Nothing Special   »   [go: up one dir, main page]

JP2017032685A - Optical filter and device with optical filter - Google Patents

Optical filter and device with optical filter Download PDF

Info

Publication number
JP2017032685A
JP2017032685A JP2015150492A JP2015150492A JP2017032685A JP 2017032685 A JP2017032685 A JP 2017032685A JP 2015150492 A JP2015150492 A JP 2015150492A JP 2015150492 A JP2015150492 A JP 2015150492A JP 2017032685 A JP2017032685 A JP 2017032685A
Authority
JP
Japan
Prior art keywords
resin
optical filter
resins
filter according
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015150492A
Other languages
Japanese (ja)
Other versions
JP6705132B2 (en
Inventor
坪内 孝史
Takashi Tsubouchi
孝史 坪内
寛幸 世古
Hiroyuki Seko
寛幸 世古
田村 亮
Akira Tamura
亮 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2015150492A priority Critical patent/JP6705132B2/en
Publication of JP2017032685A publication Critical patent/JP2017032685A/en
Application granted granted Critical
Publication of JP6705132B2 publication Critical patent/JP6705132B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Blocking Light For Cameras (AREA)
  • Optical Filters (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical filter that is less susceptible to warping and cracking even when a thinner support body is used, and to provide a solid-state image capturing device and camera module having the same.SOLUTION: An optical filter of the present invention includes a substrate comprising a support body having an elasticity modulus of 50-500 GPa and a resin layer formed on at least one surface of the support body, and is configured to transmit visible rays and at least partially block near-infrared rays. The resin layer preferably has an elasticity modulus of 2-8 GPa.SELECTED DRAWING: None

Description

本発明は、光学フィルターおよび光学フィルターを用いた装置に関する。詳しくは、可視光線を透過し、かつ、近赤外線の一部を遮断する光学フィルター、ならびに該光学フィルターを用いた固体撮像装置およびカメラモジュールに関する。   The present invention relates to an optical filter and an apparatus using the optical filter. Specifically, the present invention relates to an optical filter that transmits visible light and blocks a part of near infrared rays, and a solid-state imaging device and a camera module using the optical filter.

ビデオカメラ、デジタルスチルカメラ、カメラ機能付き携帯電話などの固体撮像装置にはカラー画像の固体撮像素子であるCCDやCMOSイメージセンサーが使用されているが、これら固体撮像素子は、その受光部において人間の目では感知できない近赤外線に感度を有するシリコンフォトダイオードが使用されている。これらの固体撮像素子では、人間の目で見て自然な色合いにさせる視感度補正を行うことが必要であり、特定の波長領域の光線を選択的に透過もしくはカットする光学フィルター(例えば近赤外線カットフィルター)を用いることが多い。   A solid-state image pickup device such as a video camera, a digital still camera, or a mobile phone with a camera function uses a CCD or CMOS image sensor, which is a solid-state image pickup device for a color image. Silicon photodiodes that are sensitive to near infrared rays that cannot be sensed by the eyes are used. These solid-state image sensors need to be corrected for visibility so that they appear natural to the human eye. Optical filters that selectively transmit or cut light in a specific wavelength region (for example, near-infrared cut) Filter) is often used.

このような光学フィルターとしては、従来から、各種方法で製造されたものが使用されている。例えば、ガラスなどの支持体を含む透明基材の表面に銀等の金属を蒸着して近赤外線を反射するようにしたもの、透明基材に屈折率の異なる金属酸化物を交互に積層したもの、アクリル樹脂やポリカーボネート樹脂等の透明樹脂に近赤外線吸収色素を添加したもの、などが実用に供されている。   As such an optical filter, what was conventionally manufactured by various methods is used. For example, a metal such as silver is deposited on the surface of a transparent substrate containing a support such as glass to reflect near infrared rays, and metal oxides with different refractive indexes are laminated alternately on a transparent substrate In addition, a transparent resin such as an acrylic resin or a polycarbonate resin to which a near-infrared absorbing dye is added has been put to practical use.

ガラスを支持体として用いた場合、支持体自体が耐熱性を有するため、いわゆるハンダリフロー工程を有するプロセスに適用することが可能であり、その結果、光学部品および装置の小型化ならびに製造工程の簡略化が可能となる。また、真空蒸着法、スパッタリング法またはCVD法等を用いて、ガラス支持体に屈折率の異なる金属酸化物を交互に積層した誘電体多層膜を有した光学フィルターは、支持体を薄板ガラスに置き換えることも可能であり、例えば厚み0.1mmといった薄肉化が可能である(例えば特許文献1参照)。しかしながら、ガラス等の支持体の場合、厚みを薄くすると反りや割れが生じやすくなるという問題がある。   When glass is used as a support, since the support itself has heat resistance, it can be applied to a process having a so-called solder reflow process. As a result, optical components and devices can be downsized and the manufacturing process can be simplified. Can be realized. In addition, an optical filter having a dielectric multilayer film in which metal oxides having different refractive indexes are alternately laminated on a glass support by using a vacuum deposition method, a sputtering method, a CVD method, or the like replaces the support with thin glass. It is also possible to reduce the thickness, for example, 0.1 mm (see, for example, Patent Document 1). However, in the case of a support such as glass, there is a problem that warping and cracking tend to occur when the thickness is reduced.

一方、近赤外光を光吸収にてカットするいわゆる色ガラスフィルターでは、垂直入射光と斜め入射光に対しての光学特性の差が小さく視野角に優れる反面、所定の光学特性の濃度を得るためには、基材の厚みが厚くなってしまい、また通常のガラスに比べて脆く割れ易いため、光学部品を小型化することが困難であった(非特許文献1)。   On the other hand, a so-called colored glass filter that cuts near-infrared light by light absorption has a small difference in optical characteristics with respect to normal incident light and oblique incident light and is excellent in viewing angle, but obtains a predetermined optical characteristic density. Therefore, the thickness of the base material is increased, and since it is more brittle and easier to break than ordinary glass, it is difficult to reduce the size of the optical component (Non-patent Document 1).

特開2007−197280号公報JP 2007-197280 A

シグマ光機社総合カタログ近赤外吸収フィルターCCF−50S−500CSigma Kogyo general catalog near infrared absorption filter CCF-50S-500C

本発明は、支持体の厚みを薄くしても、反りや割れが生じ難い光学フィルター、ならびに、該光学フィルターを具備する固体撮像装置およびカメラモジュールを提供することを課題とする。   It is an object of the present invention to provide an optical filter that is unlikely to be warped or cracked even if the thickness of a support is reduced, and a solid-state imaging device and a camera module including the optical filter.

本発明者らは、前記課題を解決するために鋭意検討した結果、特定の弾性率を有する支持体を用いることにより、支持体の厚みを薄くしても、反りや割れが生じ難い光学フィルターが得られることを見出し、本発明を完成するに至った。本発明の態様の例を以下に示す。   As a result of intensive studies to solve the above problems, the present inventors have found that an optical filter that is less likely to warp or crack even when the thickness of the support is reduced by using a support having a specific elastic modulus. As a result, the present invention was completed. Examples of embodiments of the present invention are shown below.

[1] 弾性率が50〜500GPaである支持体と、該支持体の少なくとも一方の面に樹脂層とを有する基材を含み、可視光線を透過し、かつ、近赤外線の少なくとも一部を遮断することを特徴とする光学フィルター。   [1] A substrate including a support having an elastic modulus of 50 to 500 GPa and a resin layer on at least one surface of the support, transmits visible light, and blocks at least part of near infrared rays. An optical filter characterized by

[2] 前記樹脂層の弾性率が2〜8GPaであることを特徴とする項[1]に記載の光学フィルター。   [2] The optical filter according to item [1], wherein the resin layer has an elastic modulus of 2 to 8 GPa.

[3] さらに、下記式(1)、(2)および(3)を満たすことを特徴とする項[1]または[2]に記載の光学フィルター。
Y ≧ −10500X + 540000 (1)
30 ≦ Ta ≦ 300 (2)
2 ≦ Tb ≦ 100 (3)
式(1)〜(3)中、Yは下記式(4)を満たし、Xは下記式(5)を満たし、Taは支持体の厚み(単位;μm)を示し、Tbは樹脂層の厚み(単位;μm)を示す。
Y =(Ea×Ta)×(Eb×Tb) (4)
X = Ta (5)
式(4)中、Eaは支持体の弾性率(単位;GPa)を示し、Ebは樹脂層の弾性率(単位;GPa)を示す。
[3] The optical filter according to item [1] or [2], further satisfying the following formulas (1), (2), and (3):
Y ≧ −10500X + 540000 (1)
30 ≦ Ta ≦ 300 (2)
2 ≦ Tb ≦ 100 (3)
In the formulas (1) to (3), Y satisfies the following formula (4), X satisfies the following formula (5), Ta represents the thickness of the support (unit: μm), and Tb represents the thickness of the resin layer. (Unit: μm).
Y = (Ea × Ta) × (Eb × Tb) (4)
X = Ta (5)
In formula (4), Ea indicates the elastic modulus (unit: GPa) of the support, and Eb indicates the elastic modulus (unit: GPa) of the resin layer.

[4] 前記Yおよび前記Xが下記式(6)を満たすことを特徴とする項[3]に記載の光学フィルター。
Y ≧ 300X (6)
[4] The optical filter according to item [3], wherein the Y and the X satisfy the following formula (6).
Y ≧ 300X (6)

[5] 前記Yおよび前記Xが下記式(7)を満たすことを特徴とする項[3]または[4]に記載の光学フィルター。
Y ≦ 24000X (7)
[5] The optical filter according to item [3] or [4], wherein the Y and the X satisfy the following formula (7).
Y ≤ 24000X (7)

[6] 前記基材の少なくとも一方の面に誘電体多層膜を有することを特徴とする項[1]〜[5]のいずれか1項に記載の光学フィルター。   [6] The optical filter according to any one of items [1] to [5], wherein a dielectric multilayer film is provided on at least one surface of the substrate.

[7] 前記樹脂層が、環状(ポリ)オレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、フルオレンポリカーボネート系樹脂、フルオレンポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系硬化型樹脂、シルセスキオキサン系紫外線硬化型樹脂、アクリル系紫外線硬化型樹脂およびビニル系紫外線硬化型樹脂からなる群より選ばれる少なくとも1種の樹脂から形成されることを特徴とする項[1]〜[6]のいずれか1項に記載の光学フィルター。   [7] The resin layer is a cyclic (poly) olefin resin, aromatic polyether resin, polyimide resin, fluorene polycarbonate resin, fluorene polyester resin, polycarbonate resin, polyamide resin, polyarylate resin, Polysulfone resin, polyethersulfone resin, polyparaphenylene resin, polyamideimide resin, polyethylene naphthalate resin, fluorinated aromatic polymer resin, (modified) acrylic resin, epoxy resin, allyl ester resin Item [1] characterized in that it is formed of at least one resin selected from the group consisting of a curable resin, a silsesquioxane ultraviolet curable resin, an acrylic ultraviolet curable resin, and a vinyl ultraviolet curable resin. ] To [6] The optical film according to any one of [6] Over.

[8] 前記支持体が、ガラス、水晶、合成石英、ニオブ酸リチウムおよびサファイアからなる群より選ばれる少なくとも1種から形成されることを特徴とする項[1]〜[7]のいずれか1項に記載の光学フィルター。   [8] Any one of [1] to [7], wherein the support is formed of at least one selected from the group consisting of glass, quartz, synthetic quartz, lithium niobate, and sapphire. The optical filter according to item.

[9] 前記樹脂層が、波長600nm以上800nm未満に吸収極大を有する化合物(A)を含むことを特徴とする項[1]〜[8]のいずれか1項に記載の光学フィルター。   [9] The optical filter according to any one of items [1] to [8], wherein the resin layer includes a compound (A) having an absorption maximum at a wavelength of 600 nm or more and less than 800 nm.

[10] 前記支持体が、近赤外波長領域に吸収極大を有することを特徴とする項[8]に記載の光学フィルター。   [10] The optical filter according to item [8], wherein the support has an absorption maximum in a near-infrared wavelength region.

[11] 項[1]〜[10]のいずれか1項に記載の光学フィルターを具備する固体撮像装置。   [11] A solid-state imaging device comprising the optical filter according to any one of items [1] to [10].

[12] 項[1]〜[10]のいずれか1項に記載の光学フィルターを具備するカメラモジュール。   [12] A camera module comprising the optical filter according to any one of items [1] to [10].

本発明によれば、支持体の厚みを薄くしても、反りや割れが生じ難い光学フィルターを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it thins the thickness of a support body, the optical filter which cannot produce a curvature and a crack easily can be provided.

以下、本発明について具体的に説明する。
[光学フィルター]
本発明に係る光学フィルターは、弾性率が50〜500GPaである支持体と、該支持体の少なくとも一方の面に樹脂層とを有する基材(i)を含み、可視光線を透過し、かつ、近赤外線の少なくとも一部を遮断することを特徴とする。前記樹脂層は、前記支持体の両面に形成されていてもよく、前記支持体の片面または両面に複数の樹脂層が設けられていてもよく、一方の面が単層で、他方の面が多層であってもよい。また、本発明の光学フィルターは、前記基材(i)の少なくとも一方の面に誘電体多層膜を有することが好ましい。
Hereinafter, the present invention will be specifically described.
[Optical filter]
The optical filter according to the present invention includes a support having an elastic modulus of 50 to 500 GPa and a substrate (i) having a resin layer on at least one surface of the support, and transmits visible light. It is characterized by blocking at least part of the near infrared ray. The resin layer may be formed on both sides of the support, and a plurality of resin layers may be provided on one side or both sides of the support. One side is a single layer and the other side is Multiple layers may be used. The optical filter of the present invention preferably has a dielectric multilayer film on at least one surface of the substrate (i).

前記樹脂層は、波長600nm以上800nm未満に吸収極大を有する化合物(A)を含むことが好ましい。また、前記支持体は、近赤外波長領域に吸収極大を有していてもよく、このような支持体としては、例えば、近赤外波長領域に吸収極大を有するガラス(以下「近赤外線吸収ガラス」ともいう。)や化合物(A)を含有する樹脂製基板などが挙げられる。   The resin layer preferably contains a compound (A) having an absorption maximum at a wavelength of 600 nm or more and less than 800 nm. The support may have an absorption maximum in the near-infrared wavelength region. Examples of such a support include glass having an absorption maximum in the near-infrared wavelength region (hereinafter referred to as “near-infrared absorption”). And a resin substrate containing the compound (A).

上記のような構成を有する本発明の光学フィルターは、近赤外線カット特性に優れ、入射角依存性が少なく、可視波長領域での透過率特性および近赤外波長領域の多重反射光低減効果に優れた光学フィルターである。   The optical filter of the present invention having the configuration as described above has excellent near-infrared cut characteristics, low incidence angle dependency, and excellent transmittance characteristics in the visible wavelength region and multiple reflected light reduction effect in the near-infrared wavelength region. Optical filter.

本発明の光学フィルターを固体撮像素子用に使用する場合、近赤外波長領域の透過率が低い方が好ましい。特に、波長800〜1000nmの領域は固体撮像素子の受光感度が比較的高いことが知られており、この波長領域の透過率を低減させることにより、カメラ画像と人間の目の視感度補正を効果的に行うことができ、優れた色再現性を達成することができる。   When the optical filter of the present invention is used for a solid-state imaging device, it is preferable that the transmittance in the near infrared wavelength region is low. In particular, it is known that the light receiving sensitivity of the solid-state imaging device is relatively high in the wavelength region of 800 to 1000 nm. By reducing the transmittance in this wavelength region, it is effective to correct the visibility of the camera image and the human eye. And excellent color reproducibility can be achieved.

本発明の光学フィルターは、波長800〜1000nmの領域において、光学フィルターの垂直方向から測定した場合の平均透過率が5%以下、好ましくは4%以下、さらに好ましくは3%以下、特に好ましくは2%以下である。波長800〜1000nmの平均透過率がこの範囲にあると、近赤外線を十分にカットすることができ、優れた色再現性を達成できるため好ましい。   The optical filter of the present invention has an average transmittance of 5% or less, preferably 4% or less, more preferably 3% or less, particularly preferably 2 when measured from the vertical direction of the optical filter in the wavelength range of 800 to 1000 nm. % Or less. When the average transmittance at a wavelength of 800 to 1000 nm is in this range, it is preferable because near infrared rays can be sufficiently cut and excellent color reproducibility can be achieved.

本発明の光学フィルターを固体撮像素子などに使用する場合、可視光透過率が高い方が好ましい。具体的には、波長430〜580nmの領域において、光学フィルターの垂直方向から測定した場合の平均透過率が好ましくは75%以上、より好ましくは80%以上、さらに好ましくは83%以上、特に好ましくは85%以上である。この波長領域において平均透過率がこの範囲にあると、本発明の光学フィルターを固体撮像素子用途として使用した場合、優れた撮像感度を達成することができる。   When the optical filter of the present invention is used for a solid-state imaging device or the like, it is preferable that the visible light transmittance is high. Specifically, in the wavelength range of 430 to 580 nm, the average transmittance when measured from the vertical direction of the optical filter is preferably 75% or more, more preferably 80% or more, still more preferably 83% or more, particularly preferably. 85% or more. When the average transmittance is within this range in this wavelength region, excellent imaging sensitivity can be achieved when the optical filter of the present invention is used as a solid-state imaging device.

本発明の光学フィルターは、波長560〜800nmの範囲において、光学フィルターの垂直方向から測定した時の透過率が50%となる最も短い波長の値(Xa)と、光学フィルターの垂直方向に対して30°の角度から測定した時の透過率が50%となる波長の値(Xb)との差の絶対値が小さい方が好ましい。(Xa)と(Xb)との差の絶対値は、好ましくは20nm未満、より好ましくは15nm未満、特に好ましくは10nm未満である。このような光学フィルターは、前記基材(i)上に誘電体多層膜を形成することで得られる。   The optical filter of the present invention has the shortest wavelength value (Xa) at which the transmittance when measured from the vertical direction of the optical filter is 50% in the wavelength range of 560 to 800 nm and the vertical direction of the optical filter. It is preferable that the absolute value of the difference from the wavelength value (Xb) at which the transmittance when measured from an angle of 30 ° is 50% is smaller. The absolute value of the difference between (Xa) and (Xb) is preferably less than 20 nm, more preferably less than 15 nm, and particularly preferably less than 10 nm. Such an optical filter can be obtained by forming a dielectric multilayer film on the substrate (i).

本発明の光学フィルターの厚みは、所望の用途に応じて適宜選択すればよいが、近年の固体撮像装置の薄型化、軽量化等の流れによれば、本発明の光学フィルターの厚みも薄いことが好ましい。本発明の光学フィルターは、前記基材(i)を含むため、薄型化が可能である。   The thickness of the optical filter of the present invention may be appropriately selected according to the desired application. However, according to the recent trend of thinning and weight reduction of solid-state imaging devices, the thickness of the optical filter of the present invention is also thin. Is preferred. Since the optical filter of the present invention includes the substrate (i), it can be thinned.

本発明の光学フィルターの厚みは、例えば、好ましくは200μm以下、より好ましくは180μm以下、さらに好ましくは150μm以下、特に好ましくは120μm以下であることが望ましく、下限は特に制限されないが、例えば、20μmであることが望ましい。   The thickness of the optical filter of the present invention is preferably, for example, preferably 200 μm or less, more preferably 180 μm or less, further preferably 150 μm or less, particularly preferably 120 μm or less, and the lower limit is not particularly limited, but for example, 20 μm It is desirable to be.

本発明の光学フィルターは、下記式(1)、(2)および(3)を満たすことが、反りや割れを低減する上で好ましい。
Y ≧ −10500X + 540000 (1)
30 ≦ Ta ≦ 300 (2)
2 ≦ Tb ≦ 100 (3)
式(1)〜(3)中、Yは下記式(4)を満たし、Xは下記式(5)を満たし、Taは支持体の厚み(単位;μm)を示し、Tbは樹脂層の厚み(単位;μm)を示す。
Y =(Ea×Ta)×(Eb×Tb) (4)
X = Ta (5)
式(4)中、Eaは支持体の弾性率(単位;GPa)を示し、Ebは樹脂層の弾性率(単位;GPa)を示す。
The optical filter of the present invention preferably satisfies the following formulas (1), (2) and (3) from the viewpoint of reducing warpage and cracking.
Y ≧ −10500X + 540000 (1)
30 ≦ Ta ≦ 300 (2)
2 ≦ Tb ≦ 100 (3)
In the formulas (1) to (3), Y satisfies the following formula (4), X satisfies the following formula (5), Ta represents the thickness of the support (unit: μm), and Tb represents the thickness of the resin layer. (Unit: μm).
Y = (Ea × Ta) × (Eb × Tb) (4)
X = Ta (5)
In formula (4), Ea indicates the elastic modulus (unit: GPa) of the support, and Eb indicates the elastic modulus (unit: GPa) of the resin layer.

また、前記Yおよび前記Xは、前記式(1)を満たすとともに、さらに、下記式(6)を満たすことが好ましく、下記式(6−1)を満たすことがより好ましく、下記式(6−2)を満たすことが特に好ましい。
Y ≧ 300X (6)
Y ≧ 1500X (6−1)
Y ≧ 3000X (6−2)
また、前記Yおよび前記Xは、さらに下記式(7)を満たすことが好ましい。
Y ≦ 24000X (7)
Moreover, while said Y and said X satisfy | fill said Formula (1), it is further preferable to satisfy | fill following formula (6), it is more preferable to satisfy | fill following formula (6-1), and following formula (6- It is particularly preferable to satisfy 2).
Y ≧ 300X (6)
Y ≧ 1500X (6-1)
Y ≧ 3000X (6-2)
Moreover, it is preferable that said Y and said X satisfy | fill following formula (7) further.
Y ≤ 24000X (7)

<支持体および樹脂層>
前記支持体の弾性率は、50〜500GPa、好ましくは50〜200GPa、より好ましくは50〜100GPaである。前記弾性率を有する支持体を用いることにより、支持体の厚みを薄くしても割れや反りが生じ難い光学フィルターが得られ、その結果、光学フィルターを含む各種装置等の小型化を図ることができる。また、前記樹脂層の弾性率は、特に限定されないが、好ましくは2〜8GPa、より好ましくは2〜7GPa、さらに好ましくは2〜6GPaである。なお、本明細書における前記弾性率は、株式会社フィッシャーインストルメンツ製「ピコデンターHM500」を用いて測定した値である。
<Support and resin layer>
The elastic modulus of the support is 50 to 500 GPa, preferably 50 to 200 GPa, more preferably 50 to 100 GPa. By using the support having the elastic modulus, it is possible to obtain an optical filter that does not easily crack or warp even if the thickness of the support is thinned. As a result, it is possible to reduce the size of various devices including the optical filter. it can. The elastic modulus of the resin layer is not particularly limited, but is preferably 2 to 8 GPa, more preferably 2 to 7 GPa, and further preferably 2 to 6 GPa. In addition, the said elasticity modulus in this specification is the value measured using "Picodenter HM500" by Fisher Instruments.

前記支持体の厚みは、前記式(2)に示すように、好ましくは30〜300μmであり、より好ましくは30〜200μm、さらに好ましくは30〜100μmである。また、前記樹脂層の厚みは、前記式(3)に示すように、好ましくは2〜100μmであり、より好ましくは2〜50μm、さらに好ましくは2〜30μmである。   As shown in the formula (2), the thickness of the support is preferably 30 to 300 μm, more preferably 30 to 200 μm, and further preferably 30 to 100 μm. Moreover, as shown to the said Formula (3), the thickness of the said resin layer becomes like this. Preferably it is 2-100 micrometers, More preferably, it is 2-50 micrometers, More preferably, it is 2-30 micrometers.

前記支持体は、前記弾性率を有するものであれば特に限定されないが、ガラス、水晶、合成石英、ニオブ酸リチウムおよびサファイアからなる群より選ばれる少なくとも1種から形成されることが、高透過率を保持する点で好ましい。前記ガラスとしては、特に限定されないが、例えば、ホウケイ酸塩系ガラス、ケイ酸塩系ガラス、ソーダ石灰ガラス、および近赤外線吸収ガラスなどが挙げられる。前記近赤外線吸収ガラスは、入射角依存性を低減できる点で好ましく、その具体例としては、フツリン酸塩系ガラス、リン酸塩系ガラスなどが挙げられる。   The support is not particularly limited as long as it has the elastic modulus, but it is formed of at least one selected from the group consisting of glass, quartz, synthetic quartz, lithium niobate, and sapphire. It is preferable at the point which hold | maintains. The glass is not particularly limited, and examples thereof include borosilicate glass, silicate glass, soda lime glass, and near infrared absorbing glass. The near-infrared absorbing glass is preferable in that the incident angle dependency can be reduced, and specific examples thereof include fluorophosphate-based glass and phosphate-based glass.

また、前記支持体が化合物(A)を含有する樹脂製基板の場合、前記樹脂製基板に用いられる樹脂は、後述する樹脂層と同様の樹脂を用いることができる。
前記樹脂層は、透明樹脂を用いて形成することができる。前記樹脂層に用いる透明樹脂としては、1種単独でもよいし、2種以上でもよい。
Moreover, when the said support body is a resin-made board | substrate containing a compound (A), resin similar to the resin layer mentioned later can be used for resin used for the said resin-made board | substrate.
The resin layer can be formed using a transparent resin. As transparent resin used for the said resin layer, 1 type may be individual, and 2 or more types may be sufficient.

透明樹脂としては、本発明の効果を損なわないものである限り特に制限されないが、例えば、熱安定性およびフィルムへの成形性を確保し、かつ、100℃以上の蒸着温度で行う高温蒸着により誘電体多層膜を形成しうるフィルムとするため、ガラス転移温度(Tg)が、好ましくは110〜380℃、より好ましくは110〜370℃、さらに好ましくは120〜360℃である樹脂が挙げられる。また、前記樹脂のガラス転移温度が140℃以上であると、誘電体多層膜をより高温で蒸着形成しえるフィルムが得られるため、特に好ましい。   The transparent resin is not particularly limited as long as it does not impair the effects of the present invention. For example, it ensures thermal stability and moldability to a film, and dielectrics are formed by high-temperature deposition performed at a deposition temperature of 100 ° C. or higher. In order to obtain a film that can form a body multilayer film, a resin having a glass transition temperature (Tg) of preferably 110 to 380 ° C, more preferably 110 to 370 ° C, and still more preferably 120 to 360 ° C. Further, it is particularly preferable that the glass transition temperature of the resin is 140 ° C. or higher because a film capable of depositing a dielectric multilayer film at a higher temperature can be obtained.

透明樹脂としては、当該樹脂からなる厚さ0.1mmの樹脂板を形成した場合に、この樹脂板の全光線透過率(JIS K7105)が、好ましくは75〜95%、さらに好ましくは78〜95%、特に好ましくは80〜95%となる樹脂を用いることができる。全光線透過率がこのような範囲となる樹脂を用いれば、得られる基板は光学フィルムとして良好な透明性を示す。   As a transparent resin, when a resin plate having a thickness of 0.1 mm made of the resin is formed, the total light transmittance (JIS K7105) of the resin plate is preferably 75 to 95%, more preferably 78 to 95. %, Particularly preferably 80 to 95% of the resin can be used. If a resin having a total light transmittance in such a range is used, the resulting substrate exhibits good transparency as an optical film.

透明樹脂のゲルパーミエーションクロマトグラフィー(GPC)法により測定される、ポリスチレン換算の重量平均分子量(Mw)は、通常15,000〜350,000、好ましくは30,000〜250,000であり、数平均分子量(Mn)は、通常10,000〜150,000、好ましくは20,000〜100,000である。   The weight average molecular weight (Mw) in terms of polystyrene measured by a gel permeation chromatography (GPC) method of the transparent resin is usually 15,000 to 350,000, preferably 30,000 to 250,000. The average molecular weight (Mn) is usually 10,000 to 150,000, preferably 20,000 to 100,000.

透明樹脂としては、例えば、環状(ポリ)オレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、フルオレンポリカーボネート系樹脂、フルオレンポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド(アラミド)系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート(PEN)系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系硬化型樹脂、シルセスキオキサン系紫外線硬化型樹脂、アクリル系紫外線硬化型樹脂およびビニル系紫外線硬化型樹脂を挙げることができる。   Examples of transparent resins include cyclic (poly) olefin resins, aromatic polyether resins, polyimide resins, fluorene polycarbonate resins, fluorene polyester resins, polycarbonate resins, polyamide (aramid) resins, and polyarylate resins. Resins, polysulfone resins, polyethersulfone resins, polyparaphenylene resins, polyamideimide resins, polyethylene naphthalate (PEN) resins, fluorinated aromatic polymer resins, (modified) acrylic resins, epoxy resins Examples thereof include resins, allyl ester curable resins, silsesquioxane ultraviolet curable resins, acrylic ultraviolet curable resins, and vinyl ultraviolet curable resins.

≪環状(ポリ)オレフィン系樹脂≫
環状(ポリ)オレフィン系樹脂としては、下記式(X0)で表される単量体および下記式(Y0)で表される単量体からなる群より選ばれる少なくとも1種の単量体から得られる樹脂、および当該樹脂を水素添加することで得られる樹脂が好ましい。
≪Cyclic (poly) olefin resin≫
The cyclic (poly) olefin resin is at least one monomer selected from the group consisting of a monomer represented by the following formula (X 0 ) and a monomer represented by the following formula (Y 0 ) And a resin obtained by hydrogenating the resin are preferred.

Figure 2017032685
Figure 2017032685

式(X0)中、Rx1〜Rx4はそれぞれ独立に、下記(i')〜(ix')より選ばれる原子または基を表し、kx、mxおよびpxはそれぞれ独立に、0または正の整数を表す。
(i')水素原子
(ii')ハロゲン原子
(iii')トリアルキルシリル基
(iv')酸素原子、硫黄原子、窒素原子またはケイ素原子を含む連結基を有する、
置換または非置換の炭素数1〜30の炭化水素基
(v')置換または非置換の炭素数1〜30の炭化水素基
(vi')極性基(但し、(iv')を除く。)
(vii')Rx1とRx2またはRx3とRx4とが、相互に結合して形成されたアルキリデン基
(但し、前記結合に関与しないRx1〜Rx4は、それぞれ独立に前記(i')〜(vi')より選ばれる原子または基を表す。)
(viii')Rx1とRx2またはRx3とRx4とが、相互に結合して形成された単環もしくは多環の炭化水素環または複素環(但し、前記結合に関与しないRx1〜Rx4は、それぞれ独立に前記(i')〜(vi')より選ばれる原子または基を表す。)
(ix')Rx2とRx3とが、相互に結合して形成された単環の炭化水素環または複素環(但し、前記結合に関与しないRx1とRx4は、それぞれ独立に前記(i')〜(vi')より選ばれる原子または基を表す。)
In the formula (X 0 ), R x1 to R x4 each independently represents an atom or group selected from the following (i ′) to (ix ′), and k x , mx and p x are each independently 0 Or represents a positive integer.
(I ′) a hydrogen atom (ii ′) a halogen atom (iii ′) a trialkylsilyl group (iv ′) having a linking group containing an oxygen atom, a sulfur atom, a nitrogen atom or a silicon atom,
A substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms (v ′) A substituted or unsubstituted hydrocarbon group having 1 to 30 carbon atoms (vi ′) polar group (excluding (iv ′))
(Vii ′) an alkylidene group formed by bonding R x1 and R x2 or R x3 and R x4 to each other (provided that R x1 to R x4 not involved in the bonding are independently the above (i ′ )-(Vi ′) represents an atom or group selected from.
(Viii ′) R x1 and R x2 or R x3 and R x4 are bonded to each other to form a monocyclic or polycyclic hydrocarbon ring or heterocyclic ring (provided that R x1 to R not involved in the bonding) x4 each independently represents an atom or group selected from the above (i ′) to (vi ′).
(Ix ′) A monocyclic hydrocarbon ring or heterocycle formed by bonding R x2 and R x3 to each other (provided that R x1 and R x4 not involved in the bonding are each independently the above (i Represents an atom or group selected from ') to (vi').

Figure 2017032685
Figure 2017032685

式(Y0)中、Ry1およびRy2はそれぞれ独立に、前記(i')〜(vi')より選ばれる原子または基を表すか、Ry1とRy2とが、相互に結合して形成された単環もしくは多環の脂環式炭化水素、芳香族炭化水素または複素環を表し、kyおよびpyはそれぞれ独立に、0または正の整数を表す。 In the formula (Y 0 ), R y1 and R y2 each independently represents an atom or group selected from the above (i ′) to (vi ′), or R y1 and R y2 are bonded to each other. formed monocyclic or polycyclic alicyclic hydrocarbon, an aromatic hydrocarbon or heterocyclic, k y and p y are each independently, represent 0 or a positive integer.

≪芳香族ポリエーテル系樹脂≫
芳香族ポリエーテル系樹脂は、下記式(1)で表される構造単位および下記式(2)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位を有することが好ましい。
≪Aromatic polyether resin≫
The aromatic polyether-based resin preferably has at least one structural unit selected from the group consisting of a structural unit represented by the following formula (1) and a structural unit represented by the following formula (2).

Figure 2017032685
式(1)中、R1〜R4はそれぞれ独立に、炭素数1〜12の1価の有機基を示し、a〜dはそれぞれ独立に、0〜4の整数を示す。
Figure 2017032685
In formula (1), R < 1 > -R < 4 > shows a C1-C12 monovalent organic group each independently, and ad shows the integer of 0-4 each independently.

Figure 2017032685
式(2)中、R1〜R4およびa〜dはそれぞれ独立に、前記式(1)中のR1〜R4およびa〜dと同義であり、Yは、単結合、−SO2−または>C=Oを示し、R7およびR8はそれぞれ独立に、ハロゲン原子、炭素数1〜12の1価の有機基またはニトロ基を示し、gおよびhはそれぞれ独立に、0〜4の整数を示し、mは0または1を示す。但し、mが0のとき、R7はシアノ基ではない。
Figure 2017032685
In the formula (2), each R 1 to R 4 and a~d are independently the same meaning as R 1 to R 4 and a~d of the formula (1), Y represents a single bond, -SO 2 -Or> C = O, R 7 and R 8 each independently represent a halogen atom, a monovalent organic group having 1 to 12 carbon atoms or a nitro group, and g and h each independently represent 0 to 4 And m represents 0 or 1. However, when m is 0, R 7 is not a cyano group.

また、前記芳香族ポリエーテル系樹脂は、さらに下記式(3)で表される構造単位および下記式(4)で表される構造単位からなる群より選ばれる少なくとも1種の構造単位を有することが好ましい。   The aromatic polyether resin further has at least one structural unit selected from the group consisting of a structural unit represented by the following formula (3) and a structural unit represented by the following formula (4). Is preferred.

Figure 2017032685
式(3)中、R5およびR6はそれぞれ独立に、炭素数1〜12の1価の有機基を示し、Zは、単結合、−O−、−S−、−SO2−、>C=O、−CONH−、−COO−または炭素数1〜12の2価の有機基を示し、eおよびfはそれぞれ独立に、0〜4の整数を示し、nは0または1を示す。
Figure 2017032685
In formula (3), R 5 and R 6 each independently represent a monovalent organic group having 1 to 12 carbon atoms, Z represents a single bond, —O—, —S—, —SO 2 —,> C═O, —CONH—, —COO— or a divalent organic group having 1 to 12 carbon atoms, e and f each independently represent an integer of 0 to 4, and n represents 0 or 1.

Figure 2017032685
式(4)中、R7、R8、Y、m、gおよびhはそれぞれ独立に、前記式(2)中のR7、R8、Y、m、gおよびhと同義であり、R5、R6、Z、n、eおよびfはそれぞれ独立に、前記式(3)中のR5、R6、Z、n、eおよびfと同義である。
Figure 2017032685
In formula (4), R 7 , R 8 , Y, m, g and h are each independently synonymous with R 7 , R 8 , Y, m, g and h in formula (2), and R 5 , R 6 , Z, n, e and f are each independently synonymous with R 5 , R 6 , Z, n, e and f in the formula (3).

≪ポリイミド系樹脂≫
ポリイミド系樹脂としては、特に制限されず、繰り返し単位にイミド結合を含む高分子化合物であればよく、例えば、特開2006−199945号公報や特開2008−163107号公報に記載されている方法で合成することができる。
≪Polyimide resin≫
The polyimide resin is not particularly limited as long as it is a high molecular compound containing an imide bond in a repeating unit. For example, the method described in JP-A-2006-199945 and JP-A-2008-163107 is used. Can be synthesized.

≪フルオレンポリカーボネート系樹脂≫
フルオレンポリカーボネート系樹脂としては、特に制限されず、フルオレン部位を含むポリカーボネート樹脂であればよく、例えば、特開2008−163194号公報に記載されている方法で合成することができる。
≪Fluorene polycarbonate resin≫
The fluorene polycarbonate resin is not particularly limited as long as it is a polycarbonate resin containing a fluorene moiety. For example, the fluorene polycarbonate resin can be synthesized by a method described in JP-A-2008-163194.

≪フルオレンポリエステル系樹脂≫
フルオレンポリエステル系樹脂としては、特に制限されず、フルオレン部位を含むポリエステル樹脂であればよく、例えば、特開2010−285505号公報や特開2011−197450号公報に記載されている方法で合成することができる。
≪Fluorene polyester resin≫
The fluorene polyester resin is not particularly limited as long as it is a polyester resin containing a fluorene moiety. For example, the fluorene polyester resin is synthesized by a method described in JP 2010-285505 A or JP 2011-197450 A. Can do.

≪フッ素化芳香族ポリマー系樹脂≫
フッ素化芳香族ポリマー系樹脂としては、特に制限されないが、フッ素原子を少なくとも1つ有する芳香族環と、エーテル結合、ケトン結合、スルホン結合、アミド結合、イミド結合およびエステル結合からなる群より選ばれる少なくとも1つの結合を含む繰り返し単位とを含有するポリマーであることが好ましく、例えば特開2008−181121号公報に記載されている方法で合成することができる。
≪Fluorinated aromatic polymer resin≫
The fluorinated aromatic polymer resin is not particularly limited, but is selected from the group consisting of an aromatic ring having at least one fluorine atom, an ether bond, a ketone bond, a sulfone bond, an amide bond, an imide bond, and an ester bond. The polymer preferably contains a repeating unit containing at least one bond, and can be synthesized, for example, by the method described in JP-A-2008-181121.

≪アクリル系紫外線硬化型樹脂≫
アクリル系紫外線硬化型樹脂としては、特に制限されないが、分子内に一つ以上のアクリル基もしくはメタクリル基を有する化合物と、紫外線によって分解して活性ラジカルを発生させる化合物を含有する樹脂組成物から合成されるものを挙げることができる。
≪Acrylic UV curable resin≫
The acrylic ultraviolet curable resin is not particularly limited, but is synthesized from a resin composition containing a compound having one or more acrylic or methacrylic groups in the molecule and a compound that decomposes by ultraviolet rays to generate active radicals. Can be mentioned.

≪市販品≫
透明樹脂の市販品としては、以下の市販品等を挙げることができる。環状(ポリ)オレフィン系樹脂の市販品としては、JSR(株)製アートン、日本ゼオン(株)製ゼオノア、三井化学(株)製APEL、ポリプラスチックス(株)製TOPASなどを挙げることができる。ポリエーテルサルホン系樹脂の市販品としては、住友化学(株)製スミカエクセルPESなどを挙げることができる。ポリイミド系樹脂の市販品としては、三菱ガス化学(株)製ネオプリムLなどを挙げることができる。ポリカーボネート系樹脂の市販品としては、帝人(株)製ピュアエースなどを挙げることができる。フルオレンポリカーボネート系樹脂の市販品としては、三菱ガス化学(株)製ユピゼータEP−5000などを挙げることができる。フルオレンポリエステル系樹脂の市販品としては、大阪ガスケミカル(株)製OKP4HTなどを挙げることができる。アクリル系樹脂の市販品としては、(株)日本触媒製アクリビュアなどを挙げることができる。シルセスキオキサン系紫外線硬化型樹脂の市販品としては、新日鐵化学(株)製シルプラスなどを挙げることができる。
≪Commercial product≫
The following commercial products etc. can be mentioned as a commercial item of transparent resin. Examples of commercially available cyclic (poly) olefin-based resins include Arton manufactured by JSR Co., Ltd., ZEONOR manufactured by Nippon Zeon Co., Ltd., APEL manufactured by Mitsui Chemicals, Inc., and TOPAS manufactured by Polyplastics Co., Ltd. . Examples of commercially available polyethersulfone resins include Sumika Excel PES manufactured by Sumitomo Chemical Co., Ltd. Examples of commercially available polyimide resins include Neoprim L manufactured by Mitsubishi Gas Chemical Co., Ltd. Examples of commercially available polycarbonate resins include Pure Ace manufactured by Teijin Limited. Examples of commercially available fluorene polycarbonate resins include Iupizeta EP-5000 manufactured by Mitsubishi Gas Chemical Co., Ltd. Examples of commercially available fluorene polyester resins include OKP4HT manufactured by Osaka Gas Chemical Co., Ltd. Examples of commercially available acrylic resins include NIPPON CATALYST ACRYVIEWER. Examples of commercially available silsesquioxane-based ultraviolet curable resins include Silplus manufactured by Nippon Steel Chemical Co., Ltd.

≪化合物(A)≫
化合物(A)は、波長600nm以上800nm未満に吸収極大を有すれば特に制限されないが、溶剤可溶型の色素化合物であることが好ましく、スクアリリウム系化合物、フタロシアニン系化合物およびシアニン系化合物からなる群より選ばれる少なくとも1種であることがより好ましく、スクアリリウム系化合物を含むことがさらに好ましく、スクアリリウム系化合物とその他の化合物(A)をそれぞれ1種以上含むことがさらに好ましく、その他の化合物(A)としてはフタロシアニン系化合物およびシアニン系化合物が特に好ましい。
<< Compound (A) >>
The compound (A) is not particularly limited as long as it has an absorption maximum at a wavelength of 600 nm or more and less than 800 nm, but is preferably a solvent-soluble dye compound, and is a group consisting of a squarylium compound, a phthalocyanine compound, and a cyanine compound. More preferably, it is at least one selected from the above, more preferably contains a squarylium compound, more preferably contains at least one squarylium compound and another compound (A), and other compound (A). Particularly preferred are phthalocyanine compounds and cyanine compounds.

スクアリリウム系化合物は、優れた可視光透過性、急峻な吸収特性および高いモル吸光係数を有するが、光線吸収時に散乱光の原因となる蛍光を発生させる場合がある。そのような場合、スクアリリウム系化合物とその他の化合物(A)とを組み合わせて使用することにより、散乱光が少なくカメラ画質がより良好な光学フィルターを得ることができる。スクアリリウム系化合物の具体的な例としては、下記に記載の化合物(a−1)を挙げることができる。   The squarylium-based compound has excellent visible light permeability, steep absorption characteristics, and a high molar extinction coefficient, but may generate fluorescence that causes scattered light upon light absorption. In such a case, an optical filter with less scattered light and better camera image quality can be obtained by using a combination of the squarylium compound and the other compound (A). Specific examples of the squarylium-based compound include the compound (a-1) described below.

Figure 2017032685
化合物(A)の吸収極大波長は、好ましくは620nm以上780nm以下、さらに好ましくは630nm以上770nm以下、特に好ましくは640nm以上760nm以下である。
Figure 2017032685
The absorption maximum wavelength of the compound (A) is preferably 620 nm to 780 nm, more preferably 630 nm to 770 nm, and particularly preferably 640 nm to 760 nm.

前記樹脂層中の化合物(A)の含有量は、透明樹脂100重量部に対して、好ましくは0.01〜5.0重量部、より好ましくは0.02〜4.0重量部、特に好ましくは0.03〜3.0重量部である。   The content of the compound (A) in the resin layer is preferably 0.01 to 5.0 parts by weight, more preferably 0.02 to 4.0 parts by weight, particularly preferably 100 parts by weight of the transparent resin. Is 0.03 to 3.0 parts by weight.

≪その他の色素(X)≫
前記樹脂層には、さらに、化合物(A)に該当しない、その他の色素(X)が含まれていてもよい。
≪Other dye (X) ≫
The resin layer may further contain other dye (X) that does not correspond to the compound (A).

その他の色素(X)としては、吸収極大波長が600nm未満もしくは800nm超のものであれば特に制限されないが、吸収極大波長が800nm超のものが好ましい。このような色素としては、例えば、スクアリリウム系化合物、フタロシアニン系化合物、シアニン系化合物、ナフタロシアニン系化合物、クロコニウム系化合物、オクタフィリン系化合物、ジイモニウム系化合物、ペリレン系化合物、および金属ジチオラート系化合物からなる群より選ばれる少なくとも1種の化合物が挙げられる。   Other dyes (X) are not particularly limited as long as the absorption maximum wavelength is less than 600 nm or more than 800 nm, but those having an absorption maximum wavelength of more than 800 nm are preferable. Examples of such dyes include squarylium compounds, phthalocyanine compounds, cyanine compounds, naphthalocyanine compounds, croconium compounds, octaphyrin compounds, diimonium compounds, perylene compounds, and metal dithiolate compounds. There may be mentioned at least one compound selected from the group.

≪その他成分≫
前記樹脂層は、本発明の効果を損なわない範囲において、さらに酸化防止剤、近紫外線吸収剤、蛍光消光剤および金属錯体系化合物等の添加剤を含有してもよい。これらその他成分は、1種単独で用いてもよいし、2種以上を併用してもよい。
≪Other ingredients≫
The resin layer may further contain additives such as an antioxidant, a near ultraviolet absorber, a fluorescence quencher, and a metal complex compound as long as the effects of the present invention are not impaired. These other components may be used alone or in combination of two or more.

前記近紫外線吸収剤としては、例えばアゾメチン系化合物、インドール系化合物、ベンゾトリアゾール系化合物、トリアジン系化合物などが挙げられる。
前記酸化防止剤としては、例えば2,6−ジ−t−ブチル−4−メチルフェノール、2,2'−ジオキシ−3,3'−ジ−t−ブチル−5,5'−ジメチルジフェニルメタン、およびテトラキス[メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]メタンなどが挙げられる。
Examples of the near ultraviolet absorber include azomethine compounds, indole compounds, benzotriazole compounds, and triazine compounds.
Examples of the antioxidant include 2,6-di-t-butyl-4-methylphenol, 2,2′-dioxy-3,3′-di-t-butyl-5,5′-dimethyldiphenylmethane, and And tetrakis [methylene-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate] methane.

なお、これら添加剤は、樹脂層を製造する際に、樹脂などとともに混合してもよいし、樹脂を合成する際に添加してもよい。また、添加量は、所望の特性に応じて適宜選択されるものであるが、樹脂100重量部に対して、通常0.01〜5.0重量部、好ましくは0.05〜2.0重量部である。   These additives may be mixed with a resin or the like when producing a resin layer, or may be added when a resin is synthesized. The addition amount is appropriately selected according to the desired properties, but is usually 0.01 to 5.0 parts by weight, preferably 0.05 to 2.0 parts by weight, based on 100 parts by weight of the resin. Part.

<基材(i)>
波長600nm以上800nm未満の領域において、前記基材(i)の垂直方向から測定した最も低い透過率(Za)は、好ましくは40%以下、さらに好ましくは25%以下、特に好ましくは10%以下である。
<Base material (i)>
In the region of wavelength 600 nm or more and less than 800 nm, the lowest transmittance (Za) measured from the vertical direction of the substrate (i) is preferably 40% or less, more preferably 25% or less, and particularly preferably 10% or less. is there.

波長600nm以上の領域における前記基材(i)の垂直方向から測定した透過率が50%超から50%以下となる最も短い波長(Xc)は、好ましくは610〜670nm、さらに好ましくは620〜665nm、特に好ましくは630〜660nmである。   The shortest wavelength (Xc) at which the transmittance measured from the vertical direction of the substrate (i) in the wavelength region of 600 nm or more is from 50% to 50% is preferably 610 to 670 nm, more preferably 620 to 665 nm. Especially preferably, it is 630-660 nm.

基材(i)の(Za)および(Xc)がこのような範囲にあれば、不要な近赤外線を選択的に効率よくカットすることができるとともに、基材(i)上に誘電体多層膜を製膜した際、可視波長〜近赤外波長領域付近の光学特性の入射角依存性を低減することができる。   If (Za) and (Xc) of the substrate (i) are within such a range, unnecessary near infrared rays can be selectively and efficiently cut, and a dielectric multilayer film can be formed on the substrate (i). When the film is formed, it is possible to reduce the incident angle dependency of the optical characteristics in the vicinity of the visible wavelength region to the near infrared wavelength region.

基材(i)の波長430〜580nmにおける平均透過率は、好ましくは75%以上、さらに好ましくは78%以上、特に好ましくは80%以上である。このような透過特性を有する基材を用いると、可視領域において高い光線透過特性を達成でき、高感度なカメラ機能を達成することができる。   The average transmittance of the substrate (i) at a wavelength of 430 to 580 nm is preferably 75% or more, more preferably 78% or more, and particularly preferably 80% or more. When a substrate having such transmission characteristics is used, high light transmission characteristics can be achieved in the visible region, and a highly sensitive camera function can be achieved.

前記基材(i)の厚みは、所望の用途に応じて適宜選択することができ、特に制限されないが、得られる光学フィルターの入射角依存性を低減するように適宜選択することが望ましく、好ましくは10〜200μm、さらに好ましくは15〜180μm、特に好ましくは20〜150μmである。基材(i)の厚みが前記範囲にあると、該基材(i)を用いた光学フィルターを薄型化および軽量化することができ、固体撮像装置等の様々な用途に好適に用いることができる。   The thickness of the base material (i) can be appropriately selected according to a desired application, and is not particularly limited. However, it is desirable and preferably selected appropriately so as to reduce the incident angle dependency of the obtained optical filter. Is 10 to 200 μm, more preferably 15 to 180 μm, and particularly preferably 20 to 150 μm. When the thickness of the substrate (i) is in the above range, the optical filter using the substrate (i) can be thinned and reduced in weight, and can be suitably used for various applications such as a solid-state imaging device. it can.

≪基材(i)の製造方法≫
前記支持体に、必要に応じて化合物(A)を含む樹脂溶液を溶融成形またはキャスト成形することで、好ましくはスピンコート、スリットコート、インクジェットなどの方法にて塗工した後に溶媒を乾燥除去し、必要に応じてさらに光照射や加熱を行うことで、前記支持体上に前記樹脂層が形成された基材(i)を製造することができる。また、必要に応じて、さらに、反射防止剤、ハードコート剤および/または帯電防止剤等のコーティング剤をコーティングしてオーバーコート層を積層してもよい。
<Manufacturing method of substrate (i)>
The solvent is removed by drying after the resin solution containing the compound (A) is melt-molded or cast-molded on the support, preferably by a method such as spin coating, slit coating, or inkjet. The substrate (i) having the resin layer formed on the support can be produced by further performing light irradiation or heating as necessary. Further, if necessary, an overcoat layer may be laminated by coating a coating agent such as an antireflection agent, a hard coating agent and / or an antistatic agent.

前記溶融成形としては、具体的には、樹脂と必要に応じて化合物(A)等とを溶融混練りして得られたペレットを溶融成形する方法;樹脂と必要に応じて化合物(A)等とを含有する樹脂組成物を溶融成形する方法;または、樹脂と溶剤と必要に応じて化合物(A)等とを含む樹脂組成物から溶剤を除去して得られたペレットを溶融成形する方法などが挙げられる。溶融成形方法としては、射出成形、溶融押出成形またはブロー成形などを挙げることができる。   Specifically, as the melt molding, a method of melt-molding pellets obtained by melt-kneading a resin and, if necessary, a compound (A) or the like; a resin and a compound (A) or the like as needed A method of melt-molding pellets obtained by removing a solvent from a resin composition containing a resin, a solvent and, if necessary, a compound (A), etc. Is mentioned. Examples of the melt molding method include injection molding, melt extrusion molding, and blow molding.

前記キャスト成形としては、樹脂、溶剤および必要に応じて化合物(A)等を含む樹脂組成物を適当な支持体の上にキャスティングして溶剤を除去する方法;または光硬化性樹脂および/または熱硬化性樹脂と必要に応じて化合物(A)等とを含む硬化性組成物を適当な支持体の上にキャスティングして溶媒を除去した後、紫外線照射や加熱などの適切な手法により硬化させる方法などにより製造することもできる。   As the cast molding, a method of removing a solvent by casting a resin composition containing a resin, a solvent and, if necessary, a compound (A) on an appropriate support; or a photocurable resin and / or heat A method in which a curable composition containing a curable resin and, if necessary, a compound (A) is cast on an appropriate support to remove the solvent, and then cured by an appropriate technique such as ultraviolet irradiation or heating. It can also be manufactured by, for example.

前記方法で得られた樹脂層中の残留溶剤量は可能な限り少ない方がよい。具体的には、前記残留溶剤量は、樹脂層の重さに対して、好ましくは3重量%以下、より好ましくは1重量%以下、さらに好ましくは0.5重量%以下である。残留溶剤量が前記範囲にあると、変形や特性が変化しにくい、所望の機能を容易に発揮できる樹脂層が得られる。   The amount of residual solvent in the resin layer obtained by the above method should be as small as possible. Specifically, the amount of the residual solvent is preferably 3% by weight or less, more preferably 1% by weight or less, and further preferably 0.5% by weight or less with respect to the weight of the resin layer. When the residual solvent amount is in the above range, it is possible to obtain a resin layer that can easily exhibit a desired function, in which deformation and characteristics hardly change.

<誘電体多層膜>
本発明における誘電体多層膜は、近赤外線を反射する能力を有する膜である。本発明では、近赤外線反射膜は前記基材(i)の片面に設けてもよいし、両面に設けてもよい。片面に設ける場合、製造コストや製造容易性に優れ、両面に設ける場合、高い強度を有し、反りやねじれが生じにくい光学フィルターを得ることができる。光学フィルターを固体撮像素子用途に適用する場合、光学フィルターの反りやねじれが小さい方が好ましいことから、誘電体多層膜を前記基材(i)の両面に設けることが好ましい。
<Dielectric multilayer film>
The dielectric multilayer film in the present invention is a film having the ability to reflect near infrared rays. In the present invention, the near-infrared reflective film may be provided on one side of the substrate (i) or may be provided on both sides. When it is provided on one side, it is possible to obtain an optical filter that is excellent in production cost and manufacturability and has high strength and is less likely to warp or twist when provided on both sides. When the optical filter is applied to a solid-state imaging device application, it is preferable that the optical filter is less warped or twisted. Therefore, it is preferable to provide a dielectric multilayer film on both surfaces of the substrate (i).

前記誘電体多層膜は、波長700〜1100nmの範囲全体にわたって反射特性を有することが好ましく、さらに好ましくは波長700〜1150nm、特に好ましくは700〜1200nmの範囲全体にわたって反射特性を有することが好ましい。基材(i)の両面に誘電体多層膜を有する形態として、光学フィルターの垂直方向に対して5°の角度から測定した場合に波長700〜950nm付近に主に反射特性を有する第一光学層を基材(i)の片面に有し、基材(i)の他方の面上に光学フィルターの垂直方向に対して5°の角度から測定した場合に900nm〜1150nm付近に主に反射特性を有する第二光学層を有する形態や、光学フィルターの垂直方向に対して5°の角度から測定した場合に波長700〜1150nm付近に主に反射特性を有する第三光学層を基材(i)の片面に有し、基材(i)の他方の面上に可視域の反射防止特性を有する第四光学層を有する形態などが挙げられる。   The dielectric multilayer film preferably has reflection characteristics over the entire wavelength range of 700 to 1100 nm, more preferably has reflection characteristics over the entire wavelength range of 700 to 1150 nm, and particularly preferably 700 to 1200 nm. As a form having dielectric multilayer films on both surfaces of the substrate (i), a first optical layer mainly having reflection characteristics in the vicinity of a wavelength of 700 to 950 nm when measured from an angle of 5 ° with respect to the vertical direction of the optical filter On one side of the substrate (i), and the reflection characteristic is mainly in the vicinity of 900 nm to 1150 nm when measured from the angle of 5 ° with respect to the vertical direction of the optical filter on the other surface of the substrate (i). A third optical layer mainly having reflection characteristics in the vicinity of a wavelength of 700 to 1150 nm when measured from an angle of 5 ° with respect to the vertical direction of the optical filter or a form having the second optical layer having the substrate (i) Examples thereof include a fourth optical layer which is provided on one side and has a visible region antireflection property on the other side of the substrate (i).

誘電体多層膜としては、高屈折率材料層と低屈折率材料層とを交互に積層したものが挙げられる。高屈折率材料層を構成する材料としては、屈折率が1.7以上の材料を用いることができ、屈折率が通常は1.7〜2.5の材料が選択される。このような材料としては、例えば、酸化チタン、酸化ジルコニウム、五酸化タンタル、五酸化ニオブ、酸化ランタン、酸化イットリウム、酸化亜鉛、硫化亜鉛または酸化インジウム等を主成分とし、酸化チタン、酸化錫および/または酸化セリウム等を少量(例えば、主成分に対して0〜10重量%)含有させたものが挙げられる。   Examples of the dielectric multilayer film include those in which high refractive index material layers and low refractive index material layers are alternately stacked. As a material constituting the high refractive index material layer, a material having a refractive index of 1.7 or more can be used, and a material having a refractive index of usually 1.7 to 2.5 is selected. Examples of such materials include titanium oxide, zirconium oxide, tantalum pentoxide, niobium pentoxide, lanthanum oxide, yttrium oxide, zinc oxide, zinc sulfide, or indium oxide as the main components, and titanium oxide, tin oxide, and / or Or what contains a small amount (for example, 0-10 weight% with respect to a main component) of cerium oxide etc. is mentioned.

低屈折率材料層を構成する材料としては、屈折率が1.6以下の材料を用いることができ、屈折率が通常は1.2〜1.6の材料が選択される。このような材料としては、例えば、シリカ、アルミナ、フッ化ランタン、フッ化マグネシウムおよび六フッ化アルミニウムナトリウムが挙げられる。   As a material constituting the low refractive index material layer, a material having a refractive index of 1.6 or less can be used, and a material having a refractive index of usually 1.2 to 1.6 is selected. Examples of such materials include silica, alumina, lanthanum fluoride, magnesium fluoride, and sodium hexafluoride sodium.

高屈折率材料層と低屈折率材料層とを積層する方法については、これらの材料層を積層した誘電体多層膜が形成される限り特に制限はない。例えば、基材(i)上に、直接、CVD法、スパッタ法、真空蒸着法、イオンアシスト蒸着法またはイオンプレーティング法等により、高屈折率材料層と低屈折率材料層とを交互に積層した誘電体多層膜を形成することができる。   The method of laminating the high refractive index material layer and the low refractive index material layer is not particularly limited as long as a dielectric multilayer film in which these material layers are laminated is formed. For example, a high-refractive index material layer and a low-refractive index material layer are alternately laminated directly on the substrate (i) by CVD, sputtering, vacuum deposition, ion-assisted deposition, or ion plating. A dielectric multilayer film can be formed.

高屈折率材料層および低屈折率材料層の各層の厚さは、通常、遮断しようとする近赤外線波長をλ(nm)とすると、0.1λ〜0.5λの厚さが好ましい。λ(nm)の値としては、例えば700〜1400nm、好ましくは750〜1300nmである。厚さがこの範囲であると、屈折率(n)と膜厚(d)との積(n×d)がλ/4で算出される光学的膜厚と、高屈折率材料層および低屈折率材料層の各層の厚さとがほぼ同じ値となって、反射・屈折の光学的特性の関係から、特定波長の遮断・透過を容易にコントロールできる傾向にある。   The thicknesses of the high-refractive index material layer and the low-refractive index material layer are usually preferably 0.1λ to 0.5λ, where λ (nm) is the near infrared wavelength to be blocked. The value of λ (nm) is, for example, 700 to 1400 nm, preferably 750 to 1300 nm. When the thickness is within this range, the optical thickness obtained by multiplying the refractive index (n) by the thickness (d) (n × d) by λ / 4, the high refractive index material layer, and the low refractive index. The thicknesses of the respective layers of the refractive index material layer are almost the same value, and there is a tendency that the blocking / transmission of a specific wavelength can be easily controlled from the relationship between the optical characteristics of reflection / refraction.

誘電体多層膜における高屈折率材料層と低屈折率材料層との合計の積層数は、光学フィルター全体として16〜70層であることが好ましく、20〜60層であることがより好ましい。各層の厚み、光学フィルター全体としての誘電体多層膜の厚みや合計の積層数が前記範囲にあると、十分な製造マージンを確保できる上に、光学フィルターの反りや誘電体多層膜のクラックを低減することができる。   The total number of stacked high refractive index material layers and low refractive index material layers in the dielectric multilayer film is preferably 16 to 70 layers, and more preferably 20 to 60 layers as a whole. If the thickness of each layer, the thickness of the dielectric multilayer film as a whole of the optical filter, and the total number of layers are within the above ranges, a sufficient manufacturing margin can be secured, and the warpage of the optical filter and cracks in the dielectric multilayer film can be reduced. can do.

本発明では、化合物(A)の吸収特性に合わせて高屈折率材料層および低屈折率材料層を構成する材料種、高屈折率材料層および低屈折率材料層の各層の厚さ、積層の順番、積層数を適切に選択することで、可視域に十分な透過率を確保した上で近赤外波長域に十分な光線カット特性を有し、且つ、斜め方向から近赤外線が入射した際の反射率を低減することができる。   In the present invention, the material type constituting the high refractive index material layer and the low refractive index material layer, the thickness of each layer of the high refractive index material layer and the low refractive index material layer, By properly selecting the number of layers and the number of layers, ensuring sufficient transmittance in the visible range and sufficient light-cut characteristics in the near-infrared wavelength range, and when near-infrared rays are incident from an oblique direction The reflectance can be reduced.

ここで、前記条件を最適化するには、例えば、光学薄膜設計ソフト(例えば、Essential Macleod、Thin Film Center社製)を用い、可視域の反射防止効果と近赤外域の光線カット効果を両立できるようにパラメーターを設定すればよい。上記ソフトの場合、例えば第一光学層の設計にあたっては、波長400〜700nmの目標透過率を100%、Target Toleranceの値を1とした上で、波長705〜950nmの目標透過率を0%、Target Toleranceの値を0.5にするなどのパラメーター設定方法が挙げられる。これらのパラメーターは基材(i)の各種特性などに合わせて波長範囲をさらに細かく区切ってTarget Toleranceの値を変えることもできる。   Here, in order to optimize the conditions, for example, optical thin film design software (for example, manufactured by Essential Macleod, manufactured by Thin Film Center) can be used to achieve both an antireflection effect in the visible region and a light cut effect in the near infrared region. You can set the parameters as follows. In the case of the above-mentioned software, for example, in designing the first optical layer, the target transmittance at a wavelength of 400 to 700 nm is set to 100%, the target tolerance value is set to 1, and the target transmittance at a wavelength of 705 to 950 nm is set to 0%. A parameter setting method such as setting the value of Target Tolerance to 0.5 may be mentioned. These parameters can also change the value of Target Tolerance by further finely dividing the wavelength range according to various characteristics of the substrate (i).

<その他の機能膜>
本発明の光学フィルターは、本発明の効果を損なわない範囲において、基材(i)と誘電体多層膜との間、基材(i)の誘電体多層膜が設けられた面と反対側の面、または誘電体多層膜の基材(i)が設けられた面と反対側の面に、基材(i)や誘電体多層膜の表面硬度の向上、耐薬品性の向上、帯電防止、密着性向上および傷消しなどの目的で、反射防止膜、ハードコート膜、プライマー膜や帯電防止膜などの機能膜を適宜設けることができる。
<Other functional membranes>
As long as the optical filter of the present invention does not impair the effects of the present invention, the optical filter between the substrate (i) and the dielectric multilayer film is on the side opposite to the surface on which the dielectric multilayer film of the substrate (i) is provided. Surface, or the surface opposite to the surface on which the substrate (i) of the dielectric multilayer film is provided, the surface hardness of the substrate (i) or the dielectric multilayer film is improved, the chemical resistance is improved, the antistatic, Functional films such as an antireflection film, a hard coat film, a primer film, and an antistatic film can be appropriately provided for the purpose of improving adhesion and scratch removal.

本発明の光学フィルターは、前記機能膜からなる層を1層含んでもよく、2層以上含んでもよい。本発明の光学フィルターが前記機能膜からなる層を2層以上含む場合には、同様の層を2層以上含んでもよいし、異なる層を2層以上含んでもよい。   The optical filter of the present invention may include one layer composed of the functional film, or may include two or more layers. When the optical filter of the present invention includes two or more layers made of the functional film, it may include two or more similar layers or two or more different layers.

機能膜を積層する方法としては、特に制限されないが、反射防止剤、ハードコート剤および/または帯電防止剤等のコーティング剤などを基材(i)または誘電体多層膜に、前記と同様に溶融成形またはキャスト成形する方法等を挙げることができる。   The method of laminating the functional film is not particularly limited, but a coating agent such as an antireflection agent, a hard coating agent and / or an antistatic agent is melted in the base material (i) or the dielectric multilayer film as described above. Examples of the method include molding or cast molding.

また、前記コーティング剤などを含む硬化性組成物をバーコーター等で基材(i)または誘電体多層膜上に塗布した後、紫外線照射等により硬化することによっても製造することができる。   Further, the composition can also be produced by applying a curable composition containing the coating agent or the like on the substrate (i) or the dielectric multilayer film with a bar coater or the like and then curing the composition by ultraviolet irradiation or the like.

前記コーティング剤としては、紫外線(UV)もしくは電子線(EB)硬化型樹脂や熱硬化型樹脂などが挙げられ、具体的には、ビニル化合物類や、ウレタン系、ウレタンアクリレート系、アクリレート系、エポキシ系およびエポキシアクリレート系樹脂などが挙げられる。これらのコーティング剤を含む前記硬化性組成物としては、ビニル系、ウレタン系、ウレタンアクリレート系、アクリレート系、エポキシ系およびエポキシアクリレート系硬化性組成物などが挙げられる。   Examples of the coating agent include ultraviolet (UV) or electron beam (EB) curable resins and thermosetting resins. Specifically, vinyl compounds, urethanes, urethane acrylates, acrylates, epoxy And epoxy acrylate resins. Examples of the curable composition containing these coating agents include vinyl, urethane, urethane acrylate, acrylate, epoxy, and epoxy acrylate curable compositions.

また、前記硬化性組成物は、重合開始剤を含んでいてもよい。前記重合開始剤としては、公知の光重合開始剤または熱重合開始剤を用いることができ、光重合開始剤と熱重合開始剤を併用してもよい。重合開始剤は、1種単独で用いてもよいし、2種以上を併用してもよい。   Moreover, the said curable composition may contain the polymerization initiator. As the polymerization initiator, a known photopolymerization initiator or a thermal polymerization initiator can be used, and a photopolymerization initiator and a thermal polymerization initiator may be used in combination. A polymerization initiator may be used individually by 1 type, and may use 2 or more types together.

前記硬化性組成物中、重合開始剤の配合割合は、硬化性組成物の全量を100重量%とした場合、好ましくは0.1〜10重量%、より好ましくは0.5〜10重量%、さらに好ましくは1〜5重量%である。重合開始剤の配合割合が前記範囲にあると、硬化性組成物の硬化特性および取り扱い性が優れ、所望の硬度を有する反射防止膜、ハードコート膜や帯電防止膜などの機能膜を得ることができる。   In the curable composition, the blending ratio of the polymerization initiator is preferably 0.1 to 10% by weight, more preferably 0.5 to 10% by weight, when the total amount of the curable composition is 100% by weight. More preferably, it is 1 to 5% by weight. When the blending ratio of the polymerization initiator is within the above range, it is possible to obtain a functional film such as an antireflective film, a hard coat film or an antistatic film having excellent curing characteristics and handleability of the curable composition and having a desired hardness. it can.

さらに、前記硬化性組成物には溶剤として有機溶剤を加えてもよく、有機溶剤としては、公知のものを使用することができる。有機溶剤の具体例としては、メタノール、エタノール、イソプロパノール、ブタノール、オクタノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、乳酸エチル、γ−ブチロラクトン、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等のエステル類;エチレングリコールモノメチルエーテル、ジエチレングリコールモノブチルエーテル等のエーテル類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類;ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等のアミド類を挙げることができる。   Furthermore, an organic solvent may be added as a solvent to the curable composition, and known organic solvents can be used. Specific examples of the organic solvent include alcohols such as methanol, ethanol, isopropanol, butanol and octanol; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; ethyl acetate, butyl acetate, ethyl lactate, γ-butyrolactone, propylene Esters such as glycol monomethyl ether acetate and propylene glycol monoethyl ether acetate; Ethers such as ethylene glycol monomethyl ether and diethylene glycol monobutyl ether; Aromatic hydrocarbons such as benzene, toluene and xylene; Dimethylformamide, dimethylacetamide, N- Examples include amides such as methylpyrrolidone.

これら溶剤は、1種単独で用いてもよいし、2種以上を併用してもよい。
前記機能膜の厚さは、好ましくは0.1〜20μm、さらに好ましくは0.5〜10μm、特に好ましくは0.7〜5μmである。
These solvents may be used alone or in combination of two or more.
The thickness of the functional film is preferably 0.1 to 20 μm, more preferably 0.5 to 10 μm, and particularly preferably 0.7 to 5 μm.

また、基材(i)と機能膜および/または誘電体多層膜との密着性や、機能膜と誘電体多層膜との密着性を上げる目的で、基材(i)、機能膜または誘電体多層膜の表面にコロナ処理やプラズマ処理等の表面処理をしてもよい。   Further, for the purpose of improving the adhesion between the base material (i) and the functional film and / or the dielectric multilayer film, and the adhesion between the functional film and the dielectric multilayer film, the base material (i), the functional film or the dielectric Surface treatment such as corona treatment or plasma treatment may be applied to the surface of the multilayer film.

[光学フィルターの用途]
本発明の光学フィルターは、視野角が広く、優れた近赤外線カット能等を有する。したがって、カメラモジュールのCCDやCMOSイメージセンサー等の固体撮像素子の視感度補正用として有用である。特に、デジタルスチルカメラ、スマートフォン用カメラ、携帯電話用カメラ、デジタルビデオカメラ、ウェアラブルデバイス用カメラ、PCカメラ、監視カメラ、自動車用カメラ、テレビ、カーナビゲーション、携帯情報端末、ビデオゲーム機、携帯ゲーム機、指紋認証システム、デジタルミュージックプレーヤー等に有用である。さらに、自動車や建物等のガラス板等に装着される熱線カットフィルターなどとしても有用である。
[Application of optical filter]
The optical filter of the present invention has a wide viewing angle and has excellent near-infrared cutting ability and the like. Therefore, it is useful for correcting the visibility of a solid-state imaging device such as a CCD or CMOS image sensor of a camera module. In particular, digital still cameras, smartphone cameras, mobile phone cameras, digital video cameras, wearable device cameras, PC cameras, surveillance cameras, automotive cameras, TVs, car navigation systems, personal digital assistants, video game machines, and portable game machines It is useful for fingerprint authentication system, digital music player, etc. Furthermore, it is also useful as a heat ray cut filter attached to a glass plate of an automobile or a building.

[固体撮像装置]
本発明の固体撮像装置は、本発明の光学フィルターを具備する。ここで、固体撮像装置とは、CCDやCMOSイメージセンサー等といった固体撮像素子を備えたイメージセンサーであり、具体的にはデジタルスチルカメラ、スマートフォン用カメラ、携帯電話用カメラ、ウェアラブルデバイス用カメラ、デジタルビデオカメラ等の用途に用いることができる。例えば、本発明のカメラモジュールは、本発明の光学フィルターを具備する。
[Solid-state imaging device]
The solid-state imaging device of the present invention includes the optical filter of the present invention. Here, the solid-state imaging device is an image sensor including a solid-state imaging device such as a CCD or a CMOS image sensor. Specifically, a digital still camera, a smartphone camera, a mobile phone camera, a wearable device camera, a digital camera It can be used for applications such as video cameras. For example, the camera module of the present invention includes the optical filter of the present invention.

以下、実施例に基づいて本発明をより具体的に説明するが、本発明はこれら実施例に何ら限定されるものではない。なお、「部」は、特に断りのない限り「重量部」を意味する。また、各物性値の測定方法および物性の評価方法は以下のとおりである。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example, this invention is not limited to these Examples at all. “Parts” means “parts by weight” unless otherwise specified. Moreover, the measurement method of each physical property value and the evaluation method of the physical property are as follows.

<分子量>
樹脂の分子量は、各樹脂の溶剤への溶解性等を考慮し、下記の(a)または(b)の方法にて測定を行った。
<Molecular weight>
The molecular weight of the resin was measured by the following method (a) or (b) in consideration of the solubility of each resin in a solvent.

(a)ウオターズ(WATERS)社製のゲルパーミエ−ションクロマトグラフィー(GPC)装置(150C型、カラム:東ソー社製Hタイプカラム、展開溶剤:o−ジクロロベンゼン)を用い、標準ポリスチレン換算の重量平均分子量(Mw)および数平均分子量(Mn)を測定した。   (A) Weight average molecular weight in terms of standard polystyrene using a gel permeation chromatography (GPC) apparatus (150C type, column: H type column manufactured by Tosoh Corporation, developing solvent: o-dichlorobenzene) manufactured by WATERS (Mw) and number average molecular weight (Mn) were measured.

(b)東ソー社製GPC装置(HLC−8220型、カラム:TSKgelα‐M、展開溶剤:THF)を用い、標準ポリスチレン換算の重量平均分子量(Mw)および数平均分子量(Mn)を測定した。   (B) Standard polystyrene equivalent weight average molecular weight (Mw) and number average molecular weight (Mn) were measured using a GPC apparatus (HLC-8220 type, column: TSKgel α-M, developing solvent: THF) manufactured by Tosoh Corporation.

<ガラス転移温度(Tg)>
エスアイアイ・ナノテクノロジーズ株式会社製の示差走査熱量計(DSC6200)を用いて、昇温速度:毎分20℃、窒素気流下で測定した。
<Glass transition temperature (Tg)>
Using a differential scanning calorimeter (DSC6200) manufactured by SII Nano Technologies, Inc., the rate of temperature increase was measured at 20 ° C. per minute under a nitrogen stream.

<弾性率>
弾性率は、株式会社フィッシャーインストルメンツ製「ピコデンターHM500」を用いて、測定条件:300mN/10sで測定した。
<Elastic modulus>
The elastic modulus was measured under a measurement condition of 300 mN / 10 s using “Picodenter HM500” manufactured by Fisher Instruments Co., Ltd.

<厚み>
支持体の厚みは(株)ミツトヨ製「デジマチックインジケータ」を用いて測定し、樹脂層の厚みは大塚電子(株)製「反射分光膜厚計FE−3000」を用いて測定した。
<Thickness>
The thickness of the support was measured using “Digimatic Indicator” manufactured by Mitutoyo Corporation, and the thickness of the resin layer was measured using “Reflected Spectral Thickness Meter FE-3000” manufactured by Otsuka Electronics Co., Ltd.

<反り>
10mm角にチップカットした蒸着シートを、(株)KEYENCE製「デジタルマイクロスコープVHX−600」の観察ステージ上に配置し、横から観察してチップ端部の反りの高さを測定し、下記基準で評価した。
○○○:20μm未満
○○:20μm≦反り<40μm
○:40μm≦反り<60μm
△:60μm≦反り<80μm
×:80μm以上
<Warpage>
A 10mm square chip-deposited deposition sheet is placed on the observation stage of “Digital Microscope VHX-600” manufactured by KEYENCE Co., Ltd. and observed from the side to measure the warp height of the tip end. It was evaluated with.
OO: Less than 20 μm XX: 20 μm ≦ warp <40 μm
○: 40 μm ≦ warp <60 μm
Δ: 60 μm ≦ warp <80 μm
×: 80 μm or more

<割れ>
10mm角にチップカットした蒸着シートを、100mmの高さからSUS板状へ50回落下させ、(株)KEYENCE製「デジタルマイクロスコープVHX−600」を用いて50倍にて、割れや欠けの発生状況を観察し、下記基準で評価した。
○○○: 割れ・欠けの発生無し。
○○: 1〜3箇所欠け・割れを生じる。
○: 3〜9箇所欠け・割れを生じる。
△: 10箇所以上に欠け・割れを生じる。
<Break>
A 10mm square chip-cut deposition sheet is dropped 50 times onto a SUS plate from a height of 100mm, and cracks and chips are generated at 50 times using "Digital Microscope VHX-600" manufactured by KEYENCE. The situation was observed and evaluated according to the following criteria.
○○○: No cracking or chipping.
○○: 1 to 3 spots are broken or cracked.
○: 3 to 9 spots are broken or cracked.
Δ: Chipping or cracking occurs at 10 or more locations.

[合成例]
下記実施例で用いた化合物(A)は、一般的に知られている方法で合成した。一般的な合成方法としては、例えば、特許第3366697号公報、特許第2846091号公報、特許第2864475号公報、特許第3703869号公報、特開昭60−228448号公報、特開平1−146846号公報、特開平1−228960号公報、特許第4081149号公報、特開昭63−124054号公報、「フタロシアニン −化学と機能―」(アイピーシー、1997年)、特開2007−169315号公報、特開2009−108267号公報、特開2010−241873号公報、特許第3699464号公報、特許第4740631号公報などに記載されている方法を挙げることができる。
[Synthesis example]
The compound (A) used in the following examples was synthesized by a generally known method. As general synthesis methods, for example, Japanese Patent No. 336697, Japanese Patent No. 2846091, Japanese Patent No. 2864475, Japanese Patent No. 3703869, Japanese Patent Laid-Open No. 60-228448, Japanese Patent Laid-Open No. 1-146846 are disclosed. JP-A-1-228960, JP-A-4081149, JP-A-63-124054, “Phthalocyanine—Chemistry and Function” (IPC, 1997), JP-A-2007-169315, JP Examples include methods described in JP-A-2009-108267, JP-A 2010-241873, JP-A-3699464, JP-A-4740431, and the like.

<樹脂合成例1>
下記式(a)で表される8−メチル−8−メトキシカルボニルテトラシクロ[4.4.0.12,5.17,10]ドデカ−3−エン(以下「DNM」ともいう。)100部、1−ヘキセン(分子量調節剤)18部およびトルエン(開環重合反応用溶媒)300部を、窒素置換した反応容器に仕込み、この溶液を80℃に加熱した。次いで、反応容器内の溶液に、重合触媒として、トリエチルアルミニウムのトルエン溶液(0.6mol/リットル)0.2部と、メタノール変性の六塩化タングステンのトルエン溶液(濃度0.025mol/リットル)0.9部とを添加し、この溶液を80℃で3時間加熱攪拌することにより開環重合反応させて開環重合体溶液を得た。この重合反応における重合転化率は97%であった。
<Resin synthesis example 1>
8-methyl-8-methoxycarbonyltetracyclo represented by the following formula (a) [4.4.0.1 2,5 . 1 7,10 ] Dodec-3-ene (hereinafter also referred to as “DNM”) 100 parts, 18 parts of 1-hexene (molecular weight regulator) and 300 parts of toluene (solvent for ring-opening polymerization reaction) were substituted with nitrogen. The vessel was charged and the solution was heated to 80 ° C. Next, 0.2 parts of a toluene solution of triethylaluminum (0.6 mol / liter) as a polymerization catalyst and a toluene solution of methanol-modified tungsten hexachloride (concentration 0.025 mol / liter) were added to the solution in the reaction vessel. 9 parts was added and this solution was heated and stirred at 80 ° C. for 3 hours to cause a ring-opening polymerization reaction to obtain a ring-opening polymer solution. The polymerization conversion rate in this polymerization reaction was 97%.

Figure 2017032685
Figure 2017032685

このようにして得られた開環重合体溶液1,000部をオートクレーブに仕込み、この開環重合体溶液に、RuHCl(CO)[P(C6533を0.12部添加し、水素ガス圧100kg/cm2、反応温度165℃の条件下で、3時間加熱撹拌して水素添加反応を行った。得られた反応溶液(水素添加重合体溶液)を冷却した後、水素ガスを放圧した。この反応溶液を大量のメタノール中に注いで凝固物を分離回収し、これを乾燥して、水素添加重合体(以下「樹脂A」ともいう。)を得た。得られた樹脂Aは、数平均分子量(Mn)が32,000、重量平均分子量(Mw)が137,000であり、ガラス転移温度(Tg)が165℃であった。また、得られた樹脂Aからなる樹脂層の弾性率は3GPaであった。 1,000 parts of the ring-opening polymer solution thus obtained was charged into an autoclave, and 0.12 part of RuHCl (CO) [P (C 6 H 5 ) 3 ] 3 was added to the ring-opening polymer solution. Then, the hydrogenation reaction was performed by heating and stirring for 3 hours under the conditions of a hydrogen gas pressure of 100 kg / cm 2 and a reaction temperature of 165 ° C. After cooling the obtained reaction solution (hydrogenated polymer solution), the hydrogen gas was released. This reaction solution was poured into a large amount of methanol to separate and recover the coagulated product, and dried to obtain a hydrogenated polymer (hereinafter also referred to as “resin A”). The obtained resin A had a number average molecular weight (Mn) of 32,000, a weight average molecular weight (Mw) of 137,000, and a glass transition temperature (Tg) of 165 ° C. Moreover, the elasticity modulus of the resin layer which consists of obtained resin A was 3 GPa.

[実施例1]
樹脂合成例1で得られた樹脂A 100部、化合物(A)として前記化合物(a−1) 0.3部、および塩化メチレンを加えて調製した樹脂溶液(樹脂濃度20重量%)を、ガラス支持体(SCHOTT製「D263」、厚み;80μm、弾性率70GPa)上にキャストし、150℃で1時間乾燥することにより、ガラス支持体上に厚みが10μmの樹脂層が形成された基材を得た。
[Example 1]
A resin solution (resin concentration 20% by weight) prepared by adding 100 parts of the resin A obtained in Resin Synthesis Example 1, 0.3 part of the compound (a-1) as the compound (A), and methylene chloride was added to glass. A substrate on which a resin layer having a thickness of 10 μm is formed on a glass support by casting on a support (“D263” manufactured by SCHOTT, thickness: 80 μm, elastic modulus 70 GPa) and drying at 150 ° C. for 1 hour. Obtained.

続いて、得られた基材の片面に、蒸着温度1 0 0 ℃ で近赤外線を反射する多層蒸着膜〔シリカ( S i O 2 : 膜厚8 3 〜 1 9 9 n m ) 層とチタニア( T i O 2 : 膜厚1 0 1 〜 1 2 5 n m)層とが交互に積層されてなるもの, 積層数2 0 〕を形成し、さらに基材のもう一方の面に、蒸着温度1 0 0 ℃ で近赤外線を反射する多層蒸着膜〔シリカ( S i O 2 : 膜厚7 7 〜1 8 9 n m ) 層とチタニア( T i O 2 : 膜厚8 4 〜 1 1 8 n m ) 層とが交互に積層されてなるもの, 積層数2 6 〕を形成し、両面の蒸着膜の厚さの合計が0.005mmの近赤外線カットフィルターを得た。多層蒸着膜は基材屈折率の波長依存性等を考慮した上で設計した。得られた近赤外線カットフィルターの反りおよび割れに関する評価を行った。結果を表1に示す。 Subsequently, on one side of the obtained base material, a multilayer deposited film reflecting a near infrared ray at a deposition temperature of 100 ° C. [silica (SiO 2 : film thickness 8 3 to 1 9 9 nm) layer and titania ( T i O 2 : Thickness 10 1 to 1 25 nm) are alternately stacked, and the number of stacked layers 2 0] is further formed, and the deposition temperature is 1 on the other surface of the substrate. Multi-layer vapor-deposited film reflecting near infrared rays at 0 ° C. [silica (SiO 2 : film thickness 7 7 to 1 89 nm) layer and titania (TiO 2 : film thickness 8 4 to 1 1 8 nm) ) The number of laminated layers was 2 6], and a near-infrared cut filter having a total thickness of the deposited films on both sides of 0.005 mm was obtained. The multilayer deposited film was designed in consideration of the wavelength dependence of the refractive index of the substrate. The obtained near-infrared cut filter was evaluated for warpage and cracking. The results are shown in Table 1.

[実施例2〜9]
樹脂層および支持体を構成する材料種、ならびに、樹脂層および支持体の厚みを表1に示すように変更したこと以外は、実施例1と同様にして近赤外線カットフィルターを作成し、評価した。得られた近赤外線カットフィルターの評価結果を表1に示す。
[Examples 2 to 9]
A near-infrared cut filter was prepared and evaluated in the same manner as in Example 1 except that the material type constituting the resin layer and the support, and the thickness of the resin layer and the support were changed as shown in Table 1. . Table 1 shows the evaluation results of the obtained near-infrared cut filter.

[比較例1]
後述する樹脂B 100部に化合物(A)として化合物(a−1) 0.3部を加えて調製した樹脂塗液を、PENフィルムにバーコーターにて塗布し、80℃で2分間加熱して溶剤を揮発除去した。この際、乾燥後の厚みが5μmになるようにバーを選定した。次に、コンベア式UV露光機を用いて露光(露光量500mJ/cm2、200mW/cm2)を行い、樹脂Bを硬化させ、PENフィルム上に厚みが5μmの樹脂層が形成された基材を得た。実施例1と同様にして、得られた基材の両面に多層蒸着膜を形成して近赤外線カットフィルターを作成し、評価した。結果を表1に示す。
[Comparative Example 1]
A resin coating solution prepared by adding 0.3 part of compound (a-1) as compound (A) to 100 parts of resin B described later is applied to a PEN film with a bar coater and heated at 80 ° C. for 2 minutes. The solvent was removed by volatilization. At this time, the bar was selected so that the thickness after drying was 5 μm. Next, exposure (exposure amounts: 500 mJ / cm 2 , 200 mW / cm 2 ) is carried out using a conveyor-type UV exposure machine, the resin B is cured, and a substrate on which a resin layer having a thickness of 5 μm is formed on the PEN film Got. In the same manner as in Example 1, multilayer deposited films were formed on both surfaces of the obtained substrate to produce a near infrared cut filter and evaluated. The results are shown in Table 1.

[比較例2]
樹脂Cを用いたこと以外は、比較例1と同様にして近赤外線カットフィルターを作成し、評価した。結果を表1に示す。
[Comparative Example 2]
A near-infrared cut filter was prepared and evaluated in the same manner as in Comparative Example 1 except that Resin C was used. The results are shown in Table 1.

Figure 2017032685
表1中の支持体および樹脂層の材料種は下記の通りである。
Figure 2017032685
The material types of the support and the resin layer in Table 1 are as follows.

<支持体の材料種>
ガラスA:SCHOTT製「D263」(弾性率;70GPa)
ガラスB:松浪硝子工業(株)製「BS13」(弾性率;60GPa)
サファイア:京セラ(株)製「SA100」(弾性率;470GPa)
PEN:帝人デュポンフィルム(株)製「テオネックス」(弾性率;6GPa、ポリエチレンナフタレート)
ガラスBは近赤外波長領域に吸収極大を有し、厚みが300μmのときの半値が597nm、厚みが100μmのときの半値が641nmであった。
<Material type of support>
Glass A: “D263” manufactured by SCHOTT (elastic modulus: 70 GPa)
Glass B: “BS13” manufactured by Matsunami Glass Industrial Co., Ltd. (elastic modulus: 60 GPa)
Sapphire: “SA100” manufactured by Kyocera Corporation (elastic modulus; 470 GPa)
PEN: “Teonex” manufactured by Teijin DuPont Films Ltd. (elastic modulus: 6 GPa, polyethylene naphthalate)
Glass B had an absorption maximum in the near-infrared wavelength region, and the half value when the thickness was 300 μm was 597 nm, and the half value when the thickness was 100 μm was 641 nm.

<樹脂層の材料種>
樹脂A:環状オレフィン系樹脂(樹脂合成例1)
樹脂B:アクリル系紫外線硬化型樹脂(ジペンタエリスリトールヘキサアクリレート 100重量部、1−ヒドロキシシクロヘキシルフェニルケトン 5重量部、メチルエチルケトン(溶剤、固形分濃度:30%))
樹脂C:ウレタンアクリル系紫外線硬化型樹脂(大成ファインケミカル(株)製「8BR−500」 50重量部、トリシクロデカンジメタノールジアクリレート 50重量部、1−ヒドロキシシクロヘキシルフェニルケトン 5重量部、メチルエチルケトン(溶剤、固形分濃度:30%))
<Material type of resin layer>
Resin A: Cyclic olefin resin (resin synthesis example 1)
Resin B: Acrylic ultraviolet curable resin (100 parts by weight of dipentaerythritol hexaacrylate, 5 parts by weight of 1-hydroxycyclohexyl phenyl ketone, methyl ethyl ketone (solvent, solid content concentration: 30%))
Resin C: Urethane acrylic ultraviolet curable resin (“8BR-500” manufactured by Taisei Fine Chemical Co., Ltd.) 50 parts by weight, tricyclodecane dimethanol diacrylate 50 parts by weight, 1-hydroxycyclohexyl phenyl ketone 5 parts by weight, methyl ethyl ketone (solvent , Solid content concentration: 30%))

本発明の光学フィルターは、デジタルスチルカメラ、携帯電話用カメラ、デジタルビデオカメラ、パーソナルコンピューター用カメラ、監視カメラ、自動車用カメラ、テレビ、カーナビゲーションシステム用車載装置、携帯情報端末、ビデオゲーム機、携帯ゲーム機、指紋認証システム用装置、デジタルミュージックプレーヤー等に好適に用いることができる。さらに、自動車や建物などのガラス等に装着される熱線カットフィルターなどとしても好適に用いることができる。   The optical filter of the present invention is a digital still camera, a mobile phone camera, a digital video camera, a personal computer camera, a surveillance camera, an automobile camera, a television, an in-vehicle device for a car navigation system, a portable information terminal, a video game machine, a mobile phone. It can be suitably used for game machines, fingerprint authentication system devices, digital music players, and the like. Furthermore, it can be suitably used as a heat ray cut filter or the like attached to glass or the like of automobiles and buildings.

Claims (12)

弾性率が50〜500GPaである支持体と、該支持体の少なくとも一方の面に樹脂層とを有する基材を含み、可視光線を透過し、かつ、近赤外線の少なくとも一部を遮断することを特徴とする光学フィルター。   Including a support having an elastic modulus of 50 to 500 GPa and a substrate having a resin layer on at least one surface of the support, transmitting visible light, and blocking at least part of near infrared rays. Features optical filter. 前記樹脂層の弾性率が2〜8GPaであることを特徴とする請求項1に記載の光学フィルター。   The optical filter according to claim 1, wherein the resin layer has an elastic modulus of 2 to 8 GPa. さらに、下記式(1)、(2)および(3)を満たすことを特徴とする請求項1または2に記載の光学フィルター。
Y ≧ −10500X + 540000 (1)
30 ≦ Ta ≦ 300 (2)
2 ≦ Tb ≦ 100 (3)
[式(1)〜(3)中、Yは下記式(4)を満たし、Xは下記式(5)を満たし、Taは支持体の厚み(単位;μm)を示し、Tbは樹脂層の厚み(単位;μm)を示す。]
Y =(Ea×Ta)×(Eb×Tb) (4)
X = Ta (5)
[式(4)中、Eaは支持体の弾性率(単位;GPa)を示し、Ebは樹脂層の弾性率(単位;GPa)を示す。]
The optical filter according to claim 1 or 2, wherein the following expressions (1), (2), and (3) are satisfied.
Y ≧ −10500X + 540000 (1)
30 ≦ Ta ≦ 300 (2)
2 ≦ Tb ≦ 100 (3)
[In the formulas (1) to (3), Y satisfies the following formula (4), X satisfies the following formula (5), Ta represents the thickness of the support (unit: μm), and Tb represents the resin layer Thickness (unit: μm) is shown. ]
Y = (Ea × Ta) × (Eb × Tb) (4)
X = Ta (5)
[In Formula (4), Ea shows the elasticity modulus (unit; GPa) of a support body, and Eb shows the elasticity modulus (unit; GPa) of a resin layer. ]
前記Yおよび前記Xが下記式(6)を満たすことを特徴とする請求項3に記載の光学フィルター。
Y ≧ 300X (6)
The optical filter according to claim 3, wherein the Y and the X satisfy the following formula (6).
Y ≧ 300X (6)
前記Yおよび前記Xが下記式(7)を満たすことを特徴とする請求項3または4に記載の光学フィルター。
Y ≦ 24000X (7)
The optical filter according to claim 3 or 4, wherein the Y and the X satisfy the following formula (7).
Y ≤ 24000X (7)
前記基材の少なくとも一方の面に誘電体多層膜を有することを特徴とする請求項1〜5のいずれか1項に記載の光学フィルター。   The optical filter according to claim 1, further comprising a dielectric multilayer film on at least one surface of the base material. 前記樹脂層が、環状(ポリ)オレフィン系樹脂、芳香族ポリエーテル系樹脂、ポリイミド系樹脂、フルオレンポリカーボネート系樹脂、フルオレンポリエステル系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリアリレート系樹脂、ポリサルホン系樹脂、ポリエーテルサルホン系樹脂、ポリパラフェニレン系樹脂、ポリアミドイミド系樹脂、ポリエチレンナフタレート系樹脂、フッ素化芳香族ポリマー系樹脂、(変性)アクリル系樹脂、エポキシ系樹脂、アリルエステル系硬化型樹脂、シルセスキオキサン系紫外線硬化型樹脂、アクリル系紫外線硬化型樹脂およびビニル系紫外線硬化型樹脂からなる群より選ばれる少なくとも1種の樹脂から形成されることを特徴とする請求項1〜6のいずれか1項に記載の光学フィルター。   The resin layer is a cyclic (poly) olefin resin, aromatic polyether resin, polyimide resin, fluorene polycarbonate resin, fluorene polyester resin, polycarbonate resin, polyamide resin, polyarylate resin, polysulfone resin. , Polyethersulfone resins, polyparaphenylene resins, polyamideimide resins, polyethylene naphthalate resins, fluorinated aromatic polymer resins, (modified) acrylic resins, epoxy resins, allyl ester curable resins The at least one resin selected from the group consisting of a silsesquioxane ultraviolet curable resin, an acrylic ultraviolet curable resin, and a vinyl ultraviolet curable resin. The optical filter according to any one of the above. 前記支持体が、ガラス、水晶、合成石英、ニオブ酸リチウムおよびサファイアからなる群より選ばれる少なくとも1種から形成されることを特徴とする請求項1〜7のいずれか1項に記載の光学フィルター。   The optical filter according to any one of claims 1 to 7, wherein the support is formed of at least one selected from the group consisting of glass, quartz, synthetic quartz, lithium niobate, and sapphire. . 前記樹脂層が、波長600nm以上800nm未満に吸収極大を有する化合物(A)を含むことを特徴とする請求項1〜8のいずれか1項に記載の光学フィルター。   The optical filter according to claim 1, wherein the resin layer includes a compound (A) having an absorption maximum at a wavelength of 600 nm or more and less than 800 nm. 前記支持体が、近赤外波長領域に吸収極大を有することを特徴とする請求項8に記載の光学フィルター。   The optical filter according to claim 8, wherein the support has an absorption maximum in a near infrared wavelength region. 請求項1〜10のいずれか1項に記載の光学フィルターを具備する固体撮像装置。   The solid-state imaging device which comprises the optical filter of any one of Claims 1-10. 請求項1〜10のいずれか1項に記載の光学フィルターを具備するカメラモジュール。   A camera module comprising the optical filter according to claim 1.
JP2015150492A 2015-07-30 2015-07-30 Optical filter and device using optical filter Active JP6705132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015150492A JP6705132B2 (en) 2015-07-30 2015-07-30 Optical filter and device using optical filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015150492A JP6705132B2 (en) 2015-07-30 2015-07-30 Optical filter and device using optical filter

Publications (2)

Publication Number Publication Date
JP2017032685A true JP2017032685A (en) 2017-02-09
JP6705132B2 JP6705132B2 (en) 2020-06-03

Family

ID=57987927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015150492A Active JP6705132B2 (en) 2015-07-30 2015-07-30 Optical filter and device using optical filter

Country Status (1)

Country Link
JP (1) JP6705132B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018040932A (en) * 2016-09-07 2018-03-15 株式会社日本触媒 Optical filter
WO2019054281A1 (en) 2017-09-15 2019-03-21 富士フイルム株式会社 Composition, film, laminate, infrared transmission filter, solid-state imaging device and infrared sensor
JP2019049586A (en) * 2017-09-07 2019-03-28 株式会社日本触媒 Light-selective transmission filter
JP2019056822A (en) * 2017-09-21 2019-04-11 日本電気硝子株式会社 Holder-equipped infrared absorbing glass with holder
JP2019056823A (en) * 2017-09-21 2019-04-11 日本電気硝子株式会社 Holder-equipped infrared absorbing glass with holder
JP2019174798A (en) * 2018-03-27 2019-10-10 三星電子株式会社Samsung Electronics Co.,Ltd. Near-infrared absorbing film, optical filter, and electronic device
JP2019200399A (en) * 2018-05-18 2019-11-21 Agc株式会社 Optical filter and imaging device
WO2020050177A1 (en) * 2018-09-03 2020-03-12 Jsr株式会社 Optical filter
WO2020059509A1 (en) 2018-09-20 2020-03-26 富士フイルム株式会社 Curable composition, cured film, infrared transmission filter, laminate, solid-state imaging element, sensor, and pattern formation method
WO2021039253A1 (en) 2019-08-30 2021-03-04 富士フイルム株式会社 Composition, film, optical filter and method for producing same, solid-state imaging element, infrared sensor and sensor module
WO2021039205A1 (en) 2019-08-29 2021-03-04 富士フイルム株式会社 Composition, film, near-infrared cut-off filter, pattern formation method, laminate, solid-state imaging element, infrared sensor, image display device, camera module and compound
JPWO2021117518A1 (en) * 2019-12-11 2021-06-17
WO2022131191A1 (en) 2020-12-16 2022-06-23 富士フイルム株式会社 Composition, membrane, optical filter, solid image pickup element, image display apparatus, and infrared ray sensor
WO2022130773A1 (en) 2020-12-17 2022-06-23 富士フイルム株式会社 Composition, film, optical filter, solid-state imaging element, image display device, and infrared sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000071392A (en) * 1998-09-01 2000-03-07 Toppan Printing Co Ltd Hard coat film or sheet
JP2012030577A (en) * 2010-06-29 2012-02-16 Tokai Rubber Ind Ltd Transparent laminated film
JP2014052431A (en) * 2012-09-05 2014-03-20 Asahi Glass Co Ltd Near-infrared absorption filter and solid-state image pickup device
WO2014168190A1 (en) * 2013-04-10 2014-10-16 旭硝子株式会社 Infrared shielding filter, solid-state imaging element, and imaging/display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000071392A (en) * 1998-09-01 2000-03-07 Toppan Printing Co Ltd Hard coat film or sheet
JP2012030577A (en) * 2010-06-29 2012-02-16 Tokai Rubber Ind Ltd Transparent laminated film
JP2014052431A (en) * 2012-09-05 2014-03-20 Asahi Glass Co Ltd Near-infrared absorption filter and solid-state image pickup device
WO2014168190A1 (en) * 2013-04-10 2014-10-16 旭硝子株式会社 Infrared shielding filter, solid-state imaging element, and imaging/display device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018040932A (en) * 2016-09-07 2018-03-15 株式会社日本触媒 Optical filter
JP7015128B2 (en) 2017-09-07 2022-02-02 株式会社日本触媒 Optical selective transmission filter
JP2019049586A (en) * 2017-09-07 2019-03-28 株式会社日本触媒 Light-selective transmission filter
WO2019054281A1 (en) 2017-09-15 2019-03-21 富士フイルム株式会社 Composition, film, laminate, infrared transmission filter, solid-state imaging device and infrared sensor
JP2019056822A (en) * 2017-09-21 2019-04-11 日本電気硝子株式会社 Holder-equipped infrared absorbing glass with holder
JP2019056823A (en) * 2017-09-21 2019-04-11 日本電気硝子株式会社 Holder-equipped infrared absorbing glass with holder
JP2019174798A (en) * 2018-03-27 2019-10-10 三星電子株式会社Samsung Electronics Co.,Ltd. Near-infrared absorbing film, optical filter, and electronic device
JP2019200399A (en) * 2018-05-18 2019-11-21 Agc株式会社 Optical filter and imaging device
CN112543881A (en) * 2018-09-03 2021-03-23 Jsr株式会社 Optical filter
TWI813759B (en) * 2018-09-03 2023-09-01 日商Jsr股份有限公司 optical filter
WO2020050177A1 (en) * 2018-09-03 2020-03-12 Jsr株式会社 Optical filter
JPWO2020050177A1 (en) * 2018-09-03 2021-08-26 Jsr株式会社 Optical filter
WO2020059509A1 (en) 2018-09-20 2020-03-26 富士フイルム株式会社 Curable composition, cured film, infrared transmission filter, laminate, solid-state imaging element, sensor, and pattern formation method
WO2021039205A1 (en) 2019-08-29 2021-03-04 富士フイルム株式会社 Composition, film, near-infrared cut-off filter, pattern formation method, laminate, solid-state imaging element, infrared sensor, image display device, camera module and compound
WO2021039253A1 (en) 2019-08-30 2021-03-04 富士フイルム株式会社 Composition, film, optical filter and method for producing same, solid-state imaging element, infrared sensor and sensor module
WO2021117518A1 (en) * 2019-12-11 2021-06-17 Agc株式会社 Optical filter and imaging device
JPWO2021117518A1 (en) * 2019-12-11 2021-06-17
JP7533481B2 (en) 2019-12-11 2024-08-14 Agc株式会社 Optical filter and imaging device
WO2022131191A1 (en) 2020-12-16 2022-06-23 富士フイルム株式会社 Composition, membrane, optical filter, solid image pickup element, image display apparatus, and infrared ray sensor
WO2022130773A1 (en) 2020-12-17 2022-06-23 富士フイルム株式会社 Composition, film, optical filter, solid-state imaging element, image display device, and infrared sensor

Also Published As

Publication number Publication date
JP6705132B2 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
JP6705132B2 (en) Optical filter and device using optical filter
JP6627864B2 (en) Optical filter and device using optical filter
JP6358114B2 (en) Optical filter and device using optical filter
JP6256335B2 (en) Optical filter for solid-state imaging device and use thereof
JP6380390B2 (en) Optical filter and apparatus using the filter
JP7088261B2 (en) Optical filters and devices using optical filters
JP6578718B2 (en) Optical filter and device using optical filter
JP2020177253A (en) Optical filter and optical sensor device
WO2017164024A1 (en) Optical filter and apparatus using optical filter
JPWO2019022069A1 (en) Near infrared cut filter and device using the near infrared cut filter
JP7326993B2 (en) OPTICAL FILTER, MANUFACTURING METHOD THEREOF AND USE THEREOF
WO2014192715A1 (en) Optical filter, and device using said filter
JP2015040895A (en) Optical filter, and apparatus using optical filter
JP2015172004A (en) Novel cyanine compound, optical filter and device using optical filter
JP6693585B2 (en) Optical filter and device using optical filter
JP2019053157A (en) Optical filter and device using optical filter
TW202242010A (en) Substrate, optical filter, solid-state imaging device and camera module capable of being used in an optical filter which has excellent transmission characteristics of visible light rays and a part of near infrared rays and can suppress ghosting
JP6686636B2 (en) Optical filter and device using optical filter
JP7360665B2 (en) Resin composition, resin layer and optical filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20181225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200427

R150 Certificate of patent or registration of utility model

Ref document number: 6705132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250