Nothing Special   »   [go: up one dir, main page]

JP2016054644A - Embedded permanent magnet type rotary electric machine - Google Patents

Embedded permanent magnet type rotary electric machine Download PDF

Info

Publication number
JP2016054644A
JP2016054644A JP2016006766A JP2016006766A JP2016054644A JP 2016054644 A JP2016054644 A JP 2016054644A JP 2016006766 A JP2016006766 A JP 2016006766A JP 2016006766 A JP2016006766 A JP 2016006766A JP 2016054644 A JP2016054644 A JP 2016054644A
Authority
JP
Japan
Prior art keywords
rotor core
permanent magnet
rotor iron
iron core
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016006766A
Other languages
Japanese (ja)
Other versions
JP6165279B2 (en
Inventor
雅樹 堀井
Masaki Horii
雅樹 堀井
井上 正哉
Masaya Inoue
正哉 井上
佳明 橘田
Yoshiaki Kitsuta
佳明 橘田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2016006766A priority Critical patent/JP6165279B2/en
Publication of JP2016054644A publication Critical patent/JP2016054644A/en
Application granted granted Critical
Publication of JP6165279B2 publication Critical patent/JP6165279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an embedded permanent magnet type rotary electric machine in which cooling effects of permanent magnets can be enhanced by cooling directly the permanent magnets with a cooling medium.SOLUTION: The embedded permanent magnet type rotary electric machine comprises: a stator 10 having an armature winding 15; a rotator 20 that has rotor iron cores 21, which is constituted by laminating magnetic material plates cylindrically and provided rotatably inside the stator 10, and has a plurality of magnet storage holes 25 penetrating through in a laminating direction of the magnetic material plates of the rotor iron core 21 formed at predetermined positions in a circumferential direction; and a plurality of permanent magnets 23 stored in the plurality of magnet storage holes 25 respectively. In each permanent magnet 23, a part corresponding to outside in a radial direction of the rotor iron core 21 is fixed to the rotor iron core 21 in the magnet storage hole 25. A refrigerant passage 27 is formed in a shaft direction of the rotor iron core 21, between the rotor iron core 21 and the magnet, in a part corresponding to the inside in the radial direction of the rotor iron core 21. At an exposed part 21a of the rotor iron core 21 in the refrigerant passage 27, a plurality of protruding parts 28 are arranged, which are caused by shear droop 29 generated during press processing of the magnetic material plates, in a direction orthogonal to a flowing direction of a cooling medium.SELECTED DRAWING: Figure 7

Description

この発明は、回転子に永久磁石が埋め込まれた永久磁石埋込型回転電機に関する。   The present invention relates to a permanent magnet embedded type rotating electric machine in which a permanent magnet is embedded in a rotor.

従来から積層された電磁鋼板で構成された回転子鉄心内に永久磁石が埋め込まれた回転
子と、回転子周囲に電機子巻線を有する固定子を備えた永久磁石埋込型回転電機が知られている。
このような永久磁石埋込型回転電機において、永久磁石の冷却方法として、外側から回転子表面に冷却油をかけて放熱する方法のほか、特許文献1のように、磁性材板を積層した回転子鉄心内に冷媒流路を設ける方法がある。
Conventionally, there is known a permanent magnet embedded type rotating electric machine including a rotor in which a permanent magnet is embedded in a rotor core made of laminated magnetic steel sheets and a stator having an armature winding around the rotor. It has been.
In such a permanent magnet embedded type rotating electrical machine, as a method of cooling the permanent magnet, in addition to a method of dissipating heat by applying cooling oil to the rotor surface from the outside, a rotation in which magnetic material plates are laminated as in Patent Document 1 There is a method of providing a coolant channel in the core.

特開2011-223717号公報JP 2011-223717

しかしながら、従来の永久磁石埋込型回転電機においては、永久磁石に冷却媒体を直接かけないため、冷却効果が低く、電動パワーステアリング装置等に用いられる電動機の出力を高めにくいという問題があった。   However, the conventional permanent magnet embedded type rotating electric machine has a problem that the cooling effect is low because the cooling medium is not directly applied to the permanent magnet, and it is difficult to increase the output of the electric motor used in the electric power steering apparatus or the like.

この発明は、このような問題を解決しようとするもので、永久磁石を冷却媒体で直接冷却することにより、永久磁石の冷却効果を高められる永久磁石埋込型回転電機を提供することを目的とする。 An object of the present invention is to provide an embedded permanent magnet type rotating electrical machine that can improve the cooling effect of a permanent magnet by directly cooling the permanent magnet with a cooling medium. To do.

この発明の永久磁石電動機は、電機子巻線を有する固定子と、磁性材板を円筒状に積層して構成され、前記固定子の内側に回転自在に設けられた回転子鉄心を有し、前記回転子鉄心の前記磁性材板の積層方向に貫通する磁石収容孔を周方向の所定位置に複数個形成された回転子と、前記複数個の磁石収容孔にそれぞれ収容された複数の永久磁石を備え、前記各永久磁石は、前記磁石収容孔において前記回転子鉄心の径方向外側に対応する部分を前記回転子鉄心に固定され、前記回転子鉄心の径方向内側に対応する部分において前記回転子鉄心との間に前記回転子鉄心の軸方向に冷媒を通す冷媒通路を形成するように配置されると共に、前記冷媒通路における前記回転子鉄心の露出部に、前記冷媒の流通方向と直交する方向に前記磁性材板のプレス加工時の抜きダレによる複数の凸部を設置する。   The permanent magnet motor of the present invention is configured by laminating a stator having an armature winding and a magnetic material plate in a cylindrical shape, and has a rotor core provided rotatably inside the stator, A rotor in which a plurality of magnet housing holes penetrating in the stacking direction of the magnetic material plates of the rotor core are formed at predetermined positions in the circumferential direction, and a plurality of permanent magnets respectively housed in the plurality of magnet housing holes Each permanent magnet is fixed to the rotor core at a portion corresponding to the radially outer side of the rotor core in the magnet housing hole, and the rotation at a portion corresponding to the radially inner side of the rotor core. The refrigerant core is arranged so as to form a refrigerant passage through which the refrigerant passes in the axial direction of the rotor core, and the exposed portion of the rotor core in the refrigerant passage is orthogonal to the flow direction of the refrigerant. Direction of the magnetic material plate Installing a plurality of convex portions by punching sag during the scan process.

この発明の永久磁石電動機によれば、永久磁石下に冷媒通路を形成し、かつ冷媒を冷媒通路の凸部に衝突させることにより、冷媒の流れを層流から乱流に移行させて永久磁石付近の温度境界層を効果的に防止することができるので、永久磁石の冷却効果を高められる。   According to the permanent magnet motor of the present invention, the refrigerant passage is formed under the permanent magnet, and the refrigerant is caused to collide with the convex portion of the refrigerant passage, thereby transferring the refrigerant flow from laminar flow to turbulent flow and in the vicinity of the permanent magnet. Since the temperature boundary layer can be effectively prevented, the cooling effect of the permanent magnet can be enhanced.

この発明の実施の形態1を示す永久磁石埋込型回転電機の側断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side cross-sectional view of a permanent magnet embedded rotary electric machine showing Embodiment 1 of the present invention. 実施の形態1における回転子を示す平面図である。FIG. 3 is a plan view showing the rotor in the first embodiment. 図2の永久磁石周辺部を示す要部拡大図である。It is a principal part enlarged view which shows the permanent magnet periphery part of FIG. 図3のIV―IV線断面図である。FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. 図3のV―V線断面図である。FIG. 5 is a sectional view taken along line VV in FIG. 3. この発明の実施の形態2を示す要部断面図である。It is principal part sectional drawing which shows Embodiment 2 of this invention. この発明の実施の形態3を示す要部断面図である。It is principal part sectional drawing which shows Embodiment 3 of this invention.

実施の形態1.
図1はこの発明の実施の形態1の永久磁石埋込型電動機を示す側断面図で,平板状の永久磁石を用い,16極,48スロットに構成した例を示している。
固定子10はコアバック12とティース13とスロット14が設けられた固定子鉄心11と,スロット14に納められた分布巻の電機子巻線として、U1,U2,W1,W2,V1,V2の電機子巻線15が納められている。
U1,U2,W1,W2,V1,V2は3相の電機子巻線15が2組あることを示しており,第1のU相巻線がU1,第2のU相巻線がU2,第1のV相巻線がV1,第2のV相巻線がV2,第1のW相巻線がW1,第2のW相巻線がW2としている。
U1,V1,W1が第1の電機子巻線を構成し,第1のインバータに接続され,U2,V2,W2が第2の電機子巻線を構成し,第2のインバータに接続される。
Embodiment 1 FIG.
FIG. 1 is a side sectional view showing a permanent magnet embedded electric motor according to Embodiment 1 of the present invention, and shows an example in which a plate-like permanent magnet is used and is configured with 16 poles and 48 slots.
The stator 10 includes U1, U2, W1, W2, V1, V2, U1, U2, W1, W2, V1, and V2 as armature windings of distributed windings accommodated in the core core 12, stator teeth 13 and slots 14, and slots 14. An armature winding 15 is accommodated.
U1, U2, W1, W2, V1, and V2 indicate that there are two sets of three-phase armature windings 15; the first U-phase winding is U1, the second U-phase winding is U2, The first V-phase winding is V1, the second V-phase winding is V2, the first W-phase winding is W1, and the second W-phase winding is W2.
U1, V1, and W1 constitute the first armature winding and are connected to the first inverter, and U2, V2, and W2 constitute the second armature winding and are connected to the second inverter. .

一方、回転子20は固定子10の内側に回転自在に設けられた回転子鉄心21と、回転子鉄心21の中心部に挿入された回転軸22と,回転子鉄心21に埋め込まれた平板状の永久磁石23を有する。   On the other hand, the rotor 20 has a rotor core 21 rotatably provided inside the stator 10, a rotating shaft 22 inserted in the center of the rotor core 21, and a flat plate shape embedded in the rotor core 21. The permanent magnet 23 is provided.

図2は、図1における回転子20を示す平面図で、円筒状に磁性材板を積層された回転子鉄心21を有し、その中心部に回転軸22が挿入される軸挿入孔24が設けられ、径方向周辺部に平板状の永久磁石23を収容するための磁石収容孔25が等間隔に16個設けられ、永久磁石23の内周側で軸挿入孔24の周囲に冷媒である冷却油を通す貫通孔26が等間隔に8個設けられている。
なお、図2におけるNとSは永久磁石23の極性を表す。すなわち図1では異なる極性の磁石が交互に並ぶように配置されている。
また、回転子鉄心21に用いられる磁性材板は、磁石に着く鉄の特性(磁性)に改良を加え、磁気⇔電気というエネルギー交換を効率的に行う機能材料のことである。
FIG. 2 is a plan view showing the rotor 20 in FIG. 1, which has a rotor core 21 in which magnetic material plates are laminated in a cylindrical shape, and a shaft insertion hole 24 into which the rotation shaft 22 is inserted at the center thereof. There are provided 16 magnet housing holes 25 at equal intervals in the radially peripheral portion for housing the plate-like permanent magnets 23, and the coolant is provided around the shaft insertion hole 24 on the inner peripheral side of the permanent magnets 23. Eight through holes 26 through which the cooling oil passes are provided at equal intervals.
Note that N and S in FIG. 2 represent the polarity of the permanent magnet 23. That is, in FIG. 1, magnets having different polarities are arranged alternately.
Moreover, the magnetic material plate used for the rotor core 21 is a functional material that improves the characteristics (magnetism) of the iron that reaches the magnet and efficiently exchanges the energy of magnetism.

図3は、図2のA部の拡大図で、磁石収容孔25に収容された永久磁石周辺部の構造を示しており、磁石収容孔25と永久磁石23との間に冷却油を通す冷媒通路27が形成されている。
この冷媒通路27は、永久磁石23の周りにおいて回転子鉄心21の軸方向に冷却油を通す間隙として機能するように形成され、永久磁石23の回転子鉄心21の径方向内側に対応する部分において回転子鉄心21の磁石収容孔25との隙間に形成されている。
すなわち、永久磁石23は、磁石収容孔25において回転子鉄心21の径方向外側長辺部に対応する部分を回転子鉄心21に固定用樹脂層で片寄せ固定され、回転子鉄心21の径方向内側長辺部に対応する部分には固定用樹脂層を設けること無く、冷媒通路27となる隙間を形成するように配置されている。
FIG. 3 is an enlarged view of a portion A in FIG. 2, showing the structure of the peripheral portion of the permanent magnet accommodated in the magnet accommodation hole 25, and a coolant that passes cooling oil between the magnet accommodation hole 25 and the permanent magnet 23. A passage 27 is formed.
The refrigerant passage 27 is formed around the permanent magnet 23 so as to function as a gap through which cooling oil passes in the axial direction of the rotor core 21, and in a portion corresponding to the radially inner side of the rotor core 21 of the permanent magnet 23. The rotor core 21 is formed in a gap with the magnet housing hole 25.
That is, the permanent magnet 23 is fixed to the rotor core 21 by a fixing resin layer at a portion corresponding to the radially outer long side portion of the rotor core 21 in the magnet housing hole 25, and the radial direction of the rotor core 21 is fixed. The portion corresponding to the inner long side portion is arranged so as to form a gap that becomes the refrigerant passage 27 without providing the fixing resin layer.

そして、図4及び図5に示すように、永久磁石下の冷媒通路27には、回転子鉄心21の露出部21aに冷却油の流れる方向と直交する方向に複数の凸部28が隣接する凸部と重ならないようジグザグに配置されている。
このように永久磁石下の冷媒通路27に複数の凸部28を配置することにより、冷却油が凸部28に衝突する時に層流から乱流に遷移するため、永久磁石付近の温度境界層を効果的に防止することができる。
As shown in FIGS. 4 and 5, in the refrigerant passage 27 below the permanent magnet, a plurality of convex portions 28 are adjacent to the exposed portion 21 a of the rotor core 21 in a direction perpendicular to the direction in which the cooling oil flows. It is arranged in a zigzag so as not to overlap the part.
By arranging the plurality of convex portions 28 in the refrigerant passage 27 below the permanent magnet in this way, the transition from laminar flow to turbulent flow when the cooling oil collides with the convex portion 28, the temperature boundary layer near the permanent magnet is reduced. It can be effectively prevented.

図4においては、永久磁石下の冷媒通路27を形成する回転子鉄心21の露出部21aに、凸部28を軸方向に等間隔に複数設置し、また隣接する凸部同士が互いに重ならないよう配置しているため、冷却油が凸部28に衝突しやすくなり、冷却油が凸部28に衝突する時に層流から乱流に遷移して、永久磁石付近の温度境界層を効果的に防止することができ、永久磁石の冷却効果を高めることができる。 In FIG. 4, a plurality of convex portions 28 are installed at equal intervals in the axial direction on the exposed portion 21 a of the rotor core 21 that forms the refrigerant passage 27 below the permanent magnet, and adjacent convex portions do not overlap each other. Due to the arrangement, the cooling oil easily collides with the convex portion 28, and when the cooling oil collides with the convex portion 28, the transition from laminar flow to turbulent flow effectively prevents the temperature boundary layer near the permanent magnet. It is possible to increase the cooling effect of the permanent magnet.

なお、図示していないが、冷媒通路27への冷却油の供給は、回転軸22の中心に設けられた中空孔から、回転子20の一端部に設けた飛散防止用のプレートによって形成された冷媒通路を経由して行われる。   Although not shown, the cooling oil is supplied to the refrigerant passage 27 from a hollow hole provided at the center of the rotating shaft 22 by a scattering prevention plate provided at one end of the rotor 20. This is done via the refrigerant passage.

以上のように、この発明の永久磁石埋込型回転電機は、電機子巻線15を有する固定子10と、磁性材板を円筒状に積層して構成され、固定子10の内側に回転自在に設けられた回転子鉄心21を有し、回転子鉄心21の磁性材板の積層方向に貫通する磁石収容孔25を周方向の所定位置に複数個形成された回転子20と、複数個の磁石収容孔25にそれぞれ収容された複数の永久磁石23を備え、各永久磁石23は、磁石収容孔25において回転子鉄心21の径方向外側に対応する部分を回転子鉄心21に固定され、回転子鉄心21の径方向内側に対応する部分において回転子鉄心21との間に回転子鉄心21の軸方向に冷却油を通す冷媒通路27が形成されるように配置されると共に、冷媒通路27における回転子鉄心21の露出部21aに冷却油の流通方向と直交する方向に複数の凸部28を設置するもので、永久磁石23を冷却油で直接冷却することができる上、永久磁石下の冷媒通路27には、回転子鉄心21の露出部21aに冷却油の流れる方向と直交する方向に複数の凸部28が設置されているので、冷媒通路27を通る冷却油の流れを、凸部28に衝突する時に層流から乱流に遷移させて、永久磁石付近の温度境界層を効果的防止することができ、永久磁石23の冷却効果を一層高めることができる。   As described above, the embedded permanent magnet rotating electric machine of the present invention is configured by laminating the stator 10 having the armature winding 15 and the magnetic material plate in a cylindrical shape, and is rotatable inside the stator 10. A rotor core 21 provided on the rotor, and a plurality of magnet housing holes 25 penetrating in the laminating direction of the magnetic material plates of the rotor core 21 at a predetermined position in the circumferential direction; A plurality of permanent magnets 23 respectively housed in the magnet housing holes 25 are provided, and each permanent magnet 23 is fixed to the rotor core 21 at a portion corresponding to the outer side in the radial direction of the rotor core 21 in the magnet housing hole 25. A refrigerant passage 27 through which cooling oil passes in the axial direction of the rotor core 21 is formed between the rotor core 21 and the rotor core 21 at a portion corresponding to the radially inner side of the core iron 21. Exposed portion 21 of rotor core 21 A plurality of projections 28 are installed in a direction orthogonal to the flow direction of the cooling oil, and the permanent magnet 23 can be directly cooled by the cooling oil, and the rotor core is provided in the refrigerant passage 27 below the permanent magnet. Since the plurality of convex portions 28 are installed in the exposed portion 21a of the 21 in a direction orthogonal to the direction in which the cooling oil flows, the flow of the cooling oil passing through the refrigerant passage 27 is disturbed from the laminar flow when colliding with the convex portion 28. By making the transition to the flow, the temperature boundary layer near the permanent magnet can be effectively prevented, and the cooling effect of the permanent magnet 23 can be further enhanced.

実施の形態2.
上記実施の形態1では、永久磁石下の冷媒通路27における回転子鉄心21の露出部21aに冷却油の流れる方向と直交する方向に複数の凸部28を設置する場合を示したが、図6に示すように冷媒通路27を形成する回転子鉄心21の露出部21aにおいて、回転子鉄心21を構成する磁性材板の端部の形状を山形状に整形して、回転子鉄心自体で凸部28を形成したものである。
このようにすれば、回転子鉄心自体で冷媒通路27内に凸部28を形成することができ、実施の形態1と同様に、冷媒通路27を通る冷却油の流れを、凸部28に衝突する時に層流から乱流に遷移させて、永久磁石付近の温度境界層を防止することができ、永久磁石23の冷却効果を一層高めることができる。
Embodiment 2. FIG.
In the first embodiment, the case where the plurality of convex portions 28 are installed in the direction orthogonal to the direction in which the cooling oil flows in the exposed portion 21a of the rotor core 21 in the refrigerant passage 27 below the permanent magnet has been described. In the exposed portion 21a of the rotor core 21 forming the refrigerant passage 27, the shape of the end of the magnetic material plate constituting the rotor core 21 is shaped into a mountain shape, and the rotor core itself has a convex portion. 28 is formed.
In this way, the rotor core itself can form the convex portion 28 in the refrigerant passage 27, and the flow of the cooling oil passing through the refrigerant passage 27 collides with the convex portion 28 as in the first embodiment. In this case, transition from laminar flow to turbulent flow can prevent the temperature boundary layer in the vicinity of the permanent magnet, and the cooling effect of the permanent magnet 23 can be further enhanced.

実施の形態3.
上記実施の形態2では、回転子鉄心21を構成する磁性材板の端部を整形して凸部28を形成しているが、図7に示すように、磁性材板のプレス加工時にできる端部の抜きダレ29を、冷媒通路27を形成する回転子鉄心21の露出部21aに配置して凸部として利用したものである。
このようにすれば、プレス加工した磁性材板をそのまま用いて冷媒通路27内に凸部28を形成することができ、実施の形態1、2と同様に、冷媒通路27を通る冷却油の流れを、抜きダレ29に衝突する時に層流から乱流に遷移させて、永久磁石付近の温度境界層を防止することができ、永久磁石23の冷却効果を一層高めることができる。
Embodiment 3 FIG.
In the second embodiment, the end portion of the magnetic material plate constituting the rotor core 21 is shaped to form the convex portion 28. However, as shown in FIG. The part sag 29 is disposed on the exposed portion 21 a of the rotor core 21 that forms the refrigerant passage 27 and is used as a convex portion.
In this way, the convex portion 28 can be formed in the refrigerant passage 27 using the pressed magnetic material plate as it is, and the flow of the cooling oil passing through the refrigerant passage 27 as in the first and second embodiments. Can be made to transition from laminar flow to turbulent flow when colliding with the sag 29, thereby preventing the temperature boundary layer near the permanent magnet and further enhancing the cooling effect of the permanent magnet 23.

なお,この発明は,その発明の範囲内において,各実施の形態を自由に組み合わせたり,各実施の形態を適宜,変形,省略することが可能である。 It should be noted that within the scope of the present invention, the embodiments can be freely combined, or the embodiments can be appropriately modified or omitted.

10 固定子、11 固定子鉄心、12 コアバック、13 ティース、14 スロット、
15 電機子巻線、
20 回転子、21 回転子鉄心、21a 露出部、22 回転軸、23 永久磁石、24 軸挿入孔、25 磁石収容孔、26 貫通孔、27 冷媒通路、28 凸部、29 抜きダレ
10 stator, 11 stator core, 12 core back, 13 teeth, 14 slots,
15 armature winding,
20 Rotor, 21 Rotor core, 21a Exposed portion, 22 Rotating shaft, 23 Permanent magnet, 24 Shaft insertion hole, 25 Magnet housing hole, 26 Through hole, 27 Refrigerant passage, 28 Protruding portion, 29 Pull-out

Claims (3)

電機子巻線を有する固定子と、
磁性材板を円筒状に積層して構成され、前記固定子の内側に回転自在に設けられた回転子鉄心を有し、前記回転子鉄心の前記磁性材板の積層方向に貫通する磁石収容孔を周方向の所定位置に複数個形成された回転子と、
前記複数個の磁石収容孔にそれぞれ収容された複数の永久磁石を備え、
前記各永久磁石は、前記磁石収容孔において前記回転子鉄心の径方向外側に対応する部分を前記回転子鉄心に固定され、前記回転子鉄心の径方向内側に対応する部分において前記回転子鉄心との間に前記回転子鉄心の軸方向に冷媒を通す冷媒通路を形成するように配置されると共に、
前記冷媒通路における前記回転子鉄心の露出部に、前記冷媒の流通方向と直交する方向に前記磁性材板のプレス加工時の抜きダレによる複数の凸部を設置する
ことを特徴とする永久磁石埋込型回転電機。
A stator having armature windings;
A magnet housing hole configured by laminating magnetic material plates in a cylindrical shape, having a rotor core rotatably provided inside the stator, and penetrating in the stacking direction of the magnetic material plates of the rotor core A plurality of rotors formed at predetermined positions in the circumferential direction;
A plurality of permanent magnets respectively housed in the plurality of magnet housing holes,
Each of the permanent magnets is fixed to the rotor core at a portion corresponding to the radially outer side of the rotor core in the magnet housing hole, and the rotor core at a portion corresponding to the radially inner side of the rotor core. And is arranged so as to form a refrigerant passage through which the refrigerant passes in the axial direction of the rotor core,
A plurality of convex portions are installed in the exposed portion of the rotor core in the refrigerant passage in a direction perpendicular to the flow direction of the refrigerant by punching when the magnetic material plate is pressed. Built-in rotary electric machine.
前記複数の凸部は、前記抜きダレのカエリ側から前記冷媒が流通するように設置されていることを特徴とする請求項1記載の永久磁石埋込型回転電機。 2. The embedded permanent magnet rotating electric machine according to claim 1, wherein the plurality of convex portions are installed so that the refrigerant flows from a burring side of the punching sagging. 前記永久磁石は平板状であって、前記磁石収容孔において前記回転子鉄心の径方向外側長辺部に対応する部分を前記回転子鉄心に固定用樹脂層により固定され、前記回転子鉄心の径方向内側長辺部に対応する部分には前記冷媒通路となる隙間を形成するように配置されていることを特徴とする請求項1または2に記載の永久磁石埋込型回転電機。 The permanent magnet has a flat plate shape, and a portion corresponding to the radially outer long side portion of the rotor core in the magnet housing hole is fixed to the rotor core by a fixing resin layer, and the diameter of the rotor core is The embedded permanent magnet type rotating electrical machine according to claim 1 or 2, wherein a portion corresponding to the inner side long side portion is disposed so as to form a gap serving as the refrigerant passage.
JP2016006766A 2016-01-18 2016-01-18 Permanent magnet embedded rotary electric machine Active JP6165279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016006766A JP6165279B2 (en) 2016-01-18 2016-01-18 Permanent magnet embedded rotary electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016006766A JP6165279B2 (en) 2016-01-18 2016-01-18 Permanent magnet embedded rotary electric machine

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013223890A Division JP2015089178A (en) 2013-10-29 2013-10-29 Rotary electric machine embedded with permanent magnet

Publications (2)

Publication Number Publication Date
JP2016054644A true JP2016054644A (en) 2016-04-14
JP6165279B2 JP6165279B2 (en) 2017-07-19

Family

ID=55744408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016006766A Active JP6165279B2 (en) 2016-01-18 2016-01-18 Permanent magnet embedded rotary electric machine

Country Status (1)

Country Link
JP (1) JP6165279B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55153849U (en) * 1979-04-18 1980-11-06
JPH1198727A (en) * 1997-07-25 1999-04-09 General Electric Co <Ge> Stator iron core assembly for dynamo-electric machine
JP2009171785A (en) * 2008-01-18 2009-07-30 Toyota Motor Corp Dynamo-electric machine
JP2013021811A (en) * 2011-07-11 2013-01-31 Toyota Motor Corp Rotor of rotary electric machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55153849U (en) * 1979-04-18 1980-11-06
JPH1198727A (en) * 1997-07-25 1999-04-09 General Electric Co <Ge> Stator iron core assembly for dynamo-electric machine
JP2009171785A (en) * 2008-01-18 2009-07-30 Toyota Motor Corp Dynamo-electric machine
JP2013021811A (en) * 2011-07-11 2013-01-31 Toyota Motor Corp Rotor of rotary electric machine

Also Published As

Publication number Publication date
JP6165279B2 (en) 2017-07-19

Similar Documents

Publication Publication Date Title
CN108370178B (en) Axial gap type rotating electric machine and method for manufacturing same
JP2015089178A (en) Rotary electric machine embedded with permanent magnet
JP6042976B2 (en) Rotating electric machine
EP2882079A2 (en) Permanent magnet rotor in a rotating electrical machine
EP2763288A2 (en) Pole shoe cooling
CN103872868A (en) Multi-gap type rotary electric machine
JP2008278648A (en) Axial gap rotary electric machine and manufacturing method thereof
JP2016010176A (en) Motor
US9825495B2 (en) Rotating electric machine
JP2007274798A (en) Permanent-magnet rotating electric machine
JP2017118691A (en) motor
JP2015177706A (en) Rotor structure of rotary electric machine
JP6025998B2 (en) Magnetic inductor type electric motor
JP2018082600A (en) Double-rotor dynamoelectric machine
JP2006166679A (en) Structure of stator for axial gap type dynamo-electric machine
JP2011091917A (en) Method of adjusting output of rotating machine and the rotating machine
JP2015050803A (en) Rotary electric machine
JP7132729B2 (en) Rotating electric machine
JP5244721B2 (en) Rotating electrical machine rotor
JP2016129447A (en) Rotary electric machine
JP6165279B2 (en) Permanent magnet embedded rotary electric machine
JP2008283737A (en) Salient-pole rotating electrical machine
JP5245348B2 (en) Rotor structure of rotary motor
JP2018148675A (en) Stator for rotary electric machine
JP2010239680A (en) Armature for rotary electric machine and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170620

R151 Written notification of patent or utility model registration

Ref document number: 6165279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350