Nothing Special   »   [go: up one dir, main page]

JP2016051545A - Led driving device and led lighting device using the same - Google Patents

Led driving device and led lighting device using the same Download PDF

Info

Publication number
JP2016051545A
JP2016051545A JP2014174931A JP2014174931A JP2016051545A JP 2016051545 A JP2016051545 A JP 2016051545A JP 2014174931 A JP2014174931 A JP 2014174931A JP 2014174931 A JP2014174931 A JP 2014174931A JP 2016051545 A JP2016051545 A JP 2016051545A
Authority
JP
Japan
Prior art keywords
switching element
led
voltage
dimming level
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014174931A
Other languages
Japanese (ja)
Inventor
充達 吉永
Mitsumichi Yoshinaga
充達 吉永
高田 潤一
Junichi Takada
潤一 高田
和重 平田
Kazue Hirata
和重 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Electric Co Ltd
Original Assignee
Sanken Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Electric Co Ltd filed Critical Sanken Electric Co Ltd
Priority to JP2014174931A priority Critical patent/JP2016051545A/en
Publication of JP2016051545A publication Critical patent/JP2016051545A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an LED driving device and a lighting device using the same that can solve a flickering problem of illumination under a condition that the light control level is set to a small level when LED is used for a load while taking advantage of characteristics of a pseudo resonance system enabling high efficiency and compactness.SOLUTION: Provided are an integrated circuit Z1 which is provided between both the terminals of a DC power source and in which a switching element Q1 and a reactor L2 are connected to each other in series and the switching element Q1 is turned on and off, and a circuit which is connected between both the terminals of the reactor L2 and in which a smoothing capacitor C3 and an LED load 5 comprising plural LED elements are connected to each other in parallel, and a diode D3 and a resistor R2 are connected to the LED load 5. The integrated circuit Z1 has a function of achieving a voltage signal of the reactor L2, detecting a timing at which the voltage of the switching element Q1 bottoms, thereby turning on the switching element Q1, and expanding the off time for turning on/off the switching element Q1 according to a dimming level signal DIM from the external, whereby the switching element Q1 is turned on with a delay from the timing at which the voltage of the switching element Q1 bottoms.SELECTED DRAWING: Figure 1

Description

本発明は、LED駆動装置及びこれを用いたLED照明装置に関する。   The present invention relates to an LED driving device and an LED lighting device using the same.

LED(Light Emitting Diode)素子は、液晶表示装置のバック
ライト、或いは街路灯等の照明器具の光源として利用され始めている。特に、白熱電球や
蛍光灯を代替する照明器具として、白色LED素子を用いた蛍光灯型又は電球型のLED
照明装置の開発が進められている。このようなLED照明装置を構成するLED駆動装置
は、LED素子に所望の電力を精度良く供給することが求められる。
特許文献1には、調光レベルが低い場合でも安定した調光制御を行うことができるLED点灯装置が開示されている。
また、LED駆動装置においても、電源効率とEMIノイズ低減等の目的により、図7に示す擬似共振方式の電源が採用されている。
An LED (Light Emitting Diode) element has begun to be used as a light source for a backlight of a liquid crystal display device or a lighting fixture such as a street lamp. In particular, as a lighting fixture that replaces incandescent bulbs and fluorescent lamps, fluorescent or bulb-type LEDs using white LED elements
Lighting devices are being developed. The LED driving device constituting such an LED lighting device is required to supply desired power to the LED element with high accuracy.
Patent Document 1 discloses an LED lighting device that can perform stable dimming control even when the dimming level is low.
Also in the LED driving device, a quasi-resonant power source shown in FIG. 7 is employed for the purpose of power source efficiency and EMI noise reduction.

特開2014−17057号公報JP 2014-17057 A

特許文献1で提案された回路構成では降圧チョッパ回路のインダクタ電流I1の検出値と閾値Vsとの比較結果に基づいて、スイッチング素子Q1のオフタイミングを決定し、調光レベルに基づいて、スイッチング素子Q1がオンする周期を長くするものである。従って、特許文献1の図2に示されているように調光レベルが低い程、発振周波数は調光レベルが高い場合に比較して低い周波数になる。
逆にとらえるならば、調光レベルが高い(重負荷)程、発振周波数が高くなるので、調光レベルと比例する負荷電流と発振周波数の増加により、スイッチング素子Q1のスイッチング損失が増加する点が問題であると考えられる。
In the circuit configuration proposed in Patent Document 1, the OFF timing of the switching element Q1 is determined based on the comparison result between the detected value of the inductor current I1 of the step-down chopper circuit and the threshold value Vs, and the switching element is determined based on the dimming level. The cycle in which Q1 is turned on is lengthened. Therefore, as shown in FIG. 2 of Patent Document 1, the lower the dimming level is, the lower the oscillation frequency is compared to when the dimming level is high.
Conversely, since the oscillation frequency becomes higher as the dimming level is higher (heavy load), the switching loss of the switching element Q1 increases as the load current proportional to the dimming level and the oscillation frequency increase. It seems to be a problem.

また、図7に示す従来の擬似共振方式のLED電源は、図8(b)に示すように調光レベルが低い(軽負荷)程、発振周波数が上昇してしまう。発振周波数の上昇により、最小オン幅以下の制御になると間欠発振に転じる等、発振周波数が不安定になり、結果としてLED照明の照度がチラツクという欠点が発生する。
軽負荷時の発振周波数の上昇を抑制するためにスイッチング素子のドレイン・ソース間電圧のボトム(底)を検出して、ターンオンさせるタイミングを次以降のボトムで行う擬似共振方式のボトムスキップ制御方式もあるが、図8(c)に示すように調光レベルが低い軽負荷条件において、ボトムスキップさせる回数が安定するとは限らない。負荷に変動が無い条件下でボトムスキップさせる回数が一定しないと、LED照明の照度のチラツキが発生してしまう。
Further, in the conventional quasi-resonant LED power source shown in FIG. 7, as the dimming level is lower (light load) as shown in FIG. 8B, the oscillation frequency increases. Due to the increase in the oscillation frequency, the oscillation frequency becomes unstable, such as switching to intermittent oscillation when the control is less than the minimum on-width, and as a result, the illuminance of the LED illumination flickers.
There is also a quasi-resonant bottom skip control method that detects the bottom of the drain-source voltage of the switching element to suppress the rise of the oscillation frequency at light load and performs turn-on timing at the bottom after the next However, as shown in FIG. 8C, the number of bottom skips is not always stable under light load conditions where the dimming level is low. If the number of times of bottom skipping is not constant under the condition that there is no fluctuation in the load, flickering of the illuminance of the LED illumination will occur.

上記問題に鑑み、本発明は、高効率で小型化を可能とする擬似共振方式の特長を生かしながら、その欠点であるLED駆動装置としての照度のチラツキ要因を解決することを課題とする。 In view of the above problems, an object of the present invention is to solve the flicker factor of illuminance as an LED driving device, which is a drawback thereof, while taking advantage of the quasi-resonant method that enables high efficiency and downsizing.

上記課題を解決するために、本発明の一態様によれば、直流電源の両端子間に、スイッチング素子とリアクトルが直列に接続され、
前記スイッチング素子をオンオフ駆動させる制御回路と、
平滑コンデンサと複数のLED素子からなるLED負荷とが並列接続された並列回路と、
前記並列回路と直列にダイオードと抵抗が接続されて、前記リアクトルの両端子間に接続された回路とを有し、
前記制御回路は、前記リアクトルの電圧信号を得て、前記スイッチング素子の電圧がボトムになるタイミングを検出してオン駆動させ、
外部からの調光レベル信号に応じて、前記スイッチング素子をオンオフ駆動するオフ時間を拡張して前記スイッチング素子の電圧がボトムになるタイミングよりも遅らせてオン駆動させる機能を備えることを特徴とする。
In order to solve the above problem, according to one aspect of the present invention, a switching element and a reactor are connected in series between both terminals of a DC power source,
A control circuit for driving the switching element on and off;
A parallel circuit in which a smoothing capacitor and an LED load composed of a plurality of LED elements are connected in parallel;
A diode and a resistor connected in series with the parallel circuit, and a circuit connected between both terminals of the reactor;
The control circuit obtains the voltage signal of the reactor, detects the timing when the voltage of the switching element becomes bottom, and drives it on,
In accordance with an external dimming level signal, the switching device is provided with a function of extending the off time for driving the switching device to be turned on and off, and delaying the switching device voltage from the bottom.

本発明によると、擬似共振方式の制御方法において、調光信号に合わせてスイッチングオフ期間を拡張させることにより、調光レベルが低い(軽負荷)条件での発振周波数上昇の抑制と発振周波数の変動量を安定させることが可能になる。これにより、調光レベルが低い(軽負荷)条件でLED照度のチラツキを確実に防止できる。   According to the present invention, in the control method of the quasi-resonant method, the switching off period is extended in accordance with the dimming signal, thereby suppressing the increase of the oscillation frequency and the fluctuation of the oscillation frequency under the condition that the dimming level is low (light load). It becomes possible to stabilize the amount. Thereby, flickering of the LED illuminance can be reliably prevented under the condition that the dimming level is low (light load).

図1は、本発明の実施形態に係るLED駆動装置の基本構成を示す図である。FIG. 1 is a diagram showing a basic configuration of an LED driving device according to an embodiment of the present invention. 図2は、図1に示したOFF時間拡張回路6の回路構成図の一例である。FIG. 2 is an example of a circuit configuration diagram of the OFF time extension circuit 6 shown in FIG. 図3は、実施形態に係る、調光レベルと調光比及びOFF時間拡張との相関図を示す。FIG. 3 is a correlation diagram between the dimming level, the dimming ratio, and the OFF time extension according to the embodiment. 図4は、実施形態に係る各部シーケンス図を示す。FIG. 4 is a sequence diagram of each part according to the embodiment. 図5は、従来技術の擬似共振方式と本発明の実施形態の波形を比較した図を示す。FIG. 5 shows a comparison of waveforms between the prior art quasi-resonant method and the embodiment of the present invention. 図6は、従来技術の擬似共振方式と本発明の実施形態の調光比−発振周波数特性を比較した図を示す。FIG. 6 is a diagram comparing the dimming ratio-oscillation frequency characteristics of the prior art quasi-resonant method and the embodiment of the present invention. 図7は、従来技術の擬似共振方式のLED駆動装置の基本構成を示す図である。FIG. 7 is a diagram showing a basic configuration of a conventional quasi-resonant LED driving device. 図8は、従来技術の擬似共振方式の重負荷時の波形、軽負荷時の波形及びボトムスキップ方式の軽負荷時の波形を示す。FIG. 8 shows a waveform at the time of a heavy load of a quasi-resonance method, a waveform at a light load, and a waveform at a light load of a bottom skip method according to the prior art.

(実施形態)
図1は、本発明の実施形態に係るLED駆動装置の基本構成を示す図である。また、図7に、従来技術の擬似共振方式のLED駆動装置の基本構成図を示す。
従来技術の擬似共振方式と本発明の実施形態との違いは、擬似共振のターンオンのタイミングを検出するためのボトム検出回路が異なる。具体的には、従来技術の図7のダイオードD2、抵抗R3を削除して、OFF時間拡張回路6を本発明の実施形態は追加している。
図1に示す基本構成は、交流入力電源1に接続されたラインフィルター2を介して整流器DB1で直流電圧に整流し、リアクトルL1、コンデンサC1で構成されたラインフィルターを介して、集積回路Z1に内蔵されたMOSFETQ1、抵抗R1、リアクトルL2の直列回路に接続されている。また、抵抗R1とリアクトルL2の直列回路に、抵抗R2,ダイオードD3、及び平滑コンデンサC3が直列に接続され、平滑コンデンサC3には負荷(LED)が並列接続されている。MOSFETQ1のドレイン・ソース端子間には、電圧共振コンデンサC2が接続されている。
また、集積回路Z1のVref端子(5ピン)には、調光レベルのパルス信号DIMをLED駆動装置の信号に変換する調光レベル信号変換回路4が接続されている。
(Embodiment)
FIG. 1 is a diagram showing a basic configuration of an LED driving device according to an embodiment of the present invention. FIG. 7 shows a basic configuration diagram of a conventional quasi-resonant LED driving device.
The difference between the prior art quasi-resonance method and the embodiment of the present invention is that a bottom detection circuit for detecting the turn-on timing of quasi-resonance is different. Specifically, the diode D2 and the resistor R3 in FIG. 7 of the prior art are deleted, and the OFF time extension circuit 6 is added in the embodiment of the present invention.
The basic configuration shown in FIG. 1 is rectified to a DC voltage by a rectifier DB1 via a line filter 2 connected to an AC input power supply 1, and is integrated into an integrated circuit Z1 via a line filter constituted by a reactor L1 and a capacitor C1. The built-in MOSFET Q1, resistor R1, and reactor L2 are connected to a series circuit. A resistor R2, a diode D3, and a smoothing capacitor C3 are connected in series to a series circuit of the resistor R1 and the reactor L2, and a load (LED) is connected in parallel to the smoothing capacitor C3. A voltage resonant capacitor C2 is connected between the drain and source terminals of the MOSFET Q1.
Further, a dimming level signal conversion circuit 4 for converting the dimming level pulse signal DIM into a signal of the LED driving device is connected to the Vref terminal (5 pin) of the integrated circuit Z1.

LED駆動装置3は、整流器DB1で直流電圧に整流された電圧を、集積回路Z1のMOSFETQ1をオンオフスイッチングし、リアクトルL2に抵抗R1を介して印加する。MOSFETQ1のオンによりリアクトルL2に電流が流れ、励磁する。次に、MOSFETQ1がオフすると、リアクトルL2の電流は平滑コンデンサC3と負荷(LED)の並列回路とダイオードD3、抵抗R2、R1を介して流れる。これにより平滑コンデンサC3と負荷(LED)に電力が供給され、負荷であるLEDが発光する。ここで、抵抗R2の電圧降下を集積回路Z1のIsen端子で検出し、抵抗R2の平均電圧値が調光レベルVrefに相関する値になるように、集積回路Z1の制御回路contを介してMOSFETQ1のオンオフ制御がされ、負荷であるLEDの調光が行われる。
抵抗R1はMOSFETQ1に流れる電流を検出する抵抗であって、抵抗R1の電圧降下は集積回路Z1のOCP/BD端子に抵抗R4を介して入力される。MOSFETQ1に過電流が流れた場合には、集積回路Z1の制御回路contはMOSFETQ1のオンをターンオフさせる。また、集積回路Z1のOCP/BD端子には、図1のOFF時間拡張回路6が接続され、擬似共振制御におけるターンオン信号を入力している。これは、リアクトルL2のL2−2巻線電圧がゼロクロスに到達、或いは拡張されたOFF時間が終了したことをOCP/BD端子に入力することで、MOSFETQ1のターンオン制御を行わせている。
The LED driving device 3 switches on and off the MOSFET Q1 of the integrated circuit Z1 and applies the voltage rectified to a DC voltage by the rectifier DB1 to the reactor L2 via the resistor R1. When MOSFET Q1 is turned on, a current flows through reactor L2 to excite it. Next, when the MOSFET Q1 is turned off, the current of the reactor L2 flows through the parallel circuit of the smoothing capacitor C3 and the load (LED), the diode D3, and the resistors R2 and R1. Thereby, electric power is supplied to the smoothing capacitor C3 and the load (LED), and the LED as the load emits light. Here, the voltage drop of the resistor R2 is detected at the Isen terminal of the integrated circuit Z1, and the MOSFET Q1 is passed through the control circuit cont of the integrated circuit Z1 so that the average voltage value of the resistor R2 becomes a value correlated with the dimming level Vref. On / off control is performed, and light control of the LED as a load is performed.
The resistor R1 is a resistor that detects a current flowing through the MOSFET Q1, and the voltage drop of the resistor R1 is input to the OCP / BD terminal of the integrated circuit Z1 via the resistor R4. When an overcurrent flows through the MOSFET Q1, the control circuit cont of the integrated circuit Z1 turns off the MOSFET Q1. Further, the OFF time extension circuit 6 of FIG. 1 is connected to the OCP / BD terminal of the integrated circuit Z1, and a turn-on signal in pseudo resonance control is input. This causes the turn-on control of the MOSFET Q1 to be performed by inputting to the OCP / BD terminal that the L2-2 winding voltage of the reactor L2 has reached the zero cross or that the extended OFF time has ended.

調光レベル信号変換回路4は、調光レベルのパルス信号DIMを整流器DB2を介して信号の極性を固定してフォトカプラダイオードPC1に印加する。抵抗R13、ツェナーダイオードZD1は電圧クランプ回路を構成し、フォトカプラダイオードPC1に過電圧が入力されるのを保護する。
フォトカプラトランジスタPC1は、フォトカプラダイオードPC1のパルス信号を受けてトランジスタQ2のベース電流を供給する。トランジスタQ2は調光レベルのパルス信号DIMに応じてオンオフし、電源Reg電圧をコンデンサC10に抵抗R7,R8を介して充電及び抵抗R8を介しての放電を行う。これによりコンデンサC10には調光レベルのパルス信号DIMの平均値に相当する電圧が発生し、抵抗R6を介して、調光レベルVrefとして集積回路Z1に入力される。
The dimming level signal conversion circuit 4 applies the dimming level pulse signal DIM to the photocoupler diode PC1 with the signal polarity fixed via the rectifier DB2. The resistor R13 and the Zener diode ZD1 constitute a voltage clamp circuit, and protects an overvoltage input to the photocoupler diode PC1.
The photocoupler transistor PC1 receives the pulse signal of the photocoupler diode PC1 and supplies the base current of the transistor Q2. The transistor Q2 is turned on / off in response to the dimming level pulse signal DIM, and the power supply Reg voltage is charged to the capacitor C10 through the resistors R7 and R8 and discharged through the resistor R8. As a result, a voltage corresponding to the average value of the pulse signal DIM at the dimming level is generated in the capacitor C10, and is input to the integrated circuit Z1 as the dimming level Vref through the resistor R6.

以下に本実施形態で構成されるLED駆動装置の制御方法について図1〜図4を用いて詳細に述べる。
ここで、図1に本発明の実施形態に係るLED駆動装置の基本構成を示し、図2はOFF時間拡張回路6の回路構成図の一例を示す。また、図3は、調光レベルと調光比及びOFF時間拡張との相関図を示し、図4は、実施形態に係る各部シーケンス図を示す。
本実施形態で構成されるLED駆動装置3は、擬似共振方式を構成するが、図3に示すように調光レベルVrefの1/2レベルを境にして、調光レベルが低い条件(暗)で集積回路Z1のMOSFETQ1のスイッチングOFF時間の拡張を調光レベルに応じて行う。
OFF時間の拡張を行うことで擬似共振動作が外れてしまうが、調光レベルが低い条件、すなわち軽負荷条件での擬似共振方式の発振周波数が増加に転じることを抑制することができる。これにより、調光レベルが低い条件でのMOSFETQ1のスイッチング損失の増加は相殺される傾向にある。
また、調光レベルが高い条件(明)では擬似共振動作が行われるため、従来通りの効率を維持することが可能である。
OFF時間の拡張を開始する調光レベルの設定は、図2に示すOFF時間拡張回路4の電圧N倍変換部で決定される。図3で示した調光レベルVrefの1.5V設定は、電圧N倍変換部で調光レベルVref電圧を2倍に設定することで得られる。即ち、電圧N倍変換部の倍率Nを2倍に設定することにより、OFF時間の拡張を開始する調光レベルを最大入力電圧3Vの1/2に調整することができる。
ここで、OFF時間の拡張を開始する調光レベルの設定方法を以下に説明する。まず、OFF時間の拡張を開始したい調光レベルを、調光レベルVrefの最大入力電圧(3V)に対して1/N倍(N=2)の値と規定する。次に、調光レベルVrefの最大入力電圧(3V)を抵抗R80と抵抗R81で分圧した電圧、即ちオペアンプ61の非反転端子電圧が、シャントレギュレータZ60のリファレンス電圧VZ60のN倍(N=2)となるように抵抗R62、R63を含めて設定する。
OFF時間の拡張を開始する調光レベルを1/2とすることを例示するならば、リファレンス電圧VZ60を2.5Vし、抵抗R60、R61の抵抗分圧比を80%とする。これによりオペアンプ61の非反転端子電圧の最大値は2.5Vになる。また、抵抗R62、R63の値を同じ抵抗値とすれば、オペアンプ61の増幅率はN=2倍になる。ここで、調光レベルVrefが1.5V以上の場合のオペアンプ61の出力電圧は2.5Vでクランプされる。また、調光レベルVrefが1.5V未満の場合のオペアンプ61の出力電圧は、2.5V未満の、非反転端子電圧に入力される2倍の電圧が出力されることになる。
以上の設定方法により、OFF時間の拡張を開始する調光レベルを調整することが可能になる。
Hereinafter, a method for controlling the LED driving device configured in this embodiment will be described in detail with reference to FIGS.
Here, FIG. 1 shows a basic configuration of an LED drive device according to an embodiment of the present invention, and FIG. 2 shows an example of a circuit configuration diagram of an OFF time extension circuit 6. FIG. 3 shows a correlation diagram between the dimming level, the dimming ratio, and the OFF time extension, and FIG. 4 shows a sequence diagram of each part according to the embodiment.
The LED drive device 3 configured in the present embodiment constitutes a quasi-resonant method, but as shown in FIG. 3, a condition where the dimming level is low (dark) at the half level of the dimming level Vref as shown in FIG. Thus, the switching OFF time of the MOSFET Q1 of the integrated circuit Z1 is extended according to the dimming level.
Although the quasi-resonant operation is deviated by extending the OFF time, it is possible to suppress the quasi-resonant oscillation frequency from being increased under conditions where the dimming level is low, that is, under light load conditions. As a result, the increase in the switching loss of the MOSFET Q1 under the condition that the dimming level is low tends to be offset.
In addition, since the quasi-resonant operation is performed under the condition where the light control level is high (bright), it is possible to maintain the conventional efficiency.
The setting of the dimming level for starting the extension of the OFF time is determined by the voltage N-times conversion unit of the OFF time extension circuit 4 shown in FIG. The setting of 1.5V for the dimming level Vref shown in FIG. 3 is obtained by setting the dimming level Vref voltage to double by the voltage N-times conversion unit. That is, by setting the magnification N of the voltage N-times conversion unit to 2 times, it is possible to adjust the dimming level for starting the extension of the OFF time to ½ of the maximum input voltage 3V.
Here, a method of setting the light control level for starting the extension of the OFF time will be described below. First, the dimming level at which the expansion of the OFF time is desired is defined as a value 1 / N times (N = 2) with respect to the maximum input voltage (3 V) of the dimming level Vref. Then, the maximum input voltage (3V) the resistance R80 and the voltage divided by the resistors R81 dimming level Vref, i.e. non-inverting terminal voltage of the operational amplifier 61, the reference voltage V Z60 of the shunt regulator Z60 N times (N = 2) including the resistors R62 and R63.
To exemplify that the dimming level for starting the extension of the OFF time is halved, the reference voltage VZ60 is set to 2.5 V, and the resistance voltage dividing ratio of the resistors R60 and R61 is set to 80%. As a result, the maximum value of the non-inverting terminal voltage of the operational amplifier 61 becomes 2.5V. Further, if the resistors R62 and R63 have the same resistance value, the amplification factor of the operational amplifier 61 is N = 2 times. Here, when the dimming level Vref is 1.5V or more, the output voltage of the operational amplifier 61 is clamped at 2.5V. Further, when the dimming level Vref is less than 1.5V, the output voltage of the operational amplifier 61 is less than 2.5V, and is twice the voltage input to the non-inverting terminal voltage.
With the above setting method, it is possible to adjust the dimming level at which the extension of the OFF time starts.

次に、図2に示すように、OFF時間拡張回路4は電圧N倍変換部、VI(電圧電流)変換部、拡張時間生成部、及びボトム検出部から構成されている。
電圧N倍変換部は、調光レベルの電圧Vrefを抵抗R60、R61で分圧し、オペアンプOP61の非反転端子に入力する。オペアンプOP61の反転端子には抵抗R63の一端と抵抗R62の一端とシャントレギュレータZ60のカソード・リファレンスが接続され、抵抗R62の他端とシャントレギュレータZ60のアノードはGNDに接地されている。また、抵抗R63の他端はオペアンプOP61の出力端子に接続されている。
電圧N倍変換部は、調光レベルの電圧VrefをシャントレギュレータZ60のリファレンス電圧Vz60に達するまでN倍に増幅する。リファレンス電圧Vz60以上となる調光レベルの電圧Vrefが入力された場合、抵抗R63とR62の抵抗比×リファレンス電圧Vz60でオペアンプOP61の出力電圧はクランプされる。この調光レベルの電圧VrefをN倍に増幅できる電圧が、前述のOFF時間の拡張を開始する調光レベル(1/N)に相当することになる。
電圧N倍変換部の出力電圧は、VI変換部に入力される。VI変換部は、抵抗R64〜R68、オペアンプOP62から構成され、電圧N倍変換部の出力電圧を電流変換してコンデンサC61の一端へ出力する。
コンデンサC61は、GNDと拡張時間生成部のコンパレータCP63の非反転端子間に接続され、また、コンデンサC61の一端は、ダイオードD60のアノードに接続されている。
拡張時間生成部は、コンデンサC61、抵抗R69〜R72、コンパレータCP63、ダイオードD61から構成されている。ここで、電源Regに接続された抵抗R69、R70の分圧比で決定される基準値VR70と、コンデンサC61の電圧VC61をコンパレータCP63で比較してOFF時間の拡張時間を生成し、ダイオードD61を介して集積回路Z1のOCP/BD端子(3ピン)へ出力する。なお、抵抗R71は、出力信号のチャタリングを防止する目的のヒステリシスを得るための抵抗である。
ボトム検出部は、ダイオードD60、D62、抵抗R73〜R78、コンパレータCP64から構成され、リアクトルL2の第2巻線L2−2の電圧L2−dを入力する。ボトム検出部は、リアクトルL2の電圧L2−dのフライバック電圧をダイオードD62、抵抗R73、R74を介してコンパレータCP64の反転端子に入力し、非反転端子には、電源Regに接続された抵抗R75、R76の分圧電圧が入力されている。
リアクトルL2の電圧L2−dのフライバック電圧が、抵抗R75、R76の分圧電圧以上になると、コンパレータCP64の出力はLレベルに反転し、ダイオードD60を介してコンデンサC61の充電電流を引き込む。これにより拡張時間生成部の出力からHレベルの電圧がOCP/BD端子へ出力される。集積回路Z1は、拡張時間生成部の出力からの正極のバイアス電圧をOCP/BD端子で検出し、スイッチング素子Q1のオフ状態を維持する。
次に、リアクトルL2の電圧L2−dのフライバック電圧が、抵抗R75、R76の分圧電圧未満になると、コンパレータCP64の出力はHレベルに反転し、ダイオードD60を介してコンデンサC61の充電電流を引き込んでいた状態から、解放状態に反転する。これにより、拡張時間生成部のコンデンサC61は、VI変換部から調光レベルVrefに応じた充電電流で充電される。コンデンサC61の充電電圧が電源Regに接続された抵抗R69、R70の分圧比で決定される基準値VR70を超えた時点で拡張時間生成部の出力からLレベルの電圧がOCP/BD端子へ出力される。これにより、集積回路Z1は、拡張時間生成部の出力電圧がゼロになったことをOCP/BD端子で検出し、スイッチング素子Q1をターンオンさせる。
なお、ここでいうGNDは集積回路Z1のGND(1ピン)になり、図1で示されているようにフローティングとなる。
Next, as shown in FIG. 2, the OFF time extension circuit 4 includes a voltage N-times conversion unit, a VI (voltage current) conversion unit, an extension time generation unit, and a bottom detection unit.
The voltage N-fold conversion unit divides the dimming level voltage Vref by the resistors R60 and R61 and inputs the divided voltage to the non-inverting terminal of the operational amplifier OP61. One end of the resistor R63, one end of the resistor R62, and the cathode reference of the shunt regulator Z60 are connected to the inverting terminal of the operational amplifier OP61, and the other end of the resistor R62 and the anode of the shunt regulator Z60 are grounded to GND. The other end of the resistor R63 is connected to the output terminal of the operational amplifier OP61.
The voltage N-fold conversion unit amplifies the dimming level voltage Vref N times until it reaches the reference voltage Vz60 of the shunt regulator Z60. When a dimming level voltage Vref that is equal to or higher than the reference voltage Vz60 is input, the output voltage of the operational amplifier OP61 is clamped by the resistance ratio of the resistors R63 and R62 × the reference voltage Vz60. The voltage that can amplify the dimming level voltage Vref N times corresponds to the dimming level (1 / N) at which the OFF time extension starts.
The output voltage of the voltage N-times conversion unit is input to the VI conversion unit. The VI conversion unit includes resistors R64 to R68 and an operational amplifier OP62. The VI conversion unit converts the output voltage of the voltage N-times conversion unit into a current and outputs it to one end of the capacitor C61.
Capacitor C61 is connected between GND and the non-inverting terminal of comparator CP63 of the extended time generator, and one end of capacitor C61 is connected to the anode of diode D60.
The extended time generation unit includes a capacitor C61, resistors R69 to R72, a comparator CP63, and a diode D61. Here, the reference value V R70 determined by the voltage dividing ratio of the resistors R69 and R70 connected to the power supply Reg and the voltage V C61 of the capacitor C61 are compared by the comparator CP63 to generate the extended time of the OFF time, and the diode D61 To the OCP / BD terminal (pin 3) of the integrated circuit Z1. The resistor R71 is a resistor for obtaining hysteresis for the purpose of preventing chattering of the output signal.
The bottom detection unit includes diodes D60 and D62, resistors R73 to R78, and a comparator CP64, and inputs the voltage L2-d of the second winding L2-2 of the reactor L2. The bottom detection unit inputs the flyback voltage of the voltage L2-d of the reactor L2 to the inverting terminal of the comparator CP64 via the diode D62 and the resistors R73 and R74, and the resistor R75 connected to the power supply Reg at the non-inverting terminal. , R76 divided voltage is input.
When the flyback voltage of the voltage L2-d of the reactor L2 becomes equal to or higher than the divided voltage of the resistors R75 and R76, the output of the comparator CP64 is inverted to L level, and the charging current of the capacitor C61 is drawn through the diode D60. As a result, an H level voltage is output from the output of the extended time generator to the OCP / BD terminal. The integrated circuit Z1 detects the positive bias voltage from the output of the extended time generator at the OCP / BD terminal, and maintains the switching element Q1 in the OFF state.
Next, when the flyback voltage of the voltage L2-d of the reactor L2 becomes less than the divided voltage of the resistors R75 and R76, the output of the comparator CP64 is inverted to H level, and the charging current of the capacitor C61 is changed via the diode D60. It reverses from the pulled-in state to the released state. As a result, the capacitor C61 of the extended time generation unit is charged with a charging current corresponding to the dimming level Vref from the VI conversion unit. When the charging voltage of the capacitor C61 exceeds the reference value VR70 determined by the voltage dividing ratio of the resistors R69 and R70 connected to the power supply Reg, an L level voltage is output from the output of the extended time generation unit to the OCP / BD terminal. Is done. As a result, the integrated circuit Z1 detects that the output voltage of the extended time generation unit has become zero at the OCP / BD terminal, and turns on the switching element Q1.
Here, the GND is the GND (1 pin) of the integrated circuit Z1 and is floating as shown in FIG.

次に、LED駆動装置の調光レベルに応じたOFF時間の拡張が行われる説明をする。図4には、上から順に、調光レベル電圧Vref、ボトム検出部の入力信号整流後電圧VL2d、拡張時間生成部のコンデンサC61電圧VC61、拡張時間生成部の出力信号(OCP/BD端子へ出力する信号)を示している。
ここで、調光レベル電圧Vrefが、時刻t1の調光レベルが高い条件(明)=3Vから時刻t15近傍の調光レベルが低い条件(暗)=0Vに至る過程での各部波形を示す。
まず、時刻t1の調光レベルが高い条件(明)=3Vから時刻t7の期間は、OFF時間拡張回路4の拡張時間生成部が生成する拡張時間はd1及びd2は等しく、拡張時間はゼロに近い値である。これは、調光レベル電圧Vrefを電圧N倍変換部及びVI変換部を介して電流変換し、コンデンサC61を調光レベルに応じた最大値で充電するのでOFF時間の拡張は、ほぼ行われないことを示している。
これに対して、時刻t7から時刻t15の期間にかけて、OFF時間拡張回路4の拡張時間生成部が生成する拡張時間は、調光レベル電圧Vrefが低下するごとに長くなることが分かる。これは、調光レベル電圧Vrefを電圧N倍変換部及びVI変換部を介して電流変換するが、コンデンサC61を調光レベルに応じた電流値で充電するので、調光レベル電圧Vrefが低くなるに従いコンデンサC61電圧VC61の充電電圧の上昇が緩やかになる。このコンデンサC61電圧VC61が拡張時間生成部のコンパレータCP63の非反転端子電圧VR70に達するまでの時間がOFF時間拡張の時間に相当する。
Next, an explanation will be given of the extension of the OFF time according to the dimming level of the LED driving device. In FIG. 4, in order from the top, the dimming level voltage Vref, the input signal rectified voltage V L2d of the bottom detection unit, the capacitor C61 voltage V C61 of the extension time generation unit, the output signal (OCP / BD terminal) of the extension time generation unit Output signal).
Here, each part waveform in the process in which the dimming level voltage Vref reaches from the condition (bright) = 3V where the dimming level is high at time t1 to the condition (dark) = 0V where the dimming level near time t15 is low is 3V.
First, during the period from time t1 where the dimming level is high (bright) = 3V to time t7, the extension times generated by the extension time generator of the OFF time extension circuit 4 are equal to d1 and d2, and the extension time is zero. Close value. This is because the dimming level voltage Vref is converted into a current through the voltage N-fold conversion unit and the VI conversion unit, and the capacitor C61 is charged with the maximum value corresponding to the dimming level, so that the OFF time is hardly extended. It is shown that.
On the other hand, it can be seen that the extension time generated by the extension time generation unit of the OFF time extension circuit 4 increases as the dimming level voltage Vref decreases from the time t7 to the time t15. In this case, the dimming level voltage Vref is converted into a current via the voltage N-fold conversion unit and the VI conversion unit. However, since the capacitor C61 is charged with a current value corresponding to the dimming level, the dimming level voltage Vref is lowered. Accordingly, the rise in the charging voltage of the capacitor C61 voltage VC61 becomes moderate. The capacitor C61 voltage V C61 is time to reach the non-inverting terminal voltage V R70 of the comparator CP63 expansion time generation unit corresponds to the time of the OFF time extension.

図5(a)、(c)に従来技術の擬似共振方式、図5(b)、(d)に本発明の実施形態の波形を示す。
図5(a)と(b)は、調光レベルが高い条件(明)=3Vの調光比100%時の従来技術の擬似共振方式と本発明の実施形態の波形を比較したものである。前述したように、調光レベルが高い条件においては、OFF時間拡張が行われないことが分かる。
次に、図5(c)と(d)は、調光レベルが低い条件(暗)=0.6Vの調光比20%時の従来技術の擬似共振方式と本発明の実施形態の波形を比較したものである。前述したように、調光レベルが低い条件においては、OFF時間拡張が行われ、ボトムでのオンタイミングは外れているが、発振周波数が従来技術の擬似共振方式と比べて2/3の値に抑制されていることが分かる。
なお、OFF時間拡張回路4の拡張時間生成部において、調光レベルが高い条件(明)=3Vの調光比100%時であっても、図4で示すように拡張時間d1はゼロではない。このため、OFF時間拡張回路4のボトム検出部のボトム検出値を、従来技術の擬似共振方式よりも早い段階で検出する値に予め補正しておくことが望ましい。
5A and 5C show the quasi-resonance method of the prior art, and FIGS. 5B and 5D show the waveforms of the embodiment of the present invention.
FIGS. 5A and 5B compare the waveforms of the prior art quasi-resonance method and the embodiment of the present invention when the dimming ratio is 100% when the dimming level is high (bright) = 3V. . As described above, it is understood that the OFF time extension is not performed under the condition where the dimming level is high.
Next, FIGS. 5C and 5D show the waveforms of the prior art quasi-resonant method and the embodiment of the present invention when the dimming ratio is 20% when the dimming level is low (dark) = 0.6V. It is a comparison. As described above, under the condition that the dimming level is low, the OFF time extension is performed and the ON timing at the bottom is off, but the oscillation frequency is 2/3 of the value of the conventional quasi-resonant method. It turns out that it is suppressed.
In the extension time generation unit of the OFF time extension circuit 4, even when the dimming level is high (bright) = 3 V and the dimming ratio is 100%, the extension time d1 is not zero as shown in FIG. . For this reason, it is desirable that the bottom detection value of the bottom detection unit of the OFF time extension circuit 4 is corrected in advance to a value that is detected at an earlier stage than the quasi-resonance method of the prior art.

図6に、従来技術の擬似共振方式と本発明の実施形態の、調光レベルの調光比と発振周波数との特性を比較した図を示す。本発明の実施形態は、従来技術の擬似共振方式と比べ、調光レベルが低い条件になるにしたがい、発振周波数の上昇が抑制されていることが分かる。
図6の特性図からは明らかにできないが、本発明の実施形態は、従来技術の擬似共振方式と比べ調光レベルが低い条件になっても発振動作が安定しているので、負荷であるLEDの照度のチラツキを生じることは無い。
FIG. 6 is a diagram comparing the characteristics of the dimming ratio of the dimming level and the oscillation frequency between the prior art quasi-resonant method and the embodiment of the present invention. It can be seen that the embodiment of the present invention suppresses an increase in the oscillation frequency when the dimming level is low as compared with the prior art quasi-resonant method.
Although it cannot be clearly seen from the characteristic diagram of FIG. 6, the embodiment of the present invention has a stable oscillation operation even when the dimming level is low as compared with the quasi-resonant method of the prior art. There is no flickering of illuminance.

以上、本発明の実施形態を説明したが、上記実施形態は、本発明の技術的思想を具体化するための例示であって、個々の構成、組合せ等を上記のものに特定するものではない。本発明は、要旨を逸脱しない範囲内で種々変更して実施できる。
例えば、OFF時間拡張回路4に関数回路を加えて、図3に示した調光レベルとOFF時間拡張との相関を直線で変化させるのではなく、曲線状に変化させてもよい。
As mentioned above, although embodiment of this invention was described, the said embodiment is an illustration for actualizing the technical idea of this invention, Comprising: Each structure, combination, etc. are not specified to said thing. . The present invention can be implemented with various modifications without departing from the scope of the invention.
For example, a function circuit may be added to the OFF time extension circuit 4 so that the correlation between the dimming level and the OFF time extension shown in FIG.

以上のように、本発明に係るLED駆動装置は、調光時にチラツキを抑制でき、LED照明器具に用いるのに好適である。従って、これを用いたLED照明装置及びLED照明器具などに利用可能である。   As described above, the LED driving device according to the present invention can suppress flicker during dimming and is suitable for use in an LED lighting apparatus. Therefore, it can be used for an LED lighting device and an LED lighting fixture using the same.

1 交流電源
2 ラインフィルター
3 LED駆動装置
4 調光レベル信号変換回路
5 負荷(LED)
6 OFF時間拡張回路
C1〜C11 コンデンサ
CP63、CP64 コンパレータ
D1〜D3、D60〜61 ダイオード
DB1、DB2 整流器
L1、L2 リアクトル
OP61、OP62 オペアンプ
PC1 フォトカプラ
Q1 MOSFET
Q2 トランジスタ
R1〜R13、R60〜R78 抵抗
Reg 電源
Z1 集積回路
Z60 シャントレギュレータ
ZD1 ツェナーダイオード
DESCRIPTION OF SYMBOLS 1 AC power supply 2 Line filter 3 LED drive device 4 Dimming level signal conversion circuit 5 Load (LED)
6 OFF time expansion circuit C1 to C11 Capacitor CP63, CP64 Comparator D1 to D3, D60 to 61 Diode DB1, DB2 Rectifier L1, L2 Reactor OP61, OP62 Operational amplifier PC1 Photocoupler Q1 MOSFET
Q2 Transistors R1 to R13, R60 to R78 Resistor Reg Power supply Z1 Integrated circuit Z60 Shunt regulator ZD1 Zener diode

Claims (6)

直流電源の両端子間に、スイッチング素子とリアクトルが直列に接続され、
前記スイッチング素子をオンオフ駆動させる制御回路と、
平滑コンデンサと複数のLED素子からなるLED負荷とが並列接続された並列回路と、
前記並列回路と直列にダイオードと抵抗が接続されて、前記リアクトルの両端子間に接続された回路とを有し、
前記制御回路は、前記リアクトルの電圧信号を得て、前記スイッチング素子の電圧がボトムになるタイミングを検出してオン駆動させ、
外部からの調光レベル信号に応じて、前記スイッチング素子をオンオフ駆動するオフ時間を拡張して前記スイッチング素子の電圧がボトムになるタイミングよりも遅らせてオン駆動させる機能を備えることを特徴とするLED駆動装置。
A switching element and a reactor are connected in series between both terminals of the DC power supply,
A control circuit for driving the switching element on and off;
A parallel circuit in which a smoothing capacitor and an LED load composed of a plurality of LED elements are connected in parallel;
A diode and a resistor connected in series with the parallel circuit, and a circuit connected between both terminals of the reactor;
The control circuit obtains the voltage signal of the reactor, detects the timing when the voltage of the switching element becomes bottom, and drives it on,
In accordance with an external dimming level signal, the LED has a function of extending an off time for driving the switching element to be turned on and off and delaying the voltage of the switching element from the bottom to turn on the LED. Drive device.
前記制御回路は、前記外部からの調光レベル信号が所定の値以下の条件で、前記スイッチング素子をオンオフ駆動するオフ時間を拡張して前記スイッチング素子の電圧がボトムになるタイミングよりも遅らせてオン駆動させることを特徴とする請求項1記載のLED駆動装置。 The control circuit extends the off time for driving the on / off of the switching element under the condition that the external dimming level signal is equal to or less than a predetermined value, and delays it from the timing at which the voltage of the switching element becomes bottom. The LED driving device according to claim 1, wherein the LED driving device is driven. 請求項1乃至請求項2記載のLED駆動装置を用いたLED照明装置。   An LED lighting device using the LED driving device according to claim 1. 直流電源の両端子間に、スイッチング素子とリアクトルが直列に接続され、
前記スイッチング素子の両端子間にはコンデンサが並列に接続され、
前記スイッチング素子をオンオフ駆動させる擬似共振方式の制御回路と、
平滑コンデンサと複数のLED素子からなるLED負荷とが並列接続された並列回路と、
前記並列回路と直列にダイオードと抵抗が接続されて、前記リアクトルの両端子間に接続された回路とを有し、
外部からの調光レベル信号に応じて、前記スイッチング素子をオンオフ駆動するオフ時間を拡張して前記スイッチング素子の電圧がボトムになるタイミングよりも遅らせてオン駆動させるOFF時間拡張回路を備えることを特徴とするLED駆動装置。
A switching element and a reactor are connected in series between both terminals of the DC power supply,
A capacitor is connected in parallel between both terminals of the switching element,
A quasi-resonant control circuit for driving the switching element on and off;
A parallel circuit in which a smoothing capacitor and an LED load composed of a plurality of LED elements are connected in parallel;
A diode and a resistor connected in series with the parallel circuit, and a circuit connected between both terminals of the reactor;
In accordance with a dimming level signal from the outside, an OFF time extending circuit that extends the off time for driving the on / off of the switching element and delays the switching element from turning on at the bottom timing is provided. LED drive device.
前記OFF時間拡張回路は、前記外部からの調光レベル信号が所定の値以下の条件で、前記スイッチング素子をオンオフ駆動するオフ時間を拡張して前記スイッチング素子の電圧がボトムになるタイミングよりも遅らせてオン駆動させることを特徴とする請求項4記載のLED駆動装置。 The OFF time extension circuit extends the OFF time for driving the switching element on and off and delays the switching element voltage from the bottom when the external dimming level signal is not more than a predetermined value. The LED driving device according to claim 4, wherein the LED driving device is driven on. 請求項4乃至請求項5記載のLED駆動装置を用いたLED照明装置。 An LED lighting device using the LED driving device according to claim 4.
JP2014174931A 2014-08-29 2014-08-29 Led driving device and led lighting device using the same Pending JP2016051545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014174931A JP2016051545A (en) 2014-08-29 2014-08-29 Led driving device and led lighting device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014174931A JP2016051545A (en) 2014-08-29 2014-08-29 Led driving device and led lighting device using the same

Publications (1)

Publication Number Publication Date
JP2016051545A true JP2016051545A (en) 2016-04-11

Family

ID=55658930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014174931A Pending JP2016051545A (en) 2014-08-29 2014-08-29 Led driving device and led lighting device using the same

Country Status (1)

Country Link
JP (1) JP2016051545A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109935214A (en) * 2019-04-24 2019-06-25 合肥惠科金扬科技有限公司 A kind of backlight drive circuit and backlight drive device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109935214A (en) * 2019-04-24 2019-06-25 合肥惠科金扬科技有限公司 A kind of backlight drive circuit and backlight drive device
CN109935214B (en) * 2019-04-24 2023-10-20 合肥惠科金扬科技有限公司 Backlight driving circuit and backlight driving device

Similar Documents

Publication Publication Date Title
US8680775B2 (en) Lighting driver circuit and light fixture
TWI423732B (en) Lighting apparatus, driving circuit of light emitting diode and driving method using the same
US8912781B2 (en) Integrated circuit switching power supply controller with selectable buck mode operation
TWI468068B (en) Light source driving circuit, controller and method for controlling brightness of light source
US9313844B2 (en) Lighting device and luminaire
JP5579477B2 (en) Overcurrent prevention type power supply device and lighting fixture using the same
JP6256839B2 (en) Light emitting diode drive device and semiconductor device
TW201338627A (en) Lighting power source and lighting apparatus
JP2008166192A (en) Power supply circuit for driving led
US9078319B2 (en) Conversion control circuit and converter thereof
JP6210936B2 (en) Self-excited resonance type power factor correction circuit and light source driving device
US20110163684A1 (en) Driving circuit of light emitting diode and lighting apparatus using the same
JP2016091781A (en) Switching converter, control circuit therefor, control method, illumination device employing the same, and electronic apparatus
RU2604640C2 (en) High efficiency light-emitting diode circuit
BR102012033492A2 (en) Circuits and Methods for Triggering LED Light Sources
JP2016100163A (en) Lighting device and lighting equipment
US9532414B2 (en) Lighting device
US9723668B2 (en) Switching converter and lighting device using the same
US9999104B2 (en) Lighting device and luminaire
CN112654108B (en) Dimming control circuit, control chip, power conversion device and dimming method
JP6417930B2 (en) Non-insulated power supply
JP2014131420A (en) Power-supply device
KR20140070126A (en) Apparatus and method of operating the the illumination apparatus
JP2016051545A (en) Led driving device and led lighting device using the same
US8963429B2 (en) Lighting apparatus for fluorescent tube and driving method therefor