Nothing Special   »   [go: up one dir, main page]

JP2016079799A - Vibration control structure - Google Patents

Vibration control structure Download PDF

Info

Publication number
JP2016079799A
JP2016079799A JP2015188695A JP2015188695A JP2016079799A JP 2016079799 A JP2016079799 A JP 2016079799A JP 2015188695 A JP2015188695 A JP 2015188695A JP 2015188695 A JP2015188695 A JP 2015188695A JP 2016079799 A JP2016079799 A JP 2016079799A
Authority
JP
Japan
Prior art keywords
building
column
sleeve wall
sleeve
columns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015188695A
Other languages
Japanese (ja)
Other versions
JP6749081B2 (en
Inventor
翼 谷
Tsubasa Tani
翼 谷
龍大 欄木
Ryota Maseki
龍大 欄木
中島 徹
Toru Nakajima
徹 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Publication of JP2016079799A publication Critical patent/JP2016079799A/en
Application granted granted Critical
Publication of JP6749081B2 publication Critical patent/JP6749081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a vibration control structure capable of improving the aseismatic performance of a building.SOLUTION: The vibration control structure includes: columns 2 having multi-story sleeve walls provided on a lower story part 12 of a building 1; and energy absorbing members 5 provided at the front ends of sleeve walls 22 of the columns 2 having the multi-story sleeve walls. The head and the leg of each of the columns 2 having the multi-story sleeve walls are pin-joined to the building 1, and the sleeve walls 22 of the adjacent columns 2 having the multi-story sleeve walls are connected to each other via the energy absorbing members 5. Besides, the lower story part 12 has lower rigidity than a higher story part 11.SELECTED DRAWING: Figure 1

Description

本発明は、建物の制振構造に関する。   The present invention relates to a vibration control structure for a building.

建物の制振構造として、上の層と下の層との間にダンパーを設けて、ダンパーの変形により地震等のエネルギーを吸収させる層間ダンパーが採用される場合がある。   As a vibration control structure for a building, an interlayer damper may be employed in which a damper is provided between an upper layer and a lower layer, and energy such as an earthquake is absorbed by deformation of the damper.

また、特許文献1等には、下端部が下部構造体に対してピン支承された連層耐震壁を設けることにより、地震等による水平力が作用した際にエネルギーを吸収する制振構造が開示されている。   Patent Document 1 and the like disclose a damping structure that absorbs energy when a horizontal force due to an earthquake or the like acts by providing a multi-layer earthquake-resistant wall whose lower end is pin-supported to a lower structure. Has been.

特許第4167624号公報Japanese Patent No. 4167624

高層建物に層間ダンパー型の制振構造を採用すると、曲げ変形成分によりダンパーに生じる変位が小さくなるため、効率が悪く、多数のダンパーを設置しても大きな制振効果を期待することができなかった。   If an interlayer damper type damping structure is used in a high-rise building, the displacement generated in the damper will be reduced due to bending deformation components, so the efficiency will be low, and even if many dampers are installed, a large damping effect cannot be expected. It was.

また、高層建物に特許文献1に記載の制振構造を採用した場合、連層耐震壁のアスペクト比が大きくなり、連層耐震壁が曲げ剛性の小さな材となる。そのためピン支承された連層耐震壁の変形角(回転角度)が大きくならず(ピン支承に変形が集中せず)、ダンパーの効率が悪く、大きな制振効果を期待することができない場合があった。   Moreover, when the damping structure of patent document 1 is employ | adopted for a high-rise building, the aspect ratio of a multistory earthquake-resistant wall becomes large, and a multistory earthquake-resistant wall becomes a material with small bending rigidity. For this reason, the deformation angle (rotation angle) of the multistory shear wall supported by the pin does not increase (the deformation does not concentrate on the pin support), the damper is inefficient, and a large damping effect may not be expected. It was.

このような観点から、本発明は、建物の耐震性能の向上を図ることが可能な制振構造を提案することを課題とする。   From such a viewpoint, an object of the present invention is to propose a vibration control structure capable of improving the seismic performance of a building.

前記課題を解決するために、本発明の制振構造は、建物の低層部に設けられた連層袖壁付き柱と、前記連層袖壁付き柱の袖壁の先端に設けられたエネルギー吸収部材とを備える制振構造であって、前記連層袖壁付き柱の頭部および/または脚部は、前記建物に対してピン接合または半剛接合されていることを特徴としている。   In order to solve the above-mentioned problems, the vibration damping structure of the present invention includes a column with a continuous sleeve wall provided in a low-rise part of a building, and an energy absorption provided at the end of the sleeve wall of the column with the continuous sleeve wall. A vibration damping structure including a member, wherein the head and / or the leg of the multi-layered sleeve walled column is pin-joined or semi-rigidly joined to the building.

かかる制振構造によれば、強風時や地震時等の力が作用した際に、複数階にまたがる連層袖壁付き柱が傾倒するのでエネルギー吸収部材(ダンパー等)に大きな変形を生じさせることが可能となる。そのため、少量のエネルギー吸収部材で建物の耐震性能を向上させることができる。
また、連層袖壁付き柱は、柱のみの場合によりも剛性が大きく、接合部の回転以外では大きく変形しないため、低層部の特定層に変形が集中することを防ぎ、全体として高い変形性能を発揮する。
According to such a vibration control structure, when a force such as a strong wind or an earthquake is applied, a column with a multi-layered sleeve wall that tilts over multiple floors tilts, so that a large deformation is caused in an energy absorbing member (such as a damper). Is possible. Therefore, the earthquake resistance performance of the building can be improved with a small amount of energy absorbing member.
In addition, the columns with multi-layered sleeve walls are more rigid than the case of only the columns, and they do not deform significantly except for the rotation of the joint, preventing the concentration of deformation in a specific layer in the lower layer, and overall high deformation performance Demonstrate.

また、連層袖壁付き柱の設置を低層部のみにすることで、アスペクト比が大きくなることを防止し、連層袖壁付き柱の曲げ剛性が相対的に大きくなる。そのため、連層袖壁付き柱の接合部(ピン接合部または半剛接合部)に変形を集中させることができる。   Further, by setting the columns with the multi-layered sleeve walls only in the low layer portion, the aspect ratio is prevented from increasing, and the bending rigidity of the columns with the multi-layered sleeve walls becomes relatively large. Therefore, the deformation can be concentrated on the joint part (pin joint part or semi-rigid joint part) of the column with the continuous sleeve wall.

前記エネルギー吸収部材は、隣り合う連層袖壁付き柱の袖壁同士を連結するように設ければよい。
また、前記低層部を前記建物の高層部よりも低剛性にすることで、地震時等の加速度を低減させることができる。
What is necessary is just to provide the said energy absorption member so that the sleeve walls of the column with a adjacent continuous layer sleeve wall may be connected.
Moreover, the acceleration at the time of an earthquake, etc. can be reduced by making the said low-rise part low rigidity rather than the high-rise part of the said building.

前記連層袖壁付き柱の脚部に固定された免震支承と、前記免震支承の下面と前記建物との間に介設された緩衝材とを備えていれば、連層袖付き柱の脚部に浮き上がりが生じたとしても、当該脚部が接地する際の衝撃を緩和させることができる。
なお、本発明の制振構造は、前記免震支承が積層ゴムと前記積層ゴムの上下に配設された上フランジおよび下フランジとを備えていて、前記下フランジの少なくとも一部が挿入された凹部が形成された受け鋼板が前記建物に固定されたものであってもよい。このとき、前記緩衝材は前記凹部の底面に設けるものとする。
かかる制振構造によれば、地震時等の水平力が建物に作用した際に下フランジが凹部の縁に引っ掛かるので、緩衝材の損傷を防ぎつつ、建物に作用する水平力を支持することが可能となる。
If it has a seismic isolation bearing fixed to the leg of the column with a sleeve wall and a cushioning material interposed between the lower surface of the base isolation bearing and the building, the column with a sleeve layer Even if the leg part is lifted, the impact when the leg part comes into contact with the ground can be reduced.
In the vibration damping structure of the present invention, the seismic isolation bearing includes a laminated rubber and an upper flange and a lower flange disposed above and below the laminated rubber, and at least a part of the lower flange is inserted. The receiving steel plate in which the recessed part was formed may be fixed to the building. At this time, the buffer material is provided on the bottom surface of the recess.
According to such a vibration control structure, when a horizontal force is applied to the building during an earthquake or the like, the lower flange is caught on the edge of the recess, so that it is possible to support the horizontal force acting on the building while preventing damage to the cushioning material. It becomes possible.

本発明の制振構造によれば、建物の制振性能の向上を図ることが可能となる。   According to the vibration damping structure of the present invention, it is possible to improve the vibration damping performance of the building.

第一の実施形態に係る建物を模式的に示す立面図である。It is an elevation which shows typically the building concerning a first embodiment. 図1に示す建物の低層部の平断面図である。It is a plane sectional view of the low-rise part of the building shown in FIG. 連層袖壁付き柱のピン支承を示す部分拡大図である。It is the elements on larger scale which show the pin support of the pillar with a continuous layer sleeve wall. (a)は連層袖壁付き柱と小梁との接合部を示す平面図、(b)は(a)のA−A断面図である。(A) is a top view which shows the junction part of the column with a continuous layer sleeve wall, and a small beam, (b) is AA sectional drawing of (a). 第二の実施形態に係る建物を模式的に示す立面図である。It is an elevation which shows typically the building concerning a second embodiment. (a)は連層袖壁付き柱の脚部を示す部分拡大図、(b)は(a)の脚部の浮き上がり時を示す部分拡大図である。(A) is the elements on larger scale which show the leg part of the column with a continuous layer sleeve wall, (b) is the elements on larger scale which show the time of the leg part of (a) floating.

<第一の実施形態>
第一の実施形態の建物1は、図1および図2に示すように、連層袖壁付き柱2と、柱3と、梁4とを備えている。
本実施形態では、建物1の高さ方向中央から上側を高層部11、同下側を低層部12と称する。なお、高層部11および低層部12の境界の高さ位置は限定されない。また、建物1の階層数も限定されない。
<First embodiment>
The building 1 of 1st embodiment is provided with the pillar 2 with a continuous layer sleeve wall, the pillar 3, and the beam 4, as shown in FIG. 1 and FIG.
In the present embodiment, the upper side from the center in the height direction of the building 1 is referred to as a high layer part 11, and the lower side is referred to as a low layer part 12. In addition, the height position of the boundary of the high layer part 11 and the low layer part 12 is not limited. Further, the number of floors of the building 1 is not limited.

建物1の高層部11は、図1に示すように、柱3と梁4とが剛結されていることにより躯体が形成されている。
柱3は、高層部11の全高に跨って配設されたいわゆる連層柱である。本実施形態では、建物1の外周に沿って設けられた柱3が、連層柱により構成されている。
As shown in FIG. 1, the high-rise part 11 of the building 1 has a frame formed by the rigid connection between the pillar 3 and the beam 4.
The pillar 3 is a so-called multi-story pillar disposed across the entire height of the high-rise part 11. In this embodiment, the pillar 3 provided along the outer periphery of the building 1 is comprised by the continuous layer pillar.

なお、高層部11の柱3および梁4の構成(配置や本数等を含む)は、限定されるものではなく、適宜設計すればよい。例えば、建物1の外周に設けられた柱3の全てが連層柱である必要はない。   In addition, the structure (including arrangement, number, etc.) of the pillars 3 and the beams 4 of the high-rise part 11 is not limited, and may be appropriately designed. For example, it is not necessary that all the pillars 3 provided on the outer periphery of the building 1 are multi-story pillars.

建物1の低層部12は、図1および図2に示すように、連層袖壁付き柱2と、柱3および梁4により躯体が形成されている。
低層部12の外周は、柱3と梁4とが剛結された架構により形成されている。
As shown in FIG. 1 and FIG. 2, the lower layer portion 12 of the building 1 is formed with a frame by the pillars 2 with the continuous sleeve walls, the pillars 3, and the beams 4.
The outer periphery of the lower layer portion 12 is formed by a frame in which the column 3 and the beam 4 are rigidly connected.

低層部12の平面視中央部には、図2に示すように、一対の連層袖壁付き柱2,2が二組配設されているとともに、一対の柱31,31が一組配設されている。   As shown in FIG. 2, two pairs of continuous-layer sleeve-walled columns 2, 2 are disposed in the central portion of the lower layer portion 12 in plan view, and a pair of columns 31, 31 are disposed as a pair. Has been.

連層袖壁付き柱2は、図1に示すように、柱部21と柱部21の側面から延設された袖壁22とを備えており、建物1の低層部12において複数階にまたがって配設されている。   As shown in FIG. 1, the pillar 2 with the multi-layered sleeve wall includes a pillar portion 21 and a sleeve wall 22 extending from the side surface of the pillar portion 21, and spans a plurality of floors in the low-rise portion 12 of the building 1. Arranged.

本実施形態の連層袖壁付き柱2は、柱部21が低層部12の全高に跨って配設されている。すなわち、柱部21の上端が高層部11の下端に当接しているとともに、柱部21の下端が下部構造物(基礎)Bに当接している。なお、連層袖壁付き柱2は、必ずしも低層部12の全高に跨っている必要はなく、低層部12の一部分において複数階に跨って配設されていればよい。   The pillar 2 with the continuous layer sleeve wall of the present embodiment has the pillar portion 21 disposed over the entire height of the lower layer portion 12. That is, the upper end of the column part 21 is in contact with the lower end of the high-rise part 11, and the lower end of the column part 21 is in contact with the lower structure (foundation) B. In addition, the continuous-layer sleeve wall-equipped column 2 does not necessarily have to straddle the entire height of the lower layer portion 12, and may be disposed across a plurality of floors in a part of the lower layer portion 12.

柱部21は、四角柱状に形成されている。図1に示すように、袖壁22は、先端に向かうに従って壁高が小さくなるように、上端と下端にテーパーを有している。すなわち、袖壁22は、側面視台形状を呈している。なお、柱部21に断面形状は限定されるものではなく、例えば円形であってもよい。また、袖壁22のテーパーの角度は限定されない。   The column portion 21 is formed in a square column shape. As shown in FIG. 1, the sleeve wall 22 has a taper at the upper end and the lower end so that the wall height decreases toward the tip. That is, the sleeve wall 22 has a trapezoidal shape in side view. Note that the cross-sectional shape of the column portion 21 is not limited, and may be, for example, a circular shape. Further, the taper angle of the sleeve wall 22 is not limited.

図2に示すように、本実施形態では、1本の柱部21から1つの袖壁22が延設された第一の連層袖壁付き柱2aと、1本の柱部21から2つの袖壁22a,22bが平面視L字状に延設された第二の連層袖壁付き柱2bとを備えている。   As shown in FIG. 2, in this embodiment, the first continuous-layer sleeve-walled column 2 a in which one sleeve wall 22 extends from one column portion 21, and two columns from one column portion 21. The sleeve walls 22a and 22b are provided with a second continuous-layer sleeve-walled column 2b extending in an L shape in plan view.

第一の連層袖壁付き柱2aの袖壁22は、図2に示すように、隣接する他の第一の連層袖壁付き柱2aの袖壁22と隙間をあけて対向している。
袖壁22,22の先端同士の隙間には、エネルギー吸収部材5が介設されている。エネルギー吸収部材5は、袖壁22の先端(側縁)に接続されている。すなわち、隣り合う一対の連層袖壁付き柱2a,2aは、エネルギー吸収部材5を介して連結されている。
As shown in FIG. 2, the sleeve wall 22 of the first two-layered sleeve-walled column 2 a faces the sleeve wall 22 of another adjacent first-layered sleeve-walled column 2 a with a gap. .
An energy absorbing member 5 is interposed in the gap between the tips of the sleeve walls 22 and 22. The energy absorbing member 5 is connected to the tip (side edge) of the sleeve wall 22. That is, a pair of adjacent two-layered sleeve wall columns 2 a and 2 a are connected via the energy absorbing member 5.

本実施形態では、エネルギー吸収部材5としてダンパーを採用するが、エネルギー吸収部材5は、例えば低降伏点鋼からなる梁などであってもよく、ダンパーに限定されない。また、図1に示すように、本実施形態では、高さ方向に3つのダンパーを並設しているが、袖壁22同士の間に介設されるダンパーの数は限定されない。なお、ダンパーは限定されるものではないが、例えば、オイルダンパー、粘弾性ダンパー、粘性ダンパー、弾塑性ダンパー、塑性ダンパー等を使用すればよい。   In the present embodiment, a damper is adopted as the energy absorbing member 5, but the energy absorbing member 5 may be a beam made of, for example, a low yield point steel, and is not limited to a damper. Moreover, as shown in FIG. 1, in this embodiment, although the three dampers are arranged in the height direction, the number of the dampers interposed between the sleeve walls 22 is not limited. Although the damper is not limited, for example, an oil damper, a viscoelastic damper, a viscous damper, an elastic-plastic damper, a plastic damper, or the like may be used.

第二の連層袖壁付き柱2bの一方の袖壁22aは、図2に示すように、隣接する他の第二の連層袖壁付き柱2bの一方の袖壁22aと隙間をあけて対向している。
一方の袖壁22aの先端同士の隙間には、エネルギー吸収部材5が介設されている。エネルギー吸収部材5は、一方の袖壁22aの先端(側縁)に接続されている。すなわち、隣り合う一対の連層袖壁付き柱2b,2bは、エネルギー吸収部材5を介して連結されている。
As shown in FIG. 2, one sleeve wall 22a of the second continuous-layer sleeve-walled column 2b is spaced from one sleeve wall 22a of another adjacent second-layered-layer sleeve-walled column 2b. Opposite.
An energy absorbing member 5 is interposed in the gap between the tips of one sleeve wall 22a. The energy absorbing member 5 is connected to the tip (side edge) of one sleeve wall 22a. That is, a pair of adjacent columns 2 b and 2 b with continuous layer sleeve walls are connected via the energy absorbing member 5.

また、第二の連層袖壁付き柱2bの他方の袖壁22bは、エネルギー吸収部材5を介して、柱31に連結されている。
柱31は、第一の連層袖壁付き柱2aと第二の連層袖壁付き柱2bとの間に配設されている。本実施形態では、柱31が両連層袖壁付き柱2a,2bの中間付近に配設されているが、柱31は、一方の連層袖壁付き柱2に寄っていてもよい。なお、連層袖壁付き柱2および柱31の配置や本数は限定されない。
In addition, the other sleeve wall 22 b of the second continuous-layer sleeve-walled pillar 2 b is connected to the pillar 31 through the energy absorbing member 5.
The column 31 is disposed between the first column 2a with the continuous layer sleeve wall and the second column 2b with the multiple layer sleeve wall. In the present embodiment, the column 31 is disposed in the vicinity of the middle between the columns 2a and 2b with both continuous layer sleeve walls, but the column 31 may be close to one of the columns 2 with continuous layer sleeve walls. In addition, the arrangement | positioning and the number of the pillar 2 with a continuous layer sleeve wall and the pillar 31 are not limited.

第二の連層袖壁付き柱2b,2bの間および第二の連層袖壁付き柱2bと柱31との間に配設されるエネルギー吸収部材5の構成は、第一の連層袖壁付き柱2a,2aの間に配設されるエネルギー吸収部材5と同様である。   The structure of the energy absorbing member 5 disposed between the second continuous-layer sleeve-walled columns 2b and 2b and between the second continuous-layer sleeve-walled column 2b and the column 31 is the same as that of the first continuous-layer sleeve. This is the same as the energy absorbing member 5 disposed between the walled columns 2a and 2a.

連層袖壁付き柱2の頭部および脚部は、建物1に対してピン接合されている。
本実施形態では、図3に示すように、柱部21の上端および下端(図3では下端のみ表示)に、ピン支承6が形成されている。
The head and legs of the pillars 2 with multi-layered sleeve walls are pin-bonded to the building 1.
In this embodiment, as shown in FIG. 3, pin supports 6 are formed at the upper end and the lower end of the column portion 21 (only the lower end is shown in FIG. 3).

ピン支承6は、柱部21の下端部(上端部)に一体化された支承部材61と、支承部材61に対応する位置に配置された支持部材62と、この支持部材62に埋設されたアンカーボルト63とから構成されている。支持部材62は、本実施形態では下部構造物Bと一体に構築された鉄筋コンクリート造の部材であり、下部構造物Bの上面から突出している。なお、支持部材62は、建物1の自重等の上載される荷重に対して十分な耐力を発現する部材であれば、鉄筋コンクリート造に限定されるものではない。   The pin support 6 includes a support member 61 integrated with a lower end portion (upper end portion) of the column portion 21, a support member 62 disposed at a position corresponding to the support member 61, and an anchor embedded in the support member 62. It is comprised from the volt | bolt 63. FIG. The support member 62 is a reinforced concrete member constructed integrally with the lower structure B in the present embodiment, and protrudes from the upper surface of the lower structure B. The support member 62 is not limited to a reinforced concrete structure as long as the support member 62 is a member that exhibits a sufficient proof strength with respect to a load placed on the building 1 such as its own weight.

支承部材61は、鋼製部材であって、支持部材62と当接する水平面部61aと、水平面部61aの両側部から上方向に傾斜するテーパー部61b,61bとを備えている。水平面部61aの幅(面積)は、柱部21の下端部の幅(断面積)よりも小さい。なお、支承部材61は、鋼製部材に限定されるものではなく、例えばプレキャストコンクリート部材や柱部21から連続する鉄筋コンクリート造部材により構成するなど、建物1の自重等による応力や、連層袖壁付き柱2の回転変形時に作用する応力に対して十分な耐力を有した部材であればよい。   The support member 61 is a steel member and includes a horizontal surface portion 61a that contacts the support member 62 and tapered portions 61b and 61b that are inclined upward from both side portions of the horizontal surface portion 61a. The width (area) of the horizontal surface portion 61 a is smaller than the width (cross-sectional area) of the lower end portion of the column portion 21. Note that the support member 61 is not limited to a steel member. For example, the support member 61 is formed of a precast concrete member or a reinforced concrete member continuous from the column portion 21. Any member may be used as long as it has sufficient proof strength against the stress acting during the rotational deformation of the attached column 2.

地震や強風による水平力が作用すると、支承部材61は、水平面部61aの一部が浮き上がり一方のテーパー部61bと支持部材62との隙間が狭まるように回転し、連層袖壁付き柱2の傾動を許容する。一方、水平方向のせん断力に対しては、アンカーボルト63のせん断耐力で抵抗する。すなわち、連層袖壁付き柱2と下部構造物Bとの接合構造は、アンカーボルト63の断面積を増加させることにより、曲げ剛性に対してせん断剛性を十分に大きくすることが可能であり、ピン支承構造として機能する。   When a horizontal force due to an earthquake or a strong wind is applied, the support member 61 rotates so that a part of the horizontal surface portion 61a is lifted and the gap between the tapered portion 61b and the support member 62 is narrowed. Allow tilting. On the other hand, the horizontal shear force is resisted by the shear strength of the anchor bolt 63. That is, the joint structure between the multi-layered sleeve wall pillar 2 and the lower structure B can increase the shear rigidity sufficiently with respect to the bending rigidity by increasing the cross-sectional area of the anchor bolt 63. Functions as a pin support structure.

図1および図2に示すように、第二の連層袖壁付き柱2bは、梁41を介して建物1の外周の柱3に連結されている。
梁41は、両端にピン支承42,42が形成されていて、第二の連層袖壁付き柱2bおよび柱3に対してピン接合されている。なお、梁41の接合部は、ピン接合に限定されるものではなく、例えば、半剛接合や剛接合であってもよい。
As shown in FIG. 1 and FIG. 2, the second column 2b with a sleeve wall is connected to a column 3 on the outer periphery of the building 1 through a beam 41.
The beam 41 is formed with pin supports 42 and 42 at both ends, and is pin-bonded to the second continuous-layer sleeve-walled column 2 b and the column 3. Note that the joint portion of the beam 41 is not limited to the pin joint, and may be a semi-rigid joint or a rigid joint, for example.

本実施形態では、図2に示すように、スラブ7受け用の小梁43が、袖壁22に沿って隣り合う柱部21同士または柱部21と柱31との間に横架されている。
小梁43は、図4の(a)および(b)に示すように、スラブ7が袖壁22の回転を阻害することがないように、袖壁22の手前でスラブ7を支持している。すなわち、本実施形態では、スラブ7を小梁43により支持することで、スラブ7と袖壁22との間に隙間を設けている。
In the present embodiment, as shown in FIG. 2, the small beam 43 for receiving the slab 7 is horizontally laid along the sleeve wall 22 between the adjacent column portions 21 or between the column portion 21 and the column 31. .
As shown in FIGS. 4A and 4B, the small beam 43 supports the slab 7 in front of the sleeve wall 22 so that the slab 7 does not hinder the rotation of the sleeve wall 22. . That is, in the present embodiment, the slab 7 is supported by the small beam 43, thereby providing a gap between the slab 7 and the sleeve wall 22.

なお、本実施形態のスラブ7は、小梁なしでワイドスパンが可能な、EPSボイド型枠を用いたハーフプレキャスト工法によるボイドスラブとした。なお、スラブ7の構成や形成方法は限定されない。   The slab 7 of the present embodiment is a void slab formed by a half precast method using an EPS void mold that can be wide-span without a small beam. In addition, the structure and formation method of the slab 7 are not limited.

小梁43の両端は、図4の(a)に示すように、柱部21または柱31に取付部材43aを介してピン接合されている。
また、本実施形態では、第一の連層袖付き柱2aと柱31との間にも、両端がピン接合された状態で、小梁43が横架されている。
なお、小梁43の柱部21または柱31への接合は、ピン接合に限定されるものではなく、例えば半剛接合されていてもよい。
As shown in FIG. 4A, both ends of the small beam 43 are pin-joined to the column portion 21 or the column 31 via the attachment member 43a.
Further, in the present embodiment, the small beam 43 is laid horizontally between the first continuous-layer-sleeved column 2a and the column 31 with both ends being pin-joined.
In addition, joining to the pillar part 21 or the pillar 31 of the small beam 43 is not limited to pin joining, For example, semi-rigid joining may be sufficient.

本実施形態の建物1は、建物1の低層部12(本実施形態では、連層袖壁付き柱2が設けられた層)は、建物1に対してピン接合された連層袖壁付き柱2およびエネルギー吸収部材5により構成された制振構造が配設されているため、高い耐震性能を有している。   In the building 1 of this embodiment, the low-rise part 12 of the building 1 (in this embodiment, the layer provided with the column 2 with the multi-layered sleeve wall) is the column with the multi-layered sleeve wall pin-bonded to the building 1. 2 and the energy absorbing member 5, the vibration control structure is provided, so that it has high earthquake resistance.

建物1の低層部12は、その内部に形成された制振構造により、高層部11(その他の層)に比較して低剛性である。そのため、強風時や地震時等による横方向の力が作用した場合には、剛性が低い低層部12において変形が大きくなるが、上端と下端とがピン接合された連層袖壁付き柱2が傾倒することで、エネルギー吸収部材5に大きな変形が生じ、エネルギーが吸収される(加速度を低減できる)。このように、本実施形態の制振構造によれば、少量のダンパーにより建物1の耐震性能を向上させることができる。   The low-rise part 12 of the building 1 has a lower rigidity than the high-rise part 11 (other layers) due to the vibration damping structure formed inside. Therefore, when a lateral force is applied due to a strong wind, an earthquake, or the like, deformation is increased in the low-rise portion 12 having low rigidity, but the pillar 2 with the multi-layered sleeve wall in which the upper end and the lower end are pin-joined is provided. By tilting, the energy absorbing member 5 is greatly deformed and energy is absorbed (acceleration can be reduced). Thus, according to the damping structure of this embodiment, the earthquake resistance performance of the building 1 can be improved with a small amount of damper.

また、連層袖壁付き柱2は、柱部21と袖壁22とが一体に形成されているため、剛性が大きく、ピン支承6の回転以外では大きく変形しないため、低層部12の特定層に座屈や変形が集中することを防止し、全体として高い変形性能を発揮する。   Further, the pillar 2 with the continuous layer sleeve wall is formed with the pillar portion 21 and the sleeve wall 22 integrally, so that it has high rigidity and is not greatly deformed except by the rotation of the pin support 6. It prevents the buckling and deformation from concentrating on and exhibits high deformation performance as a whole.

また、低層部12に連層袖壁付き柱2を形成することで、相対的に連層袖壁付き柱2の剛性が大きくなり、変形をピン支承6に集中させることができる。
なお、連層袖壁付き柱2に接続する梁41は、ピン支承42を介して接続しているため、連層袖壁付き柱2の変形を拘束することがない。
Further, by forming the column 2 with the continuous sleeve wall in the lower layer portion 12, the rigidity of the column 2 with the continuous sleeve wall is relatively increased, and the deformation can be concentrated on the pin support 6.
In addition, since the beam 41 connected to the column 2 with the continuous layer sleeve wall is connected via the pin support 42, the deformation of the column 2 with the multiple layer sleeve wall is not restrained.

<第二の実施形態>
第二の実施形態の建物1は、図5に示すように、連層袖壁付き柱2と、柱3と、梁4とを備えている。
本実施形態では、建物1の高さ方向中央から上側を高層部11、同下側を低層部12と称する。なお、高層部11および低層部12の境界の高さ位置は限定されない。また、建物1の階層数も限定されない。
<Second Embodiment>
As shown in FIG. 5, the building 1 according to the second embodiment includes a column 2 with a multi-layered sleeve wall, a column 3, and a beam 4.
In the present embodiment, the upper side from the center in the height direction of the building 1 is referred to as a high layer part 11, and the lower side is referred to as a low layer part 12. In addition, the height position of the boundary of the high layer part 11 and the low layer part 12 is not limited. Further, the number of floors of the building 1 is not limited.

建物1の高層部11の詳細は、第一の実施形態で示した内容と同様なため、詳細な説明は省略する。
建物1の低層部12は、図5に示すように、連層袖壁付き柱2、柱3および梁4により躯体が形成されている。
Since the details of the high-rise part 11 of the building 1 are the same as the contents shown in the first embodiment, the detailed description is omitted.
As shown in FIG. 5, the low-rise part 12 of the building 1 is formed with a frame by the pillars 2, the pillars 3, and the beams 4 with the continuous sleeve walls.

連層袖壁付き柱2は、柱部21と柱部21の側面から延設された袖壁22とを備えており、建物1の低層部12において複数階にまたがって配設されている。
柱部21は、低層部12の全高に跨って配設されている。すなわち、柱部21の上端が高層部11の下端に当接しているとともに、柱部21の下端が免震支承(図6参照)を介して下部構造物(基礎)Bに当接している。なお、連層袖壁付き柱2は、必ずしも低層部12の全高に跨っている必要はなく、低層部12の一部分において複数階に跨って配設されていればよい。
The pillar 2 with the continuous layer sleeve wall includes a pillar portion 21 and a sleeve wall 22 extending from the side surface of the pillar portion 21, and is arranged across a plurality of floors in the low-rise portion 12 of the building 1.
The column portion 21 is disposed across the entire height of the lower layer portion 12. That is, the upper end of the column part 21 is in contact with the lower end of the high-rise part 11, and the lower end of the column part 21 is in contact with the lower structure (foundation) B via the seismic isolation bearing (see FIG. 6). In addition, the continuous-layer sleeve wall-equipped column 2 does not necessarily have to straddle the entire height of the lower layer portion 12, and may be disposed across a plurality of floors in a part of the lower layer portion 12.

柱部21は、四角柱状に形成されている。なお、柱部21の断面形状は限定されるものではなく、例えば円形であってもよい。
袖壁22は、先端に向かうに従って壁高が小さくなるように、下端にテーパーを有している。すなわち、袖壁22は、上端が高層部11の下端に当接しているとともに、下端は下部構造物Bとの間に隙間を有している。なお、袖壁22のテーパーの角度は限定されない。また、袖壁22は、必ずしも下端にテーパーを有している必要はない。
The column portion 21 is formed in a square column shape. In addition, the cross-sectional shape of the column part 21 is not limited, For example, circular shape may be sufficient.
The sleeve wall 22 has a taper at the lower end so that the wall height decreases toward the tip. That is, the upper end of the sleeve wall 22 is in contact with the lower end of the high layer portion 11, and the lower end has a gap with the lower structure B. The taper angle of the sleeve wall 22 is not limited. Further, the sleeve wall 22 does not necessarily have a taper at the lower end.

対向する連層袖壁付き柱2,2の袖壁22,22の先端同士の隙間には、エネルギー吸収部材5が介設されている。エネルギー吸収部材5は、袖壁22の先端(側縁)に接続されている。すなわち、隣り合う一対の連層袖壁付き柱2,2は、エネルギー吸収部材5を介して連結されている。なお、エネルギー吸収部材5の詳細は、第一の実施形態で示した内容と同様なため、詳細な説明は省略する。   An energy absorbing member 5 is interposed in the gap between the tips of the sleeve walls 22 and 22 of the columns 2 and 2 with the continuous layer sleeve walls facing each other. The energy absorbing member 5 is connected to the tip (side edge) of the sleeve wall 22. That is, the adjacent pair of continuous-layered sleeve wall columns 2, 2 are connected via the energy absorbing member 5. The details of the energy absorbing member 5 are the same as the contents shown in the first embodiment, and thus detailed description thereof is omitted.

連層袖壁付き柱2の脚部は、建物1に対して浮き上がり可能(離間可能)に半剛接合されている。なお、連層袖壁付き柱2の脚部は、浮き上がり可能にピン接合されていてもよい。
本実施形態では、図6(a)に示すように、柱部21の下端(脚部)に、免震支承6aが固定されている。
The leg portions of the columns 2 with the continuous sleeve walls are semi-rigidly joined to the building 1 so as to be able to float (separate). In addition, the leg part of the pillar 2 with a continuous layer sleeve wall may be pin-joined so that it can float.
In the present embodiment, as shown in FIG. 6A, the seismic isolation bearing 6 a is fixed to the lower end (leg part) of the column part 21.

本実施形態の免震支承6aは、積層ゴム64と、積層ゴム64の上下に配設された上フランジ65および下フランジ66とを備えた、いわゆる積層ゴム支承である。なお、免震支承6aの構成は限定されるものではない。
上フランジ65は、柱部21の下端に固定されていて、下フランジ66は、受け鋼板8に上載されている。
The seismic isolation bearing 6 a of this embodiment is a so-called laminated rubber bearing that includes a laminated rubber 64 and an upper flange 65 and a lower flange 66 that are disposed above and below the laminated rubber 64. In addition, the structure of the seismic isolation bearing 6a is not limited.
The upper flange 65 is fixed to the lower end of the column portion 21, and the lower flange 66 is mounted on the receiving steel plate 8.

受け鋼板8は、免震支承6aの位置に対応して下部構造物(建物)Bに固定されている。なお、受け鋼板8は、必要に応じて設置すればよい。
受け鋼板8は、上面に凹部81が形成されていることで、断面視凹字状を呈している。凹部81は、下フランジ66の平面形状と同等以上の面積を有していて、かつ、下フランジ66の少なくとも一部を挿入可能な深さを有している。
凹部81の底面には、上面が開口した有底の緩衝材用穴82が形成されている。なお、緩衝材用穴82の数や配置は限定されるものではなく、適宜設定すればよい。
The receiving steel plate 8 is fixed to the lower structure (building) B corresponding to the position of the seismic isolation bearing 6a. In addition, what is necessary is just to install the receiving steel plate 8 as needed.
The receiving steel plate 8 has a concave shape in cross section because the concave portion 81 is formed on the upper surface. The recess 81 has an area equal to or larger than the planar shape of the lower flange 66 and has a depth in which at least a part of the lower flange 66 can be inserted.
A bottomed buffer material hole 82 having an open top surface is formed on the bottom surface of the recess 81. In addition, the number and arrangement | positioning of the hole 82 for buffer materials are not limited, What is necessary is just to set suitably.

緩衝材用穴82には、緩衝材9が配設されている。すなわち、免震支承6aの下面と下部構造物Bとの間には、緩衝材9が介設されている。
本実施形態の緩衝材9は、図6(b)に示すように、緩衝材用穴82から上部から突出するドーム形状を有した弾性体により構成されている。なお、緩衝材9を構成する材料は限定されるものではないが、例えば、合成ゴム発泡体、ウレタン系ゴム、ポリエチレン系ゴム等を採用すればよい。また、緩衝材9の形状は限定されるものではなく、例えば、柱状であってもよい。
The buffer material 9 is disposed in the buffer material hole 82. That is, the cushioning material 9 is interposed between the lower surface of the seismic isolation bearing 6a and the lower structure B.
As shown in FIG. 6B, the cushioning material 9 of the present embodiment is configured by an elastic body having a dome shape that protrudes from the cushioning material hole 82 from above. In addition, although the material which comprises the buffer material 9 is not limited, For example, a synthetic rubber foam, urethane rubber, polyethylene rubber, etc. may be adopted. Moreover, the shape of the buffer material 9 is not limited, For example, columnar shape may be sufficient.

なお、受け鋼板8には、緩衝材用穴82に代えて緩衝材9を設置するための溝が形成されていてもよい。この場合には、緩衝材9には、板状の弾性体を使用すればよい。また、受け鋼板8を省略する場合には、緩衝材9は下部構造物Bの上面もしくは下フランジ66の下面に設置すればよい。
この他の第二の実施形態に係る建物1(制振構造)の詳細は、第一の実施形態で示した内容と同様なため、詳細な説明は省略する。
The receiving steel plate 8 may be provided with a groove for installing the buffer material 9 instead of the buffer material hole 82. In this case, a plate-like elastic body may be used for the buffer material 9. When the receiving steel plate 8 is omitted, the buffer material 9 may be installed on the upper surface of the lower structure B or the lower surface of the lower flange 66.
The details of the building 1 (vibration control structure) according to the other second embodiment are the same as the contents shown in the first embodiment, and thus detailed description thereof is omitted.

地震や強風による水平力が建物1に作用すると、免震支承6aの積層ゴム64により水平力が吸収される。このとき、下フランジ66の外縁が凹部81の縁に係止された状態となる。そのため、大きな水平力が作用した場合であっても、緩衝材9に破損が生じることがない。   When a horizontal force due to an earthquake or a strong wind acts on the building 1, the horizontal force is absorbed by the laminated rubber 64 of the seismic isolation bearing 6a. At this time, the outer edge of the lower flange 66 is locked to the edge of the recess 81. Therefore, even if a large horizontal force is applied, the buffer material 9 is not damaged.

また、建物1に作用した水平力により、連層袖壁付き柱2が脚部を中心として回転変形すると、袖壁22の先端に設けられたダンパー5が大きく変形する。ダンパー5の反力は、柱部21の脚部に集中するが、長期負担軸力を超える反力が作用する場合には、図6(b)に示すように、脚部に浮き上がりが生じる。浮き上がり以降は、梁4によりダンパー5の反力を負担するため、ダンパー5に生じる変形が著しく低下することはなく、制振性能も低下することもない。   Moreover, when the pillar 2 with the multi-layered sleeve wall rotates and deforms around the leg due to the horizontal force acting on the building 1, the damper 5 provided at the tip of the sleeve wall 22 is greatly deformed. The reaction force of the damper 5 is concentrated on the leg portion of the column portion 21, but when a reaction force exceeding the long-term load axial force is applied, the leg portion is lifted as shown in FIG. 6B. After the lift, the beam 4 bears the reaction force of the damper 5, so that the deformation generated in the damper 5 is not significantly reduced, and the damping performance is not lowered.

緩衝材9を脚部に介設することにより、力−変位の関係の勾配が滑らかになり、脚部の浮き上がり後、当該脚部が接地する際の衝撃が緩和される。   By interposing the cushioning material 9 in the leg portion, the gradient of the force-displacement relationship becomes smooth, and the impact when the leg portion comes into contact with the ground after the leg portion is lifted is reduced.

緩衝材9は、緩衝材用穴82に配設されているため、緩衝材9が緩衝材用穴82内に納まる変形をした後の荷重は、受け鋼板8により支持される。すなわち、連層袖壁付き柱2の荷重は、その一部を緩衝材9により支持し、残りを受け鋼板8により支持する。そのため、緩衝材9の設計の自由度を高めることができる。   Since the shock absorbing material 9 is disposed in the shock absorbing material hole 82, the load after the deformation in which the shock absorbing material 9 is accommodated in the shock absorbing material hole 82 is supported by the receiving steel plate 8. That is, a part of the load of the pillar 2 with the sleeve wall is supported by the cushioning material 9 and the rest is supported by the steel plate 8. Therefore, the freedom degree of design of the shock absorbing material 9 can be raised.

このように、本実施形態の建物1(制振構造)では、引張力に対しては連層袖壁付き柱2の浮き上がりを許容し、圧縮力や水平力に対しては緩衝材9に作用する力を制限することで、下向きの鉛直荷重を下部構造物Bで支持しつつ、連層袖壁付き柱2のスムーズな回転を可能としている。
この他の第二の実施形態の建物1の作用効果は、第一の実施形態の建物1と同様なため、詳細な説明は省略する。
Thus, in the building 1 (vibration control structure) of the present embodiment, the pillar 2 with the multi-layered sleeve wall is allowed to lift with respect to the tensile force, and acts on the cushioning material 9 with respect to the compressive force and the horizontal force. By restricting the force to be performed, the downward vertical load is supported by the lower structure B, and the multi-layered sleeve walled column 2 can be smoothly rotated.
Since the operational effects of the building 1 of the other second embodiment are the same as those of the building 1 of the first embodiment, detailed description thereof is omitted.

以上、本発明の実施形態について説明した。しかし、本発明は、前述の実施形態に限られず、前記の各構成要素については、本発明の趣旨を逸脱しない範囲で、適宜変更が可能である。   The embodiment of the present invention has been described above. However, the present invention is not limited to the above-described embodiment, and the above-described components can be appropriately changed without departing from the spirit of the present invention.

例えば、制振構造を設置する建物1は、複層階構造であればよく、建物1の使用目的、規模、形状等は限定されるものではない。
また、制振構造の配置は、建物1の中央部に限定されるものではない。
For example, the building 1 in which the damping structure is installed may be a multi-story structure, and the purpose, scale, shape, etc. of the building 1 are not limited.
Further, the arrangement of the vibration damping structure is not limited to the central portion of the building 1.

前記第一の実施形態では、連層袖壁付き柱2の頭部および脚部が建物1に対してピン接合されている場合について説明したが、連層袖壁付き柱2の頭部および脚部は建物1に対して半剛接合されていてもよい。また、連層袖壁付き柱2は、頭部および脚部の一方がピン接合されていて、他方が半剛接合されていてもよい。さらに、連層袖壁付き柱2の頭部または脚部いずれか一方のみが建物1に対してピン接合あるいは半剛接合されていてもよい。   Although said 1st embodiment demonstrated the case where the head and leg part of the column 2 with a continuous layer sleeve wall were pin-joined with respect to the building 1, the head and leg of the column 2 with a continuous layer sleeve wall are demonstrated. The part may be semi-rigidly joined to the building 1. Moreover, as for the pillar 2 with a continuous layer sleeve wall, either the head or the leg may be pin-joined, and the other may be semi-rigidly joined. Furthermore, only one of the head portion or the leg portion of the multi-layered sleeve walled pillar 2 may be pin-bonded or semi-rigidly bonded to the building 1.

本発明の制振構造は、頭部および脚部が建物に対してピン接合または半剛接合された柱と組み合わせて使用してもよい。
隣り合う連層袖壁付き柱2同士は、必ずしもエネルギー吸収部材5を介して連結されている必要はない。
The vibration damping structure of the present invention may be used in combination with a column whose head and legs are pin-bonded or semi-rigidly bonded to the building.
Adjacent pillars 2 with continuous layer sleeve walls do not necessarily have to be connected via the energy absorbing member 5.

前記実施形態の建物1の角部には、図示しない片持ち梁が柱3から延設されているが、建物1の角部の構造は限定されるものではなく、柱と梁を設けてもよい。
前記実施形態では、ハーフPCスラブを採用することで小梁の突出部分を減らした空間を形成するものとしたが、スラブ7の構成は限定されるものではない。
A cantilever beam (not shown) extends from the pillar 3 at the corner of the building 1 of the above embodiment. However, the structure of the corner of the building 1 is not limited, and a pillar and a beam may be provided. Good.
In the embodiment, the half PC slab is used to form a space in which the protruding portion of the small beam is reduced. However, the configuration of the slab 7 is not limited.

1 建物
11 高層部
12 低層部
2 連層袖壁付き柱
21 柱
22 袖壁
3 柱
4 梁
5 ダンパー(エネルギー吸収部材)
6 ピン支承
6a 免震支承
64 積層ゴム
65 上フランジ
66 下フランジ
8 受け鋼板
81 凹部
9 緩衝材
DESCRIPTION OF SYMBOLS 1 Building 11 High-rise part 12 Low-rise part 2 Column with a continuous layer sleeve wall 21 Pillar 22 Sleeve wall 3 Pillar 4 Beam 5 Damper (energy absorption member)
6 Pin bearing 6a Seismic isolation bearing 64 Laminated rubber 65 Upper flange 66 Lower flange 8 Receiving steel plate 81 Recessed portion 9 Buffer

Claims (5)

建物の低層部に設けられた連層袖壁付き柱と、
前記連層袖壁付き柱の袖壁の先端に設けられたエネルギー吸収部材と、を備える制振構造であって、
前記連層袖壁付き柱の頭部および/または脚部は、前記建物に対してピン接合または半剛接合されていることを特徴とする、制振構造。
Columns with multi-layered sleeve walls provided in the lower part of the building,
An energy absorbing member provided at the tip of the sleeve wall of the pillar with the continuous layer sleeve wall, and a vibration damping structure comprising:
The vibration damping structure according to claim 1, wherein a head and / or a leg of the multi-layered sleeve walled column is pin-bonded or semi-rigidly bonded to the building.
前記エネルギー吸収部材が、隣り合う連層袖壁付き柱の袖壁同士を連結していることを特徴とする、請求項1に記載の制振構造。   2. The vibration damping structure according to claim 1, wherein the energy absorbing member connects the sleeve walls of the columns with the adjacent multi-layered sleeve walls. 前記低層部が、前記建物の高層部よりも低剛性であることを特徴とする、請求項1または請求項2に記載の制振構造。   The damping structure according to claim 1 or 2, wherein the low-rise part is lower in rigidity than the high-rise part of the building. 前記連層袖壁付き柱の脚部に固定された免震支承と、
前記免震支承の下面と前記建物との間に介設された緩衝材と、を備えていることを特徴とする、請求項1乃至請求項3のいずれか1項に記載の制振構造。
Seismic isolation bearings fixed to the legs of the multi-layered sleeve wall columns;
The damping structure according to any one of claims 1 to 3, further comprising a cushioning material interposed between a lower surface of the seismic isolation bearing and the building.
前記建物に固定された受け鋼板をさらに備えており、
前記免震支承は、積層ゴムと、前記積層ゴムの上下に配設された上フランジおよび下フランジと、を備えていて、
前記受け鋼板には、前記下フランジの少なくとも一部が挿入された凹部が形成されており、
前記緩衝材は、前記凹部の底面に設けられていることを特徴とする、請求項4に記載の制振構造。
It further comprises a receiving steel plate fixed to the building,
The seismic isolation bearing includes a laminated rubber, and an upper flange and a lower flange disposed above and below the laminated rubber,
The receiving steel plate has a recess into which at least a part of the lower flange is inserted,
The vibration damping structure according to claim 4, wherein the cushioning material is provided on a bottom surface of the recess.
JP2015188695A 2014-10-10 2015-09-25 Vibration control structure Active JP6749081B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014208808 2014-10-10
JP2014208808 2014-10-10

Publications (2)

Publication Number Publication Date
JP2016079799A true JP2016079799A (en) 2016-05-16
JP6749081B2 JP6749081B2 (en) 2020-09-02

Family

ID=55956045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015188695A Active JP6749081B2 (en) 2014-10-10 2015-09-25 Vibration control structure

Country Status (1)

Country Link
JP (1) JP6749081B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045669A (en) * 2018-09-18 2020-03-26 株式会社竹中工務店 Base-isolated structure
JP7565877B2 (en) 2021-06-16 2024-10-11 大成建設株式会社 Building structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223240A (en) * 1998-02-05 1999-08-17 Takenaka Komuten Co Ltd Setting method and setting structure of base isolating device
JPH11223041A (en) * 1998-02-05 1999-08-17 Kajima Corp Vibration control construction for mid-to-low-rise building or structure
JP4167624B2 (en) * 2004-05-24 2008-10-15 大成建設株式会社 Damping structure and damping system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11223240A (en) * 1998-02-05 1999-08-17 Takenaka Komuten Co Ltd Setting method and setting structure of base isolating device
JPH11223041A (en) * 1998-02-05 1999-08-17 Kajima Corp Vibration control construction for mid-to-low-rise building or structure
JP4167624B2 (en) * 2004-05-24 2008-10-15 大成建設株式会社 Damping structure and damping system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045669A (en) * 2018-09-18 2020-03-26 株式会社竹中工務店 Base-isolated structure
JP7087258B2 (en) 2018-09-18 2022-06-21 株式会社竹中工務店 Seismic isolation structure
JP7565877B2 (en) 2021-06-16 2024-10-11 大成建設株式会社 Building structure

Also Published As

Publication number Publication date
JP6749081B2 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
JP5567094B2 (en) Long-period building
KR101301143B1 (en) Seismic retrofit structure of pilotiies construction
JP2017082532A (en) Braced column frame
JP6749081B2 (en) Vibration control structure
JP5918282B2 (en) Long-period building
JP4812463B2 (en) Base-isolated floor structure
JP2009052251A (en) Vibration controlled building, method of controlling vibration of building, reinforced concrete building, and method of imparting long period to reinforced concrete building
JP4355302B2 (en) Floating floor vibration control structure
JP5727690B2 (en) Long-period building
JP2008274622A (en) Intermediate-story base-isolating mechanism of building
JP6674240B2 (en) Structure with vibration isolation
JP6427315B2 (en) Column reinforcement structure
JP6414877B2 (en) Reinforcement structure and building
JP6846219B2 (en) Building seismic isolation structure
JP2017043988A (en) Vibration control building
JP5841889B2 (en) Column base pin structure
JP5290786B2 (en) Damping structure
JP6834206B2 (en) Building reinforcement structure
JP5415093B2 (en) Vibration control structure
JP2013023837A (en) Earthquake strengthening structure of existing building
JP2004278002A (en) Unit building with base-isolating device
JP7293557B2 (en) building
JP2018076735A (en) Collapse prevention structure for building
JP5592288B2 (en) Seismic isolation building
JP4943190B2 (en) Seismic reinforcement structure for viaduct

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190423

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200714

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200811

R150 Certificate of patent or registration of utility model

Ref document number: 6749081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150