Nothing Special   »   [go: up one dir, main page]

JP2016089064A - Purification method and production method of polymer for semiconductor lithography, production method of resist composition, and manufacturing method of patterned substrate - Google Patents

Purification method and production method of polymer for semiconductor lithography, production method of resist composition, and manufacturing method of patterned substrate Download PDF

Info

Publication number
JP2016089064A
JP2016089064A JP2014226348A JP2014226348A JP2016089064A JP 2016089064 A JP2016089064 A JP 2016089064A JP 2014226348 A JP2014226348 A JP 2014226348A JP 2014226348 A JP2014226348 A JP 2014226348A JP 2016089064 A JP2016089064 A JP 2016089064A
Authority
JP
Japan
Prior art keywords
polymer
solution
filtration
group
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014226348A
Other languages
Japanese (ja)
Other versions
JP6520054B2 (en
Inventor
敦 安田
Atsushi Yasuda
敦 安田
一晃 向井
Kazuaki Mukai
一晃 向井
三橋 隆史
Takashi Mihashi
隆史 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2014226348A priority Critical patent/JP6520054B2/en
Publication of JP2016089064A publication Critical patent/JP2016089064A/en
Application granted granted Critical
Publication of JP6520054B2 publication Critical patent/JP6520054B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a purification method of a polymer for semiconductor lithography, by which a component with poor solubility included in the polymer for the semiconductor lithography can be sufficiently removed, and a polymer having excellent stability of solubility with time in a polymer solution state can be obtained.SOLUTION: The purification method includes a step of allowing a solution containing a polymer for semiconductor lithography, which has a structural unit having a polar group, to pass through a filter having rated filtration precision of 0.1 μm or less, while maintaining a pressure difference between pressures before and after filtration at 250 kPa or less.SELECTED DRAWING: None

Description

本発明は半導体リソグラフィー用重合体の精製方法、該精製方法を用いた半導体リソグラフィー用重合体の製造方法、レジスト組成物の製造方法、およびパターンが形成された基板の製造方法に関する。   The present invention relates to a method for purifying a polymer for semiconductor lithography, a method for producing a polymer for semiconductor lithography using the purification method, a method for producing a resist composition, and a method for producing a substrate on which a pattern is formed.

近年、半導体素子、液晶素子等の製造工程において形成されるレジストパターンは、リソグラフィー技術の進歩により急速に微細化が進んでいる。微細化の手法としては、照射光の短波長化がある。具体的には、従来のg線(波長:438nm)、i線(波長:365nm)に代表される紫外線から、より短波長のDUV(Deep Ultra Violet)へと照射光が短波長化してきている。   In recent years, a resist pattern formed in a manufacturing process of a semiconductor element, a liquid crystal element, or the like has been rapidly miniaturized due to progress in lithography technology. As a technique for miniaturization, there is a reduction in wavelength of irradiation light. Specifically, the irradiation light has become shorter from conventional ultraviolet rays typified by g-line (wavelength: 438 nm) and i-line (wavelength: 365 nm) to shorter wavelength DUV (Deep Ultra Violet). .

最近では、KrFエキシマレーザー(波長:248nm)リソグラフィー技術が導入され、さらなる短波長化を図ったArFエキシマレーザー(波長:193nm)リソグラフィー技術およびEUV(波長:13.5nm)リソグラフィー技術が研究されている。さらに、これらの液浸リソグラフィー技術も研究されている。また、これらとは異なるタイプのリソグラフィー技術として、電子線リソグラフィー技術についても精力的に研究されている。   Recently, KrF excimer laser (wavelength: 248 nm) lithography technology has been introduced, and ArF excimer laser (wavelength: 193 nm) lithography technology and EUV (wavelength: 13.5 nm) lithography technology for further shortening the wavelength have been studied. . Furthermore, these immersion lithography techniques are also being studied. Also, as a different type of lithography technology, electron beam lithography technology has been energetically studied.

該短波長の照射光または電子線を用いたレジストパターンの形成に用いられる高感度のレジスト組成物として、光酸発生剤を含有する「化学増幅型レジスト組成物」が提唱され、現在、該化学増幅型レジスト組成物の改良および開発が進められている。
例えば、ArFエキシマレーザーリソグラフィーにおいて用いられる化学増幅型レジスト用重合体として、波長193nmの光に対して透明なアクリル系重合体が注目されている。該アクリル系重合体としては、例えば、エステル部にアダマンタン骨格を有する(メタ)アクリル酸エステルとエステル部にラクトン骨格を有する(メタ)アクリル酸エステルとの重合体が提案されている(特許文献1等)。
また、露光時に基板からの反射を防ぐ役割を果たすため、露光光に対する光線透過率が低い反射防止膜の開発が進められており、アクリル系重合体を用いた反射防止膜が提案されている(特許文献2、3等)。
A “chemically amplified resist composition” containing a photoacid generator has been proposed as a highly sensitive resist composition used for forming a resist pattern using the irradiation light or electron beam of the short wavelength. Improvement and development of amplification resist compositions are underway.
For example, as a chemically amplified resist polymer used in ArF excimer laser lithography, an acrylic polymer that is transparent with respect to light having a wavelength of 193 nm has attracted attention. As the acrylic polymer, for example, a polymer of (meth) acrylic acid ester having an adamantane skeleton in an ester portion and (meth) acrylic acid ester having a lactone skeleton in an ester portion has been proposed (Patent Document 1). etc).
In addition, in order to prevent reflection from the substrate at the time of exposure, development of an antireflection film having a low light transmittance with respect to exposure light has been advanced, and an antireflection film using an acrylic polymer has been proposed ( Patent Documents 2 and 3).

特許文献4、5には、レジスト用重合体溶液の異物経時特性を向上させ、レジストパターン形成時のパターン欠陥を低減させる方法として特定の重合体固形分に調整した重合体溶液をフィルターに通液させてレジスト用重合体を精製する製造方法が提案されている。   In Patent Documents 4 and 5, a polymer solution adjusted to a specific polymer solid content is passed through a filter as a method for improving the foreign matter aging characteristics of a resist polymer solution and reducing pattern defects when forming a resist pattern. Thus, a production method for purifying a resist polymer has been proposed.

特開平10−319595号公報JP 10-319595 A 特開2003−295456号公報JP 2003-295456 A 特開2004−31569号公報JP 2004-31569 A 特開2005−189789号公報JP 2005-189789 A 特開2006−83214号公報JP 2006-83214 A

近年、レジストパターンの微細化が進み、優れたレジストパターンプロファイルを得るためには、半導体リソグラフィー用重合体溶液中の異物を高度に除去することが求められるが、従来の方法では必ずしも充分とは言えない。
例えば、半導体リソグラフィー用重合体に含まれる、溶解性に乏しい成分が、重合体溶液にしたときに析出すると、レジストパターンを形成したときに欠陥の原因となる。
In recent years, in order to obtain an excellent resist pattern profile with the progress of miniaturization of resist patterns, it is required to highly remove foreign substances in a polymer solution for semiconductor lithography, but the conventional method is not necessarily sufficient. Absent.
For example, if a poorly soluble component contained in a polymer for semiconductor lithography is deposited when it is made into a polymer solution, it causes defects when a resist pattern is formed.

本発明は前記事情に鑑みてなされたもので、半導体リソグラフィー用重合体に含まれる、溶解性に乏しい成分を高度に除去することができ、重合体溶液にしたときに溶解性の経時安定性に優れる重合体が得られる、半導体リソグラフィー用重合体の精製方法、および半導体リソグラフィー用重合体の製造方法を提供する。
また本発明は、半導体リソグラフィー用重合体に含まれる、溶解性に乏しい成分が高度に除去され、欠陥の少ないレジストパターンを安定して形成できるレジスト組成物を製造する方法を提供する。
また本発明は、半導体リソグラフィー用重合体に含まれる、溶解性に乏しい成分が高度に除去され、欠陥の少ないレジストパターンを安定して形成できる、パターンが形成された基板を製造する方法を提供することを目的とする。
The present invention has been made in view of the above circumstances, and it is possible to highly remove a component having poor solubility contained in a polymer for semiconductor lithography, and to improve the stability over time when it is made into a polymer solution. Provided are a method for purifying a polymer for semiconductor lithography, and a method for producing a polymer for semiconductor lithography, whereby an excellent polymer can be obtained.
In addition, the present invention provides a method for producing a resist composition in which a poorly soluble component contained in a polymer for semiconductor lithography is highly removed and a resist pattern with few defects can be stably formed.
Further, the present invention provides a method for producing a substrate on which a pattern is formed, in which a poorly soluble component contained in a polymer for semiconductor lithography is highly removed and a resist pattern with few defects can be stably formed. For the purpose.

前記課題を解決するために、本発明の半導体リソグラフィー用重合体の精製方法は、極性基を有する構成単位を有する半導体リソグラフィー用重合体を含む溶液を、定格ろ過精度が0.1μm以下のフィルターに、ろ過前後の差圧を250kPa以下に維持しながら、通液させる工程を有することを特徴とする。   In order to solve the above-described problems, the method for purifying a polymer for semiconductor lithography of the present invention uses a solution containing a polymer for semiconductor lithography having a structural unit having a polar group as a filter having a rated filtration accuracy of 0.1 μm or less. The step of allowing the liquid to pass through while maintaining the differential pressure before and after filtration at 250 kPa or less.

前記半導体リソグラフィー用重合体を含む溶液を、前記フィルターに通液を開始した時点から、ろ過される溶液の90質量%の通液が終了する時点までの、ろ過前後の差圧を、通液を開始した時点のろ過前後の差圧の±50kPa以内に維持することが好ましい。   The differential pressure before and after the filtration from the time when the solution containing the polymer for semiconductor lithography started to pass through the filter to the time when 90% by mass of the solution to be filtered ended. It is preferable to maintain the pressure difference within ± 50 kPa before and after the filtration at the start.

本発明は、極性基を有する構成単位を有する半導体リソグラフィー用重合体を含む溶液を製造する工程と、本発明の精製方法を行う工程を含む半導体リソグラフィー用重合体の製造方法を提供する。
本発明は、本発明のリソグラフィー用重合体の製造方法によりリソグラフィー用重合体を製造する工程と、得られたリソグラフィー用重合体と、活性光線又は放射線の照射により酸を発生する化合物とを混合する工程を有する、レジスト組成物の製造方法を提供する。
本発明は、本発明のレジスト組成物の製造方法によりレジスト組成物を製造する工程と、得られたレジスト組成物を基板の被加工面上に塗布してレジスト膜を形成する工程と、該レジスト膜に対して露光する工程と、露光されたレジスト膜を現像液を用いて現像する工程とを含む、パターンが形成された基板の製造方法を提供する。
This invention provides the manufacturing method of the polymer for semiconductor lithography including the process of manufacturing the solution containing the polymer for semiconductor lithography which has a structural unit which has a polar group, and the process of performing the purification method of this invention.
In the present invention, the process for producing a lithography polymer by the method for producing a lithography polymer of the present invention, and the resulting lithography polymer are mixed with a compound that generates an acid upon irradiation with actinic rays or radiation. A method for producing a resist composition is provided.
The present invention includes a step of producing a resist composition by the method for producing a resist composition of the present invention, a step of coating the obtained resist composition on a work surface of a substrate to form a resist film, and the resist Provided is a method for manufacturing a substrate on which a pattern is formed, which includes a step of exposing a film and a step of developing the exposed resist film using a developer.

本発明のリソグラフィー用重合体の精製方法によれば、リソグラフィー用重合体に含まれる溶解性に乏しい成分を高度に除去することができ、溶解性の安定性に優れ、レジスト組成物に用いたときに欠陥の少ないレジストパターンを常に形成することができるリソグラフィー用重合体に精製することができる。
本発明のリソグラフィー用重合体の製造方法によれば、溶解性に乏しい成分が高度に除去され、溶解性の安定性に優れ、レジスト組成物に用いたときに欠陥の少ないレジストパターンを常に形成することができるリソグラフィー用重合体が得られる。
本発明のレジスト組成物の製造方法によれば、本発明の製造方法で製造したリソグラフィー用重合体を含み、欠陥の少ないレジストパターンを安定して形成することができるレジスト組成物が得られる。
本発明の基板の製造方法によれば、欠陥の少ないレジストパターンを安定して形成できるレジスト組成物を用いて、高精度の微細レジストパターンを安定して形成できる。
According to the method for purifying a lithographic polymer of the present invention, a poorly soluble component contained in a lithographic polymer can be removed to a high degree, excellent in solubility stability, and used in a resist composition. It can be refined into a lithography polymer that can always form a resist pattern with few defects.
According to the method for producing a lithographic polymer of the present invention, a poorly soluble component is highly removed, the solubility is excellent, and a resist pattern with few defects is always formed when used in a resist composition. A lithographic polymer is obtained.
According to the method for producing a resist composition of the present invention, it is possible to obtain a resist composition that includes the lithography polymer produced by the production method of the present invention and can stably form a resist pattern with few defects.
According to the substrate manufacturing method of the present invention, a highly accurate fine resist pattern can be stably formed using a resist composition that can stably form a resist pattern with few defects.

本明細書において、「(メタ)アクリル酸」は、アクリル酸またはメタクリル酸を意味し、「(メタ)アクリロイルオキシ」は、アクリロイルオキシまたはメタクリロイルオキシを意味する。
<半導体リソグラフィー用重合体>
本発明における半導体リソグラフィー用重合体(以下、単にリソグラフィー用重合体ということもある。)は、リソグラフィー工程に用いられる重合体であり、少なくとも極性基を有する構成単位を有する。
「極性基」とは、極性を持つ官能基または極性を持つ原子団を有する基であり、具体例としては、ヒドロキシ基、シアノ基、アルコキシ基、カルボキシ基、アミノ基、カルボニル基、フッ素原子を含む基、硫黄原子を含む基、ラクトン骨格を含む基、アセタール構造を含む基、エーテル結合を含む基などが挙げられる。
リソグラフィー用重合体の用途は、リソグラフィー工程に用いられるものであれば特に限定されない。例えば、レジスト膜の形成に用いられるレジスト用重合体、レジスト膜の上層に形成される反射防止膜(TARC)、またはレジスト膜の下層に形成される反射防止膜(BARC)の形成に用いられる反射防止膜用重合体、ギャップフィル膜の形成に用いられるギャップフィル膜重合体、トップコート膜の形成に用いられるトップコート膜用重合体が挙げられる。
In the present specification, “(meth) acrylic acid” means acrylic acid or methacrylic acid, and “(meth) acryloyloxy” means acryloyloxy or methacryloyloxy.
<Polymer for semiconductor lithography>
The polymer for semiconductor lithography in the present invention (hereinafter sometimes simply referred to as a polymer for lithography) is a polymer used in the lithography step and has at least a structural unit having a polar group.
The “polar group” is a group having a polar functional group or a polar atomic group. Specific examples include a hydroxy group, a cyano group, an alkoxy group, a carboxy group, an amino group, a carbonyl group, and a fluorine atom. A group containing a sulfur atom, a group containing a lactone skeleton, a group containing an acetal structure, a group containing an ether bond, and the like.
The use of the polymer for lithography is not particularly limited as long as it is used in the lithography process. For example, a resist polymer used for forming a resist film, an antireflection film (TARC) formed on the upper layer of the resist film, or a reflection used for forming an antireflection film (BARC) formed on the lower layer of the resist film. Examples thereof include a polymer for prevention film, a gap fill film polymer used for forming a gap fill film, and a polymer for top coat film used for forming a top coat film.

反射防止膜用重合体の例としては、吸光性基を有する構成単位と、レジスト膜と混合を避けるため、硬化剤などと反応して硬化可能なアミノ基、アミド基、ヒドロキシ基、エポキシ基等の反応性官能基を有する構成単位とを含む共重合体が挙げられる。吸光性基とは、レジスト組成物中の感光成分が感度を有する波長領域の光に対して、高い吸収性能を有する基であり、具体例としては、アントラセン環、ナフタレン環、ベンゼン環、キノリン環、キノキサリン環、チアゾール環等の環構造(任意の置換基を有していてもよい。)を有する基が挙げられる。特に、照射光として、KrFレーザ光が用いられる場合には、アントラセン環又は任意の置換基を有するアントラセン環が好ましく、ArFレーザ光が用いられる場合には、ベンゼン環又は任意の置換基を有するベンゼン環が好ましい。   Examples of the polymer for the antireflection film include a structural unit having a light-absorbing group and an amino group, an amide group, a hydroxy group, an epoxy group, etc. that can be cured by reacting with a curing agent in order to avoid mixing with the resist film. And a copolymer containing a structural unit having a reactive functional group. The light-absorbing group is a group having high absorption performance with respect to light in a wavelength region where the photosensitive component in the resist composition is sensitive. Specific examples include an anthracene ring, naphthalene ring, benzene ring, quinoline ring. , A group having a ring structure (optionally substituted) such as a quinoxaline ring and a thiazole ring. In particular, when KrF laser light is used as irradiation light, an anthracene ring or an anthracene ring having an arbitrary substituent is preferable, and when ArF laser light is used, a benzene ring or a benzene having an arbitrary substituent A ring is preferred.

上記任意の置換基としては、フェノール性水酸基、アルコール性水酸基、カルボキシ基、カルボニル基、エステル基、アミノ基、又はアミド基等が挙げられる。これらのうち、吸光性基として、保護された又は保護されていないフェノール性水酸基を有するものが、良好な現像性・高解像性の観点から好ましい。上記吸光性基を有する構成単位・単量体として、例えば、ベンジル(メタ)アクリレート、p−ヒドロキシフェニル(メタ)アクリレート等が挙げられる。   Examples of the optional substituent include a phenolic hydroxyl group, an alcoholic hydroxyl group, a carboxy group, a carbonyl group, an ester group, an amino group, and an amide group. Among these, those having a protected or unprotected phenolic hydroxyl group as the light absorbing group are preferable from the viewpoint of good developability and high resolution. Examples of the structural unit / monomer having the light-absorbing group include benzyl (meth) acrylate and p-hydroxyphenyl (meth) acrylate.

ギャップフィル膜用重合体の例としては、狭いギャップに流れ込むための適度な粘度を有し、レジスト膜や反射防止膜との混合を避けるため、硬化剤などと反応して硬化可能な反応性官能基を有する構成単位を含む共重合体、具体的にはスチレン、アルキル(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート等の単量体と、ヒドロキシスチレンとの共重合体が挙げられる。
液浸リソグラフィーに用いられるトップコート膜用重合体の例としては、カルボキシル基を有する構成単位を含む共重合体、水酸基が置換したフッ素含有基を有する構成単位を含む共重合体等が挙げられる。
Examples of polymers for gap fill films are reactive functionalities that have a suitable viscosity for flowing into narrow gaps and can be cured by reacting with curing agents to avoid mixing with resist films and antireflection films. A copolymer containing a structural unit having a group, specifically, a copolymer of a monomer such as styrene, alkyl (meth) acrylate, hydroxyalkyl (meth) acrylate, and hydroxystyrene.
Examples of the polymer for the topcoat film used in immersion lithography include a copolymer containing a structural unit having a carboxyl group, a copolymer containing a structural unit having a fluorine-containing group substituted with a hydroxyl group, and the like.

[レジスト用重合体]
レジスト用重合体の例としては、酸脱離性基を有する構成単位の1種以上と、極性基を有する構成単位の1種以上とを含む共重合体が挙げられる。
これらのうちで、波長250nm以下の光で露光するパターン形成方法に適用されるレジスト用重合体は、極性基を有する構成単位として、ラクトン骨格を有する構成単位を有することが好ましく、さらに後述の親水性基を有する構成単位を有することが好ましい。
[Polymer for resist]
Examples of the resist polymer include a copolymer containing at least one structural unit having an acid leaving group and at least one structural unit having a polar group.
Among these, the resist polymer applied to the pattern forming method that is exposed to light having a wavelength of 250 nm or less preferably has a structural unit having a lactone skeleton as the structural unit having a polar group, It is preferable to have a structural unit having a functional group.

(ラクトン骨格を有する構成単位・単量体)
ラクトン骨格としては、例えば、4〜20員環程度のラクトン骨格が挙げられる。ラクトン骨格は、ラクトン環のみの単環であってもよく、ラクトン環に脂肪族または芳香族の炭素環または複素環が縮合していてもよい。
重合体がラクトン骨格を有する構成単位を含む場合、その含有量は、基板等への密着性の点から、全構成単位(100モル%)のうち、20モル%以上が好ましく、25モル%以上がより好ましい。また、感度および解像度の点から、60モル%以下が好ましく、55モル%以下がより好ましく、50モル%以下がさらに好ましい。
(Constitutional unit / monomer having a lactone skeleton)
Examples of the lactone skeleton include a lactone skeleton having about 4 to 20 members. The lactone skeleton may be a monocycle having only a lactone ring, or an aliphatic or aromatic carbocyclic or heterocyclic ring may be condensed with the lactone ring.
In the case where the polymer contains a structural unit having a lactone skeleton, the content thereof is preferably 20 mol% or more, more preferably 25 mol% or more of all structural units (100 mol%) from the viewpoint of adhesion to a substrate or the like. Is more preferable. Moreover, from the point of a sensitivity and resolution, 60 mol% or less is preferable, 55 mol% or less is more preferable, and 50 mol% or less is further more preferable.

ラクトン骨格を有する単量体としては、基板等への密着性に優れる点から、置換あるいは無置換のδ−バレロラクトン環を有する(メタ)アクリル酸エステル、置換あるいは無置換のγ−ブチロラクトン環を有する単量体からなる群から選ばれる少なくとも1種が好ましく、無置換のγ−ブチロラクトン環を有する単量体が特に好ましい。   As a monomer having a lactone skeleton, a (meth) acrylic acid ester having a substituted or unsubstituted δ-valerolactone ring, a substituted or unsubstituted γ-butyrolactone ring is used because of its excellent adhesion to a substrate or the like. Preferably, at least one selected from the group consisting of monomers having it is preferred, and monomers having an unsubstituted γ-butyrolactone ring are particularly preferred.

ラクトン骨格を有する単量体の具体例としては、β−(メタ)アクリロイルオキシ−β−メチル−δ−バレロラクトン、4,4−ジメチル−2−メチレン−γ−ブチロラクトン、β−(メタ)アクリロイルオキシ−γ−ブチロラクトン、β−(メタ)アクリロイルオキシ−β−メチル−γ−ブチロラクトン、α−(メタ)アクリロイルオキシ−γ−ブチロラクトン、2−(1−(メタ)アクリロイルオキシ)エチル−4−ブタノリド、(メタ)アクリル酸パントイルラクトン、5−(メタ)アクリロイルオキシ−2,6−ノルボルナンカルボラクトン、8−メタクリロキシ−4−オキサトリシクロ[5.2.1.02,6]デカン−3−オン、9−メタクリロキシ−4−オキサトリシクロ[5.2.1.02,6]デカン−3−オン等が挙げられる。また、類似構造を持つ単量体として、メタクリロイルオキシこはく酸無水物等も挙げられる。
ラクトン骨格を有する単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Specific examples of the monomer having a lactone skeleton include β- (meth) acryloyloxy-β-methyl-δ-valerolactone, 4,4-dimethyl-2-methylene-γ-butyrolactone, β- (meth) acryloyl. Oxy-γ-butyrolactone, β- (meth) acryloyloxy-β-methyl-γ-butyrolactone, α- (meth) acryloyloxy-γ-butyrolactone, 2- (1- (meth) acryloyloxy) ethyl-4-butanolide , (Meth) acrylic acid pantoyl lactone, 5- (meth) acryloyloxy-2,6-norbornanecarbolactone, 8-methacryloxy-4-oxatricyclo [5.2.1.0 2,6 ] decane-3 - one, 9-methacryloxy-4-oxatricyclo [5.2.1.0 2, 6] cited decan-3-one and the like . Examples of the monomer having a similar structure include methacryloyloxysuccinic anhydride.
Monomers having a lactone skeleton may be used alone or in combination of two or more.

(親水性基を有する構成単位・単量体)
本明細書における「親水性基」とは、−C(CF−OH、ヒドロキシ基、シアノ基、メトキシ基、カルボキシ基およびアミノ基の少なくとも1種である。
これらのうちで、波長250nm以下の光で露光するパターン形成方法に適用されるレジスト用重合体は、親水性基としてヒドロキシ基またはシアノ基を有することが好ましい。
レジスト用重合体における親水性基を有する構成単位の含有量は、レジストパターン矩形性の点から、全構成単位(100モル%)のうち、5〜30モル%が好ましく、10〜25モル%がより好ましい。
(Structural unit / monomer having a hydrophilic group)
The “hydrophilic group” in the present specification is at least one of —C (CF 3 ) 2 —OH, a hydroxy group, a cyano group, a methoxy group, a carboxy group, and an amino group.
Among these, it is preferable that the resist polymer applied to the pattern forming method exposed to light having a wavelength of 250 nm or less has a hydroxy group or a cyano group as a hydrophilic group.
The content of the structural unit having a hydrophilic group in the resist polymer is preferably 5 to 30% by mole, more preferably 10 to 25% by mole, of the total structural unit (100% by mole) from the viewpoint of the resist pattern rectangularity. More preferred.

親水性基を有する単量体としては、例えば、末端ヒドロキシ基を有する(メタ)アクリ酸エステル;単量体の親水性基上にアルキル基、ヒドロキシ基、カルボキシ基等の置換基を有する誘導体;環式炭化水素基を有する単量体(例えば(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸1−イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸トリシクロデカニル、(メタ)アクリル酸ジシクロペンチル、(メタ)アクリル酸2−メチル−2−アダマンチル、(メタ)アクリル酸2−エチル−2−アダマンチル等。)が置換基としてヒドロキシ基、カルボキシ基等の親水性基を有するもの;が挙げられる。   Examples of the monomer having a hydrophilic group include a (meth) acrylic acid ester having a terminal hydroxy group; a derivative having a substituent such as an alkyl group, a hydroxy group, or a carboxy group on the hydrophilic group of the monomer; Monomers having a cyclic hydrocarbon group (for example, cyclohexyl (meth) acrylate, 1-isobornyl (meth) acrylate, adamantyl (meth) acrylate, tricyclodecanyl (meth) acrylate, (meth) acrylic acid) Dicyclopentyl, 2-methyl-2-adamantyl (meth) acrylate, 2-ethyl-2-adamantyl (meth) acrylate, etc.) having a hydrophilic group such as a hydroxy group or a carboxy group as a substituent; Can be mentioned.

親水性基を有する単量体の具体例としては、(メタ)アクリル酸、(メタ)アクリル酸2−ヒドロキシエチル、(メタ)アクリル酸3−ヒドロキシプロピル、(メタ)アクリル酸2−ヒドロキシ−n−プロピル、(メタ)アクリル酸4−ヒドロキシブチル、(メタ)アクリル酸3−ヒドロキシアダマンチル、2−または3−シアノ−5−ノルボルニル(メタ)アクリレート、2−シアノメチル−2−アダマンチル(メタ)アクリレート等が挙げられる。基板等に対する密着性の点から、(メタ)アクリル酸3−ヒドロキシアダマンチル、(メタ)アクリル酸3,5−ジヒドロキシアダマンチル、2−または3−シアノ−5−ノルボルニル(メタ)アクリレート、2−シアノメチル−2−アダマンチル(メタ)アクリレート等が好ましい。
親水性基を有する単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
Specific examples of the monomer having a hydrophilic group include (meth) acrylic acid, 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, and 2-hydroxy- (meth) acrylate. -Propyl, 4-hydroxybutyl (meth) acrylate, 3-hydroxyadamantyl (meth) acrylate, 2- or 3-cyano-5-norbornyl (meth) acrylate, 2-cyanomethyl-2-adamantyl (meth) acrylate, etc. Is mentioned. From the point of adhesion to a substrate or the like, 3-hydroxyadamantyl (meth) acrylate, 3,5-dihydroxyadamantyl (meth) acrylate, 2- or 3-cyano-5-norbornyl (meth) acrylate, 2-cyanomethyl- 2-adamantyl (meth) acrylate and the like are preferable.
The monomer which has a hydrophilic group may be used individually by 1 type, and may be used in combination of 2 or more type.

[酸脱離性基を有する構成単位]
レジスト用重合体は、レジスト用途に用いるために上述した極性基を有する構成単位以外に酸脱離性基を有する構成単位を有することが好ましく、この他に、必要に応じて公知の構成単位を有していてもよい。
「酸脱離性基」とは、酸により開裂する結合を有する基であり、該結合の開裂により酸脱離性基の一部または全部が重合体の主鎖から脱離する基である。
レジスト用組成物において、酸脱離性基を有する構成単位を有する重合体は、酸成分と反応してアルカリ性溶液に可溶となり、レジストパターン形成を可能とする作用を奏する。
酸脱離性基を有する構成単位の割合は、感度および解像度の点から、重合体を構成する全構成単位(100モル%)のうち、20モル%以上が好ましく、25モル%以上がより好ましい。また、基板等への密着性の点から、60モル%以下が好ましく、55モル%以下がより好ましく、50モル%以下がさらに好ましい。
[Constitutional unit having acid leaving group]
The resist polymer preferably has a structural unit having an acid-leaving group in addition to the above-described structural unit having a polar group for use in resist applications. In addition to this, a known structural unit may be added if necessary. You may have.
The “acid leaving group” is a group having a bond that is cleaved by an acid, and a part or all of the acid leaving group is removed from the main chain of the polymer by cleavage of the bond.
In the resist composition, a polymer having a structural unit having an acid-eliminable group reacts with an acid component to become soluble in an alkaline solution, and has an effect of enabling resist pattern formation.
The proportion of the structural unit having an acid leaving group is preferably 20 mol% or more, more preferably 25 mol% or more, out of all the structural units (100 mol%) constituting the polymer from the viewpoint of sensitivity and resolution. . Moreover, 60 mol% or less is preferable from the point of the adhesiveness to a board | substrate etc., 55 mol% or less is more preferable, and 50 mol% or less is further more preferable.

酸脱離性基を有する単量体は、酸脱離性基および重合性多重結合を有する化合物であればよく、公知のものを使用できる。重合性多重結合とは重合反応時に開裂して共重合鎖を形成する多重結合であり、エチレン性二重結合が好ましい。
酸脱離性基を有する単量体の具体例として、炭素数6〜20の脂環式炭化水素基を有し、かつ酸脱離性基を有している(メタ)アクリル酸エステルが挙げられる。該脂環式炭化水素基は、(メタ)アクリル酸エステルのエステル結合を構成する酸素原子と直接結合していてもよく、アルキレン基等の連結基を介して結合していてもよい。
該(メタ)アクリル酸エステルには、炭素数6〜20の脂環式炭化水素基を有するとともに、(メタ)アクリル酸エステルのエステル結合を構成する酸素原子との結合部位に第3級炭素原子を有する(メタ)アクリル酸エステル、または、炭素数6〜20の脂環式炭化水素基を有するとともに、該脂環式炭化水素基に−COOR基(Rは置換基を有していてもよい第3級炭化水素基、テトラヒドロフラニル基、テトラヒドロピラニル基、またはオキセパニル基を表す。)が直接または連結基を介して結合している(メタ)アクリル酸エステルが含まれる。
The monomer having an acid leaving group may be any compound having an acid leaving group and a polymerizable multiple bond, and known ones can be used. The polymerizable multiple bond is a multiple bond that is cleaved during the polymerization reaction to form a copolymer chain, and an ethylenic double bond is preferable.
Specific examples of the monomer having an acid leaving group include (meth) acrylic acid esters having an alicyclic hydrocarbon group having 6 to 20 carbon atoms and having an acid leaving group. It is done. The alicyclic hydrocarbon group may be directly bonded to an oxygen atom constituting an ester bond of (meth) acrylic acid ester, or may be bonded via a linking group such as an alkylene group.
The (meth) acrylic acid ester has an alicyclic hydrocarbon group having 6 to 20 carbon atoms, and a tertiary carbon atom at the bonding site with the oxygen atom constituting the ester bond of the (meth) acrylic acid ester. A (meth) acrylic acid ester having an alicyclic group or an alicyclic hydrocarbon group having 6 to 20 carbon atoms and a -COOR group (R may have a substituent) on the alicyclic hydrocarbon group. (Meth) acrylic acid ester in which a tertiary hydrocarbon group, a tetrahydrofuranyl group, a tetrahydropyranyl group, or an oxepanyl group is bonded directly or via a linking group is included.

特に、波長250nm以下の光で露光するパターン形成方法に適用されるレジスト組成物を製造する場合には、酸脱離性基を有する単量体の好ましい例として、例えば、2−メチル−2−アダマンチル(メタ)アクリレート、2−エチル−2−アダマンチル(メタ)アクリレート、1−(1’−アダマンチル)−1−メチルエチル(メタ)アクリレート、1−メチルシクロヘキシル(メタ)アクリレート、1−エチルシクロヘキシル(メタ)アクリレート、1−メチルシクロペンチル(メタ)アクリレート、1−エチルシクロペンチル(メタ)アクリレート、イソプロピルアダマンチル(メタ)アクリレート、1−エチルシクロオクチル(メタ)アクリレート等が挙げられる。
酸脱離性基を有する単量体は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
In particular, in the case of producing a resist composition that is applied to a pattern forming method that is exposed to light having a wavelength of 250 nm or less, as a preferred example of a monomer having an acid leaving group, for example, 2-methyl-2- Adamantyl (meth) acrylate, 2-ethyl-2-adamantyl (meth) acrylate, 1- (1′-adamantyl) -1-methylethyl (meth) acrylate, 1-methylcyclohexyl (meth) acrylate, 1-ethylcyclohexyl ( Examples include meth) acrylate, 1-methylcyclopentyl (meth) acrylate, 1-ethylcyclopentyl (meth) acrylate, isopropyl adamantyl (meth) acrylate, 1-ethylcyclooctyl (meth) acrylate, and the like.
As the monomer having an acid leaving group, one type may be used alone, or two or more types may be used in combination.

<重合体の製造方法>
本発明においてリソグラフィー用重合体の製造方法は特に限定されない。公知の重合方法を用いることができる。例えば、重合溶媒の存在下で、重合開始剤を使用して単量体をラジカル重合させる溶液重合法を好適に用いることができる。
<Method for producing polymer>
In the present invention, the method for producing the polymer for lithography is not particularly limited. A known polymerization method can be used. For example, a solution polymerization method in which a monomer is radically polymerized using a polymerization initiator in the presence of a polymerization solvent can be suitably used.

<重合溶媒>
溶液重合法において用いられる重合溶媒としては、例えば、下記のものが挙げられる。
エーテル類:鎖状エーテル(ジエチルエーテル、プロピレングリコールモノメチルエーテル(以下、「PGME」と記す。)等。)、環状エーテル(テトラヒドロフラン(以下、「THF」と記す。)、1,4−ジオキサン等。)等。
エステル類:酢酸メチル、酢酸エチル、酢酸ブチル、乳酸エチル、乳酸ブチル、プロピレングリコールモノメチルエーテルアセテート(以下、「PGMEA」と記す。)、γ−ブチロラクトン等。
ケトン類:アセトン、メチルエチルケトン(以下、「MEK」と記す。)、メチルイソブチルケトン(以下、「MIBK」と記す。)、シクロヘキサノン等。
アミド類:N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等。
スルホキシド類:ジメチルスルホキシド等。
芳香族炭化水素:ベンゼン、トルエン、キシレン等。
脂肪族炭化水素:ヘキサン等。
脂環式炭化水素:シクロヘキサン等。
有機溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。
<Polymerization solvent>
Examples of the polymerization solvent used in the solution polymerization method include the following.
Ethers: chain ether (diethyl ether, propylene glycol monomethyl ether (hereinafter referred to as “PGME”), etc.), cyclic ether (tetrahydrofuran (hereinafter referred to as “THF”), 1,4-dioxane, etc. )etc.
Esters: methyl acetate, ethyl acetate, butyl acetate, ethyl lactate, butyl lactate, propylene glycol monomethyl ether acetate (hereinafter referred to as “PGMEA”), γ-butyrolactone, and the like.
Ketones: acetone, methyl ethyl ketone (hereinafter referred to as “MEK”), methyl isobutyl ketone (hereinafter referred to as “MIBK”), cyclohexanone, and the like.
Amides: N, N-dimethylacetamide, N, N-dimethylformamide and the like.
Sulfoxides: dimethyl sulfoxide and the like.
Aromatic hydrocarbons: benzene, toluene, xylene and the like.
Aliphatic hydrocarbon: hexane and the like.
Alicyclic hydrocarbons: cyclohexane and the like.
An organic solvent may be used individually by 1 type, and may use 2 or more types together.

<重合開始剤>
重合開始剤としては、熱により効率的にラジカルを発生するものが好ましい。例えば、アゾ化合物(2,2’−アゾビスイソブチロニトリル、ジメチル−2,2’−アゾビスイソブチレート、2,2’−アゾビス[2−(2−イミダゾリン−2−イル)プロパン]等。)、有機過酸化物(2,5−ジメチル−2,5−ビス(tert−ブチルパーオキシ)ヘキサン、ジ(4−tert−ブチルシクロヘキシル)パーオキシジカーボネート等。)等が挙げられる。
これらの重合開始剤の、分解温度に応じた使用適性温度は50〜150℃の範囲内にある。
<Polymerization initiator>
As the polymerization initiator, those that generate radicals efficiently by heat are preferable. For example, azo compounds (2,2′-azobisisobutyronitrile, dimethyl-2,2′-azobisisobutyrate, 2,2′-azobis [2- (2-imidazolin-2-yl) propane] Etc.), organic peroxides (2,5-dimethyl-2,5-bis (tert-butylperoxy) hexane, di (4-tert-butylcyclohexyl) peroxydicarbonate, etc.) and the like.
The suitability temperature of these polymerization initiators depending on the decomposition temperature is in the range of 50 to 150 ° C.

[重合工程]
溶液重合法の重合工程では、重合容器内に重合溶媒、重合開始剤、および単量体を供給し、所定の重合温度に保持してラジカル重合反応を行う。
単量体および重合開始剤の重合容器への供給は、連続供給であってもよく、滴下供給であってもよい。製造ロットの違いによる平均分子量、分子量分布等のばらつきが小さく、再現性のある重合体が簡便に得られる点から、単量体および重合開始剤を重合容器内に滴下する滴下重合法が好ましい。
[Polymerization process]
In the polymerization step of the solution polymerization method, a polymerization solvent, a polymerization initiator, and a monomer are supplied into a polymerization vessel, and a radical polymerization reaction is performed while maintaining a predetermined polymerization temperature.
The supply of the monomer and the polymerization initiator to the polymerization vessel may be a continuous supply or a drop supply. A drop polymerization method in which a monomer and a polymerization initiator are dropped into a polymerization vessel is preferred because variations in average molecular weight and molecular weight distribution due to differences in production lots are small and a reproducible polymer can be easily obtained.

滴下重合法においては、重合容器内を所定の重合温度まで温調した後、単量体および重合開始剤を、それぞれ独立に、または任意の組み合わせで、重合容器内に滴下する。
単量体は、単量体のみで滴下してもよく、単量体を重合溶媒に溶解させた単量体溶液として滴下してもよい。
重合溶媒及び/又は単量体をあらかじめ重合容器に仕込んでもよい。
重合開始剤は、単量体に直接に溶解させてもよく、単量体溶液に溶解させてもよく、重合溶媒のみに溶解させてもよい。
単量体および重合開始剤は、同じ貯槽内で混合した後、重合容器中に滴下してもよく;それぞれ独立した貯槽から重合容器中に滴下してもよく;それぞれ独立した貯槽から重合容器に供給する直前で混合し、重合容器中に滴下してもよい。
単量体および重合開始剤は、一方を先に滴下した後、遅れて他方を滴下してもよく、両方を同じタイミングで滴下してもよい。
滴下速度は、滴下終了まで一定であってもよく、単量体または重合開始剤の消費速度に応じて、多段階に変化させてもよい。
滴下は、連続的に行ってもよく、間欠的に行ってもよい。
重合温度は、重合開始剤の使用適性温度の範囲内に設定することが好ましい。例えば50〜150℃が好ましい。
In the dropping polymerization method, the temperature in the polymerization vessel is adjusted to a predetermined polymerization temperature, and then the monomer and the polymerization initiator are dropped into the polymerization vessel independently or in any combination.
A monomer may be dripped only with a monomer, and may be dripped as a monomer solution which melt | dissolved the monomer in the polymerization solvent.
A polymerization solvent and / or monomer may be charged into the polymerization vessel in advance.
The polymerization initiator may be dissolved directly in the monomer, may be dissolved in the monomer solution, or may be dissolved only in the polymerization solvent.
The monomer and the polymerization initiator may be dropped into the polymerization vessel after mixing in the same storage tank; they may be dropped into the polymerization container from each independent storage tank; They may be mixed immediately before the supply and dropped into the polymerization vessel.
One of the monomer and the polymerization initiator may be dropped first, and then the other may be dropped with a delay, or both may be dropped at the same timing.
The dropping rate may be constant until the end of dropping, or may be changed in multiple stages according to the consumption rate of the monomer or the polymerization initiator.
The dripping may be performed continuously or intermittently.
The polymerization temperature is preferably set within the range of the suitability temperature for the polymerization initiator. For example, 50-150 degreeC is preferable.

溶液重合法において、重合反応が行われる反応液の粘度は、単量体の重合反応が進むにしたがって上昇する。反応液の粘度が高くなりすぎると、重合反応が急速に進行する、いわゆる暴走反応が生じるおそれがある。
本明細書において、重合溶媒の存在下に重合開始剤を使用して単量体を重合反応させた状態の反応液を、重合反応溶液という。重合反応溶液には重合反応により生成した重合体が含まれる。
重合反応溶液の粘度は、重合反応に用いる重合溶媒の量が多いと低くなり、重合溶媒の使用量が少ないと高くなる。重合反応に用いる重合溶媒の量は、上記の暴走反応が生じない程度に反応液の粘度が低くなるように設定すればよく、重合溶媒の使用量が多いほど製造効率が悪くなる。
また、重合反応溶液の粘度は溶媒を用いて希釈することで任意の粘度に調整することができる。希釈溶媒の具体例としては1,4−ジオキサン、アセトン、THF、MEK、シクロペンタノン、シクロヘキサノン、MIBK、γ−ブチロラクトン、PGMEA、PGME、乳酸エチル、2−ヒドロキシイソ酪酸メチル、メタノール、エタノール、イソプロピルアルコール、水、ヘキサン、ヘプタン、ジイソプロピルエーテル、またはそれらの混合溶媒等を挙げることができる。
重合反応溶液の25℃における粘度は、製造効率の点からは25mPa・s以上が好ましく、50mPa・s以上がより好ましく、100mPa・s以上、更には150mPa・s以上が特に好ましい。該重合反応溶液の粘度の上限は、前記暴走反応が生じない範囲であればよく、例えば10,000mPa・s以下が好ましく、9,000mPa・s以下がより好ましい。
溶媒による希釈は重合工程中に行うことができ、後述する停止工程中に行うこともできる。
In the solution polymerization method, the viscosity of the reaction solution in which the polymerization reaction is performed increases as the monomer polymerization reaction proceeds. If the viscosity of the reaction solution becomes too high, a so-called runaway reaction may occur in which the polymerization reaction proceeds rapidly.
In the present specification, a reaction solution in which a monomer is subjected to a polymerization reaction using a polymerization initiator in the presence of a polymerization solvent is referred to as a polymerization reaction solution. The polymerization reaction solution contains a polymer produced by the polymerization reaction.
The viscosity of the polymerization reaction solution decreases when the amount of the polymerization solvent used in the polymerization reaction is large, and increases when the amount of the polymerization solvent used is small. The amount of the polymerization solvent used for the polymerization reaction may be set so that the viscosity of the reaction solution is low enough to prevent the above-mentioned runaway reaction, and the production amount becomes worse as the amount of the polymerization solvent used increases.
The viscosity of the polymerization reaction solution can be adjusted to an arbitrary viscosity by diluting with a solvent. Specific examples of the dilution solvent include 1,4-dioxane, acetone, THF, MEK, cyclopentanone, cyclohexanone, MIBK, γ-butyrolactone, PGMEA, PGME, ethyl lactate, methyl 2-hydroxyisobutyrate, methanol, ethanol, isopropyl Examples thereof include alcohol, water, hexane, heptane, diisopropyl ether, and mixed solvents thereof.
The viscosity at 25 ° C. of the polymerization reaction solution is preferably 25 mPa · s or more from the viewpoint of production efficiency, more preferably 50 mPa · s or more, 100 mPa · s or more, and particularly preferably 150 mPa · s or more. The upper limit of the viscosity of the polymerization reaction solution is not limited as long as the runaway reaction does not occur, and is preferably 10,000 mPa · s or less, and more preferably 9,000 mPa · s or less.
Dilution with a solvent can be performed during the polymerization step, and can also be performed during the stop step described below.

[停止工程]
重合工程において予め設定された重合時間だけ所定の重合温度に保持してラジカル重合反応を行った後、得られた重合反応溶液の重合反応を停止させる。
ラジカル重合反応は、開始反応、生長反応、停止反応、連鎖移動反応の4つの素反応からなる連鎖機構で重合が進行し、生成する重合体の分子量は各素反応の速度と機構によって決められる。生長反応速度は単量体濃度およびラジカル濃度の積に比例し、停止反応はラジカル濃度の2乗に比例する。
本発明において「重合反応を停止させる」とは、重合開始剤の分解によるラジカルの発生量が、開始反応および生長反応を引き起こさない程度に充分少なくなる状態にすることを意味する。
重合反応を停止させる手法は反応液を冷却させる工程が一般的に用いられるが、重合禁止剤や酸素といったラジカル捕捉剤を投入することによって停止させることもできる。
[Stop process]
In the polymerization step, a radical polymerization reaction is performed while maintaining a predetermined polymerization temperature for a preset polymerization time, and then the polymerization reaction of the obtained polymerization reaction solution is stopped.
In the radical polymerization reaction, polymerization proceeds by a chain mechanism comprising four elementary reactions of an initiation reaction, a growth reaction, a termination reaction, and a chain transfer reaction, and the molecular weight of the polymer to be formed is determined by the speed and mechanism of each elementary reaction. The growth reaction rate is proportional to the product of the monomer concentration and the radical concentration, and the termination reaction is proportional to the square of the radical concentration.
In the present invention, “stopping the polymerization reaction” means that the amount of radicals generated by the decomposition of the polymerization initiator is sufficiently reduced so as not to cause an initiation reaction and a growth reaction.
As a method for stopping the polymerization reaction, a process of cooling the reaction solution is generally used, but it can also be stopped by introducing a radical scavenger such as a polymerization inhibitor or oxygen.

[再沈殿工程]
本発明の重合体の製造方法では、保存工程を経て得られた重合反応溶液を、貧溶媒と混合し(好ましくは貧溶媒中に滴下し)、重合反応溶液中の重合体を析出させてもよい。この工程は、再沈殿と呼ばれ、重合体溶液中に残存する未反応単量体、重合開始剤等の不純物を取り除くために非常に有効である。未反応単量体は、そのまま残存しているとレジスト組成物として用いた場合に感度が低下するため、できるだけ取り除くことが好ましい。
希釈後溶液を貧溶媒中に滴下する際の貧溶媒の量は、特に限定されないが、未反応単量体をより低減しやすい点で、希釈後溶液と同体積以上が好ましく、体積基準で3倍以上が好ましく、4倍以上がより好ましく、5倍以上がさらに好ましく、6倍以上が特に好ましい。上限は、使用する貧溶媒の量が多過ぎず、生産性を低下させない点で、体積基準で15倍以下が好ましい。
[Reprecipitation process]
In the method for producing a polymer of the present invention, the polymerization reaction solution obtained through the storage step may be mixed with a poor solvent (preferably dropped in the poor solvent) to precipitate the polymer in the polymerization reaction solution. Good. This step is called reprecipitation and is very effective for removing impurities such as unreacted monomers and polymerization initiator remaining in the polymer solution. If the unreacted monomer remains as it is, the sensitivity decreases when used as a resist composition, so it is preferable to remove it as much as possible.
The amount of the poor solvent when dropping the diluted solution into the poor solvent is not particularly limited, but is preferably equal to or more than that of the diluted solution in terms of easier reduction of unreacted monomers, and is 3 on a volume basis. Is preferably 4 times or more, more preferably 4 times or more, still more preferably 5 times or more, and particularly preferably 6 times or more. The upper limit is preferably 15 times or less on a volume basis in that the amount of the poor solvent used is not too large and productivity is not lowered.

その後、貧溶媒中の析出物をろ別することにより、目的の重合体が湿粉の状態で得られる。   Then, the target polymer is obtained in the state of a wet powder by filtering the deposit in a poor solvent.

[後工程]
貧溶媒中の析出物をろ別して得られる湿粉を乾燥させることにより、目的の重合体の乾燥粉末が得られる。
または、ろ別した湿粉を再び貧溶媒に分散させて重合体分散液とした後に、ろ別する操作を繰り返すこともできる。この工程は、再溶解工程(リスラリ工程)と呼ばれ、重合体湿粉中に残存する未反応の単量体、重合開始剤等の不純物をより低減させるために有効である。
重合体を高い生産性を維持したまま取得できる点では、再溶解工程を行わず、再沈殿工程のみで精製を行うことが好ましい。
[Post-process]
By drying the wet powder obtained by filtering the precipitate in the poor solvent, a dry powder of the target polymer can be obtained.
Alternatively, the filtering operation may be repeated after the filtered wet powder is dispersed again in a poor solvent to obtain a polymer dispersion. This process is referred to as a re-dissolution process (restructuring process) and is effective for further reducing impurities such as unreacted monomers and polymerization initiator remaining in the polymer wet powder.
From the viewpoint that the polymer can be obtained while maintaining high productivity, it is preferable to carry out purification only by the reprecipitation step without performing the remelting step.

また、湿粉は、乾燥せずに湿粉のまま適当な溶媒に溶解させてリソグラフィー用組成物として用いてもよく、濃縮して低沸点化合物を除去してからリソグラフィー用組成物として用いてもよい。その際、保存安定剤等の添加剤を適宜添加してもよい。
または、湿粉を乾燥させた後に適当な溶媒に溶解させ、さらに濃縮して低沸点化合物を除去してからリソグラフィー用組成物として用いてもよい。その際も、保存安定剤等の添加剤を適宜添加してもよい。
Further, the wet powder may be used as a lithography composition by dissolving it in a suitable solvent without drying and may be used as a lithography composition after concentration to remove low boiling point compounds. Good. At that time, additives such as a storage stabilizer may be appropriately added.
Alternatively, the moist powder may be dried and then dissolved in an appropriate solvent, and further concentrated to remove the low boiling point compound, and then used as a lithography composition. At that time, additives such as a storage stabilizer may be added as appropriate.

[精製方法]
本発明の半導体リソグラフィー用重合体の精製方法は、半導体リソグラフィー用重合体を含む溶液(以下、「被精製溶液」ということもある。)を特定の条件でフィルターに通液してろ過する。
本発明の精製方法を用いた半導体リソグラフィー用重合体溶液の精製工程は、重合体の製造工程中で目的の重合体が溶液状態にあるところで適用する。なお、重合体の製造工程とは重合工程から半導体リソグラフィー用組成物として使用されるまでに間のことであり、後工程後の半導体リソグラフィー用重合体溶液を容器に入れて保管する工程も含む。
具体的に、被精製溶液は、溶液重合で重合反応を行った重合反応溶液、後工程で湿粉を再溶解させた溶液、後工程で湿粉を再溶解させた溶液を濃縮して低沸点化合物を除去した溶液、後工程で湿粉を乾燥させた後に適当な溶媒に溶解させた溶液、後工程で湿粉を乾燥させた後に適当な溶媒に溶解させた溶液を濃縮して低沸点化合物を除去した溶液、および後工程後の重合体溶液からなる群から選ばれる1種以上であることが好ましい。
重合反応で副生した、目的とする重量平均分子量よりも高分子量の重合体や共重合組成の偏った溶解性に乏しい重合体を効率的に除去することができる点で、乾燥や濃縮等の熱履歴のかかる工程で得られた溶液を被精製溶液として、精製工程を行うことが好ましい。
[Purification method]
In the method for purifying a polymer for semiconductor lithography of the present invention, a solution containing the polymer for semiconductor lithography (hereinafter sometimes referred to as “solution to be purified”) is passed through a filter under specific conditions and filtered.
The purification process of the polymer solution for semiconductor lithography using the purification method of the present invention is applied where the target polymer is in a solution state during the production process of the polymer. The polymer production process is a period from the polymerization process until it is used as a composition for semiconductor lithography, and includes a process for storing the polymer solution for semiconductor lithography after the subsequent process in a container.
Specifically, the solution to be purified is a low-boiling point by concentrating a polymerization reaction solution obtained by performing a polymerization reaction by solution polymerization, a solution obtained by re-dissolving wet powder in a subsequent process, and a solution obtained by re-dissolving wet powder in a subsequent process. Low boiling point compounds by concentrating the solution from which the compound has been removed, the solution in which the wet powder was dried in the subsequent step and then dissolved in the appropriate solvent, and the solution in which the wet powder was dried in the subsequent step and then dissolved in the appropriate solvent It is preferable that it is 1 or more types chosen from the group which consists of the solution which removed this, and the polymer solution after a post process.
By drying or concentrating, it is possible to efficiently remove a polymer having a higher molecular weight than the intended weight average molecular weight or a polymer having poor solubility with a biased copolymer composition, as a by-product of the polymerization reaction. It is preferable to carry out the purification step using the solution obtained in the step with the heat history as the solution to be purified.

被精製溶液のろ過は、定格ろ過精度が0.1μm以下のフィルターで行い、ろ過前後の差圧が250kPa以下となるように維持させながら通液させる。定格ろ過精度とは、ろ過効率が99.9%以上になる粒子径のことであり、ろ過効率とは、下記式(1)で求められる値のことである。
(ろ過前の粒子数−ろ過後の粒子数)/ろ過前の粒子数×100 ・・・ (1)
定格ろ過精度が小さいほど、フィルターの目が細かいことを示す。
ろ過前後の差圧とは、フィルターに通液する被精製溶液の、ろ過膜に通液する前の重合体溶液にかかる圧力から通液後の重合体溶液にかかる圧力の値を引いた値のことである。通常、ろ過膜の通過抵抗があり通液する前の圧力が高くなるのでろ過前後の差圧は正の数値となる。
The solution to be purified is filtered with a filter having a rated filtration accuracy of 0.1 μm or less, and the solution is passed while maintaining the differential pressure before and after filtration to be 250 kPa or less. The rated filtration accuracy is a particle diameter at which the filtration efficiency is 99.9% or more, and the filtration efficiency is a value obtained by the following formula (1).
(Number of particles before filtration−number of particles after filtration) / number of particles before filtration × 100 (1)
The smaller the rated filtration accuracy, the finer the filter.
The differential pressure before and after filtration is a value obtained by subtracting the pressure applied to the polymer solution after passing through the pressure applied to the polymer solution before passing through the filter membrane of the solution to be passed through the filter. That is. Usually, since there is a passage resistance of the filtration membrane and the pressure before passing the liquid becomes high, the differential pressure before and after filtration becomes a positive numerical value.

被精製溶液を定格ろ過精度が0.1μm以下のフィルターでろ過することで、重合反応で副生した、目的とする重量平均分子量よりも高分子量の重合体や共重合組成の偏った溶解性に乏しい重合体を除去することができる。
かかる高分子量の重合体や共重合組成の偏った重合体は、被精製溶液中でゲル状物質となっていることが多く、熱や応力の影響でその形状を一定に保たずに変形する。したがって、安定したろ過効率を保ったまま精製を行うために、ろ過前後の差圧が250kPa以下となるように維持させながらろ過する。250kPa以下に維持しながらろ過する、とはろ過の開始時点(フィルターに通液を開始した時点)から、ろ過される溶液(フィルターに通液する被精製溶液)の90質量%の通液が終了する時点までの、ろ過前後の差圧が250kPaを超えないことを意味する。
該ろ過前後の差圧の下限は特に制限されないが、ろ過速度が遅くなって生産性が落ちる点で10kPa以上を維持することが好ましく、20kPa以上を維持することがより好ましい。
ろ過効率を高い状態で維持するために、ろ過開始時点のろ過前後の差圧を190kPa以下に制御するのが好ましく、140kPa以下に制御するのがより好ましく、90kPa以下に制御するのが最も好ましい。
また、ろ過の開始時点(フィルターに通液を開始した時点)から、ろ過される溶液(フィルターに通液する被精製溶液)の90質量%の通液が終了する時点までの、ろ過前後の差圧を、常にろ過開始時点のろ過前後の差圧の±50kPa以内に保持しながらろ過することが好ましい。
具体的に、ろ過前後の差圧を所定の範囲内に維持する方法は、被精製溶液を一定圧力に加圧し、ろ過開始後に差圧が変動する場合はその差圧が一定となるように被精製溶液にかける圧力を制御する。被精製溶液を加圧する方法はポンプを用いて送液する方法や、圧縮気体を用いて加圧する方法等を挙げることができる。
By filtering the solution to be purified with a filter having a rated filtration accuracy of 0.1 μm or less, the polymer having a higher molecular weight than the intended weight average molecular weight and the solubility of the copolymer composition, which is a by-product of the polymerization reaction, is obtained. Poor polymer can be removed.
Such high molecular weight polymers and polymers with a biased copolymer composition are often gel-like substances in the solution to be purified and deform without being kept constant due to the effects of heat and stress. . Therefore, in order to perform purification while maintaining stable filtration efficiency, filtration is performed while maintaining the differential pressure before and after filtration to be 250 kPa or less. Filtration while maintaining the pressure at 250 kPa or less means that 90% by mass of the solution to be filtered (the solution to be purified that passes through the filter) is passed from the start of filtration (at the start of passing through the filter). This means that the differential pressure before and after filtration does not exceed 250 kPa.
The lower limit of the differential pressure before and after the filtration is not particularly limited, but is preferably maintained at 10 kPa or more, and more preferably maintained at 20 kPa or more in terms of slowing the filtration rate and reducing productivity.
In order to maintain the filtration efficiency in a high state, the differential pressure before and after filtration at the start of filtration is preferably controlled to 190 kPa or less, more preferably 140 kPa or less, and most preferably 90 kPa or less.
Also, the difference between before and after filtration from the start of filtration (at the start of fluid passage through the filter) to the point at which 90% by mass of the filtered solution (the solution to be refined through the filter) is completed. It is preferable to perform filtration while always maintaining the pressure within ± 50 kPa of the differential pressure before and after the filtration at the start of filtration.
Specifically, the method of maintaining the differential pressure before and after filtration within a predetermined range is to pressurize the solution to be purified to a constant pressure, and when the differential pressure fluctuates after the start of filtration, the differential pressure is kept constant. Control the pressure applied to the purified solution. Examples of the method of pressurizing the solution to be purified include a method of feeding using a pump and a method of pressurizing using a compressed gas.

ろ過される溶液(フィルターに通液する被精製溶液)の質量は、フィルターの通液を一回行う場合は、被精製溶液の質量そのものとなる。後述する循環ろ過により、例えば2回ろ過する場合は、被精製溶液の質量の2倍量が、ろ過される溶液(フィルターに通液する被精製溶液)の質量となる。
ろ過中の前記差圧を、ろ過開始時点の±50kPa以内に保持することでろ過中のろ過精度を一定に保ったままろ過することができ、安定した溶解性を示す半導体用リソグラフィー重合体溶液を得ることができる。該差圧を±40kPa以内に保持することが好ましく、±30kPa以内に保持することがより好ましい。
The mass of the solution to be filtered (the solution to be purified that passes through the filter) becomes the mass of the solution to be purified when the filter is passed once. In the case of filtering twice, for example, by circulation filtration described later, twice the mass of the solution to be purified becomes the mass of the solution to be filtered (the solution to be purified that passes through the filter).
By maintaining the differential pressure during filtration within ± 50 kPa from the start of filtration, it is possible to perform filtration while maintaining a constant filtration accuracy during filtration. Can be obtained. The differential pressure is preferably maintained within ± 40 kPa, and more preferably within ± 30 kPa.

被精製溶液を精製する際に、定格ろ過精度が0.1μmより大きなフィルターを用いると、除去したい高分子量の重合体や共重合組成の偏った重合体を、効率的に除去することができなくなる恐れがある。
該精製に用いるフィルターの定格ろ過精度は0.1μm以下であり、0.05μm以下が好ましく、0.04μm以下がより好ましく、0.02μm以下がさらに好ましく、0.01μm以下が特に好ましく、0.005μm以下が最も好ましい。
フィルター(ろ過膜)の材質は、極性基を有する重合体を含むことが好ましい。例えばPTFE(ポリテトラフルオロエチレン)等のフッ素重合体;ポリエチレン、ポリプロピレン等のポリオレフィン重合体;ナイロン6、ナイロン66、ナイロン46等のポリアミド重合体等を含む重合体組成物からなる、ろ過膜が好ましい。
重合反応で副生した、目的とする重量平均分子量よりも高分子量の重合体や共重合組成の偏った重合体を効率的に除去することができる点で、極性基としてアミド結合を有するポリアミド重合体を含むろ過膜を有するフィルターを用いることが好ましい。
When purifying the solution to be purified, if a filter with a rated filtration accuracy larger than 0.1 μm is used, it is impossible to efficiently remove the high molecular weight polymer to be removed or the polymer having an uneven copolymer composition. There is a fear.
The rated filtration accuracy of the filter used for the purification is 0.1 μm or less, preferably 0.05 μm or less, more preferably 0.04 μm or less, further preferably 0.02 μm or less, particularly preferably 0.01 μm or less, and Most preferred is 005 μm or less.
The material of the filter (filtration membrane) preferably contains a polymer having a polar group. For example, a filtration membrane made of a polymer composition containing a fluoropolymer such as PTFE (polytetrafluoroethylene); a polyolefin polymer such as polyethylene or polypropylene; a polyamide polymer such as nylon 6, nylon 66, or nylon 46 is preferable. .
Polyamide polymer having an amide bond as a polar group can be efficiently removed as a by-product of the polymerization reaction, and a polymer having a higher molecular weight than the target weight average molecular weight or a polymer having a biased copolymer composition. It is preferable to use a filter having a filtration membrane containing coalescence.

フィルターの形状は公知のものを用いることができ、例えば、ディスクタイプ、カートリッジタイプ等の容器内にろ過膜が収納されたものを使用することができる。フィルターは同一、もしくは異なる材質のろ過膜を複数有していてもよい。
フィルターの表面積、重合体溶液の温度、および通液させる際の流速は、ろ過される溶液(フィルターに通液する被精製溶液)の量、粘度等により適宜調整することが好ましい。
フィルターに通液される被精製溶液の温度は、通液の開始から終了までほぼ一定に保たれることが好ましい。例えばx±3℃(xは0〜35℃)の範囲内に保持されることが好ましい。被精製溶液の温度が上記範囲の上限値を超えると安定したろ過効率を保ったまま精製を行うことができなくおそれがあり、下限値未満であると溶液粘度が高くなりろ過速度が遅くなって生産性が落ちやすい点で好ましくない。前記xは5〜30℃がより好ましく、10〜30℃がさらに好ましい。
As the shape of the filter, a known one can be used. For example, a filter in which a filtration membrane is accommodated in a disk type or cartridge type container can be used. The filter may have a plurality of filtration membranes of the same or different materials.
The surface area of the filter, the temperature of the polymer solution, and the flow rate at the time of passing the liquid are preferably adjusted as appropriate depending on the amount of the solution to be filtered (the solution to be purified that passes through the filter), the viscosity, and the like.
The temperature of the solution to be purified that is passed through the filter is preferably maintained substantially constant from the beginning to the end of the passage. For example, it is preferably maintained within a range of x ± 3 ° C. (x is 0 to 35 ° C.). If the temperature of the solution to be purified exceeds the upper limit of the above range, purification may not be possible while maintaining stable filtration efficiency, and if it is less than the lower limit, the solution viscosity increases and the filtration rate decreases. This is not preferable because productivity is likely to be lowered. The x is more preferably 5 to 30 ° C, and further preferably 10 to 30 ° C.

本発明の精製方法では、定格ろ過精度が0.1μm以下のフィルターのろ過を二段階以上に分けてろ過することができる。また、一度ろ過した被精製溶液を再び同じフィルターに繰り返し通液させてろ過することもできる。
ろ過を二段階以上に分けて行う場合、第一段階のろ過と第二段階以上のろ過では、フィルターの定格ろ過精度と材質を任意の組み合わせで用いることができる。フィルターの目詰まりによるろ過性の低下を防ぐ点で、第一段階のろ過フィルターとして、定格ろ過精度が最も大きいフィルターを用い、第二段階以降に進むにつれ、ろ過フィルターの定格ろ過精度が漸次小さくなることが好ましい。
定格ろ過精度が0.1μm以下のフィルターを二段階以上に分けてろ過を行う場合、最初の定格ろ過精度が0.1μm以下のフィルターの通液前の重合体溶液にかかる圧力と、最後の定格ろ過精度が0.1μm以下のフィルターの通液後の重合体溶液にかかる圧力との差が250kPa以下となっていればよい。
一度ろ過した半導体リソグラフィー用重合体溶液を再び同じフィルターに繰り返し通液させる循環ろ過を行う場合、ろ過効率が高くなる点で循環ろ過回数は3回以上行うことが好ましく、4回以上行うことがより好ましく、5回以上行うことがさらに好ましい。
In the purification method of the present invention, filtration of a filter having a rated filtration accuracy of 0.1 μm or less can be divided into two or more stages. Moreover, the to-be-purified solution once filtered can be passed through the same filter again and filtered.
When filtration is performed in two or more stages, the rated filtration accuracy and material of the filter can be used in any combination in the first stage filtration and the second stage filtration. The filter with the highest rated filtration accuracy is used as the first-stage filtration filter in order to prevent deterioration of filterability due to clogging of the filter, and the rated filtration accuracy of the filtration filter gradually decreases as the process proceeds to the second and subsequent stages. It is preferable.
When filtering a filter with a rated filtration accuracy of 0.1 μm or less in two or more stages, the pressure applied to the polymer solution before passing through the filter with the first rated filtration accuracy of 0.1 μm or less and the final rating The difference with the pressure applied to the polymer solution after passing through a filter having a filtration accuracy of 0.1 μm or less may be 250 kPa or less.
In the case of performing circulation filtration in which the polymer solution for semiconductor lithography once filtered is repeatedly passed through the same filter, the number of circulation filtration is preferably 3 times or more and more preferably 4 times or more in terms of increasing filtration efficiency. Preferably, it is more preferably performed 5 times or more.

<レジスト組成物の製造方法>
本発明の精製方法で精製を行う工程(精製工程)を経て、半導体リソグラフィー用重合体を得、得られた重合体と、活性光線又は放射線の照射により酸を発生する化合物とを混合してレジスト組成物を製造することができる。好ましくはレジスト溶媒に、該重合体と活性光線又は放射線の照射により酸を発生する化合物を溶解する。
<Method for producing resist composition>
A polymer for semiconductor lithography is obtained through a step (purification step) for purification by the purification method of the present invention, and the resulting polymer is mixed with a compound that generates an acid upon irradiation with actinic rays or radiation to form a resist. A composition can be produced. Preferably, the polymer and a compound capable of generating an acid upon irradiation with actinic rays or radiation are dissolved in a resist solvent.

[レジスト溶媒]
レジスト溶媒としては、上記に重合溶媒として挙げた溶媒を用いることができる。
[活性光線又は放射線の照射により酸を発生する化合物]
活性光線又は放射線の照射により酸を発生する化合物は、化学増幅型レジスト組成物の光酸発生剤として使用可能なものの中から任意に選択できる。光酸発生剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
光酸発生剤としては、例えば、オニウム塩化合物、スルホンイミド化合物、スルホン化合物、スルホン酸エステル化合物、キノンジアジド化合物、ジアゾメタン化合物等が挙げられる。
光酸発生剤の使用量は、重合体100質量部に対して、0.1〜20質量部が好ましく、0.5〜10質量部がより好ましい。
[Resist solvent]
As the resist solvent, the solvents listed above as the polymerization solvent can be used.
[Compound that generates acid upon irradiation with actinic ray or radiation]
The compound that generates an acid upon irradiation with actinic rays or radiation can be arbitrarily selected from those that can be used as a photoacid generator for a chemically amplified resist composition. A photo-acid generator may be used individually by 1 type, and may use 2 or more types together.
Examples of the photoacid generator include onium salt compounds, sulfonimide compounds, sulfone compounds, sulfonic acid ester compounds, quinone diazide compounds, diazomethane compounds, and the like.
0.1-20 mass parts is preferable with respect to 100 mass parts of polymers, and, as for the usage-amount of a photo-acid generator, 0.5-10 mass parts is more preferable.

[含窒素化合物]
化学増幅型レジスト組成物は、含窒素化合物を含んでいてもよい。含窒素化合物を含むことにより、レジストパターン形状、引き置き経時安定性等がさらに向上する。つまり、レジストパターンの断面形状が矩形により近くなり、また、レジスト膜に光を照射し、ついでベーク(PEB)した後、次の現像処理までの間に数時間放置されることが半導体素子の量産ラインではあるが、そのような放置(経時)したときにレジストパターンの断面形状の劣化の発生がより抑制される。
含窒素化合物としては、アミンが好ましく、第2級低級脂肪族アミン、第3級低級脂肪族アミンがより好ましい。
含窒素化合物の量は、重合体100質量部に対して、0.01〜2質量部が好ましい。
[Nitrogen-containing compounds]
The chemically amplified resist composition may contain a nitrogen-containing compound. By including the nitrogen-containing compound, the resist pattern shape, the stability over time, and the like are further improved. That is, the cross-sectional shape of the resist pattern becomes closer to a rectangle, and the resist film is irradiated with light, then baked (PEB), and then left for several hours before the next development process. Although it is a line, the occurrence of the deterioration of the cross-sectional shape of the resist pattern is further suppressed when left as such (timed).
The nitrogen-containing compound is preferably an amine, more preferably a secondary lower aliphatic amine or a tertiary lower aliphatic amine.
As for the quantity of a nitrogen-containing compound, 0.01-2 mass parts is preferable with respect to 100 mass parts of polymers.

[有機カルボン酸、リンのオキソ酸またはその誘導体]
化学増幅型レジスト組成物は、有機カルボン酸、リンのオキソ酸またはその誘導体(以下、これらをまとめて酸化合物と記す。)を含んでいてもよい。酸化合物を含むことにより、含窒素化合物の配合による感度劣化を抑えることができ、また、レジストパターン形状、引き置き経時安定性等がさらに向上する。
有機カルボン酸としては、マロン酸、クエン酸、リンゴ酸、コハク酸、安息香酸、サリチル酸等が挙げられる。
リンのオキソ酸またはその誘導体としては、リン酸またはその誘導体、ホスホン酸またはその誘導体、ホスフィン酸またはその誘導体等が挙げられる。
酸化合物の量は、重合体100質量部に対して、0.01〜5質量部が好ましい。
[Organic carboxylic acid, phosphorus oxo acid or derivative thereof]
The chemically amplified resist composition may contain an organic carboxylic acid, an oxo acid of phosphorus, or a derivative thereof (hereinafter collectively referred to as an acid compound). By including an acid compound, it is possible to suppress deterioration in sensitivity due to the blending of the nitrogen-containing compound, and further improve the resist pattern shape, stability with time of leaving, and the like.
Examples of the organic carboxylic acid include malonic acid, citric acid, malic acid, succinic acid, benzoic acid, and salicylic acid.
Examples of phosphorus oxo acids or derivatives thereof include phosphoric acid or derivatives thereof, phosphonic acid or derivatives thereof, phosphinic acid or derivatives thereof, and the like.
The amount of the acid compound is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the polymer.

[添加剤]
レジスト組成物は、必要に応じて、界面活性剤、その他のクエンチャー、増感剤、ハレーション防止剤、保存安定剤、消泡剤等の各種添加剤を含んでいてもよい。該添加剤は、当該分野で公知のものであればいずれも使用可能である。また、これら添加剤の量は、特に限定されず、適宜決めればよい。
[Additive]
The resist composition may contain various additives such as a surfactant, other quenchers, sensitizers, antihalation agents, storage stabilizers, and antifoaming agents as necessary. Any additive can be used as long as it is known in the art. Further, the amount of these additives is not particularly limited, and may be determined as appropriate.

<微細パターンが形成された基板の製造方法>
本発明の、微細パターンが形成された基板の製造方法の一例について説明する。
まず、所望の微細パターンを形成しようとするシリコンウエハー等の被加工基板の表面(被加工面)上に、本発明の製造方法で得られるレジスト組成物をスピンコート等により塗布する。そして、該レジスト組成物が塗布された被加工基板を、ベーキング処理(プリベーク)等で乾燥することにより、基板上にレジスト膜を形成する。
<Manufacturing method of substrate on which fine pattern is formed>
An example of the manufacturing method of the board | substrate with which the fine pattern was formed of this invention is demonstrated.
First, the resist composition obtained by the production method of the present invention is applied by spin coating or the like on the surface (processed surface) of a substrate to be processed such as a silicon wafer on which a desired fine pattern is to be formed. And the resist film is formed on a board | substrate by drying the to-be-processed board | substrate with which this resist composition was apply | coated by baking process (prebaking) etc.

ついで、レジスト膜に、フォトマスクを介して、250nm以下の波長の光を照射して潜像を形成する(露光)。照射光としては、KrFエキシマレーザー、ArFエキシマレーザー、Fエキシマレーザー、EUVエキシマレーザーが好ましく、ArFエキシマレーザーが特に好ましい。また、電子線を照射してもよい。
また、該レジスト膜と露光装置の最終レンズとの間に、純水、パーフルオロ−2−ブチルテトラヒドロフラン、パーフルオロトリアルキルアミン等の高屈折率液体を介在させた状態で光を照射する液浸露光を行ってもよい。
Next, the resist film is irradiated with light having a wavelength of 250 nm or less through a photomask to form a latent image (exposure). As irradiation light, a KrF excimer laser, an ArF excimer laser, an F 2 excimer laser, and an EUV excimer laser are preferable, and an ArF excimer laser is particularly preferable. Moreover, you may irradiate an electron beam.
In addition, immersion in which light is irradiated with a high refractive index liquid such as pure water, perfluoro-2-butyltetrahydrofuran, or perfluorotrialkylamine interposed between the resist film and the final lens of the exposure apparatus. Exposure may be performed.

露光後、適宜熱処理(露光後ベーク、PEB)し、レジスト膜にアルカリ現像液を接触させ、露光部分を現像液に溶解させ、除去する(現像)。アルカリ現像液としては、公知のものが挙げられる。
現像後、基板を純水等で適宜リンス処理する。このようにして被加工基板上にレジストパターンが形成される。
After the exposure, heat treatment is appropriately performed (post-exposure baking, PEB), an alkali developer is brought into contact with the resist film, and the exposed portion is dissolved in the developer and removed (development). Examples of the alkaline developer include known ones.
After development, the substrate is appropriately rinsed with pure water or the like. In this way, a resist pattern is formed on the substrate to be processed.

レジストパターンが形成された基板は、適宜熱処理(ポストベーク)してレジストを強化し、レジストのない部分を選択的にエッチングする。
エッチング後、レジストを剥離剤によって除去することによって、微細パターンが形成された基板が得られる。
The substrate on which the resist pattern is formed is appropriately heat-treated (post-baked) to strengthen the resist and selectively etch the portion without the resist.
After etching, the resist is removed with a release agent to obtain a substrate on which a fine pattern is formed.

本発明によれば、後述の実施例に示すように、溶媒への溶解性に優れるだけでなく、溶解性の経時安定性に優れ、レジスト組成物に用いたときに良好な感度が安定して得られる半導体リソグラフィー用重合体が得られる。
これは、精製工程においてリソグラフィー用重合体のろ過前後の差圧を250kPa以下に維持しながら、定格ろ過精度0.1μm以下のフィルターに通液させることで、高分子量体や共重合組成の偏った重合体が低減されたためと考えられる。
According to the present invention, as shown in the examples described later, not only the solubility in a solvent is excellent, but also the solubility over time is excellent, and good sensitivity is stable when used in a resist composition. The resulting polymer for semiconductor lithography is obtained.
This is because the high molecular weight and copolymer composition are biased by passing the liquid through a filter having a rated filtration accuracy of 0.1 μm or less while maintaining the differential pressure before and after filtration of the polymer for lithography in the purification process at 250 kPa or less. This is probably because the polymer was reduced.

以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。また、各実施例、比較例中「部」とあるのは、特に断りのない限り「質量部」を示す。測定方法および評価方法は以下の方法を用いた。   Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. In addition, “part” in each example and comparative example means “part by mass” unless otherwise specified. The measurement method and evaluation method used the following methods.

<重量平均分子量の測定>
重合体の重量平均分子量(Mw)および分子量分布(Mw/Mn)は、下記の条件(GPC条件)でゲル・パーミエーション・クロマトグラフィーにより、ポリスチレン換算で求めた。
[GPC条件]
装置:東ソー社製、東ソー高速GPC装置 HLC−8220GPC(商品名)。
分離カラム:昭和電工社製、Shodex GPC K−805L(商品名)を3本直列に連結したもの。
測定温度:40℃。
溶離液:テトラヒドロフラン(THF)。
試料:重合体の約20mgを5mLのTHFに溶解し、0.5μmメンブレンフィルターで濾過した溶液。
流量:1mL/分。
注入量:0.1mL。
検出器:示差屈折計。
<Measurement of weight average molecular weight>
The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the polymer were determined in terms of polystyrene by gel permeation chromatography under the following conditions (GPC conditions).
[GPC conditions]
Apparatus: Tosoh Corporation high-speed GPC apparatus HLC-8220GPC (trade name).
Separation column: manufactured by Showa Denko Co., Ltd., three Shodex GPC K-805L (trade name) connected in series.
Measurement temperature: 40 ° C.
Eluent: tetrahydrofuran (THF).
Sample: A solution in which about 20 mg of a polymer was dissolved in 5 mL of THF and filtered through a 0.5 μm membrane filter.
Flow rate: 1 mL / min.
Injection volume: 0.1 mL.
Detector: differential refractometer.

検量線I:標準ポリスチレンの約20mgを5mLのTHFに溶解し、0.5μmメンブレンフィルターで濾過した溶液を用いて、上記の条件で分離カラムに注入し、溶出時間と分子量の関係を求めた。標準ポリスチレンは、下記の東ソー社製の標準ポリスチレン(いずれも商品名)を用いた。
F−80(Mw=706,000)。
F−20(Mw=190,000)。
F−4(Mw=37,900)。
F−1(Mw=10,200。
A−2500(Mw=2,630)。
A−500(Mw=682、578、474、370、260の混合物)。
Calibration curve I: About 20 mg of standard polystyrene was dissolved in 5 mL of THF, and the solution was filtered through a 0.5 μm membrane filter and injected into a separation column under the above conditions, and the relationship between elution time and molecular weight was determined. As the standard polystyrene, the following standard polystyrene manufactured by Tosoh Corporation (both trade names) were used.
F-80 (Mw = 706,000).
F-20 (Mw = 190,000).
F-4 (Mw = 37,900).
F-1 (Mw = 10,200.
A-2500 (Mw = 2,630).
A-500 (mixture of Mw = 682, 578, 474, 370, 260).

測定時間0〜3分:A液/B液=90体積%/10体積%。
測定時間3〜24分:A液/B液=90体積%/10体積%から、50体積%/50体積%まで。
測定時間24〜36.5分:A液/B液=50体積%/50体積%から、0体積%/100体積%まで。
測定時間36.5〜44分:A液/B液=0体積%/100体積%。
Measurement time 0 to 3 minutes: A liquid / B liquid = 90 vol% / 10 vol%.
Measurement time: 3 to 24 minutes: A liquid / B liquid = 90 volume% / 10 volume% to 50 volume% / 50 volume%.
Measurement time: 24 to 36.5 minutes: A liquid / B liquid = 50 volume% / 50 volume% to 0 volume% / 100 volume%.
Measurement time: 36.5 to 44 minutes: Liquid A / liquid B = 0 volume% / 100 volume%.

<重合体の溶解性の安定性評価>
測定対象の重合体溶液の濃度を20質量%とし、該重合体に対する貧溶媒を添加して混合し、混合液とした。貧溶媒の添加量を変化させて、該混合液の濁度が10.0NTUとなるときの貧溶媒の添加量Aを求めた。
測定対象の重合体溶液の濃度を20質量%とし、前記で求めた添加量Aの80%の量の貧溶媒を添加して混合液とした。該混合液を25℃に保ちながら4時間撹拌を行った後、該混合液の濁度(80%濁度という。)を測定した。
また、測定対象の重合体溶液の濃度を20質量%とし、25℃の遮光密閉条件下で30日間保管した後、前記で求めた添加量Aの80%の量の貧溶媒を添加して混合液とした。該混合液を25℃に保ちながら4時間撹拌を行った後、該混合液の濁度(30日後80%濁度という。)を測定した。
濁度の測定は、濁度計(Orbeco−Hellige社製、製品名:TB200)を用い、前記混合液の25℃での濁度を測定した。
貧溶媒を添加することで、測定対象の重合体中の溶解性に乏しい成分が析出し、混合液の濁度が上昇する。80%濁度の値が低いほど、重合体中の溶解性に乏しい成分が少なく、重合体の溶解性の安定性が高いことを示す。また「80%濁度」と「30日後80%濁度」との差が小さいほど、重合体溶液の貯蔵中に析出する成分が少なく、経時安定性に優れることを示す。
<Evaluation of polymer stability>
The concentration of the polymer solution to be measured was 20% by mass, and a poor solvent for the polymer was added and mixed to obtain a mixed solution. The addition amount A of the poor solvent when the turbidity of the mixed solution was 10.0 NTU was determined by changing the addition amount of the poor solvent.
The concentration of the polymer solution to be measured was 20% by mass, and a poor solvent having an amount of 80% of the addition amount A determined above was added to prepare a mixed solution. The mixture was stirred for 4 hours while maintaining the temperature at 25 ° C., and then the turbidity (referred to as 80% turbidity) of the mixture was measured.
Further, the concentration of the polymer solution to be measured was 20% by mass, stored for 30 days under light-shielding sealed conditions at 25 ° C., and then added with a poor solvent in an amount of 80% of the addition amount A determined above. Liquid. The mixture was stirred for 4 hours while maintaining the temperature at 25 ° C., and then the turbidity (referred to as 80% turbidity after 30 days) of the mixture was measured.
The turbidity was measured by measuring the turbidity of the mixture at 25 ° C. using a turbidimeter (manufactured by Orbeco-Helloge, product name: TB200).
By adding a poor solvent, a component having poor solubility in the polymer to be measured is precipitated, and the turbidity of the mixed solution is increased. The lower the value of 80% turbidity, the fewer the components with poor solubility in the polymer, and the higher the solubility stability of the polymer. In addition, the smaller the difference between “80% turbidity” and “80% turbidity after 30 days”, the smaller the components precipitated during storage of the polymer solution, and the better the stability over time.

<レジスト組成物の評価>
[感度、現像コントラスト測定]
レジスト組成物を、6インチシリコンウエハー上に回転塗布し、ホットプレート上で120℃、60秒間プリベーク(PAB)して、厚さ300nmの薄膜を形成した。ArFエキシマレーザー露光装置(リソテックジャパン製、商品名:VUVES−4500)を用い、露光量を変えて10mm×10mmの18ショットを露光した。次いで110℃、60秒間のポストベーク(PEB)を行った後、レジスト現像アナライザー(リソテックジャパン製。商品名:RDA−800)を用い、23℃にて2.38質量%テトラメチルアンモニウムヒドロキシド水溶液で65秒間現像し、各露光量における現像中のレジスト膜厚の経時変化を測定した。
<Evaluation of resist composition>
[Sensitivity and development contrast measurement]
The resist composition was spin-coated on a 6-inch silicon wafer and prebaked (PAB) at 120 ° C. for 60 seconds on a hot plate to form a thin film having a thickness of 300 nm. Using an ArF excimer laser exposure apparatus (product name: VUVES-4500, manufactured by RISOTEC Japan), 18 shots of 10 mm × 10 mm 2 were exposed while changing the exposure amount. Then, after post-baking (PEB) at 110 ° C. for 60 seconds, 2.38 mass% tetramethylammonium hydroxide at 23 ° C. using a resist development analyzer (product name: RDA-800). Development was performed with an aqueous solution for 65 seconds, and the change with time in the resist film thickness during development at each exposure amount was measured.

[解析]
得られたデータを基に、露光量(mJ/cm)の対数と、初期膜厚に対する60秒間現像した時点での残存膜厚率(以下、残膜率という)(%)をプロットした曲線(以下、露光量−残膜率曲線という)を作成し、Eth感度(残膜率0%とするための必要露光量であり、感度を表す。)を以下の通り求めた。Eth感度の値が小さいほどレジスト組成物の感度が高いことを示す。
Eth感度:露光量−残膜率曲線が残膜率0%と交わる露光量(mJ/cm)。
[analysis]
A curve plotting the logarithm of the exposure amount (mJ / cm 2 ) and the residual film thickness ratio (hereinafter referred to as the residual film ratio) (%) when developed for 60 seconds with respect to the initial film thickness, based on the obtained data (Hereinafter, exposure amount-residual film rate curve) was prepared, and Eth sensitivity (required exposure amount for setting the residual film rate to 0%, which represents sensitivity) was determined as follows. It shows that the sensitivity of a resist composition is so high that the value of Eth sensitivity is small.
Eth sensitivity: exposure amount (mJ / cm 2 ) at which the exposure amount-residual film rate curve intersects with a residual film rate of 0%.

<実施例1>
窒素導入口、撹拌機、コンデンサー、滴下漏斗、および温度計を備えたフラスコ(反応器)に、窒素雰囲気下で、乳酸エチルを67.8部入れた。フラスコを湯浴に入れ、フラスコ内を撹拌しながらフラスコ内の溶液温度を80℃に上げた。
その後、下記の単量体混合物、溶媒、および重合開始剤を含む滴下溶液を、滴下漏斗より4時間かけて一定の滴下速度でフラスコ内に滴下し、さらに80℃の温度を3時間保持した[重合工程]。
滴下溶液の滴下開始から7時間後に、25℃まで冷却して反応を停止させて重合反応溶液を得た[停止工程]。
単量体m−1を28.56部(40モル%)、
単量体m−2を32.93部(40モル%)、
単量体m−3を19.82部(20モル%)、
乳酸エチルを122.0部、
ジメチル−2,2’−アゾビスイソブチレートを2.415部(単量体の全供給量に対して2.5モル%)。
<Example 1>
In a flask (reactor) equipped with a nitrogen inlet, a stirrer, a condenser, a dropping funnel, and a thermometer, 67.8 parts of ethyl lactate was placed under a nitrogen atmosphere. The flask was placed in a hot water bath, and the solution temperature in the flask was raised to 80 ° C. while stirring the flask.
Thereafter, a dropping solution containing the following monomer mixture, solvent, and polymerization initiator was dropped into the flask at a constant dropping rate over 4 hours from the dropping funnel, and the temperature of 80 ° C. was maintained for 3 hours [ Polymerization step].
Seven hours after the start of dropping of the dropping solution, the reaction was stopped by cooling to 25 ° C. to obtain a polymerization reaction solution [stopping step].
28.56 parts (40 mol%) of monomer m-1;
32.93 parts (40 mol%) of monomer m-2,
19.82 parts (20 mol%) of monomer m-3,
122.0 parts ethyl lactate,
2.415 parts of dimethyl-2,2′-azobisisobutyrate (2.5 mol% with respect to the total monomer feed).

Figure 2016089064
Figure 2016089064

得られた重合反応溶液を、10倍量(体積基準、以下同様。)の貧溶媒中に、該貧溶媒を攪拌しながら滴下し、重合体(白色の析出物)を沈殿させた。貧溶媒としてはメタノールおよび水の混合溶媒(メタノール/水=80/20容量比)を用いた[再沈殿工程]。
沈殿を濾別し、重合体湿粉を得た。再度、前記と同じ量のメタノールおよび水の混合溶媒(メタノール/水=85/15容量比)へ投入し、撹拌しながら沈殿の洗浄を行った。そして、洗浄後の沈殿を濾別し、重合体湿粉160部を得た[後工程(再溶解工程)]。
The obtained polymerization reaction solution was dropped into a 10-fold amount (volume basis, the same shall apply hereinafter) of the poor solvent while stirring to precipitate a polymer (white precipitate). A mixed solvent of methanol and water (methanol / water = 80/20 volume ratio) was used as a poor solvent [reprecipitation step].
The precipitate was filtered off to obtain a polymer wet powder. Again, the mixture was poured into a mixed solvent of methanol and water in the same amount as above (methanol / water = 85/15 volume ratio), and the precipitate was washed while stirring. And the precipitate after washing | cleaning was separated by filtration, and 160 parts of polymer wet powders were obtained [post process (remelting process)].

得られた重合体湿粉160部をPGMEA600部と混合して溶解し、得られた溶液を20℃に温度制御しながら、ナイロン製の定格ろ過精度0.04μmのカートリッジフィルターで、ろ過前後の差圧が70kPaとなるように圧力をかけてろ過し、重合体溶液の90質量%が通液するまではろ過前後の差圧が70±10kPaとなるように送液ポンプの吐出圧力を制御しながら加圧ろ過した[再溶解後の精製工程]。
得られたろ液(ろ過後の重合体溶液)を圧力10kPa、温度40℃の条件で濃縮し、留出液が出なくなった時点で圧力5kPa、温度55℃の条件に変更して、重合体の濃度が20質量%になるまで濃縮を行った[後工程(濃縮工程)]。
得られた濃縮後の重合体溶液を20℃に温度制御しながら、ナイロン製の定格ろ過精度0.04μmのカートリッジフィルターで、ろ過前後の差圧が100kPaとなるように圧力をかけてろ過し、重合体溶液の90質量%が通液するまではろ過前後の差圧が100±10kPaとなるように送液ポンプの吐出圧力を制御しながら加圧ろ過し、重合体濃度が20質量%の半導体リソグラフィー用重合体溶液(P1)を得た[濃縮後の精製工程]。
なお、ろ過終了時点ではフィルター内に重合体溶液が満たされていない状態となり、ろ過前後の差圧は0kPaとなった。
得られた半導体リソグラフィー用重合体溶液(P1)の重量平均分子量(Mw)、分子量分布(Mw/Mn)を測定した。その結果を表2に示す。
160 parts of the obtained polymer wet powder was mixed with 600 parts of PGMEA and dissolved, and the temperature of the resulting solution was controlled at 20 ° C., and the difference between before and after filtration was measured with a nylon cartridge filter with a rated filtration accuracy of 0.04 μm. Filtration is performed so that the pressure becomes 70 kPa, and the discharge pressure of the liquid feeding pump is controlled so that the differential pressure before and after filtration is 70 ± 10 kPa until 90% by mass of the polymer solution is passed through. The solution was filtered under pressure [purification step after re-dissolution].
The obtained filtrate (the polymer solution after filtration) was concentrated under the conditions of a pressure of 10 kPa and a temperature of 40 ° C., and when the distillate no longer came out, the pressure was changed to 5 kPa and the temperature of 55 ° C. Concentration was performed until the concentration reached 20% by mass [post step (concentration step)].
While controlling the temperature of the obtained polymer solution after concentration to 20 ° C., it is filtered by applying a pressure so that the differential pressure before and after filtration becomes 100 kPa with a cartridge filter made of nylon with a rated filtration accuracy of 0.04 μm, Until 90% by mass of the polymer solution passes, pressure filtration is performed while controlling the discharge pressure of the liquid feed pump so that the differential pressure before and after filtration is 100 ± 10 kPa, and the semiconductor has a polymer concentration of 20% by mass. A polymer solution for lithography (P1) was obtained [purification step after concentration].
At the end of filtration, the filter was not filled with the polymer solution, and the differential pressure before and after filtration was 0 kPa.
The weight average molecular weight (Mw) and molecular weight distribution (Mw / Mn) of the obtained polymer solution for semiconductor lithography (P1) were measured. The results are shown in Table 2.

[重合体の溶解性の安定性の評価]
得られた半導体リソグラフィー用重合体溶液(P1)を試験溶液とし、貧溶媒であるn−ヘプタンを表1に示す量添加して混合液とし、4時間撹拌した。撹拌後、濁度計(Orbeco−Hellige社製、製品名:TB200。以下同様。)を用いて、混合液の濁度を測定した。撹拌および測定時の液温は25℃とした。測定結果を表1に示す。
表1の結果に基づいて、混合液の濁度が10.0NTUとなるときの貧溶媒(n−ヘプタン)の添加量Aを求めたところ、試験溶液の100質量%に対して13.7質量%であった。したがって、添加量Aの80%の量は11.0質量%となる。
[Evaluation of polymer solubility]
The obtained polymer solution for semiconductor lithography (P1) was used as a test solution, and n-heptane as a poor solvent was added in an amount shown in Table 1 to prepare a mixed solution, followed by stirring for 4 hours. After stirring, the turbidity of the mixed solution was measured using a turbidimeter (manufactured by Orbeco-Helige, product name: TB200, the same applies hereinafter). The liquid temperature during stirring and measurement was 25 ° C. The measurement results are shown in Table 1.
Based on the result of Table 1, when the addition amount A of the poor solvent (n-heptane) when the turbidity of the mixed solution was 10.0 NTU was determined, 13.7 mass relative to 100 mass% of the test solution. %Met. Therefore, 80% of the added amount A is 11.0% by mass.

得られた半導体リソグラフィー用重合体溶液(P1)に、貧溶媒であるn−ヘプタンを11.0質量%添加して4時間撹拌した。撹拌後、濁度計を用いて、溶液の濁度(80%濁度、単位:NTU)を測定した。撹拌および測定時の液温は25℃とした。また、得られた半導体リソグラフィー用重合体溶液を25℃の遮光密閉条件下で30日間保管し、同様にして溶液の濁度(80%濁度30日後、単位:NTU)を測定した。測定結果を表2に示す。   To the obtained polymer solution for semiconductor lithography (P1), 11.0% by mass of n-heptane as a poor solvent was added and stirred for 4 hours. After stirring, the turbidity of the solution (80% turbidity, unit: NTU) was measured using a turbidimeter. The liquid temperature during stirring and measurement was 25 ° C. Further, the obtained polymer solution for semiconductor lithography was stored for 30 days under a light-tight sealed condition at 25 ° C., and the turbidity of the solution (80% turbidity after 30 days, unit: NTU) was measured in the same manner. The measurement results are shown in Table 2.

Figure 2016089064
Figure 2016089064

[レジスト組成物の評価]
得られた半導体リソグラフィー用重合体溶液(P1)の500部と、光酸発生剤であるトリフェニルスルホニウムトリフレートの2部と、溶媒であるPGMEAとを、重合体濃度が12.5質量%になるように混合して均一溶液とした後、20℃に温度制御したまま孔径0.02μmのポリエチレン製カートリッジフィルターでろ過差圧を200kPaとなるように圧力をかけてろ過し、レジスト組成物を得た。得られたレジスト組成物について感度(Eth感度、単位:mJ/cm)を測定した。結果を表2に示す。
[Evaluation of resist composition]
500 parts of the polymer solution for semiconductor lithography (P1) obtained, 2 parts of triphenylsulfonium triflate as a photoacid generator, and PGMEA as a solvent were brought to a polymer concentration of 12.5% by mass. The resulting mixture is mixed to make a uniform solution, and filtered through a polyethylene cartridge filter having a pore size of 0.02 μm while maintaining the temperature at 20 ° C. so that the filtration differential pressure is 200 kPa, thereby obtaining a resist composition. It was. Sensitivity (Eth sensitivity, unit: mJ / cm 2 ) was measured for the obtained resist composition. The results are shown in Table 2.

<実施例2>
実施例1において、再溶解後の精製工程、および濃縮後の精製工程に用いるナイロン製のカートリッジフィルターの孔径を、いずれも定格ろ過精度0.04μmから、定格ろ過精度0.1μmに変更した。その他は実施例1と同様に重合体の製造を行い、得られた半導体リソグラフィー用重合体溶液について同様に評価した。
結果を表1、2に示す(以下、同様)。
<Example 2>
In Example 1, the pore size of the nylon cartridge filter used in the purification step after re-dissolution and the purification step after concentration was changed from a rated filtration accuracy of 0.04 μm to a rated filtration accuracy of 0.1 μm. Otherwise, the polymer was produced in the same manner as in Example 1, and the obtained polymer solution for semiconductor lithography was similarly evaluated.
The results are shown in Tables 1 and 2 (hereinafter the same).

<実施例3>
実施例1において、再溶解後の精製工程(ろ過)を行わなかった。それ以外は実施例1と同様に重合体の製造を行い、得られた半導体リソグラフィー用重合体溶液について同様に評価した。
<実施例4>
実施例1において、再溶解後の精製工程におけるろ過前後の差圧を70±10kPaから190±30kPaに変更し、かつ濃縮後の精製工程におけるろ過前後の差圧を100±10kPaから190±30kPaに変更した。それ以外は実施例1と同様に重合体の製造を行い、得られた半導体リソグラフィー用重合体溶液について同様に評価した。
<Example 3>
In Example 1, the purification step (filtration) after re-dissolution was not performed. Otherwise, the polymer was produced in the same manner as in Example 1, and the obtained polymer solution for semiconductor lithography was similarly evaluated.
<Example 4>
In Example 1, the differential pressure before and after filtration in the purification step after re-dissolution was changed from 70 ± 10 kPa to 190 ± 30 kPa, and the differential pressure before and after filtration in the purification step after concentration was changed from 100 ± 10 kPa to 190 ± 30 kPa. changed. Otherwise, the polymer was produced in the same manner as in Example 1, and the obtained polymer solution for semiconductor lithography was similarly evaluated.

<実施例5>
実施例1において、精製工程のろ過開始後、ろ過前後の差圧の制御を行わなかった。その結果、再溶解後の精製工程および濃縮後の精製工程のいずれにおいても、ろ過開始後、被精製溶液の90質量%が通液するまでに、ろ過前後の差圧が一定割合で増加して、被精製溶液の90質量%が通液した時点で240kPaになった。それ以外は実施例1と同様に重合体の製造を行い、得られた半導体リソグラフィー用重合体溶液について同様に評価した。
<Example 5>
In Example 1, the control of the differential pressure before and after filtration was not performed after the start of filtration in the purification process. As a result, in both the purification step after re-dissolution and the purification step after concentration, the differential pressure before and after filtration increases at a constant rate until 90% by mass of the solution to be purified passes through after the start of filtration. When 90% by mass of the solution to be purified was passed, it became 240 kPa. Otherwise, the polymer was produced in the same manner as in Example 1, and the obtained polymer solution for semiconductor lithography was similarly evaluated.

<比較例1>
実施例1において、再溶解後の精製工程および濃縮後の精製工程のいずれも行わなかった。それ以外は実施例1と同様に重合体の製造を行い、得られた半導体リソグラフィー用重合体溶液について同様に評価した。
<比較例2>
実施例1において、再溶解後の精製工程におけるろ過前後の差圧を70±10kPaから260±10kPaに変更し、かつ濃縮後の精製工程におけるろ過前後の差圧を100±10kPaから260±10kPaに変更した。それ以外は実施例1と同様に重合体の製造を行い、得られた半導体リソグラフィー用重合体溶液について同様に評価した。
<Comparative Example 1>
In Example 1, neither the purification step after re-dissolution nor the purification step after concentration was performed. Otherwise, the polymer was produced in the same manner as in Example 1, and the obtained polymer solution for semiconductor lithography was similarly evaluated.
<Comparative Example 2>
In Example 1, the differential pressure before and after filtration in the purification step after re-dissolution is changed from 70 ± 10 kPa to 260 ± 10 kPa, and the differential pressure before and after filtration in the purification step after concentration is changed from 100 ± 10 kPa to 260 ± 10 kPa. changed. Otherwise, the polymer was produced in the same manner as in Example 1, and the obtained polymer solution for semiconductor lithography was similarly evaluated.

<比較例3>
実施例1において、精製工程のろ過開始後、ろ過前後の差圧の制御を行わなかった。その結果、再溶解後の精製工程および濃縮後の精製工程のいずれにおいても、ろ過開始後、被精製溶液の90質量%が通液するまでに、ろ過前後の差圧が一定割合で増加して、被精製溶液の90質量%が通液した時点で270kPaになった。それ以外は実施例1と同様に重合体の製造を行い、得られた半導体リソグラフィー用重合体溶液について同様に評価した。
<Comparative Example 3>
In Example 1, the control of the differential pressure before and after filtration was not performed after the start of filtration in the purification process. As a result, in both the purification step after re-dissolution and the purification step after concentration, the differential pressure before and after filtration increases at a constant rate until 90% by mass of the solution to be purified passes through after the start of filtration. When 90% by mass of the solution to be purified was passed, it became 270 kPa. Otherwise, the polymer was produced in the same manner as in Example 1, and the obtained polymer solution for semiconductor lithography was similarly evaluated.

Figure 2016089064
Figure 2016089064

表2の結果に示されるように、再溶解後の精製工程および濃縮後の精製工程を行った実施例1、2、4、5は、および濃縮後の精製工程を行った実施例3は、これらの精製工程をいずれも行わなかった比較例1と比べて、貧溶媒を添加した時の溶液濁度が低くて重合体の溶解性が良好であり、長期保管しても重合体の溶解性はほとんど変化せず、溶解性の安定性が良好であった。   As shown in the results of Table 2, Examples 1, 2, 4, and 5 where the purification step after re-dissolution and the purification step after concentration were performed, and Example 3 where the purification step after concentration was performed were Compared with Comparative Example 1 in which none of these purification steps were performed, the solution turbidity when the poor solvent was added was low and the solubility of the polymer was good, and the solubility of the polymer even after long-term storage There was almost no change, and the stability of solubility was good.

比較例2は、再溶解後の精製工程および濃縮後の精製工程を行ったが、ろ過前後の差圧が250kPaを超えており、実施例1〜5と比べて貧溶媒を添加した時の溶液濁度が高く、長期保管によって重合体の溶解性が明らかに低下した。
比較例3は、再溶解後の精製工程および濃縮後の精製工程を行ったが、ろ過前後の差圧が、ろ過の途中で250kPaを超えた例である。実施例1〜5と比べて貧溶媒を添加した時の溶液濁度が高く、長期保管によって重合体の溶解性が明らかに低下した。
In Comparative Example 2, the purification step after re-dissolution and the purification step after concentration were performed, but the differential pressure before and after filtration exceeded 250 kPa, and the solution when the poor solvent was added as compared with Examples 1-5 The turbidity was high and the solubility of the polymer was clearly reduced by long-term storage.
In Comparative Example 3, the purification step after re-dissolution and the purification step after concentration were performed, but the differential pressure before and after filtration exceeded 250 kPa during filtration. Compared with Examples 1-5, the solution turbidity when a poor solvent was added was high, and the solubility of the polymer decreased clearly by long-term storage.

実施例1と実施例2を比べると、フィルターの定格ろ過精度が小さく、フィルターの目が細かい方が、貧溶媒を添加した時の溶液濁度がより低くて重合体の溶解性が良好であることがわかる。
実施例1と実施例3を比べると、再溶解後の精製工程および濃縮後の精製工程を行った実施例1の方が、再溶解後の精製工程を行わず、濃縮後の精製工程を行った実施例3に比べて、長期保存したときの溶解性の安定性(80%濁度30日)が向上したことがわかる。
実施例1と実施例4を比べると、再溶解後の精製工程および濃縮後の精製工程におけるろ過前後の差圧が小さい実施例1の方が、貧溶媒を添加した時の溶液濁度がより低くて重合体の溶解性が良好であり、長期保存したときの溶解性の安定性も優れることがわかる。
実施例4と実施例5を比べると、ろ過開始時のろ過前後の差圧は同等であるが、被精製溶液の90質量%が通液するまでの該差圧の変動が小さい実施例4の方が、長期保存したときの溶解性の安定性が良好であることがわかる。
When Example 1 is compared with Example 2, the rated filtration accuracy of the filter is small, and the finer the filter, the lower the solution turbidity when a poor solvent is added and the better the solubility of the polymer. I understand that.
Comparing Example 1 and Example 3, Example 1 in which the purification step after re-dissolution and the purification step after concentration were performed did not perform the purification step after re-dissolution, and performed the purification step after concentration. It can be seen that the stability of solubility (80% turbidity 30 days) after long-term storage was improved as compared with Example 3.
Comparing Example 1 and Example 4, Example 1, which has a smaller differential pressure before and after filtration in the purification step after re-dissolution and the purification step after concentration, has a higher solution turbidity when a poor solvent is added. It can be seen that it is low and the solubility of the polymer is good, and the stability of the solubility when stored for a long time is also excellent.
Comparing Example 4 and Example 5, the differential pressure before and after filtration at the start of filtration is the same, but the variation in the differential pressure until 90% by mass of the solution to be purified passes is small. It can be seen that the stability of solubility when stored for a long time is better.

Claims (5)

極性基を有する構成単位を有する半導体リソグラフィー用重合体を含む溶液を、定格ろ過精度が0.1μm以下のフィルターに、ろ過前後の差圧を250kPa以下に維持しながら、通液させる工程を有する、半導体リソグラフィー用重合体の精製方法。   Having a step of allowing a solution containing a polymer for semiconductor lithography having a structural unit having a polar group to pass through a filter having a rated filtration accuracy of 0.1 μm or less while maintaining a differential pressure before and after filtration at 250 kPa or less, A method for purifying a polymer for semiconductor lithography. 前記半導体リソグラフィー用重合体を含む溶液を、前記フィルターに通液を開始した時点から、ろ過される溶液の90質量%の通液が終了する時点までの、ろ過前後の差圧を、通液を開始した時点のろ過前後の差圧の±50kPa以内に維持する、請求項1記載の精製方法。   The differential pressure before and after the filtration from the time when the solution containing the polymer for semiconductor lithography started to pass through the filter to the time when 90% by mass of the solution to be filtered ended. The purification method according to claim 1, wherein the pressure is maintained within ± 50 kPa of the differential pressure before and after the filtration at the start time. 極性基を有する構成単位を有する半導体リソグラフィー用重合体を含む溶液を製造する工程と、請求項1または2記載の精製方法を行う工程を含む半導体リソグラフィー用重合体の製造方法。   The manufacturing method of the polymer for semiconductor lithography including the process of manufacturing the solution containing the polymer for semiconductor lithography which has a structural unit which has a polar group, and the process of performing the purification method of Claim 1 or 2. 請求項3に記載のリソグラフィー用重合体の製造方法によりリソグラフィー用重合体を製造する工程と、得られたリソグラフィー用重合体と、活性光線又は放射線の照射により酸を発生する化合物とを混合する工程を有する、レジスト組成物の製造方法。   The process of manufacturing the polymer for lithography by the manufacturing method of the polymer for lithography of Claim 3, and the process of mixing the compound which produces | generates an acid by irradiation of actinic light or a radiation, and the obtained polymer for lithography A method for producing a resist composition, comprising: 請求項4に記載のレジスト組成物の製造方法によりレジスト組成物を製造する工程と、得られたレジスト組成物を基板の被加工面上に塗布してレジスト膜を形成する工程と、該レジスト膜に対して露光する工程と、露光されたレジスト膜を現像液を用いて現像する工程とを含む、パターンが形成された基板の製造方法。   A process for producing a resist composition by the method for producing a resist composition according to claim 4, a process for forming a resist film by applying the obtained resist composition on a work surface of a substrate, and the resist film A method of manufacturing a substrate on which a pattern is formed, the method comprising: exposing the resist film to a resist and developing the exposed resist film using a developer.
JP2014226348A 2014-11-06 2014-11-06 Purification method and manufacturing method of polymer for semiconductor lithography, manufacturing method of resist composition, and manufacturing method of substrate on which a pattern is formed Active JP6520054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014226348A JP6520054B2 (en) 2014-11-06 2014-11-06 Purification method and manufacturing method of polymer for semiconductor lithography, manufacturing method of resist composition, and manufacturing method of substrate on which a pattern is formed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014226348A JP6520054B2 (en) 2014-11-06 2014-11-06 Purification method and manufacturing method of polymer for semiconductor lithography, manufacturing method of resist composition, and manufacturing method of substrate on which a pattern is formed

Publications (2)

Publication Number Publication Date
JP2016089064A true JP2016089064A (en) 2016-05-23
JP6520054B2 JP6520054B2 (en) 2019-05-29

Family

ID=56016266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014226348A Active JP6520054B2 (en) 2014-11-06 2014-11-06 Purification method and manufacturing method of polymer for semiconductor lithography, manufacturing method of resist composition, and manufacturing method of substrate on which a pattern is formed

Country Status (1)

Country Link
JP (1) JP6520054B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019022174A1 (en) * 2017-07-26 2019-01-31 富士フイルム株式会社 Filtration apparatus, purification apparatus, apparatus for manufacturing chemical solution, filtered purifiable material, chemical solution, and actinic ray-curable or radiation-sensitive resin composition
WO2020203246A1 (en) * 2019-03-29 2020-10-08 富士フイルム株式会社 Method for producing active light sensitive or radiation sensitive resin composition, pattern forming method, and method for producing electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001206952A (en) * 2000-01-27 2001-07-31 Dainippon Ink & Chem Inc Method of purifying fluorine surfactant copolymer
JP2007033542A (en) * 2005-07-22 2007-02-08 Tokyo Ohka Kogyo Co Ltd Method for producing positive resist composition, positive resist composition and resist pattern forming method
JP2008163319A (en) * 2006-12-06 2008-07-17 Maruzen Petrochem Co Ltd Copolymer for semiconductor lithography and its production method
JP2012013880A (en) * 2010-06-30 2012-01-19 Sumitomo Chemical Co Ltd Method for producing resist composition
JP2013007846A (en) * 2011-06-23 2013-01-10 Fujifilm Corp Actinic ray-sensitive or radiation-sensitive resin composition, manufacturing method of the composition, actinic ray-sensitive or radiation-sensitive film, and pattern forming method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001206952A (en) * 2000-01-27 2001-07-31 Dainippon Ink & Chem Inc Method of purifying fluorine surfactant copolymer
JP2007033542A (en) * 2005-07-22 2007-02-08 Tokyo Ohka Kogyo Co Ltd Method for producing positive resist composition, positive resist composition and resist pattern forming method
JP2008163319A (en) * 2006-12-06 2008-07-17 Maruzen Petrochem Co Ltd Copolymer for semiconductor lithography and its production method
JP2012013880A (en) * 2010-06-30 2012-01-19 Sumitomo Chemical Co Ltd Method for producing resist composition
JP2013007846A (en) * 2011-06-23 2013-01-10 Fujifilm Corp Actinic ray-sensitive or radiation-sensitive resin composition, manufacturing method of the composition, actinic ray-sensitive or radiation-sensitive film, and pattern forming method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019022174A1 (en) * 2017-07-26 2019-01-31 富士フイルム株式会社 Filtration apparatus, purification apparatus, apparatus for manufacturing chemical solution, filtered purifiable material, chemical solution, and actinic ray-curable or radiation-sensitive resin composition
KR20200016945A (en) * 2017-07-26 2020-02-17 후지필름 가부시키가이샤 Filtration apparatus, purification apparatus, manufacturing apparatus of chemical | medical solution, filtration completed refining substance, chemical | medical solution, and actinic-ray-sensitive or radiation-sensitive resin composition
CN110944734A (en) * 2017-07-26 2020-03-31 富士胶片株式会社 Filtering device, purifying device, chemical liquid manufacturing device, filtered object to be purified, chemical liquid, and active light-sensitive or radiation-sensitive resin composition
JPWO2019022174A1 (en) * 2017-07-26 2020-07-16 富士フイルム株式会社 Filtration device, purification device, chemical liquid manufacturing device, filtered product to be purified, chemical liquid, and actinic ray-sensitive or radiation-sensitive resin composition
KR102298236B1 (en) * 2017-07-26 2021-09-07 후지필름 가부시키가이샤 Filtration apparatus, purification apparatus, apparatus for manufacturing a chemical solution, an object to be purified after filtration, a chemical solution, and an actinic ray-sensitive or radiation-sensitive resin composition
JP2022009469A (en) * 2017-07-26 2022-01-14 富士フイルム株式会社 Filtration device, purifier, production apparatus of chemical liquid, filtered purified material, chemical liquid, and active ray sensitive or radiation sensitive resin composition
US11559758B2 (en) 2017-07-26 2023-01-24 Fujifilm Corporation Filtering device, purification device, chemical liquid manufacturing device, filtered substance to be purified, chemical liquid, and actinic ray-sensitive or radiation-sensitive resin composition
JP7282141B2 (en) 2017-07-26 2023-05-26 富士フイルム株式会社 Filtration device, purification device, chemical manufacturing device, filtered material to be purified, chemical solution, and actinic ray-sensitive or radiation-sensitive resin composition
WO2020203246A1 (en) * 2019-03-29 2020-10-08 富士フイルム株式会社 Method for producing active light sensitive or radiation sensitive resin composition, pattern forming method, and method for producing electronic device
JPWO2020203246A1 (en) * 2019-03-29 2021-12-23 富士フイルム株式会社 Method for manufacturing a sensitive light-sensitive or radiation-sensitive resin composition, a method for forming a pattern, a method for manufacturing an electronic device
JP7301123B2 (en) 2019-03-29 2023-06-30 富士フイルム株式会社 Actinic ray-sensitive or radiation-sensitive resin composition production method, pattern formation method, electronic device production method

Also Published As

Publication number Publication date
JP6520054B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
JP6262416B2 (en) Lithographic polymer solution manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP6520054B2 (en) Purification method and manufacturing method of polymer for semiconductor lithography, manufacturing method of resist composition, and manufacturing method of substrate on which a pattern is formed
JP5821317B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP5741814B2 (en) Polymer for semiconductor lithography and method for producing the same, resist composition, and method for producing substrate
JP5942562B2 (en) Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed
JP2015143363A (en) Production method of polymer for semiconductor lithography, production method of resist composition, and production method of substrate
JP5716943B2 (en) Polymer, resist composition, and method of manufacturing substrate on which pattern is formed
JP6369103B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP7127267B2 (en) Method for producing polymer solution for lithography, method for producing resist composition, and method for producing patterned substrate
JP6439278B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP6481334B2 (en) Purification method and manufacturing method of polymer for semiconductor lithography, manufacturing method of resist composition, and manufacturing method of substrate on which pattern is formed
JP6369156B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP6299076B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP5751487B2 (en) Method for producing resist polymer, method for producing resist composition, and method for producing substrate on which pattern is formed
JP5793825B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and substrate manufacturing method
JP5942563B2 (en) Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed
JP6439270B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP6623562B2 (en) Method for producing lithographic material, method for producing lithographic composition, and method for producing substrate on which pattern is formed
JP2017119881A (en) Production method of polymer for lithography, production method of resist composition, and method for manufacturing patterned substrate
JP6657846B2 (en) Method for producing polymer for semiconductor lithography, method for producing resist composition, and method for producing substrate on which pattern is formed
JP6314786B2 (en) Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed
JP6268804B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP5659570B2 (en) Method for producing polymer, polymer for semiconductor lithography, resist composition, and method for producing substrate on which pattern is formed
JP6268803B2 (en) Lithographic polymer manufacturing method, resist composition manufacturing method, and pattern-formed substrate manufacturing method
JP5942564B2 (en) Method for producing polymer, method for producing resist composition, and method for producing substrate on which pattern is formed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180820

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20181102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190415

R151 Written notification of patent or utility model registration

Ref document number: 6520054

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151