JP2016208413A - Acoustic wave device - Google Patents
Acoustic wave device Download PDFInfo
- Publication number
- JP2016208413A JP2016208413A JP2015090682A JP2015090682A JP2016208413A JP 2016208413 A JP2016208413 A JP 2016208413A JP 2015090682 A JP2015090682 A JP 2015090682A JP 2015090682 A JP2015090682 A JP 2015090682A JP 2016208413 A JP2016208413 A JP 2016208413A
- Authority
- JP
- Japan
- Prior art keywords
- wiring
- acoustic wave
- layer
- substrate
- wirings
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 claims abstract description 49
- 239000010408 film Substances 0.000 description 57
- 229910052751 metal Inorganic materials 0.000 description 19
- 239000002184 metal Substances 0.000 description 19
- 230000005540 biological transmission Effects 0.000 description 18
- 230000004888 barrier function Effects 0.000 description 17
- 238000012986 modification Methods 0.000 description 17
- 230000004048 modification Effects 0.000 description 17
- 238000000034 method Methods 0.000 description 16
- 238000007747 plating Methods 0.000 description 15
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 11
- 229910052802 copper Inorganic materials 0.000 description 11
- 239000010949 copper Substances 0.000 description 11
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 11
- 229910052737 gold Inorganic materials 0.000 description 11
- 239000010931 gold Substances 0.000 description 11
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 101000968091 Pithecopus azureus Dermaseptin-H2 Proteins 0.000 description 7
- 101000927330 Pithecopus azureus Dermaseptin-H6 Proteins 0.000 description 7
- 230000003071 parasitic effect Effects 0.000 description 7
- 101000927339 Pithecopus azureus Dermaseptin-H3 Proteins 0.000 description 5
- 101000927335 Pithecopus azureus Dermaseptin-H4 Proteins 0.000 description 5
- 230000015556 catabolic process Effects 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052763 palladium Inorganic materials 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- 230000017525 heat dissipation Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 238000010897 surface acoustic wave method Methods 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 1
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Landscapes
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Abstract
Description
本発明は、弾性波デバイスに関し、例えば弾性波共振器の間に配線が設けられた弾性波デバイスに関する。 The present invention relates to an acoustic wave device, for example, an acoustic wave device in which wiring is provided between acoustic wave resonators.
弾性波デバイスは、移動体通信用のフィルタ等に用いられている。弾性波デバイスでは、基板上に複数の弾性波共振器が形成されている。弾性波共振器の間に形成された複数の配線が隣接して形成されることがある(特許文献1)。 Elastic wave devices are used in filters for mobile communication. In an acoustic wave device, a plurality of acoustic wave resonators are formed on a substrate. A plurality of wirings formed between the acoustic wave resonators may be formed adjacent to each other (Patent Document 1).
弾性波デバイスの小型化のため、隣接する配線の間隔を狭くすることが考えられる。しかしながら、異なる電位の配線間隔を狭くすると、配線間に寄生容量が生じ、弾性波デバイスの特性が劣化する。また、配線の応力により配線が短絡する可能性がある、さらに、配線間の放電により静電気破壊が生じる可能性がある。このように、配線間隔を狭くすることは難しい。 In order to reduce the size of the acoustic wave device, it is conceivable to reduce the interval between adjacent wirings. However, if the wiring interval of different potentials is narrowed, parasitic capacitance is generated between the wirings, and the characteristics of the acoustic wave device are deteriorated. In addition, the wiring may be short-circuited due to the stress of the wiring, and electrostatic breakdown may occur due to the discharge between the wirings. Thus, it is difficult to narrow the wiring interval.
本発明は、上記課題に鑑みなされたものであり、配線間隔を狭くし弾性波デバイスを小型化することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to reduce the acoustic wave device by reducing the wiring interval.
本発明は、基板と、前記基板上に設けられた第1弾性波共振器および第2弾性波共振器と、前記第1弾性波共振器と電気的に接続し、前記基板上であって前記第1弾性波共振器と前記第2弾性波共振器との間に設けられた第1配線と、前記第2弾性波共振器と電気的に接続し、前記基板上であって前記第1弾性波共振器と前記第2弾性波共振器との間に設けられ、前記第1配線と異なる電位であり、前記第1配線より厚い第2配線と、を具備することを特徴とする弾性波デバイスである。 The present invention provides a substrate, a first acoustic wave resonator and a second acoustic wave resonator provided on the substrate, and the first acoustic wave resonator electrically connected to the substrate, on the substrate, and A first wiring provided between the first elastic wave resonator and the second elastic wave resonator, and electrically connected to the second elastic wave resonator, on the substrate and on the first elastic wave resonator An acoustic wave device comprising: a second wiring provided between a wave resonator and the second acoustic wave resonator, having a potential different from that of the first wiring and being thicker than the first wiring. It is.
上記構成において、前記第2配線は、バンプが設けられたパッドに直接接続し、前記第1配線は、バンプが設けられたパッドに直接接続されていない構成とすることができる。 In the above configuration, the second wiring may be directly connected to a pad provided with a bump, and the first wiring may not be directly connected to a pad provided with a bump.
上記構成において、前記第2配線は前記第1配線より信号が入力する入力パッドに近い構成とすることができる。 In the above structure, the second wiring may be closer to an input pad for inputting a signal than the first wiring.
上記構成において、前記第1配線および前記第2配線の延伸方向は平行である構成とすることができる。 In the above configuration, the extending directions of the first wiring and the second wiring may be parallel.
上記構成において、前記第1弾性波共振器および前記第2弾性波共振器はそれぞれ第1バスバーおよび第2バスバーを含み、前記第1配線は前記第1バスバーに電気的に接続され、前記第2配線は前記第2バスバーに電気的に接続され、前記第1配線および前記第2配線の延伸方向は、前記第1バスバーおよび前記第2バスバーの延伸方向と平行である構成とすることができる。 In the above configuration, the first acoustic wave resonator and the second acoustic wave resonator each include a first bus bar and a second bus bar, the first wiring is electrically connected to the first bus bar, and the second The wiring may be electrically connected to the second bus bar, and the extending direction of the first wiring and the second wiring may be parallel to the extending direction of the first bus bar and the second bus bar.
上記構成において、入力端子と出力端子との間に直列に接続された1または複数の直列共振器と、前記入力端子と前記出力端子との間に並列に接続された複数の並列共振器と、を具備し、前記複数の並列共振器は前記第1弾性波共振器および前記第2弾性波共振器を含む構成とすることができる。 In the above configuration, one or more series resonators connected in series between the input terminal and the output terminal, a plurality of parallel resonators connected in parallel between the input terminal and the output terminal, The plurality of parallel resonators may include the first elastic wave resonator and the second elastic wave resonator.
上記構成において、前記基板上に形成された多重モード弾性波フィルタを具備し、前記第1配線は、前記多重モード弾性波フィルタの信号端子に電気的に接続され、前記第2配線は、前記多重モード弾性波フィルタのグランド端子に電気的に接続されている構成とすることができる。 In the above configuration, the multimode acoustic wave filter formed on the substrate is provided, the first wiring is electrically connected to a signal terminal of the multimode acoustic wave filter, and the second wiring is the multiple multiplexing It can be set as the structure electrically connected to the ground terminal of a mode elastic wave filter.
上記構成において、前記第2配線の一部は前記第1配線上を交差する構成とすることができる。 The said structure WHEREIN: A part of said 2nd wiring can be set as the structure which cross | intersects on the said 1st wiring.
上記構成において、前記基板上に形成された第1多重モード弾性波フィルタおよび第2多重モード弾性波フィルタを具備し、前記第1配線は、前記第1多重モード弾性波フィルタの信号端子と前記第2多重モード弾性波フィルタの信号端子とを接続し、前記第2配線は、前記第1多重モード弾性波フィルタおよび前記第2多重モード弾性波フィルタの少なくとも一方のグランド端子に接続されている構成とすることができる。 In the above-described configuration, a first multimode elastic wave filter and a second multimode elastic wave filter formed on the substrate are provided, and the first wiring includes a signal terminal of the first multimode elastic wave filter and the first multimode elastic wave filter. A second multi-mode elastic wave filter connected to a signal terminal of the multi-mode elastic wave filter; and the second wiring is connected to a ground terminal of at least one of the first multi-mode elastic wave filter and the second multi-mode elastic wave filter; can do.
本発明によれば、配線間隔を狭くし弾性波デバイスを小型化することができる。 According to the present invention, it is possible to reduce the acoustic wave device by narrowing the wiring interval.
以下、図面を参照し、本発明の実施例について説明する。 Embodiments of the present invention will be described below with reference to the drawings.
実施例1は、弾性波デバイスとして送信フィルタの例である。図1は、実施例1に係る弾性波デバイスが用いられるデュレプクサの回路図である。図1に示すように、アンテナ端子Antと送信端子Txとの間に送信フィルタ70が接続され、アンテナ端子Antと受信端子Rxとの間に受信フィルタ72が接続されている。送信フィルタ70は、送信端子Txから入力した信号のうち送信帯域の信号をアンテナ端子Antに出力する。受信フィルタ72は、アンテナ端子Antに入力した信号のうち受信帯域の信号を受信端子Rxに出力する。
Example 1 is an example of a transmission filter as an elastic wave device. FIG. 1 is a circuit diagram of a duplexer in which the acoustic wave device according to the first embodiment is used. As shown in FIG. 1, a
図2は、実施例1に係る弾性波デバイスの平面図である。図2に示すように、送信フィルタ100において、基板10上に、複数の弾性波共振器40、配線30、32およびパッド34が形成されている。基板10は、例えばLiTaO3基板またはLiNbO3基板等の圧電基板である。基板10は、サファイア基板等の支持基板に圧電基板を貼り付けた基板でもよい。弾性波共振器40は、例えば弾性表面波共振器である。弾性波共振器40は、1ポート共振器であり、IDT(Interdigital Transducer)とその両側に設けられた反射器Rを有する。配線30、32およびパッド34は基板10上に形成された銅膜または金膜等の金属膜により形成される。配線30および32は、弾性波共振器40間および弾性波共振器40とパッド34との間を接続する。配線32は配線30に比べ厚い。パッド34は配線32と同じ層構造であり同じ厚さである。パッド34上にバンプ36が形成されている。バンプ36は例えば金バンプまたは銅バンプであり、例えばスタッドバンプまたはめっきバンプである。
FIG. 2 is a plan view of the acoustic wave device according to the first embodiment. As shown in FIG. 2, in the
送信フィルタ100はラダー型フィルタである。直列共振器S1からS4は、アンテナ端子Ant(出力端子)であるパッド34と送信端子Tx(入力端子)であるパッド34との間に直列に接続されている。並列共振器P1からP3は、アンテナ端子Antと送信端子Txとの間に並列に接続されている。並列共振器P1からP3の一端はグランド端子GNDであるパッド34に接続されている。
The
図3は、図2の領域A1付近の拡大図である。図3に示すように、弾性波共振器40は、IDTとIDTの両側に形成された反射器Rを備える。IDTは、一対の櫛型電極48を備える。櫛型電極48は複数の電極指44と電極指44が接続されたバスバー46を備える。一対の櫛型電極48は、電極指44がほぼ互い違いに配列するように対向している。配線30a(第1配線)および32a(第2配線)はそれぞれバスバー46に電気的に接続されている。
FIG. 3 is an enlarged view of the vicinity of the area A1 in FIG. As shown in FIG. 3, the
図4は、図3のB−B断面図である。図4に示すように、電極指44、バスバー46および配線30aおよび32aの最下層15は、金属膜12により形成される。金属膜12は、例えばアルミニウム膜、チタン膜または銅膜である。配線30aは、最下層15、バリア層16aおよびシード層16bを備える。配線32aは、最下層15、バリア層16a、シード層16b、下層18、バリア層19および上層20を備える。バリア層16a、シード層16b、下層18、バリア層19および上層20は、例えばチタン層、銅層、銅層、パラジウム層および金層である。例えば、配線32aは、バリア層19および上層20を有していなくともよい。配線32aは上層20を有するがバリア層19を有してなくてもよい。
4 is a cross-sectional view taken along line BB in FIG. As shown in FIG. 4, the
配線30aおよび32aは、1または複数の層の積層膜を用いることができる。配線30aおよび32aとして主に機能する層(例えばシード層16b、下層18および上層20)としては、電気抵抗の低い金層、銅層、アルミニウム層またはこれらの複合層を用いることが好ましい。異なる材料の複数の層を有する場合、異なる材料の膜間には原子の相互拡散を抑制するバリア層を設けることが好ましい。相互拡散が生じると、強度が低下する、または抵抗が高くなってしまう。バリア層としては、例えばニッケル層、チタン層またはパラジウム層を用いる。バリア層の膜厚は拡散を抑制する観点から0.05μmから2μmである。配線30aの膜厚T1は、例えば0.1μmから0.5μmである。配線32aの膜厚T2は、例えば1μmから10μmである。配線30aと32aとの間隔D1は、例えば5μmから20μmである。配線30aおよび32aの各層は、めっき法、蒸着法またはスパッタリング法を用い形成することができる。基板10の大きさは例えば0.3mm2から1.5mm2であり、基板10の厚さは例えば1μmから500μmである。
As the
図2のように、領域A1に示すように、並列共振器P2とP3との間において、並列共振器P2に電気的に接続された配線32aと並列共振器P3に電気的に接続された配線30aとが隣接して設けられている。領域A2に示すように、並列共振器P1とP2との間において、並列共振器P1に電気的に接続された配線32aと並列共振器P2に電気的に接続された配線30aとが隣接して設けられている。配線32aはグランド電位であり、配線30aグランド電位とは異なる。
As shown in FIG. 2, as shown in region A1, between the parallel resonators P2 and P3, the
隣接する配線がともに厚い配線32の場合、配線32の間隔を狭くすると、配線間に寄生容量が生じ、弾性波デバイスの特性(例えば挿入損失)が劣化する。また、配線32の応力により配線32が短絡する可能性がある。さらに、配線32間の放電により静電気破壊が生じる可能性がある。このように、配線32の間隔を狭くすることは難しい。
In the case where the adjacent wirings are both
実施例1によれば、弾性波共振器40間において配線が隣接する領域A1およびA2において、電位が異なり隣接する配線30aおよび32aのうち一方の配線32aを配線30aより厚くする。これにより、厚い配線32が隣接している場合に比べ、配線32aと30aが対向する面積が小さくなる。よって、配線間の寄生容量を抑制でき、挿入損失等の特性を向上できる。また、配線30aは配線32aより応力が小さいため、配線32の応力に起因した配線32の短絡を抑制できる。さらに、配線32aと30aとの間の静電気破壊を抑制することができる。よって、配線30aと32aとの間隔D1を狭くでき、送信フィルタ100を小型化できる。例えば、間隔D1を配線30aの膜厚T1より小さくすることができる。
According to the first embodiment, in the regions A1 and A2 where the wirings are adjacent between the
また、後述するように、厚い配線32aをめっき法を用いて形成する場合、厚い配線32aの間隔が狭いと、めっきの際のマスクであるレジストパターンが適切に形成されない場合がある。この場合、配線間が短絡する、または、基板10上にレジスタが残存し、信頼性上の懸念となることがある。実施例1では、隣接する配線30aおよび32aの一方が薄い配線30aのため、レジストパターンを適切に形成できる。
As will be described later, when the
配線32aの膜厚T2と間隔D1とのアスペクト比T2/D1が2より大きくなるとレジストパターンが適切に形成されなくなる可能性が高くなる。よって、T2/D1は2以下が好ましい。また、小型化の観点からT2/D1は0.025以上が好ましい。
When the aspect ratio T2 / D1 between the film thickness T2 of the
隣接する配線30aおよび32aのうち、バンプ36が設けられたパッド34に直接接続する配線32aを厚くすることが好ましい。また、パンプ36が設けられたパッド34に直接接続しない配線30aを薄くすることが好ましい。バンプ36は、例えばモジュール用の基板に接合される。弾性波デバイスにおいて生じた熱はバンプ36を介して、モジュール基板に放出される。厚い配線32は薄い配線30より熱伝導性がよい。よって、パッド34に直接接続する配線32aを厚くすることで熱を効率よく放出できる。グランド端子GNDに対応するパッド34は、モジュール基板等を介し放熱性がよい。よって、配線32aが直接接続されるパッド34はグランド端子GNDに対応するパッドであることが好ましい。
Of the
図5は、実施例1の変形例1に係る弾性波デバイスの平面図である。図5に示すように、送信フィルタ102において、領域A1およびA2だけでなく、バンプ36が設けられたパッド34に直接接続された配線を厚い配線32とし、バンプ36に直接接続されていない配線を薄い配線30とする。例えば、弾性波共振器40間を接続する配線を薄い配線30とする。その他の構成は実施例1と同じであり説明を省略する。実施例1の変形例1においてもバンプ36から効率よく放熱できる。
FIG. 5 is a plan view of the acoustic wave device according to the first modification of the first embodiment. As shown in FIG. 5, in the
実施例1のように、異なる電位の配線が隣接する領域A1およびA2においてのみ、直接パッド34に接続されていない配線を薄い配線30とし、その他の配線を厚い配線32としてもよい。これにより、寄生容量が問題とならない配線を厚くできるため、放熱性、耐電力性を向上できる。また、実施例1の変形例1のように、領域A1およびA2以外の領域においても薄い配線30を設けてもよい。このように、少なくとも異なる電位の配線が隣接する領域A1およびA2において、一方の配線が他方より薄ければよい。
As in the first embodiment, only in the regions A1 and A2 where wirings with different potentials are adjacent, the wiring that is not directly connected to the
図6は、実施例1の変形例2に係る弾性波デバイスの平面図である。送信フィルタ104では、領域A3において、並列共振器P2とP3との間において、配線30aと32aとが隣接している。配線30aは直列共振器S3とS4との間のノードに接続されている。配線32aは直列共振器S2とS3との間に接続されている。配線30aと32aはともにパッド34に直接接続されていない。その他の構成は実施例1と同じであり説明を省略する。
FIG. 6 is a plan view of the acoustic wave device according to the second modification of the first embodiment. In the
実施例1の変形例2によれば、配線32aは配線30aより送信端子Txに対応するパッド34(信号が入力するパッド)に近い。送信端子Txに対応するパッド34に近い共振器は遠い共振器より発熱が大きい。よって、入力パッド34に近い配線を厚い配線32とする。これにより、効率的な放熱が可能となる。
According to the second modification of the first embodiment, the
実施例1およびその変形例によれば、図3のように、配線30aおよび32aの延伸方向は平行である。平行な配線が隣接する場合、配線間の寄生容量の増加、配線間の短絡および/または配線間の静電気破壊が生じやすい。よって、配線32aを30aより厚くする。これにより、配線間隔を狭くし、弾性波デバイスを小型化できる。
According to Example 1 and its modification, the extending directions of the
また、配線30aは並列共振器P3(第1弾性波共振器)のバスバー46に電気的に接続され、配線32aは並列共振器P2(第2弾性波共振器)のバスバー46に電気的に接続されている。配線30aおよび32aの延伸方向は、バスバー46の延伸方向と平行である。弾性波共振器40がバスバー46を有する場合、配線30aと32aとが対向する長さが大きくなる。配線の対向長が大きいと、配線間の寄生容量の増加、配線間の短絡および/または配線間の静電気破壊が生じやすい。よって、配線32aを30aより厚くする。これにより、配線間隔を狭くし、弾性波デバイスを小型化できる。
The
隣接する共振器が並列共振器である場合、対向する配線は異なる電位となる。よって、配線間の寄生容量の増加、配線間の短絡および/または配線間の静電気破壊が生じやすい。よって、配線32aを30aより厚くする。これにより、配線間隔を狭くし、弾性波デバイスを小型化できる。
When adjacent resonators are parallel resonators, opposing wirings have different potentials. Therefore, an increase in parasitic capacitance between wirings, a short circuit between wirings, and / or electrostatic breakdown between wirings are likely to occur. Therefore, the
実施例2は、弾性波デバイスが図1の受信フィルタ72の例である。図7は、実施例2に係る弾性波デバイスの平面図である。図7に示すように、受信フィルタ106において、基板10上に弾性波共振器40および多重モード弾性波フィルタ42が形成されている。多重モード弾性波フィルタ42は二重モード弾性表面波フィルタDMS1およびDMS2である。DMS1およびDMS2は並列に接続されている、DMS1およびDMS2の入力端子は、共振器R1を介しアンテナ端子Antに接続されている。DMS1およびDMS2のグランドはグランド端子GNDに接続されている。DMS1およびDMS2の出力端子と受信端子Rxとの間には直列に直列共振器S1およびS2が接続され、並列共振器P1およびP2が並列に接続されている。直列共振器S1およびS2はそれぞれ2分割および3分割されている。並列共振器P1およびP2はそれぞれ2分割および4分割されている。
The second embodiment is an example in which the acoustic wave device is the
領域A4において、共振器R1とDMS1との間、共振器R1とDMS2との間、DMS1と直列共振器S1との間、DMS2と並列共振器P1との間で、配線32bと30bが隣接している。アンテナ端子Antから受信端子Rxに信号が伝搬する配線は薄い配線30bである。グランド端子GNDに直接接続される配線は厚い配線32bである。領域A5において、並列共振器P1とP2の間において、配線30aおよび32aが隣接している。厚い配線32aはバンプ36の設けられたパッド34に直接接続されている。薄い配線30aはバンプ36の設けられたパッド34に直接接続されていない。その他の構成は実施例1と同じであり説明を省略する。
In the region A4,
実施例2によれば、配線30bは、多重モード弾性波フィルタ42の入力端子および出力端子(すなわち信号端子)に電気的に接続され、配線32bは、多重モード弾性波フィルタ42のグランド端子に電気的に接続されている。多重モード弾性波フィルタ42の信号端子とグランド端子とは隣接する。よって、配線32aを30aより厚くする。これにより、配線間隔を狭くし、弾性波デバイスを小型化できる。
According to the second embodiment, the
図8は、実施例2の変形例1に係る弾性波デバイスの平面図である。図8に示すように、受信フィルタ108において、アンテナ端子Antと受信端子Rxとの間に共振器R2、DMS3およびDMS4が直列に接続されている。DMS3は、IDT11からIDT13および反射器Rを備える。IDT11から13は弾性波の伝搬方向に配列されている。DMS4は、IDT21からIDT23および反射器Rを備える。
FIG. 8 is a plan view of the acoustic wave device according to the first modification of the second embodiment. As shown in FIG. 8, in the
DMS3のIDT12の一端は共振器R2を介しアンテナ端子Antに接続されている。IDT12の他端はグランド端子GNDに接続されている。IDT11およびIDT13の一端はグランド端子GNDに接続されている。IDT11およびIDT13の他端は配線30cを介しDMS4のIDT21および23の一端にそれぞれ接続されている。IDT21および23の他端はグランド端子に接続されている。IDT22の一端はグランド端子に接続されている。IDT22の他端は受信端子Rxに接続されている。その他の構成は実施例2と同じであり説明を省略する。
One end of the
領域A6においては、DMS3とDMS4の間に配線30cと32cが隣接して設けられている。配線32cは配線30cの上を交差する。配線30cと32cとの間は誘電体層が設けられている。配線30cと32cとの間は空隙でもよい。配線32cはバンプ36が設けられたパッド34に直接接続されている。配線30cはパッド34に直接接続されていない。このように、薄い配線30cと厚い配線32cとを交差させることにより、弾性波デバイスを小型化できる。2つの配線を容易に交差させるためには、厚い配線32cの一部が薄い配線30c上を交差することが好ましい。
In the region A6,
DMS3(第1多重モード弾性波フィルタ)とDMS4(第2多重モード弾性波フィルタ)との信号端子を接続する場合、信号端子を接続する配線とグランド配線とを交差させることにより、弾性波デバイスを小型化できる。よって、配線30cは、DMS3信号端子とDMS4の信号端子とを接続し、配線32cは、DMS3およびDMS4の少なくとも一方のグランド端子に接続されていることが好ましい。
When connecting the signal terminals of DMS3 (first multimode elastic wave filter) and DMS4 (second multimode elastic wave filter), an elastic wave device is obtained by crossing the wiring connecting the signal terminals and the ground wiring. Can be downsized. Therefore, it is preferable that the
図1に示したデュプレクサの送信フィルタ70および受信フィルタ72の少なくとも一方に、実施例1およびその変形例の送信フィルタまたは実施例2およびその変形例の受信フィルタを用いることができる。
For at least one of the
図9(a)から図10(d)は、実施例1、2およびその変形例に係る弾性波デバイスの製造方法を示す断面図である。図9(a)に示すように、基板10上に金属膜12を形成する。基板10は、例えばタンタル酸リチウム基板またはニオブ酸リチウム基板等の圧電基板である。金属膜12は、例えばアルミニウム膜またはチタン膜である。金属膜12は、例えばスパッタリング法およびエッチング法を用い形成する。金属膜12により、弾性波共振器40が形成される。金属膜12の膜厚は例えば100nmから500nmである。金属膜12は、銅膜または金膜等でもよい。金属膜12により配線30および32の最下層15および配線30cが形成される。
FIG. 9A to FIG. 10D are cross-sectional views showing a method for manufacturing an acoustic wave device according to the first and second embodiments and their modifications. As shown in FIG. 9A, a
図9(b)に示すように、弾性波共振器40および配線30c上に保護膜14を形成する。保護膜14は例えば膜厚が20nmの酸化シリコン膜である。保護膜14は、例えばスパッタリング法およびエッチング法を用い形成する。図9(c)に示すように、配線30cを覆うように誘電体膜17を形成する。誘電体膜17は例えば絶縁体であり樹脂である。
As shown in FIG. 9B, the
図9(d)に示すように、配線32および配線30aを形成する領域に開口52が形成されるように、基板10上にマスク層50を形成する。マスク層50は、例えばフォトレジストであり、フォトリソグラフィ法を用い形成する。マスク層50の膜厚は、フォトリソグラフィ法において所望の解像度を得られるように設定し、かつ後述するシード層16のリフトオフを行なうため2μm以上が好ましい。マスク層50は、後のベークに耐えることができる程度の耐熱性を有することが好ましい。
As shown in FIG. 9D, a
図10(a)に示すように、マスク層50を覆うように、基板10上にシード層16を全面に形成する。シード層16は、例えば基板10側から膜厚が0.2μmのチタン膜および膜厚が0.15μmの金膜である。シード層16は、例えば蒸着法を用い形成する。シード層16は、基板10側から膜厚が0.1μmのチタン膜および膜厚が0.3μmの銅膜でもよい。シード層16は、スパッタリング法を用い形成してもよいが、リフトオフ法を用いるため蒸着法を用い形成することが好ましい。シード層16の基板10側の膜は、金属膜12との密着性を向上させる密着膜およびバリア層である。金属膜12がアルミニウム膜のとき、密着膜は例えばチタン膜である。シード層16の上側の膜はめっきのシードとして機能し、めっき層と同じ材料であることが好ましい。
As shown in FIG. 10A, the
図10(b)に示すように、配線32を形成する領域に開口56が形成されるように、シード層16上にマスク層54を形成する。配線30aとなるシード層16上にはマスク層54を形成する。マスク層54は、例えば膜厚が7μmのフォトレジスト膜であり、フォトリソグラフィ法を用い形成する。マスク層54の膜厚は、シード層16の段差を被覆し、かつめっき層22より厚くなるように設定し、例えば、5μmから20μmである。
As shown in FIG. 10B, a
図10(c)に示すように、開口56にめっき層22を形成する。めっき層22は、基板側から下層18、バリア層(不図示)および上層20を含む。下層18は例えば膜厚が3μmの銅層である。バリア層は、例えば膜厚が0.3μmのパラジウム層である。上層20は、例えば膜厚が1μmの金層である。めっき層22は、シード層16から電流を供給し、電解めっき法を用い形成する。下層18は、厚膜化が可能であり、電気抵抗率が低くかつ非磁性である材料が好ましい。このため、下層18は、銅層または金層が好ましい。下層18の膜厚は配線30および32の低抵抗化のため例えば1μm以上が好ましい。めっき層22上にスタッドバンプを形成する場合、上層20は金層であることが好ましい。バリア層は、下層18と上層20との加熱または経時変化にともなう相互拡散を抑制する。下層18が銅層、上層20が金層の場合、バリア層は、膜厚が0.2μm程度のパラジウム層またはニッケル層が好ましい。上層20は、無電解めっき法を用い形成することもできる。この場合、上層20の膜厚は例えば0.4μmである。また、バリア層および上層20を蒸着法を用い形成することもできる。この場合、バリア層は例えば膜厚が0.2μmのチタン層、上層20は、膜厚が0.4μmの金層である。
As shown in FIG. 10C, the
図10(d)に示すように、マスク層50および54を例えば有機溶剤を用い除去する。このとき、マスク層50および54の間に形成されたシード層16がリフトオフされる。シード層16のリフトオフのため、有機溶剤を高圧で噴射してもよい。また、有機溶剤中で超音波洗浄してもよい。これにより、金属膜12、シード層16およびめっき層22から配線32および32aが形成される。シード層16およびめっき層22から配線32cが形成される。金属膜12およびシード層16から配線30aが形成される。金属膜12から配線30cが形成される。領域A7においては、厚い配線32aと薄い配線30aが形成される。領域A8において、薄い配線30cと厚い配線32cが形成される。
As shown in FIG. 10D, the mask layers 50 and 54 are removed using, for example, an organic solvent. At this time, the
図9(a)のように、基板10上に、弾性波共振器40、配線30a、30c、32および32aとなる領域に金属膜12を形成する。図9(b)のように、配線30a、32、32aおよび32cとなる領域内の金属膜12上が開口52(第1開口)となり、配線30cとなる領域が開口52とならないマスク層50(第1マスク層)を形成する。図10(a)のように、開口52内の金属膜12に接触し、マスク層50を覆うようにシード層16を形成する。図10(b)のように、シード層16上に、配線32、32aおよび32cとなる領域が開口56(第2開口)となるマスク層54(第2マスク層)を形成する。図10(c)のように、シード層16から給電することにより、開口56内のシード層16上にめっき層22を形成する。図10(d)のように、マスク層50およびマスク層54を除去することにより、開口52以外のシード層16をリフトオフする。これにより、薄い配線30aおよび30cと厚い配線32、32aおよび32cを形成することができる。
As shown in FIG. 9A, the
実施例1、2およびその変形例においては、弾性波共振器として、弾性表面波共振器を例に説明したが、弾性波共振器は、弾性境界波共振器、ラブ波共振器、または圧電薄膜共振器でもよい。また、弾性波デバイスの例としてラダー型フィルタを用いた送信フィルタ、DMSフィルタを用いた受信フィルタを説明したが、その他の弾性波デバイスでもよい。 In the first and second embodiments and the modifications thereof, the surface acoustic wave resonator has been described as an example of the elastic wave resonator. However, the elastic wave resonator may be a boundary acoustic wave resonator, a love wave resonator, or a piezoelectric thin film. A resonator may be used. In addition, although a transmission filter using a ladder filter and a reception filter using a DMS filter have been described as examples of the elastic wave device, other elastic wave devices may be used.
以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to such specific embodiments, and various modifications and changes can be made within the scope of the gist of the present invention described in the claims. It can be changed.
10 基板
12 金属膜
14 保護膜
16 シード層
22 めっき層
30、32 配線
40 弾性波共振器
42 多重モード弾性波フィルタ
DESCRIPTION OF
Claims (9)
前記基板上に設けられた第1弾性波共振器および第2弾性波共振器と、
前記第1弾性波共振器と電気的に接続し、前記基板上であって前記第1弾性波共振器と前記第2弾性波共振器との間に設けられた第1配線と、
前記第2弾性波共振器と電気的に接続し、前記基板上であって前記第1弾性波共振器と前記第2弾性波共振器との間に設けられ、前記第1配線と異なる電位であり、前記第1配線より厚い第2配線と、
を具備することを特徴とする弾性波デバイス。 A substrate,
A first acoustic wave resonator and a second acoustic wave resonator provided on the substrate;
A first wiring electrically connected to the first acoustic wave resonator and provided on the substrate between the first acoustic wave resonator and the second acoustic wave resonator;
Electrically connected to the second acoustic wave resonator, provided on the substrate and between the first acoustic wave resonator and the second acoustic wave resonator, at a potential different from that of the first wiring; A second wiring thicker than the first wiring;
An elastic wave device comprising:
前記第1配線は前記第1バスバーに電気的に接続され、前記第2配線は前記第2バスバーに電気的に接続され、
前記第1配線および前記第2配線の延伸方向は、前記第1バスバーおよび前記第2バスバーの延伸方向と平行であることを特徴とする請求項4記載の弾性波デバイス。 The first acoustic wave resonator and the second acoustic wave resonator each include a first bus bar and a second bus bar,
The first wiring is electrically connected to the first bus bar; the second wiring is electrically connected to the second bus bar;
The elastic wave device according to claim 4, wherein an extending direction of the first wiring and the second wiring is parallel to an extending direction of the first bus bar and the second bus bar.
前記入力端子と前記出力端子との間に並列に接続された複数の並列共振器と、
を具備し、
前記複数の並列共振器は前記第1弾性波共振器および前記第2弾性波共振器を含むことを特徴とする請求項5記載の弾性波デバイス。 One or more series resonators connected in series between the input terminal and the output terminal;
A plurality of parallel resonators connected in parallel between the input terminal and the output terminal;
Comprising
6. The acoustic wave device according to claim 5, wherein the plurality of parallel resonators include the first acoustic wave resonator and the second acoustic wave resonator.
前記第1配線は、前記多重モード弾性波フィルタの信号端子に電気的に接続され、
前記第2配線は、前記多重モード弾性波フィルタのグランド端子に電気的に接続されていることを特徴とする請求項1または2記載の弾性波デバイス。 Comprising a multimode acoustic wave filter formed on the substrate;
The first wiring is electrically connected to a signal terminal of the multimode acoustic wave filter,
3. The acoustic wave device according to claim 1, wherein the second wiring is electrically connected to a ground terminal of the multimode acoustic wave filter.
前記第1配線は、前記第1多重モード弾性波フィルタの信号端子と前記第2多重モード弾性波フィルタの信号端子とを接続し、
前記第2配線は、前記第1多重モード弾性波フィルタおよび前記第2多重モード弾性波フィルタの少なくとも一方のグランド端子に接続されていることを特徴とする請求項8記載の弾性波デバイス。 Comprising a first multimode elastic wave filter and a second multimode elastic wave filter formed on the substrate;
The first wiring connects a signal terminal of the first multimode elastic wave filter and a signal terminal of the second multimode elastic wave filter;
9. The acoustic wave device according to claim 8, wherein the second wiring is connected to a ground terminal of at least one of the first multimode acoustic wave filter and the second multimode acoustic wave filter.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015090682A JP6351539B2 (en) | 2015-04-27 | 2015-04-27 | Elastic wave device |
US14/945,129 US10056878B2 (en) | 2014-12-12 | 2015-11-18 | Acoustic wave device and method of fabricating the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015090682A JP6351539B2 (en) | 2015-04-27 | 2015-04-27 | Elastic wave device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016208413A true JP2016208413A (en) | 2016-12-08 |
JP6351539B2 JP6351539B2 (en) | 2018-07-04 |
Family
ID=57490782
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015090682A Active JP6351539B2 (en) | 2014-12-12 | 2015-04-27 | Elastic wave device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6351539B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020174332A (en) * | 2019-04-12 | 2020-10-22 | 太陽誘電株式会社 | Acoustic wave device, filter, and multiplexer |
WO2023068129A1 (en) * | 2021-10-18 | 2023-04-27 | 株式会社村田製作所 | Filter device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08307191A (en) * | 1995-05-01 | 1996-11-22 | Oki Electric Ind Co Ltd | Surface acoustic wave device |
JP2000196412A (en) * | 1998-12-28 | 2000-07-14 | Kyocera Corp | Surface acoustic wave device |
WO2006009021A1 (en) * | 2004-07-23 | 2006-01-26 | Murata Manufacturing Co., Ltd. | Elastic surface wave device |
JP2007068232A (en) * | 2006-11-30 | 2007-03-15 | Oki Electric Ind Co Ltd | Method of manufacturing surface acoustic wave filter |
JP2011071912A (en) * | 2009-09-28 | 2011-04-07 | Taiyo Yuden Co Ltd | Surface acoustic wave filter |
WO2012169231A1 (en) * | 2011-06-09 | 2012-12-13 | 株式会社村田製作所 | Elastic wave filter device |
WO2016056384A1 (en) * | 2014-10-06 | 2016-04-14 | 株式会社村田製作所 | Ladder type filter and duplexer |
-
2015
- 2015-04-27 JP JP2015090682A patent/JP6351539B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08307191A (en) * | 1995-05-01 | 1996-11-22 | Oki Electric Ind Co Ltd | Surface acoustic wave device |
JP2000196412A (en) * | 1998-12-28 | 2000-07-14 | Kyocera Corp | Surface acoustic wave device |
WO2006009021A1 (en) * | 2004-07-23 | 2006-01-26 | Murata Manufacturing Co., Ltd. | Elastic surface wave device |
JP2007068232A (en) * | 2006-11-30 | 2007-03-15 | Oki Electric Ind Co Ltd | Method of manufacturing surface acoustic wave filter |
JP2011071912A (en) * | 2009-09-28 | 2011-04-07 | Taiyo Yuden Co Ltd | Surface acoustic wave filter |
WO2012169231A1 (en) * | 2011-06-09 | 2012-12-13 | 株式会社村田製作所 | Elastic wave filter device |
WO2016056384A1 (en) * | 2014-10-06 | 2016-04-14 | 株式会社村田製作所 | Ladder type filter and duplexer |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020174332A (en) * | 2019-04-12 | 2020-10-22 | 太陽誘電株式会社 | Acoustic wave device, filter, and multiplexer |
JP7340348B2 (en) | 2019-04-12 | 2023-09-07 | 太陽誘電株式会社 | Acoustic wave devices, filters and multiplexers |
WO2023068129A1 (en) * | 2021-10-18 | 2023-04-27 | 株式会社村田製作所 | Filter device |
Also Published As
Publication number | Publication date |
---|---|
JP6351539B2 (en) | 2018-07-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9712139B2 (en) | Elastic wave filter device | |
US10056878B2 (en) | Acoustic wave device and method of fabricating the same | |
US8169278B2 (en) | Surface acoustic wave device and duplexer | |
JP6651643B2 (en) | Elastic wave filter, duplexer and communication device | |
JP6669429B2 (en) | Elastic wave element and communication device | |
JPWO2016104598A1 (en) | Elastic wave device | |
WO2016111315A1 (en) | Acoustic wave device | |
US7944329B2 (en) | Acoustic wave filter device with branched ground wiring sandwiching the IDT area | |
US10177740B2 (en) | Ladder filter and duplexer | |
CN111052607B (en) | Elastic wave device and elastic wave module provided with same | |
US7112912B2 (en) | Surface acoustic wave device and branching filter | |
JP6351539B2 (en) | Elastic wave device | |
JP6494470B2 (en) | Elastic wave device | |
JP6593554B2 (en) | Surface acoustic wave resonator, surface acoustic wave filter, and duplexer | |
JP6981772B2 (en) | Elastic wave device | |
JP3981590B2 (en) | Surface acoustic wave device including surface acoustic wave filter element, base substrate for surface acoustic wave filter element, and surface acoustic wave filter element | |
US10218334B2 (en) | Acoustic wave device | |
JP3948550B2 (en) | Surface acoustic wave device | |
US11309866B2 (en) | Acoustic wave device and method for manufacturing acoustic wave device | |
JP4261998B2 (en) | Surface acoustic wave device | |
WO2020020645A1 (en) | Saw device with a slanted resonator | |
JP6444787B2 (en) | Elastic wave device and manufacturing method thereof | |
JP4214009B2 (en) | Surface acoustic wave device | |
JP2018026640A (en) | Acoustic wave device and method for manufacturing the same | |
JP2000031780A (en) | Surface acoustic wave device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170125 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171227 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180123 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180322 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180522 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180605 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6351539 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |