効果が増進し、利用熱面16を一層加熱することができる。これにより、空調変更条件の充足前より一層高温の空気を足元吹出口28から送出させることができる。すなわち、空調装置10では、低風速かつ強暖の暖房を実現でき、空調の快適性向上を実現できる。   In this way, by reducing the amount of air flowing through the air conditioning channel 40, the heating effect by the use heat surface 16 of the Peltier module 14 on the air flowing through the air conditioning channel 40 can be further enhanced. Furthermore, by increasing the amount of air flowing through the first exhaust passage 48, the exhaust heat efficiency at the exhaust heat surface 18 of the Peltier module 14 is increased, the Peltier effect is enhanced, and the heat utilization surface 16 can be further heated. . Thereby, still higher temperature air can be sent out from the foot outlet 28 before air-conditioning change conditions are satisfied. In other words, the air conditioner 10 can realize low wind speed and strong heating, and can improve the comfort of air conditioning.

また、車両では、電装品に対する12V供給が一般的であるところ、変圧の際には、損失が発生し、エネルギーの一部が熱として失われてしまう。本実施例の空調装置10では、ペルチェモジュール14およびブロア22への印加電圧は変えずに、配風制御ドア34の開度調整により空調温度を調整する。これにより、空調温度調整のための変圧が不要になり、エネルギーの効率的な使用を実現できる。また、変圧器のコストも低減できる。   Also, in a vehicle, 12V supply to electrical components is common, but at the time of transformation, a loss occurs and a part of energy is lost as heat. In the air conditioner 10 of this embodiment, the air conditioning temperature is adjusted by adjusting the opening of the air distribution control door 34 without changing the voltage applied to the Peltier module 14 and the blower 22. Thereby, the transformation for adjusting the air conditioning temperature becomes unnecessary, and the efficient use of energy can be realized. In addition, the cost of the transformer can be reduced.

(第5実施例)
まず、第5実施例の概要を述べる。第4実施例で既述したが、車両では、電装品に対する12V供給が一般的である。空調における温度調整のために、ペルチェモジュール14またはブロア22への印加電圧を変更すると、損失が発生し、エネルギーの一部が熱として失われてしまう。そこで、第5実施例の空調装置10は、ペルチェモジュール14およびブロア22への印加電圧を変更することなく、装置内の空気流路に設けたドアの開度を調整することにより、空調の風量および温度を変化させる。
(5th Example)
First, the outline of the fifth embodiment will be described. As already described in the fourth embodiment, 12V supply to electrical components is common in vehicles. If the voltage applied to the Peltier module 14 or the blower 22 is changed for temperature adjustment in air conditioning, a loss occurs and a part of the energy is lost as heat. Therefore, the air conditioner 10 of the fifth embodiment adjusts the opening degree of the door provided in the air flow path in the apparatus without changing the voltage applied to the Peltier module 14 and the blower 22, thereby adjusting the air volume of the air conditioner. And change the temperature.

また、これまでの車載空調装置では、車両内の各所に設置された温度センサが検出した温度情報に基づいて空調の風量および温度を制御していた。しかし、コミューターのように車室が密閉空間にならない車両では、車外の空気が車両内に常時流入するため、温度情報に基づく空調制御が必ずしも最適でないことがある。第5実施例に係る空調装置10は、車両100の運転時間および車両速度をパラメータとして用い、空調の風量および温度を制御する。   Moreover, in the conventional vehicle air conditioner, the air volume and temperature of the air conditioning are controlled based on the temperature information detected by the temperature sensors installed at various locations in the vehicle. However, in a vehicle such as a commuter where the passenger compartment does not become a sealed space, air outside the vehicle always flows into the vehicle, so air conditioning control based on temperature information may not always be optimal. The air conditioner 10 according to the fifth embodiment uses the operation time of the vehicle 100 and the vehicle speed as parameters to control the air volume and temperature of the air conditioning.

以下、第5実施例に係る空調装置10の構成を詳細に説明する。第5実施例では、冷房運転時の風量と温度の制御を特徴とし、冷房運転のモードとして、「最大風量モード」、「中風量・中冷モード」、「低風量・強冷モード」の3つを設けた。最大風量モードは、冷却されていない空気を、最大風量にて肩口吹出口24から吹き出す運転モードである。   Hereinafter, the configuration of the air conditioner 10 according to the fifth embodiment will be described in detail. The fifth embodiment is characterized by the control of the air volume and temperature during the cooling operation. As the cooling operation mode, there are 3 modes of “maximum air volume mode”, “medium air volume / medium cooling mode”, and “low air volume / strong cooling mode”. One was established. The maximum air volume mode is an operation mode in which uncooled air is blown out from the shoulder outlet 24 at the maximum air volume.

中風量・中冷モードは、中程度に冷却された空気を、中程度の風量にて肩口吹出口24から吹き出す運転モードである。「中風量・中冷モード」での吹き出し温度の目標値は、例えば、車両100外部の気温に対して2度から7度低い温度に設定される。この目標値は、車両100外部の気温に対して2度から5度低い温度となる第1目標値と、車両100外部の気温に対して5度から7度低い温度となる第2目標値のように細部化して設定されてもよい。この場合、車両100は、車両100外部の気温を検出する温度センサ(不図示)をさらに備えてもよい。   The medium air volume / intermediate cooling mode is an operation mode in which medium-cooled air is blown out from the shoulder outlet 24 with a medium air volume. The target value of the blowing temperature in the “medium air volume / cooling mode” is set to a temperature 2 to 7 degrees lower than the temperature outside the vehicle 100, for example. This target value includes a first target value that is 2 to 5 degrees lower than the temperature outside the vehicle 100, and a second target value that is 5 to 7 degrees lower than the temperature outside the vehicle 100. The details may be set as described above. In this case, the vehicle 100 may further include a temperature sensor (not shown) that detects the temperature outside the vehicle 100.

低風量・強冷モードは、最も冷却された空気を、弱い風量にて肩口吹出口24から吹き出す運転モードである。「低風量・強冷モード」での吹き出し温度の目標値は、例えば、車両100外部の気温に対して10度以上低い温度に設定される。   The low air volume / strong cooling mode is an operation mode in which the most cooled air is blown out from the shoulder outlet 24 with a weak air volume. The target value of the blowing temperature in the “low air volume / strong cooling mode” is set to a temperature that is 10 degrees or more lower than the temperature outside the vehicle 100, for example.

図2に示した空調装置10の制御部64は、車両100の速度に応じて、冷房運転の運転モードを、中風量・中冷モードと低風量・強冷モードとの間で切り替える。また、制御部64は、中風量・中冷モードにおいて、車両100の速度に応じて、第1目標値と第2目標値との間でさらに設定を切り替えてもよい。例えば、制御部64は、車両100の速度が所定の閾値(例えば、20Km/時)より大きい場合に、吹き出し温度の目標値を第1目標値に設定してもよく、車両100の速度が所定の閾値(例えば、20Km/時)以下の場合に、吹き出し温度の目標値を第2目標値に設定してもよい。具体的には、制御部64は、車両100の速度に応じて、配風制御ドア34、風路切替ドア36、及び帰還制御ドア38の開度を調整する。   The control unit 64 of the air conditioner 10 illustrated in FIG. 2 switches the operation mode of the cooling operation between the medium air amount / intermediate cooling mode and the low air amount / strong cooling mode according to the speed of the vehicle 100. Further, the control unit 64 may further switch the setting between the first target value and the second target value according to the speed of the vehicle 100 in the medium air volume / cooling mode. For example, when the speed of the vehicle 100 is larger than a predetermined threshold (for example, 20 km / hour), the control unit 64 may set the target value of the blowing temperature to the first target value, and the speed of the vehicle 100 is predetermined. The target value of the blowing temperature may be set to the second target value when the threshold value is equal to or lower than the threshold value (for example, 20 km / hour). Specifically, the control unit 64 adjusts the opening degrees of the air distribution control door 34, the air path switching door 36, and the feedback control door 38 according to the speed of the vehicle 100.

制御部64は、車両100の運転時間に応じて、冷房運転の運転モードを、最大風量モードと中風量・中冷モードとの間で切り替える。具体的には、制御部64は、車両100の運転時間に応じて、ペルチェモジュール14への電圧印加の有無を切り替える。さらに、制御部64は、車両100の運転時間に応じて、配風制御ドア34および風路切替ドア36の開度を調整する。   The control unit 64 switches the operation mode of the cooling operation between the maximum air amount mode and the medium air amount / intermediate cooling mode according to the operation time of the vehicle 100. Specifically, the control unit 64 switches presence / absence of voltage application to the Peltier module 14 according to the operation time of the vehicle 100. Further, the control unit 64 adjusts the opening degree of the air distribution control door 34 and the air path switching door 36 according to the operation time of the vehicle 100.

中風量・中冷モードでの冷房運転時、制御部64は、ペルチェモジュール14へ電圧を印加するとともに、空調流路40と第1排気流路48の両方へ空気を送るように配風制御ドア34を制御する。その一方、最大風量モードでの冷房運転時、制御部64は、ペルチェモジュール14への電圧印加を停止するとともに、空調流路40へ送る空気の量を中風量・中冷モードのときよりも多くするように配風制御ドア34を制御する。   During the cooling operation in the medium air volume / intercooling mode, the control unit 64 applies a voltage to the Peltier module 14 and sends air to both the air conditioning flow path 40 and the first exhaust flow path 48. 34 is controlled. On the other hand, during the cooling operation in the maximum air volume mode, the control unit 64 stops the voltage application to the Peltier module 14 and increases the amount of air sent to the air conditioning channel 40 than in the medium air volume / intermediate cooling mode. Then, the air distribution control door 34 is controlled.

具体的には、空調装置10の記憶部(不図示)は、最大風量モード、中風量・中冷モード、低風量・強冷モードのそれぞれにおける、配風制御ドア34、風路切替ドア36、帰還制御ドア38の開度を示す情報が格納されたテーブルを保持してもよい。制御部64は、そのテーブルを参照して、現在実行すべき冷房運転モードに対応する各ドアの開度を決定してもよい。そして、制御部64は、各ドアの開度を指示する信号を各ドアのアクチュエータへ送信することにより、各ドアにおける空気の分岐態様を制御してもよい。   Specifically, the storage unit (not shown) of the air conditioner 10 includes an air distribution control door 34, an air path switching door 36, respectively in the maximum air volume mode, the medium air volume / medium cooling mode, and the low air volume / strong cooling mode. You may hold | maintain the table in which the information which shows the opening degree of the return control door 38 was stored. The control part 64 may determine the opening degree of each door corresponding to the cooling operation mode which should be performed now with reference to the table. And the control part 64 may control the branching mode of the air in each door by transmitting the signal which instruct | indicates the opening degree of each door to the actuator of each door.

また、空調装置10の記憶部(不図示)は、最大風量モード、中風量・中冷モード、低風量・強冷モードのそれぞれにおける、肩口吹出口24から吹き出す空気の温度の目標値を示す情報が格納されたテーブルを保持してもよい。制御部64は、そのテーブルを参照して、肩口吹出口24に設置された温度センサ26から受け付けた温度の情報(肩口吹出口24から吹き出す空気の温度)が目標値に近づくように、配風制御ドア34、風路切替ドア36、及び帰還制御ドア38の開度を決定してもよい。そして、制御部64は、各ドアの開度を指示する信号を各ドアのアクチュエータへ送信することにより、各ドアにおける空気の分岐態様を制御してもよい。   In addition, the storage unit (not shown) of the air conditioner 10 is information indicating the target value of the temperature of the air blown from the shoulder outlet 24 in each of the maximum air volume mode, the medium air volume / medium cooling mode, and the low air volume / strong cooling mode. May be stored. The control unit 64 refers to the table and distributes the air so that the temperature information received from the temperature sensor 26 installed at the shoulder outlet 24 (the temperature of the air blown out from the shoulder outlet 24) approaches the target value. The opening degree of the control door 34, the air path switching door 36, and the return control door 38 may be determined. And the control part 64 may control the branching mode of the air in each door by transmitting the signal which instruct | indicates the opening degree of each door to the actuator of each door.

制御部64は、冷房運転のモードが、最大風量モード、中風量・中冷モード、低風量・強冷モードのいずれであっても、ペルチェモジュール14またはブロア22に対して電圧を印加する場合、その印加電圧を変更しない。例えば、制御部64は、冷房運転のモードに関わらず、車両100のバッテリーまたは電池(不図示)から供給される標準の電圧(例えば、12V)を、変圧することなく、ペルチェモジュール14とブロア22の少なくとも一方へ印加する。   The control unit 64 applies the voltage to the Peltier module 14 or the blower 22 regardless of whether the mode of the cooling operation is the maximum air volume mode, the medium air volume / medium cooling mode, or the low air volume / strong cooling mode. The applied voltage is not changed. For example, the control unit 64 does not transform the standard voltage (for example, 12V) supplied from the battery or battery (not shown) of the vehicle 100 regardless of the cooling operation mode, and transforms the Peltier module 14 and the blower 22. To at least one of the above.

なお、冷房運転のモードを切り替える閾値となる車両100の速度および運転時間の具体的な値は、開発者の知見、または、車両100を用いた実験等に基づいて決定されてよい。   Note that specific values of the speed and operation time of the vehicle 100 that are threshold values for switching the cooling operation mode may be determined based on the knowledge of the developer, an experiment using the vehicle 100, or the like.

以上の構成による第5実施例に係る空調装置10の動作を説明する。図12は、第5実施例に係る空調装置10の動作を示すフローチャートである。同図は、冷房運転時の動作を示している。IGスイッチ102がオンで(S30のY)、乗員により操作される空調スイッチ(不図示)がオンの場合(S32のY)、制御部64は、自動空調モード(いわゆるオートエアコン)が選択されているか否かを判定する。自動空調モードが選択されている場合(S34のY)、制御部64は、後述の自動空調制御を実行する(S36)。   The operation of the air conditioner 10 according to the fifth embodiment having the above-described configuration will be described. FIG. 12 is a flowchart showing the operation of the air conditioner 10 according to the fifth embodiment. The figure shows the operation during cooling operation. When the IG switch 102 is on (Y in S30) and the air conditioning switch (not shown) operated by the passenger is on (Y in S32), the control unit 64 selects the automatic air conditioning mode (so-called auto air conditioner). It is determined whether or not. When the automatic air conditioning mode is selected (Y in S34), the control unit 64 executes the automatic air conditioning control described later (S36).

自動空調モードが非選択の場合(S34のN)、制御部64は、乗員により設定されたモードによる空調制御を実行する(S38)。本実施例では、乗員は、操作入力部60に対して、冷房運転のモードを入力する。例えば、操作入力部60の画面には、選択可能な冷房運転のモードとして「最大風速モード」「中風量・中冷モード」「低風量・強冷モード」が表示され、乗員は、これらの中からいずれかのモードを選択してもよい。操作入力部60は、乗員により入力された冷房運転のモードを示す操作信号を制御部64へ入力してもよい。制御部64は、操作信号が示すモードによる空調制御をステップS38で実行する。各モードにおける空調制御の詳細は、図14、図16、図17に関連して後述する。   When the automatic air-conditioning mode is not selected (N in S34), the control unit 64 performs air-conditioning control according to the mode set by the occupant (S38). In this embodiment, the occupant inputs a cooling operation mode to the operation input unit 60. For example, “maximum wind speed mode”, “medium air volume / medium cooling mode”, and “low air volume / strong cooling mode” are displayed on the screen of the operation input unit 60 as selectable cooling operation modes. Either mode may be selected. The operation input unit 60 may input an operation signal indicating a cooling operation mode input by the occupant to the control unit 64. The controller 64 executes air conditioning control in the mode indicated by the operation signal in step S38. Details of the air conditioning control in each mode will be described later with reference to FIGS.

冷房運転の実行中に、所定の終了条件が満たされると(S40のY)、制御部64は、冷房運転を終了する(S42)。例えば、制御部64は、ペルチェモジュール14への電圧印加を終了するとともに、ブロア22への電圧印加を終了する。この終了条件は、例えば、IGスイッチ102がオフに切り替えられた場合に満たされ、また、空調スイッチ(不図示)がオフに切り替えられた場合にも満たされる。終了条件が満たされなければ(S40のN)、ステップS34へ戻る。IGスイッチ102がオフ(S30のN)、または、空調スイッチ(不図示)がオフであれば(S32のN)、以降の処理をスキップして、本図のフローを終了する。   If a predetermined end condition is satisfied during the cooling operation (Y in S40), the control unit 64 ends the cooling operation (S42). For example, the control unit 64 ends the voltage application to the Peltier module 14 and ends the voltage application to the blower 22. This termination condition is satisfied, for example, when the IG switch 102 is switched off, and also when the air conditioning switch (not shown) is switched off. If the end condition is not satisfied (N in S40), the process returns to step S34. If the IG switch 102 is off (N in S30) or the air-conditioning switch (not shown) is off (N in S32), the subsequent processing is skipped and the flow of this figure ends.

図13は、図12のステップS36の自動空調制御を詳細に示すフローチャートである。情報取得部62は、車両100の運転時間を示す情報を運転管理装置106から定期的に取得し、制御部64へ入力する。また、情報取得部62は、車両100の現在速度を示す情報を運転管理装置106から定期的に取得し、制御部64へ入力する。運転開始(例えば、エンジン始動)から5分が未経過であれば、すなわち、運転時間が5分未満であれば(S50のN)、制御部64は、最大風量モードでの空調制御を実行する(S52)。   FIG. 13 is a flowchart showing in detail the automatic air conditioning control in step S36 of FIG. The information acquisition unit 62 periodically acquires information indicating the driving time of the vehicle 100 from the driving management device 106 and inputs the information to the control unit 64. In addition, the information acquisition unit 62 periodically acquires information indicating the current speed of the vehicle 100 from the operation management device 106 and inputs the information to the control unit 64. If 5 minutes have not elapsed since the start of operation (for example, engine start), that is, if the operation time is less than 5 minutes (N in S50), the control unit 64 performs air conditioning control in the maximum air volume mode. (S52).

運転開始から5分が経過し(S50のY)、かつ、運転開始から15分が未経過である場合(S54のN)、制御部64は、中風量・中冷モードでの空調制御を実行する(S58)。また、運転開始から15分が経過しても(S54のY)、停車中でなければ(S56のN)、制御部64は、中風量・中冷モードでの空調制御を実行する(S58)。その一方、運転開始から15分が経過し、かつ、停車中であれば(S56のY)、低風速・強冷モードでの空調制御を実行する(S60)。なお、制御部64は、車両100の速度が0である場合に停車中と判定してもよく、車両100の速度が予め定められた閾値S(ここではS>0)未満である場合に停車中と判定してもよい。   When 5 minutes have elapsed from the start of operation (Y in S50) and 15 minutes have not elapsed since the start of operation (N in S54), the control unit 64 executes air conditioning control in the medium air volume / intercooling mode. (S58). In addition, even if 15 minutes have elapsed since the start of operation (Y in S54), if the vehicle is not stopped (N in S56), the control unit 64 executes air conditioning control in the medium air volume / intercooling mode (S58). . On the other hand, if 15 minutes have elapsed from the start of operation and the vehicle is stopped (Y in S56), air conditioning control in the low wind speed / strong cooling mode is executed (S60). The control unit 64 may determine that the vehicle 100 is stopped when the speed of the vehicle 100 is 0, and stops when the speed of the vehicle 100 is less than a predetermined threshold S (here, S> 0). It may be determined as medium.

なお、図12のステップS40で示すように、空調装置10では、空調の終了条件が満たされるまで、図13の処理を繰り返し実行する。これにより、運転時間および車両速度の変化に応じて、冷房運転の態様を最適に調整する。   In addition, as shown by step S40 of FIG. 12, in the air conditioning apparatus 10, the process of FIG. 13 is repeatedly performed until the completion | finish conditions of an air conditioning are satisfy | filled. Thus, the mode of the cooling operation is optimally adjusted according to changes in the driving time and the vehicle speed.

図14は、図13のステップS52の最大風量モードでの空調制御を詳細に示すフローチャートである。ペルチェモジュール14に電圧を印加中であれば(S70のY)、制御部64は、ペルチェモジュール14への電圧印加を終了する(S72)。ペルチェモジュール14に電圧を印加中でなければ(S70のN)、ステップS72をスキップする。制御部64は、ブロア22から送出された空気を全て空調流路40へ送るように配風制御ドア34を制御する(S74)。例えば、制御部64は、空調流路40へ送る空気の量と、第1排気流路48へ送る空気の量の比が1対0(100%:0%)になるように開度調整を指示する信号を配風制御ドア34へ送信する。   FIG. 14 is a flowchart showing in detail the air conditioning control in the maximum air volume mode in step S52 of FIG. If a voltage is being applied to the Peltier module 14 (Y in S70), the control unit 64 ends the voltage application to the Peltier module 14 (S72). If no voltage is being applied to the Peltier module 14 (N in S70), step S72 is skipped. The control unit 64 controls the air distribution control door 34 so as to send all the air sent from the blower 22 to the air conditioning channel 40 (S74). For example, the control unit 64 adjusts the opening so that the ratio of the amount of air sent to the air conditioning channel 40 and the amount of air sent to the first exhaust channel 48 is 1 to 0 (100%: 0%). An instructing signal is transmitted to the air distribution control door 34.

制御部64は、空調流路40と肩口吹出流路42を連通させ、すなわち、空調流路40からの空気を全て肩口吹出流路42へ流すように風路切替ドア36を調整する(S76)。ブロア22に電圧を印加中でなければ(S78のN)、制御部64は、ブロア22への電圧印加を開始し、ブロア22からの送風を開始する(S80)。ブロア22に電圧を印加中であれば(S78のY)、ステップS80をスキップする。
なお、配風制御ドア34を制御するステップS74と、風路切替ドア36を調整するステップ76とは、処理順序が逆であってもよく、制御部64はその順序を統合的に制御する。
The control unit 64 causes the air conditioning channel 40 and the shoulder outlet channel 42 to communicate with each other, that is, adjusts the air path switching door 36 so that all the air from the air conditioning channel 40 flows to the shoulder outlet channel 42 (S76). . If no voltage is being applied to the blower 22 (N in S78), the control unit 64 starts voltage application to the blower 22 and starts blowing air from the blower 22 (S80). If a voltage is being applied to the blower 22 (Y in S78), step S80 is skipped.
The processing order of step S74 for controlling the air distribution control door 34 and step 76 for adjusting the air path switching door 36 may be reversed, and the control unit 64 controls the order in an integrated manner.

図15は、最大風量モードでの冷房運転時の空気の流れを示す。同図は、図14のステップS80後の空気の流れを示している。ペルチェモジュール14はオフであるため、空調流路40を流れる空気は冷却されない。しかし、ブロア22から送出された全ての空気が、空調流路40および肩口吹出流路42を介して肩口吹出口24から吹き出されるため、最大風量の風を乗員へ提供できる。   FIG. 15 shows the air flow during the cooling operation in the maximum air volume mode. This figure shows the air flow after step S80 of FIG. Since the Peltier module 14 is off, the air flowing through the air conditioning channel 40 is not cooled. However, since all the air sent from the blower 22 is blown out from the shoulder opening 24 through the air conditioning passage 40 and the shoulder opening passage 42, the maximum amount of wind can be provided to the occupant.

図16は、図13のステップS58の中風量・中冷モードでの空調制御を詳細に示すフローチャートである。ペルチェモジュール14に電圧を印加中でなければ(S90のY)、制御部64は、ペルチェモジュール14への電圧印加を開始し、すなわち、ペルチェモジュール14の利用熱面16の冷却を開始する(S92)。ペルチェモジュール14に電圧を印加中であれば(S90のN)、ステップS92をスキップする。制御部64は、ブロア22から送られた空気を、空調流路40と第1排気流路48の両方へ流すように配風制御ドア34を調整する(S94)。例えば、制御部64は、空調流路40へ送る空気の量と、第1排気流路48へ送る空気の量の比が1対1(50%:50%)になるように開度調整を指示する信号を配風制御ドア34へ送信する。   FIG. 16 is a flowchart showing in detail the air conditioning control in the medium air volume / intercooling mode in step S58 of FIG. If a voltage is not being applied to the Peltier module 14 (Y in S90), the control unit 64 starts applying a voltage to the Peltier module 14, that is, starts cooling the use hot surface 16 of the Peltier module 14 (S92). ). If a voltage is being applied to the Peltier module 14 (N in S90), step S92 is skipped. The control unit 64 adjusts the air distribution control door 34 so that the air sent from the blower 22 flows to both the air conditioning channel 40 and the first exhaust channel 48 (S94). For example, the control unit 64 adjusts the opening so that the ratio of the amount of air sent to the air conditioning channel 40 and the amount of air sent to the first exhaust channel 48 is 1: 1 (50%: 50%). An instructing signal is transmitted to the air distribution control door 34.

制御部64は、空調流路40と肩口吹出流路42を連通させ、すなわち、空調流路40からの空気を全て肩口吹出流路42へ流すように風路切替ドア36を調整する(S96)。ステップS98およびステップS100は、図14のステップS78およびステップS80と同じであるため説明を省略する。中風量・中冷モードでの冷房運転時の空気の流れ、言い換えれば、ステップS100後の空気の流れは、図3と同様になる。中風量・中冷モードでは、肩口吹出口24から吹き出す風量は、ブロア22が送出した風量の半分程度になるが、ペルチェモジュール14の利用熱面16により中程度に冷却された風を乗員へ提供できる。
なお、配風制御ドア34を制御するステップS94と、風路切替ドア36を調整するステップ96とは、処理順序が逆であってもよく、制御部64はその順序を統合的に制御する。
The control part 64 makes the air-conditioning flow path 40 and the shoulder outlet flow path 42 communicate with each other, that is, adjusts the air path switching door 36 so that all the air from the air-conditioning flow path 40 flows to the shoulder opening outlet flow path 42 (S96). . Steps S98 and S100 are the same as steps S78 and S80 in FIG. The air flow during the cooling operation in the medium air volume / intercooling mode, in other words, the air flow after step S100 is the same as that in FIG. In the medium air volume / cool air mode, the air volume blown out from the shoulder outlet 24 is about half of the air volume sent out by the blower 22, but the air cooled moderately by the use heat surface 16 of the Peltier module 14 is provided to the occupant. it can.
Note that the processing order of step S94 for controlling the air distribution control door 34 and step 96 for adjusting the air path switching door 36 may be reversed, and the control unit 64 controls the order in an integrated manner.

図17は、図13のステップS60の低風量・強冷モードでの空調制御を詳細に示すフローチャートである。同図のステップS110〜ステップS114は、図16のステップS90〜ステップS94と同じであるため、説明を省略する。制御部64は、空調流路40から流入した空気を、肩口吹出流路42と第1帰還流路44の両方へ流すように風路切替ドア36を制御する(S116)。例えば、制御部64は、肩口吹出流路42へ送る空気の量と、第1帰還流路44へ送る空気の量の比が1対1(50%:50%)になるように開度調整を指示する信号を風路切替ドア36へ送信する。   FIG. 17 is a flowchart showing in detail the air conditioning control in the low air volume / strong cooling mode in step S60 of FIG. Steps S110 to S114 in the figure are the same as steps S90 to S94 in FIG. The control unit 64 controls the air path switching door 36 so that the air flowing in from the air conditioning channel 40 flows to both the shoulder outlet channel 42 and the first return channel 44 (S116). For example, the control unit 64 adjusts the opening so that the ratio of the amount of air sent to the shoulder outlet passage 42 and the amount of air sent to the first return passage 44 is 1: 1 (50%: 50%). Is transmitted to the air path switching door 36.

制御部64は、第1帰還流路44から流入した空気を、第2帰還流路46へのみ流すように帰還制御ドア38を制御する(S118)。例えば、制御部64は、第2帰還流路46へ送る空気の量と、足元吹出流路45へ送る空気の量の比が1対0(100%:0%)になるように開度調整を指示する信号を帰還制御ドア38へ送信する。ステップS120およびステップS122は、図14のステップS78およびステップS80と同じであるため説明を省略する。
なお、配風制御ドア34を制御するステップS114と、風路切替ドア36を調整するステップS116と、帰還制御ドア38を制御するステップS118とは、それぞれ処理順序が入れ替わってもよく、制御部64はその順序を統合的に制御する。
The control unit 64 controls the feedback control door 38 so that the air flowing in from the first return flow path 44 flows only to the second return flow path 46 (S118). For example, the control unit 64 adjusts the opening so that the ratio of the amount of air sent to the second return channel 46 and the amount of air sent to the foot outlet channel 45 is 1 to 0 (100%: 0%). Is transmitted to the feedback control door 38. Steps S120 and S122 are the same as steps S78 and S80 in FIG.
Note that the processing order of step S114 for controlling the air distribution control door 34, step S116 for adjusting the air path switching door 36, and step S118 for controlling the feedback control door 38 may be switched. Controls the order in an integrated manner.

図18は、低風量・強冷モードでの冷房運転時の空気の流れを示す。同図は、図17のステップS122後の空気の流れを示している。ブロア22からペルチェモジュール14側へ送出された空気は、空調流路40と第1排気流路48の両方に流れ、空調流路40へ流れた空気は、ペルチェモジュール14の利用熱面16により冷却される。空調流路40で冷却された空気の一部(本実施例では半分)は、肩口吹出流路42を介して肩口吹出口24から送出される。   FIG. 18 shows the air flow during the cooling operation in the low air volume / strong cooling mode. This figure shows the air flow after step S122 of FIG. The air sent from the blower 22 to the Peltier module 14 side flows to both the air conditioning channel 40 and the first exhaust channel 48, and the air flowing to the air conditioning channel 40 is cooled by the heat utilization surface 16 of the Peltier module 14. Is done. Part of the air cooled in the air conditioning flow path 40 (half in this embodiment) is sent out from the shoulder opening 24 through the shoulder opening outlet 42.

また、空調流路40で冷却された空気の一部(本実施例では半分)は、第1帰還流路44および第2帰還流路46を介してブロア22に戻される。ブロア22は、第2帰還流路46から流入した空気をペルチェモジュール14側へ送出する。これにより、一旦空調流路40にて冷却された空気が、空調流路40へ再度流入して一層冷却される。また、第1排気流路48側にも冷却された空気が送られ、ペルチェ効果が一層高まる。このように、低風量・強冷モードでは、肩口吹出口24から吹き出す風量は、ブロア22が送出した風量の1/4程度になるが、中風量・中冷モードよりも一層冷却された風を乗員へ提供できる。   Further, part of the air cooled in the air conditioning channel 40 (half in this embodiment) is returned to the blower 22 via the first return channel 44 and the second return channel 46. The blower 22 sends the air flowing in from the second return flow path 46 to the Peltier module 14 side. As a result, the air once cooled in the air conditioning channel 40 flows again into the air conditioning channel 40 and is further cooled. Further, the cooled air is also sent to the first exhaust passage 48 side, and the Peltier effect is further enhanced. As described above, in the low air volume / strong cooling mode, the air volume blown out from the shoulder outlet 24 is about 1/4 of the air volume sent out by the blower 22, but the air cooled further than the medium air volume / intermediate cooling mode. It can be provided to passengers.

第5実施例の空調装置10によると、ペルチェモジュール14およびブロア22への印加電圧を変更することなく、空気流路内のエアダンパ(特に風路切替ドア36および帰還制御ドア38)の開度調整により、空調の風量および温度を調整することができる。これにより、変圧に伴うエネルギー損失を抑制できる。また、変圧器のコストも低減できる。   According to the air conditioner 10 of the fifth embodiment, the opening degree adjustment of the air damper (particularly the air path switching door 36 and the feedback control door 38) in the air flow path is performed without changing the voltage applied to the Peltier module 14 and the blower 22. Thus, the air volume and temperature of the air conditioning can be adjusted. Thereby, the energy loss accompanying a transformation can be controlled. In addition, the cost of the transformer can be reduced.

また、第5実施例の空調装置10では、運転時間をパラメータとして、空調の風量および温度を調整する。これにより、乗員の快適性を高めることができる。例えば、運転開始直後には、ペルチェモジュール14をオフにし、最大風量とすることで、高いクールダウン効果を提供できる。また、運転開始からある程度の時間が経過すると、風量を抑えつつ、冷却された空気により、乗員を冷やすことができる。   In the air conditioner 10 of the fifth embodiment, the air volume and temperature of the air conditioning are adjusted using the operation time as a parameter. Thereby, a passenger | crew's comfort can be improved. For example, immediately after the start of operation, the Peltier module 14 is turned off and the maximum air volume can be set to provide a high cool-down effect. Further, when a certain amount of time has elapsed from the start of operation, the occupant can be cooled by the cooled air while suppressing the air volume.

また、第5実施例の空調装置10では、車両速度をパラメータとして、空調の風量および温度を調整する。これにより、乗員の快適性を高めることができる。例えば、車両100が移動中は、中程度に冷却された冷風を提供し、車両100が停止中は、車内温度が上昇しやすいため、より冷却された冷風を提供できる。この態様は、移動時には車外から車内へ風が入るが、停車時には車外から車内への風が止まって車内温度が上昇しやすいコミュータに特に好適である。   In the air conditioner 10 of the fifth embodiment, the air volume and temperature of the air conditioning are adjusted using the vehicle speed as a parameter. Thereby, a passenger | crew's comfort can be improved. For example, when the vehicle 100 is moving, the cool air that is cooled moderately is provided, and when the vehicle 100 is stopped, the in-vehicle temperature is likely to rise, so that it is possible to provide more cooled cold air. This mode is particularly suitable for a commuter in which the wind enters from the outside of the vehicle when moving, but the wind from the outside of the vehicle to the inside of the vehicle stops and the temperature inside the vehicle tends to rise when the vehicle is stopped.

以上、本発明を第1〜第5実施例をもとに説明した。これらの実施例は例示であり、それらの各構成要素あるいは各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。   The present invention has been described based on the first to fifth embodiments. Those skilled in the art will understand that these embodiments are exemplifications, and that various modifications can be made to each component or combination of each treatment process, and such modifications are within the scope of the present invention. is there.

第3実施例の変形例を説明する。上記の第3実施例では、ペルチェモジュール14に対するクリーニング処理として、暖房運転を実行した。変形例として、ペルチェモジュール14に対するクリーニング処理として、ペルチェモジュール14オフでの換気運転を実行してもよい。具体的には、空調装置10の制御部64は、クリーニング実行条件が満たされると、ペルチェモジュール14へ電圧を印加せずに、ブロア22からの送風を開始させてもよい。また、制御部64は、ブロア22から送られた空気を空調流路40のみに流すように配風制御ドア34を調整してもよい。すなわち、制御部64は、ペルチェモジュール14に対するクリーニング処理として、第5実施例に記載した最大風量運転を実行してもよい。   A modification of the third embodiment will be described. In the third embodiment, the heating operation is performed as the cleaning process for the Peltier module 14. As a modification, as a cleaning process for the Peltier module 14, a ventilation operation with the Peltier module 14 off may be executed. Specifically, when the cleaning execution condition is satisfied, the control unit 64 of the air conditioner 10 may start blowing air from the blower 22 without applying a voltage to the Peltier module 14. Moreover, the control part 64 may adjust the air distribution control door 34 so that the air sent from the blower 22 may flow through only the air conditioning channel 40. That is, the control unit 64 may execute the maximum air volume operation described in the fifth embodiment as the cleaning process for the Peltier module 14.

IGスイッチ102がオンの時に冷房運転が実行される場合は、外気温または車室内温度が高いと考えられる。変形例の空調装置10によると、ペルチェモジュール14をオフのままにしつつ、比較的高温の空気を強風量にてペルチェモジュール14の利用熱面16に当てることができる。したがって、変形例の空調装置10においても、ペルチェモジュール14の利用熱面16に生じた水を早期に乾燥させることができる。また、車両100における電力消費を低減することができる。   When the cooling operation is executed when the IG switch 102 is on, it is considered that the outside air temperature or the vehicle interior temperature is high. According to the air conditioner 10 of the modified example, relatively high-temperature air can be applied to the use heat surface 16 of the Peltier module 14 with a strong air volume while the Peltier module 14 is kept off. Therefore, also in the air conditioner 10 of a modification, the water produced on the utilization heat surface 16 of the Peltier module 14 can be dried at an early stage. Further, power consumption in the vehicle 100 can be reduced.

なお、制御部64は、温度センサ26もしくは温度センサ30により検出された温度が所定の閾値以上の場合、または、車両外部の気温もしくは車室内温度が所定の閾値以上の場合に、ペルチェモジュール14オフでの換気運転を実行してもよい。この閾値温度は、開発者の知見、または、空調装置10を用いた実験等に基づいて決定されてよい。検出された温度が閾値温度未満であれば、制御部64は、ペルチェモジュール14のクリーニング処理として、第3実施例に記載した暖房運転を実行してもよい。   Note that the control unit 64 turns off the Peltier module 14 when the temperature detected by the temperature sensor 26 or the temperature sensor 30 is equal to or higher than a predetermined threshold value, or when the temperature outside the vehicle or the vehicle interior temperature is equal to or higher than the predetermined threshold value. You may perform ventilation operation in. This threshold temperature may be determined based on a developer's knowledge or an experiment using the air conditioner 10. If the detected temperature is lower than the threshold temperature, the control unit 64 may execute the heating operation described in the third embodiment as the cleaning process of the Peltier module 14.

上記第4実施例の空調装置10は、温度をパラメータとして、冷房運転時および暖房運転時の空気吹き出し温度を調整した。変形例として、空調装置10は、第5実施例と同様に、運転時間と車両速度の少なくとも一方をパラメータとして、空気吹き出し温度を調整してもよい。   The air conditioner 10 of the fourth embodiment adjusts the air blowing temperature during the cooling operation and the heating operation using the temperature as a parameter. As a modification, the air conditioner 10 may adjust the air blowing temperature using at least one of the operation time and the vehicle speed as a parameter, as in the fifth embodiment.

第4実施例と第5実施例の組み合わせも、本発明の実施の形態として有用である。配風制御ドア34を調整する第4実施例の構成と、風路切替ドア36および帰還制御ドア38を調整する第5実施例の構成とを組み合わせることにより、一層きめ細やかな風量調節および温度調節を実現できる。   A combination of the fourth example and the fifth example is also useful as an embodiment of the present invention. By combining the configuration of the fourth embodiment for adjusting the air distribution control door 34 and the configuration of the fifth embodiment for adjusting the air path switching door 36 and the feedback control door 38, more finely adjusted air volume and temperature. Can be realized.

具体的には、空調装置10の制御部64は、第5実施例の中風量・中冷モードの冷房運転において、配風制御ドア34における空調流路40と第1排気流路48との風量比を1対1(50%:50%)とした状態から、第1排気流路48へ流す割合を大きくすることにより、より低風量で、かつ、より冷却された空気を送出できる。また、制御部64は、第5実施例の低風量・強冷モードの冷房運転において、配風制御ドア34における空調流路40と第1排気流路48との風量比を1対1(50%:50%)とした状態から、第1排気流路48へ流す割合を大きくすることにより、より低風量で、かつ、より冷却された空気を送出できる。このように、第4実施例と第5実施例を組み合わせることで、より空調効果を高めることができ、また、風量と温度の多様な組み合わせを実現できる。   Specifically, the control unit 64 of the air conditioner 10 determines the air volume between the air conditioning flow path 40 and the first exhaust flow path 48 in the air distribution control door 34 in the cooling operation in the medium air volume / intercooling mode of the fifth embodiment. From a state where the ratio is 1: 1 (50%: 50%), by increasing the ratio of flowing into the first exhaust flow path 48, it is possible to send out air with a lower air volume and more cooling. Further, the control unit 64 sets the air volume ratio between the air conditioning flow path 40 and the first exhaust flow path 48 in the air distribution control door 34 to 1: 1 (50) in the cooling operation in the low air volume / strong cooling mode of the fifth embodiment. %: 50%), by increasing the ratio of flow to the first exhaust flow path 48, it is possible to send out air with a lower air volume and more cooling. In this way, by combining the fourth and fifth embodiments, the air conditioning effect can be further enhanced, and various combinations of air volume and temperature can be realized.

第4実施例と第5実施例の組み合わせに関する別の例を説明する。空調装置10の制御部64は、中風量・中冷モードの冷房運転において、吹き出し温度を現在より下げるべき場合、空調流路40側への流量を現在より少なくする一方、第1排気流路48への流量を現在より多くするように配風制御ドア34の開度を調整してもよい。また、制御部64は、中風量・中冷モードの冷房運転において、吹き出し温度を現在より上げるべき場合、空調流路40側への風量を現在より多くする一方、第1排気流路48への風量を現在より少なくするように配風制御ドア34の開度を調整してもよい。   Another example relating to the combination of the fourth embodiment and the fifth embodiment will be described. The control unit 64 of the air conditioner 10 reduces the flow rate to the air-conditioning channel 40 side when the blowing temperature should be lower than the current level in the cooling operation in the medium air volume / cooling mode, while the first exhaust channel 48. The opening degree of the air distribution control door 34 may be adjusted so as to increase the flow rate to the current flow rate. In addition, in the cooling operation in the medium air volume / intercooling mode, the control unit 64 increases the air volume to the air conditioning channel 40 side when the blowing temperature is to be increased from the current level, while increasing the air volume to the first exhaust channel 48. The opening degree of the air distribution control door 34 may be adjusted so that the air volume is smaller than the current air volume.

制御部64は、現在の吹き出し温度が、吹き出し温度の目標値(例えば、第5実施例の第1目標値または第2目標値)より高い場合に、吹き出し温度を現在より下げるべきと判定してもよい。その一方、制御部64は、現在の吹き出し温度が、吹き出し温度の目標値(例えば、第5実施例の第1目標値または第2目標値)より低い場合に、吹き出し温度を現在より上げるべきと判定してもよい。また、制御部64は、このような配風制御ドア34の開度調整処理を、低風量・強冷モードにおいて実行してもよい。   When the current blowing temperature is higher than the target value of the blowing temperature (for example, the first target value or the second target value in the fifth embodiment), the control unit 64 determines that the blowing temperature should be lowered from the current value. Also good. On the other hand, when the current blowing temperature is lower than the target value of the blowing temperature (for example, the first target value or the second target value in the fifth embodiment), the control unit 64 should increase the blowing temperature from the current value. You may judge. Moreover, the control part 64 may perform such opening degree adjustment processing of the air distribution control door 34 in the low air volume / strong cooling mode.

第4実施例と第5実施例の組み合わせに関するさらに別の例を説明する。空調装置10の制御部64は、低風量・強冷モードにおいて、まず、空調流路40側への流量を所定の最低値とし、第1排気流路48への流量を所定の最大値とするように、配風制御ドア34の開度を調整してもよい。その上で、制御部64は、吹き出し温度を現在より下げるべき場合、冷風の一部をブロア22へ戻すように風路切替ドア36と帰還制御ドア38の開度を調整してもよい。なお、制御部64は、ブロア22へ戻す冷風の量を徐々に増やすように風路切替ドア36と帰還制御ドア38の開度を複数回調整し、吹き出し温度を徐々に目標値へ近づけてもよい。   Still another example relating to the combination of the fourth embodiment and the fifth embodiment will be described. In the low air volume / strong cooling mode, the control unit 64 of the air conditioner 10 first sets the flow rate to the air conditioning channel 40 to a predetermined minimum value and sets the flow rate to the first exhaust channel 48 to a predetermined maximum value. As described above, the opening degree of the air distribution control door 34 may be adjusted. In addition, the control unit 64 may adjust the opening degree of the air path switching door 36 and the return control door 38 so that a part of the cool air is returned to the blower 22 when the blowing temperature is to be lowered from the present time. Note that the control unit 64 adjusts the opening degree of the air passage switching door 36 and the feedback control door 38 a plurality of times so as to gradually increase the amount of cool air returning to the blower 22, so that the blowing temperature gradually approaches the target value. Good.

上述した実施例および変形例の任意の組み合わせもまた本発明の実施の形態として有用である。組み合わせによって生じる新たな実施の形態は、組み合わされる実施例および変形例それぞれの効果をあわせもつ。また、請求項に記載の各構成要件が果たすべき機能は、実施例および変形例において示された各構成要素の単体もしくはそれらの連携によって実現されることも当業者には理解されるところである。   Any combination of the above-described embodiments and modifications is also useful as an embodiment of the present invention. The new embodiment resulting from the combination has the effects of the combined example and modification. Further, it should be understood by those skilled in the art that the functions to be fulfilled by the constituent elements described in the claims are realized by the individual constituent elements shown in the embodiments and the modified examples or by their cooperation.

なお、実施例および変形例に記載の技術は、以下の項目によって特定されてもよい。
[項目1]
送風機と、送風機から送られた空気を車室内へ送出する吹出口と、送風機から送られた空気を車外へ送出する排気口と、送風機から吹出口へ至る空調流路と、送風機から排気口へ至る排気流路と、空調流路を流れる空気を冷却または加温し、その冷却または加温に伴い排気流路を流れる空気に排熱するペルチェモジュールと、送風機から空調流路へ送る空気の量と、送風機から排気流路へ送る空気の量とを調整するドアと、空調流路と排気流路の両方へ空気を送るようにドアを制御し、空調効果を高めるべき所定の条件が満たされた場合、空調流路へ送る空気の量を低減し、排気流路へ送る空気の量を増加させるようにドアを制御する制御部と、を備える車載空調装置。
この車載空調装置によると、冷房時には低風量かつ低温の冷風を送出でき、暖房時には低風量かつ高温の暖風を送出でき、空調効果を高めることができる。
[項目2]
ペルチェモジュールが空調流路を流れる空気を冷却中に、吹出口から送出する空気の温度を下げるべき所定の条件が満たされた場合、制御部は、空調流路へ送る空気の量を低減し、排気流路へ送る空気の量を増加させるようにドアを制御してもよい。
これにより、低風量かつ低温の冷風を送出でき、冷房時の空調効果を高めることができる。
[項目3]
ペルチェモジュールが空調流路を流れる空気を加温中に、吹出口から送出する空気の温度を上げるべき所定の条件が満たされた場合、制御部は、空調流路へ送る空気の量を低減し、排気流路へ送る空気の量を増加させるようにドアを制御してもよい。
これにより、低風量かつ高温の暖風を送出でき、暖房時の空調効果を高めることができる。
Note that the techniques described in the examples and the modifications may be specified by the following items.
[Item 1]
A blower, an air outlet for sending air sent from the blower to the vehicle interior, an exhaust port for sending air sent from the blower to the outside of the vehicle, an air conditioning channel from the blower to the air outlet, and from the blower to the exhaust port To the exhaust flow path, the Peltier module that cools or warms the air flowing through the air conditioning flow path, and exhausts heat to the air that flows through the exhaust flow path as the cooling or heating occurs, and the amount of air sent from the blower to the air conditioning flow path And a door that adjusts the amount of air sent from the blower to the exhaust flow path, and a predetermined condition that controls the door to send air to both the air conditioning flow path and the exhaust flow path to enhance the air conditioning effect is satisfied. And a control unit that controls the door so as to reduce the amount of air sent to the air conditioning channel and increase the amount of air sent to the exhaust channel.
According to this on-vehicle air conditioner, it is possible to send a cool air with a low air volume and a low temperature during cooling, and a warm air with a low air volume and a high temperature can be sent during heating, thereby enhancing the air conditioning effect.
[Item 2]
While the Peltier module is cooling the air flowing through the air conditioning channel, if a predetermined condition for lowering the temperature of the air sent from the outlet is satisfied, the control unit reduces the amount of air sent to the air conditioning channel, The door may be controlled to increase the amount of air sent to the exhaust flow path.
Thereby, the low air volume and low temperature cold air can be sent out, and the air conditioning effect at the time of cooling can be improved.
[Item 3]
While the Peltier module is heating the air flowing through the air conditioning channel, if the predetermined conditions for raising the temperature of the air sent from the outlet are satisfied, the control unit reduces the amount of air sent to the air conditioning channel. The door may be controlled to increase the amount of air sent to the exhaust passage.
Thereby, a low air volume and a high temperature warm air can be sent out, and the air-conditioning effect at the time of heating can be heightened.

10 空調装置、 14 ペルチェモジュール、 16 利用熱面、 18 排熱面、 20 通水管、 22 ブロア、 32 排気口、 34 配風制御ドア、 36 風路切替ドア、 38 帰還制御ドア、 40 空調流路、 53 放熱部材、 56 放熱部材、 58 保水部材、 64 制御部、 100 車両。   DESCRIPTION OF SYMBOLS 10 Air conditioner, 14 Peltier module, 16 Heat utilization surface, 18 Heat exhaust surface, 20 Water pipe, 22 Blower, 32 Exhaust port, 34 Air distribution control door, 36 Air path switching door, 38 Return control door, 40 Air conditioning flow path 53 heat radiating member, 56 heat radiating member, 58 water retaining member, 64 control unit, 100 vehicle.

Claims (3)

送風機と、
前記送風機から送られた空気を車室内へ送出する吹出口と、
前記送風機から送られた空気を車外へ送出する排気口と、
前記送風機から前記吹出口へ至る空調流路と、
前記送風機から前記排気口へ至る排気流路と、
前記空調流路を流れる空気を冷却または加温し、その冷却または加温に伴い前記排気流路を流れる空気に排熱するペルチェモジュールと、
前記送風機から前記空調流路へ送る空気の量と、前記送風機から前記排気流路へ送る空気の量とを調整するドアと、
前記空調流路と前記排気流路の両方へ空気を送るように前記ドアを制御し、空調効果を高めるべき所定の条件が満たされた場合、前記空調流路へ送る空気の量を低減し、前記排気流路へ送る空気の量を増加させるように前記ドアを制御する制御部と、
を備えることを特徴とする車載空調装置。
A blower,
A blowout port for sending the air sent from the blower into the passenger compartment;
An exhaust port for sending out the air sent from the blower to the outside of the vehicle;
An air conditioning channel from the blower to the outlet;
An exhaust passage from the blower to the exhaust port;
Peltier module that cools or heats the air flowing through the air-conditioning flow path, and exhausts heat to the air flowing through the exhaust flow path with the cooling or heating;
A door for adjusting the amount of air sent from the blower to the air conditioning flow path and the amount of air sent from the blower to the exhaust flow path;
When the door is controlled to send air to both the air conditioning channel and the exhaust channel, and when a predetermined condition that should enhance the air conditioning effect is satisfied, the amount of air sent to the air conditioning channel is reduced, A controller that controls the door to increase the amount of air sent to the exhaust flow path;
An in-vehicle air conditioner comprising:
前記ペルチェモジュールが前記空調流路を流れる空気を冷却中に、前記吹出口から送出する空気の温度を下げるべき所定の条件が満たされた場合、前記制御部は、前記空調流路へ送る空気の量を低減し、前記排気流路へ送る空気の量を増加させるように前記ドアを制御する請求項1に記載の車載空調装置。   While the Peltier module is cooling the air flowing through the air conditioning channel, if a predetermined condition for lowering the temperature of the air sent from the air outlet is satisfied, the control unit The in-vehicle air conditioner according to claim 1, wherein the door is controlled so as to reduce an amount and increase an amount of air sent to the exhaust passage. 前記ペルチェモジュールが前記空調流路を流れる空気を加温中に、前記吹出口から送出する空気の温度を上げるべき所定の条件が満たされた場合、前記制御部は、前記空調流路へ送る空気の量を低減し、前記排気流路へ送る空気の量を増加させるように前記ドアを制御する請求項1または2に記載の車載空調装置。   When the Peltier module is heating the air flowing through the air-conditioning channel and the predetermined condition for increasing the temperature of the air sent from the air outlet is satisfied, the control unit sends the air to the air-conditioning channel The in-vehicle air conditioner according to claim 1 or 2, wherein the door is controlled so as to reduce the amount of air and to increase the amount of air sent to the exhaust passage.
JP2016059826A 2016-03-24 2016-03-24 On-vehicle air conditioning device Pending JP2017171132A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016059826A JP2017171132A (en) 2016-03-24 2016-03-24 On-vehicle air conditioning device
PCT/JP2017/002251 WO2017163580A1 (en) 2016-03-24 2017-01-24 Vehicle-mounted air-conditioning device
CN201780016518.6A CN108778802A (en) 2016-03-24 2017-01-24 In-vehicle air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016059826A JP2017171132A (en) 2016-03-24 2016-03-24 On-vehicle air conditioning device

Publications (1)

Publication Number Publication Date
JP2017171132A true JP2017171132A (en) 2017-09-28

Family

ID=59973545

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016059826A Pending JP2017171132A (en) 2016-03-24 2016-03-24 On-vehicle air conditioning device

Country Status (1)

Country Link
JP (1) JP2017171132A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003169727A (en) * 2001-12-07 2003-06-17 Matsushita Electric Ind Co Ltd Temperature controller and seat incorporating the same
JP2006341840A (en) * 2005-05-11 2006-12-21 Denso Corp Seat air conditioning unit
JP2008254637A (en) * 2007-04-06 2008-10-23 Toyota Motor Corp Vehicular dehumidifying/humidifying device
KR101524090B1 (en) * 2013-12-27 2015-05-29 현대다이모스(주) Air conditioning unit for vehicle seat
JP2015101293A (en) * 2013-11-27 2015-06-04 本田技研工業株式会社 Vehicle air conditioner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003169727A (en) * 2001-12-07 2003-06-17 Matsushita Electric Ind Co Ltd Temperature controller and seat incorporating the same
JP2006341840A (en) * 2005-05-11 2006-12-21 Denso Corp Seat air conditioning unit
JP2008254637A (en) * 2007-04-06 2008-10-23 Toyota Motor Corp Vehicular dehumidifying/humidifying device
JP2015101293A (en) * 2013-11-27 2015-06-04 本田技研工業株式会社 Vehicle air conditioner
KR101524090B1 (en) * 2013-12-27 2015-05-29 현대다이모스(주) Air conditioning unit for vehicle seat

Similar Documents

Publication Publication Date Title
US11242035B2 (en) Device for controlling defogging unit of vehicle
JP5488218B2 (en) Air conditioner for vehicles
RU2661377C2 (en) Heating, ventilation and air conditioning system for vehicles
JP2013018351A (en) Vehicle air-conditioning apparatus
JP2019137314A (en) Temperature adjustment device
US20150097041A1 (en) Vehicle comprising air conditioning apparatus
JP2013103708A (en) Indoor temperature adjustment method of vehicle
WO2019008768A1 (en) Vehicle air-conditioning method and vehicle air-conditioning device
JP5849893B2 (en) Air conditioner for vehicles
WO2017163580A1 (en) Vehicle-mounted air-conditioning device
US20160332502A1 (en) Hvac control for vehicles with start/stop engines
JP4670797B2 (en) Vehicle battery cooling system
JP6201847B2 (en) Air conditioner for vehicles
JP5869367B2 (en) Control device for idle stop car
JP5640936B2 (en) Air conditioner for vehicles
JP2017171130A (en) On-vehicle air conditioning device
JP2017171131A (en) On-vehicle air conditioning device
JP2017171129A (en) On-vehicle air conditioning device
JP5359040B2 (en) Air conditioning control device for vehicles
JP2017171132A (en) On-vehicle air conditioning device
CN110509745A (en) A kind of novel changes in temperature integrated form automatic control air-conditioning system
JP2006224744A (en) Air-conditioner for vehicle
CN114228438A (en) Vehicle temperature adjustment method and system
KR101801230B1 (en) Air conditioning system for automotive vehicles of idle stop and go type
JP2013224105A (en) Vehicle battery cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200303