JP2016080027A - Bearing portion for chain, pin, its manufacturing method, and chain using the same - Google Patents
Bearing portion for chain, pin, its manufacturing method, and chain using the same Download PDFInfo
- Publication number
- JP2016080027A JP2016080027A JP2014210241A JP2014210241A JP2016080027A JP 2016080027 A JP2016080027 A JP 2016080027A JP 2014210241 A JP2014210241 A JP 2014210241A JP 2014210241 A JP2014210241 A JP 2014210241A JP 2016080027 A JP2016080027 A JP 2016080027A
- Authority
- JP
- Japan
- Prior art keywords
- chain
- pin
- link
- film
- bearing portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- INZDTEICWPZYJM-UHFFFAOYSA-N 1-(chloromethyl)-4-[4-(chloromethyl)phenyl]benzene Chemical compound C1=CC(CCl)=CC=C1C1=CC=C(CCl)C=C1 INZDTEICWPZYJM-UHFFFAOYSA-N 0.000 claims abstract description 62
- 239000002344 surface layer Substances 0.000 claims abstract description 48
- 239000000463 material Substances 0.000 claims abstract description 45
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 31
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 27
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 26
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 24
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000006104 solid solution Substances 0.000 claims abstract description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 62
- 229910052757 nitrogen Inorganic materials 0.000 claims description 33
- 239000010936 titanium Substances 0.000 claims description 27
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 18
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 17
- 239000011733 molybdenum Substances 0.000 claims description 17
- 238000009792 diffusion process Methods 0.000 claims description 13
- 238000002485 combustion reaction Methods 0.000 claims description 11
- 229910000628 Ferrovanadium Inorganic materials 0.000 claims description 10
- PNXOJQQRXBVKEX-UHFFFAOYSA-N iron vanadium Chemical compound [V].[Fe] PNXOJQQRXBVKEX-UHFFFAOYSA-N 0.000 claims description 10
- 235000019270 ammonium chloride Nutrition 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 5
- 230000003204 osmotic effect Effects 0.000 claims description 5
- 239000012429 reaction media Substances 0.000 claims description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 abstract description 15
- 239000011248 coating agent Substances 0.000 abstract description 12
- 238000005461 lubrication Methods 0.000 abstract description 12
- 238000005299 abrasion Methods 0.000 abstract description 2
- 208000035874 Excoriation Diseases 0.000 abstract 1
- 239000000243 solution Substances 0.000 abstract 1
- 230000007423 decrease Effects 0.000 description 14
- 230000003746 surface roughness Effects 0.000 description 11
- 239000012528 membrane Substances 0.000 description 8
- 238000005121 nitriding Methods 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- UFGZSIPAQKLCGR-UHFFFAOYSA-N chromium carbide Chemical compound [Cr]#C[Cr]C#[Cr] UFGZSIPAQKLCGR-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000010687 lubricating oil Substances 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 229910003470 tongbaite Inorganic materials 0.000 description 5
- 229910001935 vanadium oxide Inorganic materials 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 230000013011 mating Effects 0.000 description 3
- 239000004071 soot Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 210000000689 upper leg Anatomy 0.000 description 3
- 230000037303 wrinkles Effects 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000003610 charcoal Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 239000011572 manganese Substances 0.000 description 2
- FXNGWBDIVIGISM-UHFFFAOYSA-N methylidynechromium Chemical compound [Cr]#[C] FXNGWBDIVIGISM-UHFFFAOYSA-N 0.000 description 2
- UNASZPQZIFZUSI-UHFFFAOYSA-N methylidyneniobium Chemical compound [Nb]#C UNASZPQZIFZUSI-UHFFFAOYSA-N 0.000 description 2
- 239000010705 motor oil Substances 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 238000003917 TEM image Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000016571 aggressive behavior Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000013538 functional additive Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- IBYSTTGVDIFUAY-UHFFFAOYSA-N vanadium monoxide Chemical compound [V]=O IBYSTTGVDIFUAY-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Valve-Gear Or Valve Arrangements (AREA)
Abstract
Description
本発明は、サイレントチェーン、ローラチェーン等のチェーンに用いられる軸受部、ピンに係り、内燃エンジン内に配置されるチェーンに用いて好適であり、詳しくはピン及び該ピンを摺動自在に嵌合する嵌合部材からなるチェーン用軸受部、その製造方法、及びそれを用いたチェーンに関する。 The present invention relates to a bearing portion and a pin used in a chain such as a silent chain and a roller chain, and is suitable for use in a chain disposed in an internal combustion engine. Specifically, the pin and the pin are slidably fitted. The present invention relates to a chain bearing portion comprising a fitting member, a manufacturing method thereof, and a chain using the same.
一般に、サイレントチェーンは、ピンとリンクプレートの間、ローラチェーンは、ピンとブシュの間に、相対回転摺動を生じ、ピン及び嵌合部材(リンクプレート又はブシュ)が摩耗し、チェーンに摩耗伸びを生じる。特に、内燃エンジンン内に配置されるタイミングチェーン等のサイレントチェーンにあっては、摺動発熱が懸念される境界潤滑状態に近い条件下においても高い耐久性が求められている。 Generally, a silent chain causes relative rotational sliding between a pin and a link plate, and a roller chain causes a pin and a fitting member (link plate or bush) to wear, resulting in wear elongation of the chain. . In particular, a silent chain such as a timing chain disposed in an internal combustion engine is required to have high durability even under conditions close to a boundary lubrication state in which sliding heat generation is a concern.
従来、バナジウム炭化物(VxCy)からなる表面層と、ピン母材と前記表面層との間にあって、バナジウムとクロムとの炭化物からなる境界部と、を備え、前記境界部におけるクロム含有量がピン母材から前記表面層に向って徐々に少なくなるように傾斜変化した、チェーン用ピンが案出されている(特許文献1参照)。 Conventionally, a surface layer made of vanadium carbide (VxCy), and a boundary portion made of a carbide of vanadium and chromium between the pin base material and the surface layer, the chromium content in the boundary portion being a pin mother A chain pin has been devised that changes in inclination so as to gradually decrease from the material toward the surface layer (see Patent Document 1).
該チェーン用ピンは、表面層が高い面圧強度を有するバナジウム炭化物からなり、境界部に、明確に区画された界面を形成しない形でバナジウムとクロムとの炭化物を形成して、表面層とピン母材との密着強度を向上して表面層と境界面での剥離を防止し、チェーンの耐久性及び長寿命化を図っている。 The chain pin is made of vanadium carbide having a high surface pressure strength in the surface layer, and forms a carbide of vanadium and chromium in a form that does not form a well-defined interface at the boundary portion. The adhesion strength with the base material is improved to prevent peeling at the surface layer and the boundary surface, thereby improving the durability and life of the chain.
近年の環境問題やエネルギー問題の高まりにより、内燃エンジン等にあっても持続的発展への要求が高まっており、エンジン車両の一層の燃費向上が急務になっている一方で、上記タイミングチェーンの長期信頼性の確保が重要な課題となっている。そのような次世代エンジンでは、潤滑油の低粘度化が進んだり、或いはエンジン機構の変化から潤滑油量が希薄化する場合があり、潤滑条件が混合潤滑でも境界潤滑に近づいて、チェーン潤滑環境が過酷化する場合が多くなっており、そのようなチェーン駆動モードにおいて、上記バナジウム炭化物を表面層としたピン(以下VCピンという)に異常摩耗を生じる場合があることを発見した。 Due to the recent increase in environmental and energy problems, there is an increasing demand for sustainable development even for internal combustion engines, etc., while there is an urgent need to improve the fuel efficiency of engine vehicles. Ensuring reliability is an important issue. In such next-generation engines, the viscosity of the lubricating oil may decrease, or the amount of lubricating oil may dilute due to changes in the engine mechanism. In such a chain drive mode, it has been found that the pin having the vanadium carbide as a surface layer (hereinafter referred to as a VC pin) may be abnormally worn.
本発明者等は、上記VCピンの異常摩耗について鋭意研究した結果、まず、従来のエンジン内チェーンにおいて、バナジウム炭化物(VC)皮膜がクロム炭化物(CrC)、ニオブ炭化物(NbC)等の他のMC(M:Cr、Nb、V、Ti等のMetal)型硬質炭化物皮膜より高い耐摩耗性能を有するメカニズムは、
(i)VC皮膜表面において極薄く軟質な酸化皮膜が持続的に形成されることにより、ピン摺動面が鏡面化し易いため、相手(リンクプレート孔面)攻撃性が低くなる。
(ii)他のMC型炭化物皮膜より高い靱性を有し、高面圧下でも皮膜の破壊(微小剥離による面あれ)が進み難く、鏡面化した摺動面を長期に亘って維持できる。
ことにあると解析した。
As a result of earnest research on the abnormal wear of the VC pin, the present inventors have first made other MCs such as vanadium carbide (VC) film such as chromium carbide (CrC), niobium carbide (NbC) in a conventional engine chain. (M: Metals such as Cr, Nb, V, Ti, etc.) type hard carbide film has a higher wear resistance than the mechanism,
(I) Since a very thin and soft oxide film is continuously formed on the surface of the VC film, the pin sliding surface is easily mirror-finished, so that the partner (link plate hole surface) is less aggressive.
(Ii) It has higher toughness than other MC type carbide coatings, and it is difficult for the coating to break down (surface failure due to micro-peeling) even under high surface pressure, and the mirrored sliding surface can be maintained for a long time.
Analyzed that there was.
そして、次世代エンジンを想定したチェーン駆動試験において、VCピンが異常摩耗する原因は、潤滑環境が過酷になる状況では、摺動部(ピン表面及びリンクプレート孔面)の潤滑が境界潤滑状態に近づき、ピン表面が発熱して高温化し、その結果相手攻撃性の低下を促す酸化皮膜が厚く形成されてしまい、軟質な該酸化皮膜が摩耗することによりピン自身の摩耗が増大したことに因る、と推測した。 In the chain drive test assuming the next-generation engine, the cause of abnormal wear of the VC pin is that the lubrication of the sliding part (pin surface and link plate hole surface) is in the boundary lubrication state in a severe lubrication environment. Due to the fact that the pin surface is heated and heated to a high temperature, a thick oxide film is formed that promotes a decrease in the partner's aggressiveness, and the soft wear of the oxide film increases the wear of the pin itself. I guessed.
今後、車両の一層の低燃費化等の内燃エンジンの進化に伴い、チェーンに対する要求は更に過酷になることが予測される。上述したような潤滑油の低粘度化ばかりでなく、チェーン負荷張力の増加等に由来した潤滑環境が悪化する状況でも、長期間の運転が可能な耐久性を有するチェーンが要求される。 In the future, with the evolution of internal combustion engines, such as further reduction in fuel consumption of vehicles, it is predicted that the demands on chains will become more severe. There is a demand for a durable chain that can be operated for a long period of time even in a situation where the lubrication environment is deteriorated due to an increase in chain load tension or the like as well as the above-described reduction in the viscosity of the lubricating oil.
本発明者等は、チェーン用軸受部を構成する2個の部材の少なくとも一方、例えばピンに、バナジウム炭窒化物(VCN)皮膜からなる表面層を備え、該表面層の表面に所定膜厚の酸化皮膜を形成することを案出した(本出願時未公開)。VCN皮膜は、バナジウム炭化物(VC)やクロム炭化物(CrC)等の他の硬質炭化物皮膜に対して高い靭性を有し、クラックの発生やそれによる皮膜欠損を減少し、かつ摺動面を鏡面化する酸化皮膜を形成して相手攻撃性を低く保持できるものでありながら、希薄潤滑等の過酷な環境にあっても、上記酸化皮膜が過剰に形成されることを抑えて、軸受部の摩耗の早期増大をなくして、互いに相対摺動する軸受部を構成する両方の部材の摩擦を抑制して、次世代エンジン等の過酷な使用状態にあっても、チェーンの長寿命化を図ることができる。 The present inventors include a surface layer made of a vanadium carbonitride (VCN) film on at least one of the two members constituting the chain bearing portion, for example, a pin, and the surface layer has a predetermined film thickness. It was devised to form an oxide film (not disclosed at the time of this application). VCN coating has high toughness compared to other hard carbide coatings such as vanadium carbide (VC) and chromium carbide (CrC), reduces the occurrence of cracks and coating defects, and mirrors the sliding surface. Even if it is in a harsh environment such as dilute lubrication, the oxide film can be prevented from being excessively formed and the wear of the bearing part can be reduced. It is possible to extend the life of the chain even in severe use conditions such as next-generation engines by eliminating the early increase and suppressing the friction of both members constituting the bearing portion that slides relative to each other. .
しかし、上記VCN皮膜は、上記優れた特性を備えるために、窒素(N)量を10〜45[atom%]程度に制御する必要がある。 However, in order for the VCN film to have the excellent characteristics, it is necessary to control the amount of nitrogen (N) to about 10 to 45 [atom%].
そこで、本発明は、他の元素を添加することにより、上記窒素の適用範囲を拡大しても、上述したVCN皮膜の優れた特性を保持することができるチェーン用軸受部、ピン、その製造方法、及びそれを用いたチェーンを提供することを目的とするものである。 Accordingly, the present invention provides a chain bearing portion, a pin, and a method for manufacturing the same that can retain the above-described excellent characteristics of the VCN film even when the application range of nitrogen is expanded by adding other elements. And a chain using the same.
本発明は、互いに摺動自在に嵌合する2個の部材(2)(3,7)からなり、多数のリンク(5)(8)を屈曲自在に連結するチェーン用軸受部(9)において、
前記チェーン用軸受部を構成する少なくとも一方の部材(例えば2)が、母材(20)の表面に形成された、バナジウム(V)、炭素(C)及び窒素(N)からなるバナジウム炭窒化物(VCN)に、他の高機能化元素を添加して固溶した皮膜からなる表面層(21)を備え、
前記チェーン用軸受部を構成する他方の部材(例えば7)との間で、前記表面層の表面に該表面層より軟質な所定膜厚の酸化皮膜(22)が形成されてなる、ことを特徴とする。
The present invention consists of two members (2) (3, 7) that are slidably fitted to each other, and a chain bearing portion (9) for flexibly connecting a large number of links (5) (8). ,
Vanadium carbonitride composed of vanadium (V), carbon (C) and nitrogen (N), wherein at least one member (for example, 2) constituting the chain bearing portion is formed on the surface of the base material (20). (VCN) is provided with a surface layer (21) composed of a film in which another highly functional element is added and dissolved therein,
An oxide film (22) having a predetermined film thickness that is softer than the surface layer is formed on the surface of the surface layer between the other member (for example, 7) constituting the chain bearing portion. And
多数のリンク(5)(8)を屈曲自在に連結するチェーン用ピン(2)において、
母材(20)の表面に形成された、バナジウム(V)、炭素(C)及び窒素(N)からなるバナジウム炭窒化物(VCN)に、他の高機能化元素を添加して固溶した皮膜からなる表面層(21)を備え、
前記表面層の表面に、該表面層より軟質な所定膜厚の酸化皮膜(22)が形成されてなる、ことを特徴とする。
In the chain pin (2) for flexibly connecting a number of links (5) (8),
To the vanadium carbonitride (VCN) made of vanadium (V), carbon (C) and nitrogen (N) formed on the surface of the base material (20), other highly functional elements were added and dissolved. A surface layer (21) comprising a film;
An oxide film (22) having a predetermined thickness that is softer than the surface layer is formed on the surface of the surface layer.
前記高機能化元素は、チタン(Ti)、シリコン(Si)又はモリブデン(Mo)である。 The highly functional element is titanium (Ti), silicon (Si), or molybdenum (Mo).
前記高機能化元素は、モリブデン(Mo)であり、
前記モリブデンを添加したフェロバナジウム(FV)と、反応助材として塩化アンモニウム(NH4Cl)とを、ピン母材と共に炉に入れて、浸透拡散処理する際、バナジウム及びモリブデンの浸透拡散が進むと共に、前記塩化アンモニウム(NH4Cl)から分解生成される窒素(N)が、モリブデン(Mo)を反応媒体として拡散浸透して、前記表面層を形成してなる。
The highly functional element is molybdenum (Mo),
When ferrovanadium (FV) to which molybdenum is added and ammonium chloride (NH 4 Cl) as a reaction aid are put into a furnace together with a pin base material and permeation diffusion treatment is performed, the permeation diffusion of vanadium and molybdenum proceeds. Nitrogen (N) decomposed and generated from the ammonium chloride (NH 4 Cl) diffuses and penetrates with molybdenum (Mo) as a reaction medium to form the surface layer.
前記チェーン用軸受部を構成する少なくとも一方の部材又はピンの母材の表面に、前記高機能化元素を添加して固溶したバナジウム炭化物皮膜を形成する工程と、
前記母材の表面に窒素を浸透する工程と、を備えてなる。
Forming a vanadium carbide film in which the highly functional element is added and solid-dissolved on the surface of at least one member constituting the chain bearing portion or the base material of the pin; and
And infiltrating nitrogen into the surface of the base material.
前記チェーン用軸受部の一方を構成するピン(2)を有する第1のリンク(8)と、
前記チェーン用軸受部の他方を構成する嵌合部材(例えば3)を有する第2のリンク(5)と、を備え、
前記チェーン用軸受部(9)により前記第1のリンク(8)及び前記第2のリンク(5)が無端状に連結されてなる、ことを特徴とするチェーンにある。
A first link (8) having a pin (2) constituting one of the chain bearing portions;
A second link (5) having a fitting member (for example, 3) constituting the other of the chain bearing portion,
The chain is characterized in that the first link (8) and the second link (5) are connected endlessly by the chain bearing portion (9).
チェーン用ピン(2)により屈曲自在に連結される第1のリンク(8)及び第2のリンク(5)と、を備え、
前記第1のリンク(8)及び前記第2のリンク(5)が無端状に連結されてなる、ことを特徴とするチェーンにある。
A first link (8) and a second link (5) that are flexibly connected by a chain pin (2);
The chain is characterized in that the first link (8) and the second link (5) are connected endlessly.
前記第1のリンク(8)が、1対の前記ピン(2)により連結されたガイドリンクプレート(6)を有し、
前記第2のリンク(5)が、両端部に前記ピン(2)を嵌合するピン孔(7)を備え、前記嵌合部材を構成すると共に1対の歯(10,10)を有する内側リンクプレート(3)を有し、
前記チェーンが、サイレントチェーン(1)である。
The first link (8) has a guide link plate (6) connected by a pair of pins (2);
The second link (5) is provided with pin holes (7) for fitting the pins (2) at both ends thereof, and constitutes the fitting member and has a pair of teeth (10, 10). Having a link plate (3),
The chain is a silent chain (1).
前記第1のリンク(8)が、1対の前記ピン(2)により連結されたガイドリンクプレート(6)を有し、
前記第2のリンク(5)が、両端部に前記ピン(2)を嵌合するピン孔(7)及び1対の歯(10,10)を有する内側リンクプレート(3)を有し、
前記チェーンが、サイレントチェーン(1)である。
The first link (8) has a guide link plate (6) connected by a pair of pins (2);
The second link (5) has a pin hole (7) for fitting the pin (2) at both ends and an inner link plate (3) having a pair of teeth (10, 10);
The chain is a silent chain (1).
前記第1のリンクが、1対の前記ピンにより固定されたアウタリンクプレートを有し、
前記第2のリンクが、前記嵌合部材であるブシュと、1対の前記ブシュにより連結されたインナリンクプレートとを有し、
前記チェーンが、ローラチェーンである。
The first link has an outer link plate fixed by a pair of the pins;
The second link has a bush which is the fitting member, and an inner link plate connected by the pair of bushes,
The chain is a roller chain.
前記チェーンが、内燃エンジン内に配置されたチェーンである。 The chain is a chain disposed in an internal combustion engine.
なお、上記カッコ内の符号は、図面と対照するためのものであるが、これにより特許請求の範囲に記載の構成に何等影響を及ぼすものではない。 In addition, although the code | symbol in the said parenthesis is for contrast with drawing, it does not have any influence on the structure as described in a claim by this.
請求項1又は8に係る本発明によると、チェーン用軸受部を構成する少なくとも一方の部材又はチェーン用ピン(ロッカピンも含む)は、VCN皮膜を基とする表面層を有するので、高い靱性を有し、クラックの発生やそれによる皮膜欠損を減少し、かつ摺動面を鏡面化する酸化皮膜を形成して相手攻撃性を低く保持できると共に、希薄潤滑等の過酷な環境にあっても、上記酸化皮膜が過剰に形成されることを抑えて、ピン及び該ピンに摺接する相手側の摩耗を抑制して、次世代エンジン等の過酷な使用状態にあっても、チェーンの長寿命化を図ることができるものでありながら、前記VCN皮膜に、高機能化元素を添加して固溶しているので、窒素量の適用範囲を拡大する等、材料設計の自由度を向上することができる。 According to the first or eighth aspect of the present invention, at least one member constituting the chain bearing portion or the chain pin (including the rocker pin) has a surface layer based on the VCN film, and thus has high toughness. In addition, while reducing the occurrence of cracks and film defects due to it, and forming an oxide film that mirrors the sliding surface, it is possible to keep the opponent attack low, and even in harsh environments such as dilute lubrication, Suppresses the formation of excessive oxide film, suppresses wear on the pin and the other side that comes into sliding contact with the pin, and extends the life of the chain even under severe use conditions such as next-generation engines However, since a highly functional element is added and dissolved in the VCN film, the degree of freedom in material design can be improved, for example, by expanding the application range of the nitrogen amount.
請求項2又は9に係る本発明によると、高機能化元素が、Ti又はSiのようなV系硬質皮膜の硬度を高める元素とすると、エンジンオイルに混入される煤の硬度を考慮した窒素(N)の含有量を、例えば45[atom%]以上としても、煤より高い硬度からなる表面層の皮膜に調整ができる。また、高機能化元素がMoであると、例え窒素(N)量を、例えば10[atom%]以下としても、皮膜の上記高い靱性を保持でき、摩耗性を維持することができる。これにより、窒素(N)の適用許容範囲を拡大することができる。 According to the present invention according to claim 2 or 9, when the highly functional element is an element that increases the hardness of the V-based hard coating such as Ti or Si, nitrogen in consideration of the hardness of soot mixed in the engine oil ( Even if the content of N) is 45 [atom%] or more, for example, it is possible to adjust the surface layer film having a hardness higher than that of the wrinkles. Further, when the highly functional element is Mo, even if the nitrogen (N) amount is, for example, 10 [atom%] or less, the high toughness of the film can be maintained, and the wearability can be maintained. Thereby, the application tolerance range of nitrogen (N) can be expanded.
請求項3又は10記載の本発明によると、浸透拡散処理の際、反応助材としての塩化アンモニウム(NH4Cl)から分解生成された窒素(N)がMoと反応して拡散浸透し、同時に窒化が行われる。 According to the present invention of claim 3 or 10, during the osmotic diffusion treatment, nitrogen (N) decomposed and produced from ammonium chloride (NH 4 Cl) as a reaction aid reacts with Mo and diffuses and penetrates simultaneously. Nitriding is performed.
請求項4又は11記載の本発明によると、高機能化元素を添加して固溶したバナジウム炭化物皮膜を形成する工程と、窒素を浸透する工程と、を備え、チェーンの軸受部又はピンを高い自由度で製造することができる。 According to the present invention of claim 4 or 11, comprising a step of forming a vanadium carbide film in which a highly functional element is added to form a solid solution and a step of infiltrating nitrogen, the bearing portion or pin of the chain is made high. Can be manufactured with a degree of freedom.
請求項5又は12に係る本発明によると、サイレントチェーン、ローラチェーン等のチェーンに用いて、過酷な環境下にあっても耐久性の優れたチェーンを提供することができる。 According to the fifth or twelfth aspect of the present invention, a chain having excellent durability can be provided even in a harsh environment when used in a chain such as a silent chain or a roller chain.
請求項6又は13に係る本発明によると、サイレントチェーンは、ピンの相手側となる内側リンクプレートのピン孔又はロッカピンは接触面積が小さく、ピンによる相手攻撃性に対して厳しいが、ピン等の軸受部の一方の部材は、軟質な酸化皮膜により相手攻撃性が低く、かつ該酸化皮膜の過剰形成によるピン等の軸受部の一方の部材の摩耗の増大も低く、過酷環境下におけるサイレントチェーンに対して、ピン及び相手側の両方の摩耗をバランスよく低減して、高い信頼性で長寿命化を図ることができる。 According to the present invention of claim 6 or 13, the silent chain has a small contact area for the pin hole or the rocker pin of the inner link plate that is the other side of the pin, and it is severe against the opponent attack by the pin. One member of the bearing part has a low resistance against the other party due to the soft oxide film, and the increase in wear of one member of the bearing part such as the pin due to the excessive formation of the oxide film is low, making it a silent chain in a harsh environment. On the other hand, the wear of both the pin and the mating side can be reduced in a well-balanced manner, and the life can be extended with high reliability.
請求項7又は14に係る本発明によると、ピン及びブシュからなるローラチェーンに適用して、耐久性及び信頼性の高いローラチェーンを得ることができる。 According to the seventh or fourteenth aspect of the present invention, a roller chain having high durability and reliability can be obtained by being applied to a roller chain composed of pins and bushes.
請求項15に係る本発明によると、過酷な使用環境となる次世代の内燃エンジン内のチェーンに適用されて、高い信頼性での長寿命化が可能となり、内燃エンジンの低燃費化等による地球環境の保護に貢献することができる。 According to the fifteenth aspect of the present invention, the present invention is applied to a chain in a next-generation internal combustion engine that becomes a harsh use environment, and can have a long life with high reliability. It can contribute to environmental protection.
以下、図面に沿って本発明の実施の形態について説明する。本発明を適用し得るサイレントチェーン1は、図1に示すように、ピン2により内側リンクプレート3が交互に連続されて無端状に構成されており、これら内側リンクプレート3による(第2の)リンク5の幅方向最外側にガイドリンクプレート6が配置されている。上記ピン2は、左右ガイドリンクプレート6にカシメ、しまり嵌め等により固定、連結され、該ピン2が、前記内側リンクプレート3の長手方向両端部に形成されたピン孔7,7に摺動自在に嵌合している。上記ガイドリンクプレート6及びピン2により(第1の)リンク8が構成される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the silent chain 1 to which the present invention can be applied is configured such that inner link plates 3 are alternately endlessly formed by pins 2, and the inner link plates 3 are (second). A guide link plate 6 is disposed on the outermost side in the width direction of the link 5. The pin 2 is fixed and connected to the left and right guide link plates 6 by caulking, interference fitting, etc., and the pins 2 are slidable in pin holes 7 and 7 formed at both ends in the longitudinal direction of the inner link plate 3. Is fitted. The guide link plate 6 and the pin 2 constitute a (first) link 8.
従って、上記ピン2と上記リンクプレート3のピン孔7とが互いに相対摺動し得るチェーン用軸受部9を構成する。なお、上記ガイドリンクプレート6と幅方向で整列するガイドリンク列Gは、ピン2に対して内側リンクプレート3を含めて相対回転せず、該ガイド列に隣接するノンガイド列Nの内側リンクプレート3がピン2に対して相対回転して、サイレントチェーン1は、自由に屈曲し得るが、通常、ガイドリンク列G及びノンガイド列Nの内側リンクプレート3は同じものが用いられ、内側リンクプレート3を嵌合部材としてピン2との間で上記チェーン用軸受部9が構成される。 Accordingly, the chain bearing portion 9 in which the pin 2 and the pin hole 7 of the link plate 3 can slide relative to each other is formed. The guide link row G aligned with the guide link plate 6 in the width direction does not rotate relative to the pin 2 including the inner link plate 3, and the inner link plate of the non-guide row N adjacent to the guide row. 3 rotates relative to the pin 2, and the silent chain 1 can be bent freely. However, the inner link plates 3 of the guide link row G and the non-guide row N are usually the same, and the inner link plate The above-mentioned chain bearing portion 9 is formed between the pin 2 and 3 as a fitting member.
内側リンクプレート3は、左右1対のピン孔7,7とピン孔の中心を結ぶ線(ピッチライン)の内径側に1対の歯10,10とを有する。該歯10は、その間のクロッチ11部側に内側フランク面12,12が形成され、各歯の外側に外側フランク面13,13が形成されている。上記歯10は、スプロケットの歯に内側フランク面12及び外側フランク面13が接合する噛合機構、例えば外側フランク面13がスプロケット歯に接合して噛合を進行した後、内側フランク面12がスプロケット歯に着座する(外股当り、内股着座)。 The inner link plate 3 has a pair of left and right pin holes 7 and 7 and a pair of teeth 10 and 10 on the inner diameter side of a line (pitch line) connecting the centers of the pin holes. The teeth 10 have inner flank surfaces 12 and 12 formed on the side of the crotch 11 therebetween, and outer flank surfaces 13 and 13 formed on the outer sides of the teeth. The tooth 10 is a meshing mechanism in which the inner flank surface 12 and the outer flank surface 13 are joined to the sprocket teeth. For example, after the outer flank surface 13 is joined to the sprocket teeth and the meshing proceeds, the inner flank surface 12 becomes the sprocket teeth. Sit down (per thigh outer thigh, inner thigh sitting).
まず、本発明の基礎となる参考例について、図2〜図10に沿って説明する。前記チェーン用軸受部9を構成する一方の部材、本参考例にあっては、ピン2に、所定厚さ(例えば略々6〜12μm)のバナジウム炭窒化物(以下VCNという)皮膜からなる表面層が形成される。該表面層は、ピン母材の表面にバナジウム炭化物(VC)皮膜を形成する工程(バナジウム浸透拡散処理)と、上記ピン母材の表面に窒素(N)を浸透する工程(窒化処理)とにより、上記VCN皮膜が形成される。 First, reference examples serving as the basis of the present invention will be described with reference to FIGS. One member constituting the chain bearing portion 9, in the present reference example, the pin 2 has a surface made of a vanadium carbonitride (hereinafter referred to as VCN) film having a predetermined thickness (for example, approximately 6 to 12 μm). A layer is formed. The surface layer includes a step of forming a vanadium carbide (VC) film on the surface of the pin base material (vanadium permeation diffusion treatment) and a step of permeating nitrogen (N) into the surface of the pin base material (nitriding treatment). The VCN film is formed.
具体的には、ピン母材は、鋼材、例えば高炭素クロム軸受鋼(SUJ2)、クロムモリブデン鋼(SCM)等の線材が用いられ、該線材が所定長さに切断される。該ピン母材は、まず、粉末パック法によるバナジウム浸透拡散処理(VC複合拡散浸透処理)が行われる。即ち、浸透材となるFV(フェロバナジウム)、焼結防止材としてのAl2O3(アルミナ、酸化アルミニウム)、反応助材(促進材)としてのNH4Cl(塩化アンモニウム)からなる粉末がピン母材と共に炉内に入れられ、900℃〜1100℃に昇温され、所定時間保持された後、除冷される。これにより、ピン母材の表面に所定厚さのバナジウム炭化物(VC)皮膜が形成される。 Specifically, the pin base material is a steel material such as a high carbon chrome bearing steel (SUJ2) or chrome molybdenum steel (SCM), and the wire is cut to a predetermined length. The pin base material is first subjected to vanadium permeation diffusion treatment (VC composite diffusion permeation treatment) by a powder pack method. That is, a powder composed of FV (ferrovanadium) as a permeation material, Al 2 O 3 (alumina, aluminum oxide) as a sintering prevention material, and NH 4 Cl (ammonium chloride) as a reaction aid (promoter) is pinned. It is put in a furnace together with the base material, heated to 900 ° C. to 1100 ° C., held for a predetermined time, and then cooled. Thereby, a vanadium carbide (VC) film having a predetermined thickness is formed on the surface of the pin base material.
ついで、上記VC皮膜が形成されたピン素材を、窒素雰囲気中で数時間加熱する窒化処理が行われる。即ち、上記炉内に、N2ガスを送って、1000℃以上の高温で数時間加熱した後、除冷される。これにより、図2(c)に示すように、鉄(Fe)を主体としたピン母材20の表面の上記VC皮膜に窒素(N)が拡散浸透することにより結合してVCxNyからなるバナジウム炭窒化物(VCN)皮膜の表面層21が形成され、かつ窒素Nの含有量(比率)は、表面から母材の界面に向って徐々に低下するように傾斜変化している。該VCN皮膜からなる表面層21の極表面には、極く薄いバナジウム酸化(VO)皮膜22が形成されている。 Next, nitriding treatment is performed in which the pin material on which the VC film is formed is heated in a nitrogen atmosphere for several hours. That is, N 2 gas is sent into the furnace and heated at a high temperature of 1000 ° C. or higher for several hours, and then cooled. As a result, as shown in FIG. 2 (c), vanadium charcoal composed of VCxNy is combined by diffusion of nitrogen (N) into the VC coating on the surface of the pin base material 20 mainly composed of iron (Fe). A surface layer 21 of a nitride (VCN) film is formed, and the content (ratio) of nitrogen N is changed so as to gradually decrease from the surface toward the interface of the base material. A very thin vanadium oxide (VO) film 22 is formed on the extreme surface of the surface layer 21 made of the VCN film.
図2(a)に示すように、ピン母材20は、鉄(Fe)が主成分であり、該ピン母材の表面にVCN皮膜が形成され、該皮膜は、略々その全厚さに亘って略々同じ含有率のバナジウム(V)と、表面から母材界面に向って徐々に増える炭素(C)と、表面から母材界面に向って徐々に減少する窒素(N)を含有する。また、図2(b)に示すように、VCN皮膜は、窒素(N)量が表面では多く含有しているが、ピン母材界面に向って徐々に減少する。なお、バナジウム炭化物(VC)皮膜からなるピンは、窒素(N)量が略々0である。 As shown in FIG. 2 (a), the pin base material 20 is mainly composed of iron (Fe), and a VCN film is formed on the surface of the pin base material. Vanadium (V) having substantially the same content, carbon (C) that gradually increases from the surface toward the base material interface, and nitrogen (N) that gradually decreases from the surface toward the base material interface . As shown in FIG. 2B, the VCN film contains a large amount of nitrogen (N) on the surface, but gradually decreases toward the pin base material interface. In addition, the pin which consists of a vanadium carbide (VC) film | membrane has the amount of nitrogen (N) substantially zero.
チェーン用ピン(一方の部材)2は、軸受部9を構成する相手側部材(他方の部材)である内側リンクプレート3のピン孔7に対して相対摺動を繰り返しながら、VCN皮膜極表面の酸化(VO)皮膜22が摺動摩耗している。該酸化(VO)皮膜22は、表面層21のVCN皮膜より軟質で、従ってピン孔(相手側部材)に対する攻撃性が低く、かつ摺接すると鏡面となってピン自体及びピン孔の摩耗を抑制する。 The chain pin (one member) 2 repeats relative sliding with respect to the pin hole 7 of the inner link plate 3 which is a mating member (the other member) constituting the bearing portion 9, and the chain pin (one member) 2 The oxidation (VO) film 22 is slidingly worn. The oxidation (VO) film 22 is softer than the VCN film of the surface layer 21, and therefore has less aggressiveness with respect to the pin hole (the counterpart member) and becomes a mirror surface when slidably contacted, thereby suppressing wear of the pin itself and the pin hole. To do.
図3は、タイミングチェーン等のチェーン軸受部の温度に対する上記酸化皮膜の厚さを示す図である。上記酸化皮膜は、表面層がVC皮膜でも形成され、該酸化(VO)皮膜がチェーンの耐久性に大きく影響を及ぼすことを本発明者等は発見し、更に潤滑環境が十分でない状態では、従来のVC皮膜にあっては、上記酸化皮膜が過剰に形成されて、それが該VCピンの摩耗の増大に繋がることをつきとめた。内燃エンジンは、一層の燃費向上が求められており、摺動部材のフリクション低減を目的として潤滑油の剪断抵抗を減少するため、粘度の低い潤滑油が開発され、このように次世代エンジンを想定した場合、エンジン内の潤滑自体の環境は悪化して、チェーン軸受部の温度は高くなる傾向となる。 FIG. 3 is a diagram showing the thickness of the oxide film with respect to the temperature of a chain bearing portion such as a timing chain. The above-mentioned oxide film is formed by a VC film as a surface layer, and the present inventors have found that the oxidation (VO) film greatly affects the durability of the chain. In the case of the VC film, it was found that the oxide film was excessively formed, which led to an increase in wear of the VC pin. The internal combustion engine is required to further improve fuel efficiency, and a low-viscosity lubricating oil has been developed to reduce the shear resistance of the lubricating oil for the purpose of reducing friction of the sliding member. In this case, the environment of the lubrication itself in the engine deteriorates and the temperature of the chain bearing portion tends to increase.
図4は、図3のA点、即ち温度が低い(従来のエンジン内環境)と、B点、即ち温度の高い(次世代エンジン内環境)において、従来タイプのVCピンと、本参考例によるVCNピン表面の酸化(VO)皮膜を撮影した写真(透過型電子顕微鏡TEM像)である。なお、図4は、元画像を同じ倍率になるようにサイズを調整したものである。チェーン用軸受部の温度が低いA点においては、従来タイプのVCピンの酸化皮膜も本参考例によるVCNピンの酸化皮膜も、略々同じ厚さ(約2nm)である。潤滑環境が悪くなって軸受部の温度が局部的に高くなるB点において、VCピンは、酸化皮膜が大幅に厚くなるが(例えば10倍を越える厚さ)、VCNピンは、酸化皮膜の厚さの変化は少ない(例えば2倍を越えることはない)。図3は、上記図4に示すVCピン及びVCNピンの複数の温度における酸化皮膜の層厚を測定した結果から導き出されたもので、VCピンにおける酸化皮膜の厚さは、温度が高くなる程急激に厚くなるが、VCNピンにおける酸化皮膜厚さは、VCピンに比して温度に対して大幅に変化が小さい。これは、VCに比してVCNの方が酸素との結合(酸化)が抑制され、VCNは耐酸化性が高いため、酸化物の過剰形成が抑制されるものと推測する。 FIG. 4 shows a conventional type VC pin and a VCN according to this reference example at point A in FIG. 3, that is, at a low temperature (conventional engine environment) and at point B, that is, at a high temperature (next-generation engine environment). It is the photograph (transmission electron microscope TEM image) which image | photographed the oxidation (VO) film | membrane of the pin surface. In FIG. 4, the original image is adjusted to have the same magnification. At the point A where the temperature of the chain bearing portion is low, the oxide film of the conventional type VC pin and the oxide film of the VCN pin according to the present reference example have substantially the same thickness (about 2 nm). At the point B where the lubrication environment is deteriorated and the temperature of the bearing portion is locally increased, the VC pin has a significantly thick oxide film (for example, a thickness exceeding 10 times), but the VCN pin has a thickness of the oxide film. The change in length is small (for example, it does not exceed twice). FIG. 3 is derived from the result of measuring the thickness of the oxide film at a plurality of temperatures of the VC pin and the VCN pin shown in FIG. 4, and the thickness of the oxide film on the VC pin increases as the temperature increases. Although the thickness rapidly increases, the thickness of the oxide film on the VCN pin is significantly smaller with respect to the temperature than the VC pin. This is presumed that the binding (oxidation) with oxygen is suppressed in VCN compared to VC, and the excessive formation of oxide is suppressed because VCN has higher oxidation resistance.
図5は、各硬質材料による皮膜の靱性と硬さとの関係を示す。なお、靱性は、ナノインデンテーション法で算出されるクリープをパラメータとして定義しており、単位はパーセント[%]である。例えばビッカース試験によるダイヤモンド圧子負荷に伴う皮膜の破壊モデルを考えると、クリープが大きい程クラックが少なく、これは、皮膜靱性が高い程、軸受荷重が大きくなっても、皮膜耐力が高いことを意味する。図5において、硬さは、TiCが高く、CrCが低く、VCN及びVCは、その中間にあり、かつ靱性は高いが、特にVCNは、VCに比して靱性が高いことを示している。従って、VCNピンは、他の材料CrC,TiCだけでなく,従来摩耗性能に優れたVCピンに比しても靱性が高く、皮膜のミクロ的な破壊、即ち摺動面のあれが進みにくく、摺動相手材への攻撃性が低く、摩耗性能が優れている。 FIG. 5 shows the relationship between the toughness and the hardness of the film made of each hard material. Note that the toughness is defined by a creep calculated by the nanoindentation method as a parameter, and the unit is percent [%]. For example, when considering a fracture model of a film accompanying a diamond indenter load by the Vickers test, the larger the creep, the fewer the cracks, which means that the higher the film toughness, the higher the bearing strength even if the bearing load increases. . In FIG. 5, the hardness is high for TiC, low for CrC, VCN and VC are in the middle, and the toughness is high, but in particular, VCN indicates that the toughness is higher than that of VC. Therefore, the VCN pin is not only tougher than other materials such as CrC and TiC, but also tougher than conventional VC pins, and the microscopic breakage of the film, that is, the sliding surface is less likely to progress. Low aggression against sliding material and excellent wear performance.
図6は、各硬質皮膜(TiC,CrC,VC,VCN)のピンに所定荷重を負荷した状態での試験時間に対する摺動面粗さの変化を示す。なお、粗さは十点平均粗さRzjisを用いており、単位は[μm]である。図6から、VC及びVCN皮膜が、他の硬質皮膜(TiC,CrC)に比して、上述した酸化皮膜の形成により摺動面粗さが低いが、特にVCN皮膜は、VC皮膜に対しても、長時間に亘って摺動面粗さを低く維持することが解る。図5及び図6に示すように、VCNピンは、他の硬質皮膜(TiC,CrC)だけでなく、VCピンに比しても摺動特性に優れ、摩耗性能が向上していることが解る。 FIG. 6 shows the change of the sliding surface roughness with respect to the test time in a state where a predetermined load is applied to the pins of each hard coating (TiC, CrC, VC, VCN). The tenth average roughness Rzjis is used as the roughness, and the unit is [μm]. From FIG. 6, the VC and VCN films have lower sliding surface roughness due to the formation of the above-mentioned oxide film compared to other hard films (TiC, CrC). It can also be seen that the sliding surface roughness is kept low for a long time. As shown in FIG. 5 and FIG. 6, it can be seen that the VCN pin has excellent sliding characteristics and improved wear performance in addition to other hard coatings (TiC, CrC) as well as VC pins. .
図7は、次世代エンジンを想定した潤滑環境の悪い状態でのチェーンの摩耗伸び試験結果を示した図である。該環境にあっては、潤滑不良により軸受部に局部発熱を生じ、また面圧が増大し、その結果、従来のVCピンを用いたチェーンは、所定駆動時間でチェーン摩耗伸び率が急速に増大する。VCNピンを用いたチェーンは、全試験駆動時間に亘って略々一定のチェーン摩耗伸びを維持している。 FIG. 7 is a diagram showing the result of chain wear elongation test in a poor lubricating environment assuming a next-generation engine. In this environment, local heat generation occurs in the bearing due to poor lubrication, and the surface pressure increases. As a result, the chain wear elongation rate of a chain using a conventional VC pin rapidly increases in a predetermined driving time. To do. The chain using the VCN pin maintains a substantially constant chain wear elongation over the entire test drive time.
図8は、VCピンを用いたチェーンとVCNピンを用いたチェーンによる部品摩耗を示し、白抜き部分は相手方である内側リンクプレートのピン孔の摩耗量、ハッチング部分はピン自体の摩耗量、黒丸は、ピン孔とピンとの摩耗比率を示す。VC皮膜は、希薄潤滑による高温環境下にあっては、図3及び図4に示すように、酸化(VO)皮膜が過剰に成長し、該軟質でかつ厚い酸化皮膜は表面から剥離し易く、ピン自体の早期摩耗の原因となるが、VCN皮膜は、局部発熱により高温状態になっても、酸化(VO)皮膜が過剰に成長して過度に厚くなることはなく、所定厚さに維持される酸化皮膜は、相手側であるピン孔との間に軟質でかつ鏡面からなる摺接面を保持しつつ、剥離又は欠損が少なく、ピン自体が早期に摩耗することはない。これにより、図8のピン摩耗に示すように、VCNピンは、VCピンに比して摩耗量が少ない。 Fig. 8 shows parts wear due to a chain using a VC pin and a chain using a VCN pin, where the white part is the wear amount of the pin hole of the inner link plate, the hatched part is the wear amount of the pin itself, Indicates the wear ratio between the pin hole and the pin. As shown in FIGS. 3 and 4, the VC film is excessively grown in a high temperature environment due to dilute lubrication, and the soft and thick oxide film is easily peeled off from the surface. Although the pin itself causes premature wear, the VCN film does not grow excessively because the oxidation (VO) film grows excessively even if it becomes a high temperature state due to local heat generation. The oxide film is soft and has a mirror-sliding contact surface with the pin hole on the other side, and has little peeling or chipping, so that the pin itself does not wear early. Thereby, as shown in pin wear in FIG. 8, the amount of wear of the VCN pin is smaller than that of the VC pin.
VCN皮膜は、VC皮膜に比して、図5に示すように靭性が高く、かつ図6に示すように摺動面粗さが低い。これにより、比較的高い面圧が軸受摺動面に作用しても、ピン表面層21は、面粗度の低い鏡面に保持され、上記比較的薄い酸化皮膜22の介在と相俟って、軸受相手部材であるピン孔に対する攻撃性が低く、内側リンクプレートのピン孔の摩耗量は、VCピンを用いたチェーンに比して低い。従って、チェーン摩耗伸びの原因となるピン摩耗量及びピン孔摩耗量は、VCピンに対してVCNピンを用いたチェーンが共に低く、VCNピンを用いたチェーンは、VCピンを用いたチェーンに比してチェーン摩耗伸びが小さい。 The VCN film has higher toughness as shown in FIG. 5 and lower sliding surface roughness as shown in FIG. 6 than the VC film. Thereby, even if a relatively high surface pressure acts on the bearing sliding surface, the pin surface layer 21 is held on the mirror surface having a low surface roughness, and coupled with the interposition of the relatively thin oxide film 22, Aggressiveness against the pin hole which is the bearing mating member is low, and the wear amount of the pin hole of the inner link plate is lower than that of the chain using the VC pin. Therefore, the amount of pin wear and pin hole wear that cause chain wear elongation is lower for both VCCN pins using VCN pins compared to VC pins using VC pins. Chain wear elongation is small.
上述したように、ピン表面の酸化皮膜厚さは、VCピンに比してVCNピンは大幅に薄いので、共に減少しているピン摩耗量及びプレートのピン孔摩耗量であっても、高温環境下にあってはピン摩耗量の減少が著しいので、ピン摩耗比率は、VCNチェーンがVCチェーンに比して低い。 As described above, the thickness of the oxide film on the surface of the pin is significantly thinner than that of the VC pin. Therefore, even if the pin wear amount and the pin hole wear amount of the plate are both reduced, Underneath, the amount of pin wear is markedly reduced, so the pin wear ratio is lower in the VCN chain than in the VC chain.
ついで、VCN皮膜からなるピン表面層21の表面における窒素(N)比率について説明する。Nは、窒化処理によりピン表面から浸透するので、ピン表面層21の表面が最も含有量(比率)が高く、図2(b)に示すように、母材界面に向って徐々に減少する。チェーンの伸び性能(グラフ上方が伸びが小さい)は、図9(a)に示すように、N量が10[atom%]以上において、その比率が増加するに従って高くなり、30[atom%]を越える辺りで飽和し、45[atom%]以上では低下する。ピン摩耗性能(グラフ上方が摩耗が小さい)は、図9(b)に示すように、N量が10[atom%]以上ではその比率が増加するに従って高くなり、30[atom%]を越える辺りで飽和し、45[atom%]以上では低下する。ピン表面層21の表面硬度(ビッカース硬度Hv0.1)は、図9(c)に示すように、N量比率が大きくなる程低くなる。エンジンオイルに混入する煤の硬さは、800〜1500Hvであり、煤による皮膜表面のアブレシブ摩耗傷を考慮すると、ピン表面での硬さは、1600[Hv0.1]以上が好ましい。以上を考慮すると、ピン表面層表面の窒素(N)の比率は、10[atom%]以下では、ピン摩耗抑制効果が十分ではなく、45[atom%]以上では、内燃エンジン内で発生する煤より硬さが低くなる可能性があり、該煤によるピン摩耗の増加が懸念されるので、10〜45[atom%]の範囲が好適である。 Next, the nitrogen (N) ratio on the surface of the pin surface layer 21 made of the VCN film will be described. Since N permeates from the pin surface by nitriding treatment, the surface of the pin surface layer 21 has the highest content (ratio) and gradually decreases toward the base material interface as shown in FIG. As shown in FIG. 9A, the elongation performance of the chain (in the upper part of the graph is small) becomes higher as the ratio increases when the N amount is 10 [atom%] or more, and 30 [atom%] is obtained. It saturates in the vicinity and exceeds 45 [atom%] and decreases. As shown in FIG. 9 (b), the pin wear performance (the wear on the upper side of the graph is small) increases as the ratio increases when the N amount is 10 [atom%] or more, and exceeds 30 [atom%]. It is saturated at 45 [atom%] and lowers. As shown in FIG. 9C, the surface hardness (Vickers hardness Hv0.1) of the pin surface layer 21 decreases as the N amount ratio increases. The hardness of the soot mixed in the engine oil is 800 to 1500 Hv, and the hardness on the pin surface is preferably 1600 [Hv 0.1] or more in consideration of the abrasive wear scratches on the coating surface due to soot. Considering the above, if the ratio of nitrogen (N) on the surface of the pin surface layer is 10 [atom%] or less, the pin wear suppression effect is not sufficient, and if it is 45 [atom%] or more, it should be generated in the internal combustion engine. Since there is a possibility that the hardness becomes lower and an increase in pin wear due to the wrinkles is concerned, the range of 10 to 45 [atom%] is preferable.
図10は、N量の摺動面に対する影響を示す。表面層の皮膜靭性は、図10(a)に示すように、N量が多い程高い。また、摺動面粗さは、図10(b)に示すように、N量が多い程小さい。従って、ピン表面の摩耗を考慮した場合、所定量以下の範囲にあっては、N量比率が多い程好ましい。 FIG. 10 shows the influence of the N amount on the sliding surface. The film toughness of the surface layer is higher as the N content is larger, as shown in FIG. Further, as shown in FIG. 10B, the sliding surface roughness is smaller as the N amount is larger. Therefore, when the wear on the pin surface is taken into consideration, it is preferable that the N amount ratio is larger in the range of the predetermined amount or less.
上記VCN皮膜からなるピンは、摩耗量はVCピンに比して少ないが、使用により徐々に摩耗する。ピン表面層21におけるN量は、表面から母材界面に向って徐々に減少するため、酸化皮膜の過剰形成の抑制効果も徐々に減少するが、該減少はゆっくりと変化するため、ピン摺動面の鏡面を長期に亘って保つことができ、かつ上記N量の急激な変化点がないので、VCN皮膜の欠損及び剥離を防止できる。 The pin made of the VCN film has a smaller wear amount than the VC pin, but gradually wears with use. Since the amount of N in the pin surface layer 21 gradually decreases from the surface toward the base material interface, the effect of suppressing excessive formation of the oxide film also gradually decreases. However, since the decrease changes slowly, the pin sliding The mirror surface of the surface can be maintained over a long period of time, and since there is no rapid change point of the N amount, it is possible to prevent the VCN film from being lost and peeled off.
ついで、本発明に係る実施の形態について、図11、図12に沿って説明する。本実施の形態は、上述したVCN皮膜に対して、チタン(Ti)、シリコン(Si)、モリブデン(Mo)等の高機能化元素を添加して、VCN皮膜に、これら高機能化元素を固溶する。なお、高機能化元素とは、Ti又はSiのようなV系硬質皮膜の硬度を高める元素又はMo等の高いクリープ(靱性)特性を有する元素等の添加によりVCN皮膜の特性を向上する元素を意味する。また、該高機能化元素を添加した皮膜は、VCN皮膜を基礎とするので、上述した酸化皮膜が同様に形成され、かつ高温環境において該酸化皮膜が過剰に形成されることを抑える耐酸化特性を同様に備える。なお、Ti,Si,Mo等の高機能化添加元素は、V,C,Nの主要成分に比して、その含有割合が大幅に少ない。 Next, an embodiment according to the present invention will be described with reference to FIGS. In this embodiment, functional elements such as titanium (Ti), silicon (Si), and molybdenum (Mo) are added to the above-described VCN film, and these functional elements are fixed to the VCN film. Melt. The highly functional element means an element that improves the characteristics of the VCN film by adding an element that increases the hardness of the V-based hard film such as Ti or Si or an element that has high creep (toughness) characteristics such as Mo. means. In addition, since the film added with the highly functionalizing element is based on a VCN film, the above-described oxide film is formed in the same manner, and oxidation resistance characteristics that suppress the excessive formation of the oxide film in a high-temperature environment. As well. It should be noted that highly functional additive elements such as Ti, Si, and Mo are much less in content than the main components of V, C, and N.
図11は、高硬度化元素であるTi又はSiをVCN皮膜に添加して固溶した実施の形態[VCN−(Ti,Si)と表記]を示す。該VCN−(Ti,Si)皮膜は、図11(a)に示すように、上記VCN皮膜に比し、すべてのN量において高い硬度を有する。皮膜におけるN量が多くなると、硬さが低くなる。上記VCN皮膜では、煤の硬さにより低くなる可能性があるため、45[atom%]以下にする必要があったが、本VCN−(Ti,Si)皮膜では、各N量に対して高い硬さとなるので、その分多いN量を用いることが可能となる。 FIG. 11 shows an embodiment [denoted as VCN- (Ti, Si)] in which Ti or Si, which is a hardening element, is added to a VCN film to form a solid solution. As shown in FIG. 11 (a), the VCN- (Ti, Si) film has higher hardness in all N amounts than the VCN film. When the amount of N in the film increases, the hardness decreases. In the above VCN film, there is a possibility that it may be lowered depending on the hardness of the wrinkles. Therefore, it was necessary to make it 45% or less, but in this VCN- (Ti, Si) film, it is high for each N amount. Since the hardness is increased, it is possible to use a larger amount of N.
図11(b)は、N量変化に対するピン摩耗性能を示す図で、VCN皮膜にあっては、N量が45[atom%]以上になると、摩耗性能が低下したが、本VCN−(Ti,Si)皮膜では、N量が45[atom%]を超えても、摩耗性能が直ちに低下することはない。 FIG. 11B is a diagram showing the pin wear performance with respect to the N amount change. In the VCN film, when the N amount becomes 45 [atom%] or more, the wear performance is reduced, but this VCN- (Ti , Si) film, even if the N content exceeds 45 [atom%], the wear performance does not decrease immediately.
図12は、高靱化元素であるMoをVCN皮膜に添加して固溶した実施の形態(VCN−Moと表記)を示す。該VCN−Mo皮膜は、図12(a)に示すように、硬さは、VC皮膜、10[atom%]のVCN(N10%)皮膜と略々同じであるが、皮膜靱性パラメータ(特性)は、VC皮膜、VCN(N10%)皮膜より高く、優れた特性を有する。従って、N量の変化に対するチェーン伸び性能は、図12(b)に示すように、VCN皮膜に比して優れており、特にN量が低い状態で優れており、N量が10[atom%]以下でも適用可能となる。 FIG. 12 shows an embodiment (denoted as VCN-Mo) in which Mo, which is a toughening element, is added to a VCN film to form a solid solution. As shown in FIG. 12 (a), the hardness of the VCN-Mo film is substantially the same as that of the VC film and 10 [atm%] VCN (N10%) film, but the film toughness parameter (characteristic). Is higher than VC film and VCN (N10%) film, and has excellent characteristics. Accordingly, as shown in FIG. 12B, the chain elongation performance with respect to the change in the N amount is superior to that of the VCN film, particularly in a state where the N amount is low, and the N amount is 10 [atom%]. It can also be applied to the following.
ピン表面の摺動面粗さは、上述したようにVC皮膜に比してVCN(N10%)皮膜が低いが、同じN量[10atom%]のVCN(N10%)−Mo皮膜は、上記VCN(N10%)より更に低い。従って、本VCN−Mo皮膜からなる表面層を有するピンは、高い靱性により皮膜の欠損及び剥離を防止でき、また低い摺動面粗さによりピン孔に対する攻撃性が低くかつ高い耐摩耗性を有する。 The sliding surface roughness of the pin surface is lower in the VCN (N10%) film than the VC film as described above, but the VCN (N10%)-Mo film having the same N amount [10 atom%] is the same as the VCN. Even lower than (N10%). Therefore, the pin having the surface layer made of the present VCN-Mo film can prevent the film from being broken and peeled off due to high toughness, and has low wear resistance against the pin hole due to low sliding surface roughness. .
上記VCN−Mo皮膜は、添加元素としてMoを添加したFV(フェロバナジウム)を浸透材として、焼結防止材としてAl2O3(アルミナ、酸化アルミニウム)、反応助材(促進材)としてNH4Cl(塩化アンモニウム)を、ピン母材と共に炉に入れる、いわゆる粉末パック法によるバナジウム浸透拡散処理において、上記反応助材としてのNH4Clから分解生成される窒素(N)が、Moを反応媒体として拡散浸透してVCN−Mo皮膜が形成される。即ち、上述した窒化処理を行うことなく、VCN−Mo皮膜が形成される。該皮膜は、主成分としてのVとCの他、10[atom%]に近い窒素(N)と微量のMoが含まれる。 The VCN-Mo film is composed of FV (ferrovanadium) added with Mo as an additive element as a permeation material, Al 2 O 3 (alumina, aluminum oxide) as a sintering preventing material, and NH 4 as a reaction aid (promoter). In the vanadium permeation diffusion treatment by the so-called powder pack method in which Cl (ammonium chloride) is put into a furnace together with a pin base material, nitrogen (N) decomposed and generated from NH 4 Cl as the reaction aid serves as a reaction medium. As a result, the VCN-Mo film is formed. That is, the VCN-Mo film is formed without performing the above nitriding treatment. In addition to V and C as main components, the film contains nitrogen (N) close to 10 [atom%] and a trace amount of Mo.
上記高機能化元素を固溶したVCN−(Ti,Si,Mo)皮膜は、浸透材としてTi,Si,Mo等の高機能化元素を添加したフェロバナジウム(FV)を用いた上述した粉末パック法によりVC−(Ti,Si,Mo)皮膜を形成した後、窒化処理を行ってVCN−(Ti,Si,Mo)皮膜を形成する。該粉末パック法は、Ti,Siに限らず、Moの場合にも適用でき、上記Moを反応媒体とするVCN−Moに比して、Moの含有量を調整できると共に、窒化処理により窒素(N)量も調整することができる。 The VCN- (Ti, Si, Mo) film in which the highly functional elements are dissolved is the powder pack described above using ferrovanadium (FV) to which a highly functional element such as Ti, Si, Mo or the like is added as a penetrating material. After forming a VC- (Ti, Si, Mo) film by the method, nitriding is performed to form a VCN- (Ti, Si, Mo) film. The powder pack method can be applied not only to Ti and Si, but also to Mo. The content of Mo can be adjusted as compared with VCN-Mo using Mo as a reaction medium, and nitrogen ( N) The amount can also be adjusted.
なお、Ti,Si,Mo等の高機能化元素は、そのうちの1個のみを添加してもよく、また複数添加してもよい。また、上記高機能化元素は、Ti,Si,Moに限らず、タングステン(W)、コバルト(Co)、タンタル(Ta)、マンガン(Mn)等の他の元素でもよい。上記高機能化元素を添加したVCN−(Ti,Si,Mo,…)皮膜は、V,C,N、高機能化元素の他に、他の元素を少量含んでいてもよい。 It should be noted that only one of the highly functional elements such as Ti, Si, and Mo may be added, or a plurality of elements may be added. The highly functional elements are not limited to Ti, Si, and Mo, but may be other elements such as tungsten (W), cobalt (Co), tantalum (Ta), and manganese (Mn). The VCN- (Ti, Si, Mo,...) Film to which the above-described highly functional elements are added may contain a small amount of other elements in addition to V, C, N, and highly functional elements.
上記実施の形態は、高機能化元素を添加、固溶したVCN−(Ti,Si,Mo)皮膜からなる表面層をサイレントチェーンのピンに形成したが、これに限らず、チェーン用軸受部を構成する2個の部材の少なくとも1個に上記表面層を形成すればよい。例えば、サイレントチェーンのピンに代えて、又はピンに加えて内側リンクプレート、特にそのピン孔に表面層を形成してもよい。また、サイレントチェーンに限らず、軸受部の一方の部材を構成するピンを有する第1のリンクと、軸受部の他方の部材を構成する嵌合部材を有する第2のリンクとを、上記軸受部により無端状に連結したチェーンに適用可能である。例えば、サイレントチェーンの場合、第1のリンクがガイドリンクプレートを有し、第2のリンクが内側リンクプレートを有する。また、ローラチェーンの場合、軸受部は、一方の部材であるピンと該ピンを嵌合する嵌合部材を構成する他方の部材であるブシュとからなり、第1のリンクがアウタリンクプレートを有し、第2のリンクがインナリンクプレートを有する。また、チェーンを連結するピンが、互いに接触する円弧状の当接面を有する1対のロッカピンである場合のロッカピンにも、上記VCN−(Ti,Si,Mo,…)皮膜を適用することができる。 In the above embodiment, the surface layer made of a VCN- (Ti, Si, Mo) film in which a highly functional element is added and dissolved is formed on the pin of the silent chain. What is necessary is just to form the said surface layer in at least 1 of the two members to comprise. For example, a surface layer may be formed in the inner link plate, particularly in the pin hole, instead of or in addition to the pin of the silent chain. Moreover, not only a silent chain but the 1st link which has a pin which comprises one member of a bearing part, and the 2nd link which has a fitting member which comprises the other member of a bearing part are the said bearing parts. It can be applied to chains connected endlessly. For example, in the case of a silent chain, the first link has a guide link plate and the second link has an inner link plate. In the case of a roller chain, the bearing portion includes a pin that is one member and a bush that is the other member that constitutes a fitting member that fits the pin, and the first link has an outer link plate. The second link has an inner link plate. In addition, the VCN- (Ti, Si, Mo,...) Film may be applied to a rocker pin in a case where the pins connecting the chains are a pair of rocker pins having arcuate contact surfaces that contact each other. it can.
本発明は、内燃エンジン内において、クランクシャフトの回転をカムシャフトに伝達するタイミングチェーンに用いて好適であるが、これに限らず、カム、バランサ、オイルポンプの駆動を含む内燃エンジン内チェーンに適用してもよく、さらにエンジン内以外のチェーンに適用することも可能である。 The present invention is suitable for use in a timing chain for transmitting rotation of a crankshaft to a camshaft in an internal combustion engine, but is not limited to this, and is applicable to an internal combustion engine chain including driving of a cam, a balancer, and an oil pump. It is also possible to apply to a chain other than in the engine.
また、上記実施の形態では,VCN−(Ti,Si,Mo)皮膜の形成方法として、VC皮膜形成後に1000℃以上で窒化処理したが、これに限らず、低温条件やアンモニア雰囲気でもVCN−(Ti,Si,Mo)皮膜の形成が可能である。また、浸透拡散処理と窒化処理を同時に行ってもよい。 In the above embodiment, the VCN- (Ti, Si, Mo) film is formed by nitriding at 1000 ° C. or higher after the VC film is formed. However, the present invention is not limited to this, and VCN− ( (Ti, Si, Mo) film can be formed. Further, the permeation diffusion treatment and the nitriding treatment may be performed simultaneously.
1 (サイレント)チェーン
2 一方の部材(ピン)
3,7 他方の部材(嵌合部材、内側リンクプレート、ピン孔)
5 第2のリンク
6 ガイドリンクプレート
8 第1のリンク
9 チェーン用軸受部
10 歯
20 (ピン)母材
21 表面層
22 酸化皮膜
1 (Silent) chain 2 One member (pin)
3,7 The other member (fitting member, inner link plate, pin hole)
5 Second Link 6 Guide Link Plate 8 First Link 9 Chain Bearing 10 Teeth 20 (Pin) Base Material 21 Surface Layer 22 Oxide Film
Claims (15)
前記チェーン用軸受部を構成する少なくとも一方の部材が、母材の表面に形成された、バナジウム、炭素及び窒素からなるバナジウム炭窒化物に、他の高機能化元素を添加して固溶した皮膜からなる表面層を備え、
前記チェーン用軸受部を構成する他方の部材との間で、前記表面層の表面に該表面層より軟質な所定膜厚の酸化皮膜が形成されてなる、
ことを特徴とするチェーン用軸受部。 In the chain bearing part that consists of two members that are slidably fitted to each other and that flexibly connects a large number of links,
A film in which at least one member constituting the chain bearing portion is formed on the surface of the base material and is solid-solved by adding another highly functional element to vanadium carbonitride composed of vanadium, carbon, and nitrogen A surface layer consisting of
Between the other member constituting the chain bearing portion, an oxide film having a predetermined thickness that is softer than the surface layer is formed on the surface of the surface layer.
A bearing portion for a chain characterized by that.
請求項1記載のチェーン用軸受部。 The highly functional element is titanium, silicon or molybdenum.
The bearing portion for a chain according to claim 1.
前記高機能化元素は、モリブデンであり、
前記モリブデンを添加したフェロバナジウムと、反応助材として塩化アンモニウムとを、ピン母材と共に炉に入れて、浸透拡散処理する際、バナジウム及びモリブデンの浸透拡散が進むと共に、前記塩化アンモニウムから分解生成される窒素が、モリブデンを反応媒体として拡散浸透して、前記表面層を形成してなる、
チェーン用軸受部の製造方法。 In the manufacturing method of the bearing part for chains according to claim 1,
The highly functional element is molybdenum,
When ferrovanadium to which molybdenum is added and ammonium chloride as a reaction aid are put into a furnace together with a pin base material and subjected to osmotic diffusion treatment, the osmotic diffusion of vanadium and molybdenum proceeds and decomposed and generated from the ammonium chloride. Nitrogen diffused and penetrated with molybdenum as a reaction medium to form the surface layer,
A method for manufacturing a chain bearing.
前記チェーン用軸受部を構成する少なくとも一方の部材の母材の表面に、前記高機能化元素を添加して固溶したバナジウム炭化物皮膜を形成する工程と、
前記母材の表面に窒素を浸透する工程と、を備えてなる、
チェーン用軸受部の製造方法。 In the manufacturing method of the bearing part for chains of Claim 1,
Forming a vanadium carbide film in which the highly functional element is added and solid-dissolved on the surface of the base material of at least one member constituting the chain bearing portion; and
A step of infiltrating nitrogen into the surface of the base material,
A method for manufacturing a chain bearing.
前記チェーン用軸受部の一方を構成するピンを有する第1のリンクと、
前記チェーン用軸受部の他方を構成する嵌合部材を有する第2のリンクと、を備え、
前記チェーン用軸受部により前記第1のリンク及び前記第2のリンクが無端状に連結されてなる、
ことを特徴とするチェーン。 The chain bearing portion according to claim 1 or 2, or the chain bearing portion manufactured by the manufacturing method according to claim 3 or 4,
A first link having a pin constituting one of the chain bearing portions;
A second link having a fitting member constituting the other of the chain bearing portion,
The first link and the second link are connected endlessly by the chain bearing portion,
A chain characterized by that.
前記第2のリンクが、両端部に前記ピンを嵌合するピン孔を備え、前記嵌合部材を構成すると共に1対の歯を有する内側リンクプレートを有し、
前記チェーンが、サイレントチェーンである、
請求項5記載のチェーン。 The first link has a guide link plate connected by a pair of the pins;
The second link has pin holes for fitting the pins at both ends, and has an inner link plate that constitutes the fitting member and has a pair of teeth,
The chain is a silent chain;
The chain according to claim 5.
前記第2のリンクが、前記嵌合部材であるブシュと、1対の前記ブシュにより連結されたインナリンクプレートとを有し、
前記チェーンが、ローラチェーンである、
請求項5記載のチェーン。 The first link has an outer link plate fixed by a pair of the pins;
The second link has a bush which is the fitting member, and an inner link plate connected by the pair of bushes,
The chain is a roller chain;
The chain according to claim 5.
母材の表面に形成された、バナジウム、炭素及び窒素からなるバナジウム炭窒化物に、他の高機能化元素を添加して固溶した皮膜からなる表面層を備え、
前記表面層の表面に、該表面層より軟質な所定膜厚の酸化皮膜が形成されてなる、
ことを特徴とするチェーン用ピン。 In chain pins that flexibly connect multiple links,
The vanadium carbonitride composed of vanadium, carbon and nitrogen formed on the surface of the base material is provided with a surface layer composed of a film in which another highly functional element is added and dissolved,
On the surface of the surface layer, an oxide film having a predetermined thickness that is softer than the surface layer is formed.
A pin for a chain characterized by that.
請求項8記載のチェーン用ピン。 The highly functional element is titanium, silicon or molybdenum.
The chain pin according to claim 8.
前記高機能化元素は、モリブデンであり、
前記モリブデンを添加したフェロバナジウムと、反応助材として塩化アンモニウムとを、ピン母材と共に炉に入れて、浸透拡散処理する際、バナジウム及びモリブデンの浸透拡散が進むと共に、前記塩化アンモニウムから分解生成される窒素が、モリブデンを反応媒体として拡散浸透して、前記表面層を形成してなる、
チェーン用ピンの製造方法。 In the manufacturing method of the pin for chains according to claim 8,
The highly functional element is molybdenum,
When ferrovanadium to which molybdenum is added and ammonium chloride as a reaction aid are put into a furnace together with a pin base material and subjected to osmotic diffusion treatment, the osmotic diffusion of vanadium and molybdenum proceeds and decomposed and generated from the ammonium chloride. Nitrogen diffused and penetrated with molybdenum as a reaction medium to form the surface layer,
Manufacturing method of chain pin.
前記ピンの母材の表面に、前記高機能化元素を添加して固溶したバナジウム炭化物皮膜を形成する工程と、
前記母材の表面に窒素を浸透する工程と、を備えてなる、
チェーン用ピンの製造方法。 In the manufacturing method of the pin for chains according to claim 8,
Forming a vanadium carbide film in which the highly functional element is added to form a solid solution on the surface of the base material of the pin; and
A step of infiltrating nitrogen into the surface of the base material,
Manufacturing method of chain pin.
前記第1のリンク及び前記第2のリンクが無端状に連結されてなる、
ことを特徴とするチェーン。 A chain pin according to claim 8 or 9, or a first link and a second link that are flexibly connected by the chain pin manufactured by the manufacturing method according to claim 10 or 11. ,
The first link and the second link are connected endlessly,
A chain characterized by that.
前記第2のリンクが、両端部に前記ピンを嵌合するピン孔及び1対の歯を有する内側リンクプレートを有し、
前記チェーンが、サイレントチェーンである、
請求項12記載のチェーン。 The first link has a guide link plate connected by a pair of the pins;
The second link has an inner link plate having a pin hole and a pair of teeth for fitting the pin at both ends,
The chain is a silent chain;
The chain according to claim 12.
前記第2のリンクが、ブシュと、1対の前記ブシュにより連結されたインナリンクプレートとを有し、
前記チェーンが、ローラチェーンである、
請求項12記載のチェーン。 The first link has an outer link plate fixed by a pair of the pins;
The second link includes a bushing and an inner link plate connected by the pair of bushings;
The chain is a roller chain;
The chain according to claim 12.
請求項5ないし7又は請求項12ないし14のいずれか1項に記載のチェーン。 The chain is a chain disposed in an internal combustion engine;
The chain according to any one of claims 5 to 7 or claims 12 to 14.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014210241A JP6432862B2 (en) | 2014-10-14 | 2014-10-14 | Chain bearing, pin, manufacturing method thereof, and chain using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014210241A JP6432862B2 (en) | 2014-10-14 | 2014-10-14 | Chain bearing, pin, manufacturing method thereof, and chain using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016080027A true JP2016080027A (en) | 2016-05-16 |
JP6432862B2 JP6432862B2 (en) | 2018-12-05 |
Family
ID=55958130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014210241A Active JP6432862B2 (en) | 2014-10-14 | 2014-10-14 | Chain bearing, pin, manufacturing method thereof, and chain using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6432862B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019060347A (en) * | 2017-09-22 | 2019-04-18 | 大同工業株式会社 | Bush-less roller chain and timing chain transmission device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003301889A (en) * | 2002-04-10 | 2003-10-24 | Tsubakimoto Chain Co | Antifriction chain |
JP2005106204A (en) * | 2003-09-30 | 2005-04-21 | Nsk Ltd | Retainer for rolling bearing |
JP2005299800A (en) * | 2004-04-12 | 2005-10-27 | Tsubakimoto Chain Co | Silent chain |
-
2014
- 2014-10-14 JP JP2014210241A patent/JP6432862B2/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003301889A (en) * | 2002-04-10 | 2003-10-24 | Tsubakimoto Chain Co | Antifriction chain |
JP2005106204A (en) * | 2003-09-30 | 2005-04-21 | Nsk Ltd | Retainer for rolling bearing |
JP2005299800A (en) * | 2004-04-12 | 2005-10-27 | Tsubakimoto Chain Co | Silent chain |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019060347A (en) * | 2017-09-22 | 2019-04-18 | 大同工業株式会社 | Bush-less roller chain and timing chain transmission device |
Also Published As
Publication number | Publication date |
---|---|
JP6432862B2 (en) | 2018-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5608280B1 (en) | Chain bearing, its manufacturing method, and chain using the same | |
JP6010508B2 (en) | Manufacturing method of sliding member, manufacturing method of chain link, and manufacturing method of chain provided with the link | |
US20030195074A1 (en) | Silent chain | |
JP2008019923A (en) | Automobile engine chain | |
US20030192299A1 (en) | Wear resistant chain | |
JP5117753B2 (en) | Sliding parts | |
CN101109425B (en) | Chain for use in automobile engine | |
US20080280716A1 (en) | Chain for use in automobile engine | |
JP2004360755A (en) | Pin for chain, and method for manufacturing the same | |
JP6392625B2 (en) | Chain bearing, pin, and chain using the same | |
US20050090348A1 (en) | Roller chain | |
JP6432862B2 (en) | Chain bearing, pin, manufacturing method thereof, and chain using the same | |
JP4394193B2 (en) | Link chain | |
JP6034342B2 (en) | Pin for chain | |
JP2008133906A (en) | Chain for automobile engine | |
JP4456396B2 (en) | Method for forming hard carbide layer, and roller chain and silent chain obtained by this method | |
JP4554254B2 (en) | Roller chain and silent chain | |
JP4356923B2 (en) | Steel parts for machine structures | |
JP4218806B2 (en) | Silent chain | |
JP4488840B2 (en) | Method for forming hard nitride layer, and roller chain and silent chain obtained by this method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171013 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20171013 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20180725 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20180731 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20180918 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20181002 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20181026 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6432862 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |