Nothing Special   »   [go: up one dir, main page]

JP2015517951A - Manufacturing method of main-separation type spherical bow - Google Patents

Manufacturing method of main-separation type spherical bow Download PDF

Info

Publication number
JP2015517951A
JP2015517951A JP2015504863A JP2015504863A JP2015517951A JP 2015517951 A JP2015517951 A JP 2015517951A JP 2015504863 A JP2015504863 A JP 2015504863A JP 2015504863 A JP2015504863 A JP 2015504863A JP 2015517951 A JP2015517951 A JP 2015517951A
Authority
JP
Japan
Prior art keywords
spherical bow
strength
less
hull body
metal material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015504863A
Other languages
Japanese (ja)
Other versions
JP5927598B2 (en
Inventor
チャン、ラーシャン
リ、ビイン
チャオ、シャオドン
Original Assignee
ハントン(シャンハイ) ニュー エナジー シップ デザイン アール アンド ディー カンパニー リミテッド
ハントン(シャンハイ) ニュー エナジー シップ デザイン アール アンド ディー カンパニー リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ハントン(シャンハイ) ニュー エナジー シップ デザイン アール アンド ディー カンパニー リミテッド, ハントン(シャンハイ) ニュー エナジー シップ デザイン アール アンド ディー カンパニー リミテッド filed Critical ハントン(シャンハイ) ニュー エナジー シップ デザイン アール アンド ディー カンパニー リミテッド
Publication of JP2015517951A publication Critical patent/JP2015517951A/en
Application granted granted Critical
Publication of JP5927598B2 publication Critical patent/JP5927598B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B1/06Shape of fore part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B1/06Shape of fore part
    • B63B1/063Bulbous bows
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Metal Rolling (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Powder Metallurgy (AREA)
  • Vibration Dampers (AREA)

Abstract

高強度材料を選択する材料選択工程と、球状船首と船体本体の接続部位の寸法及び形状に応じて、前記高強度材料を、対応するような寸法及び形状に加工する材料成型工程と、溶接、貼り付け、嵌め込みのプロセスで前記高強度材料を球状船首と船体本体の接続部位に取り付け、球状船首と船体本体を接続する取付工程と、前記接続部位を研磨し、球状船首と船体本体を平滑な移行になるように接続する研磨処理工程と、ショットブラストや被覆を採用する錆防止処理工程と、球状船首と船体本体の接続部位に対して無損水密検査を行う無損水密検査と、を備える主動分離型球状船首の製造方法を提供する。前記高強度材料は、低合金高強度金属材料であり、その降伏強度の値が390MPa以上であれば、船舶の衝突時に対象となる船体に対する球状船首の傷害を低減できる。【選択図】図8A material selection step for selecting a high-strength material, a material molding step for processing the high-strength material into a corresponding size and shape according to the size and shape of the connecting portion between the spherical bow and the hull body, welding, The high strength material is attached to the connecting portion between the spherical bow and the hull body by the pasting and fitting process, the attaching step for connecting the spherical bow and the hull body, the connecting portion is polished, and the spherical bow and the hull body are made smooth. A main separation process comprising: a polishing process for connecting to transition, a rust prevention process using shot blasting and covering, and a lossless watertight inspection for performing a lossless watertight inspection on the connecting part between the spherical bow and the hull body. Provided is a method for producing a spherical spherical bow. The high-strength material is a low-alloy high-strength metal material, and if the yield strength value is 390 MPa or more, it is possible to reduce the damage of the spherical bow to the target hull at the time of a ship collision. [Selection] Figure 8

Description

本発明は、船舶部材の製造方法に関し、具体的に、主動分離型球状船首の製造方法に関する。   The present invention relates to a method for manufacturing a ship member, and specifically to a method for manufacturing a main dynamic separation type spherical bow.

球状船首の構造は、高速船舶による造波抵抗及び低速船舶による粘着性圧力抵抗を減少するのに特別な利点があるので、多くの船舶設計者に採用され、特にコンテナ船の設計へ考えられることが多い。然しながら、球状船首は、船体から突出する船首の一部であり、伸びた長さが相当長く、航行の途中で他の船舶に接触すると、対象となる船体にはめ込んでしまい、対象となる船舶の貨物が漏れることとなる。原油、化学品や核燃料などの危険貨物を運ぶように設計された船舶については、船の隔壁がぶつかって破壊されると、危険貨物が漏れることとなり、この場合、災害的な結果が発生することが多い。   The spherical bow structure has particular advantages in reducing wave-making resistance due to high-speed vessels and sticky pressure resistance due to low-speed vessels, so it has been adopted by many ship designers, especially for container ship designs. There are many. However, the spherical bow is a part of the bow that protrudes from the hull, and its extended length is considerably long.If it touches another ship during navigation, it will fit into the target hull and Cargo leaks. For ships designed to carry dangerous cargo such as crude oil, chemicals and nuclear fuel, if the bulkhead of the ship hits and is destroyed, the dangerous cargo will leak and in this case will cause disaster consequences There are many.

常用の方法としては、前記の伸びた球状船首が被衝突船の船側に差し込んで被衝突船の隔壁が断裂する問題を解決するために、球状船首の構造の強度と剛性を小さくし、球状船首が大きく変形するようにし、衝突の接触力を低減し、球状船首の構造が更なる衝突のエネルギーを吸収することが考えられる。   In order to solve the problem that the stretched spherical bow is inserted into the ship side of the impacted ship and the bulkhead of the impacted ship is torn, the structure and structure of the spherical bow is reduced to reduce the spherical bow. Can be greatly deformed, the contact force of the collision can be reduced, and the structure of the spherical bow can absorb the energy of further collision.

US4323026US4323026 JP8164887JP8164887 DE200510028331DE200510028331

一方、球状船首の剛性は、一般、被衝突船の船側の剛性よりもかなり大きく、球状船首の構造形式又は寸法を変更することで、その剛性が被衝突船の船側の剛性よりも小さくなるようにし、衝突過程における球状船首の変形による衝突保護方法が極めて困難となる。   On the other hand, the rigidity of the spherical bow is generally much larger than the rigidity of the ship side of the impacted ship, and by changing the structure type or dimensions of the spherical bow, the rigidity becomes smaller than the rigidity of the ship side of the impacted ship. In addition, a collision protection method due to deformation of the spherical bow in the collision process becomes extremely difficult.

他方、球状船首の構造は、複雑な波の負荷を受ける必要があるので、衝突保護の角度のみから球状船首の構造強度を小さくすることで波の負荷を受ける能力が低減することとなる。さらに、球状船首の強度を低減すると、常用の負荷条件で球状船首構造が容易に永久の塑性変形を生じ、球状船首の使用性に影響を与える。   On the other hand, since the structure of the spherical bow needs to be subjected to a complicated wave load, the ability to receive the wave load is reduced by reducing the structural strength of the spherical bow only from the angle of collision protection. Further, when the strength of the spherical bow is reduced, the spherical bow structure easily undergoes permanent plastic deformation under normal load conditions, which affects the usability of the spherical bow.

特許番号:JP2004314825に係る従来の船舶衝突保護方法においては、球状船首の横方向強度を低減するように、球状船首が横方向負荷で湾曲変形し易く、球状船首の外板材料の一部の代わりに、塑性ひずみが大きい低降伏強度の材料を採用し、該方法は、球状船首の外板材料を降伏強度の低い材料又は降伏応力の235MPaよりも小さい低降伏材料に入れ替え、垂直でない衝突過程において、船舶の球状船首がトルクの作用で湾曲変形し易く、球状船首の変形でもっと多くの衝突エネルギーを吸収し、対象の船舶に対する球状船首の損害を減少する。然しながら、このような方法は、以下の不足がある。   In the conventional ship collision protection method according to Patent No. JP2004314825, the spherical bow tends to be bent and deformed by a lateral load so as to reduce the lateral strength of the spherical bow, and instead of a part of the outer material of the spherical bow. In this case, a low yield strength material having a large plastic strain is used, and the method replaces the outer material of the spherical bow with a low yield strength material or a low yield material having a yield stress of less than 235 MPa. The spherical bow of the ship is easily bent and deformed by the action of torque, and the deformation of the spherical bow absorbs more collision energy and reduces the damage of the spherical bow to the target ship. However, this method has the following shortcomings.

(1)材料の一部を低降伏強度強度の材料に入れ替えし、球状船首の構造強度を低減し、球状船首の構造が外部からの負荷を受ける能力を低減する。
(2)材料の一部を低降伏強度強度の材料に入れ替えし、球状船首の構造強度を低減し、球状船首が外部からの負荷で回復できない塑性変形を容易に発生する。
(3)普通の低炭素鋼の断裂極端ひずみが相当大きく、球状船首の端部構造が破壊した後、球状船首の突出した構造が依然として存在し、船体本体を離れず、衝突過程において依然として対象の船舶に引き続き損害を与える。
(1) Replace a part of the material with a material having low yield strength, reduce the structural strength of the spherical bow, and reduce the ability of the spherical bow structure to receive external loads.
(2) A part of the material is replaced with a material having low yield strength, and the structural strength of the spherical bow is reduced, so that the plastic deformation that the spherical bow cannot recover by external load is easily generated.
(3) The fracture extreme strain of ordinary low-carbon steel is considerably large, and after the end structure of the spherical bow breaks down, the protruding structure of the spherical bow still exists, does not leave the hull body, and remains in the collision process Continue to damage the ship.

常用の分析は、球状船首の船舶と他の船舶の衝突問題があり、一般、仮に他の船舶が静止するとすれば、球状船首付きの船舶が他の船舶に衝突するのは、このような衝突状況に属す。ただし、このような衝突状況は、実際に合わない。実際の衝突事故には、一般、衝突する船舶の両方が一定の航速を有する。   Regular analysis has a collision problem between a spherical bow vessel and another vessel. Generally, if another vessel is stationary, a vessel with a spherical bow collides with another vessel. Belongs to the situation. However, such a collision situation does not really match. In an actual collision accident, in general, both the ships that collide have a constant navigation speed.

本発明は、他の船舶に衝突する過程において、球状船首と船体本体の接続部での高強度材料が主動的に破壊し、このような高強度材料の破壊により球状船首との船体本体が分離し、被衝突船の隔壁に対する球状船首の嵌め込みを防止でき、被衝突船の破壊を大きく防止できる主動分離型球状船首の製造方法を提供することを目的とする。   In the present invention, in the process of colliding with another ship, the high-strength material at the joint between the spherical bow and the hull main body is destroyed dynamically, and the hull main body is separated from the spherical bow due to the breakage of such high-strength material. It is another object of the present invention to provide a method for manufacturing a main dynamic separation type spherical bow capable of preventing the spherical bow from being fitted into the bulkhead of the collided ship and greatly preventing destruction of the collided ship.

本発明は、上記の課題を解決するために、高強度材料を選択する材料選択工程と、球状船首と船体本体の接続部位の寸法及び形状に応じて、前記高強度材料を、対応するような寸法及び形状に加工する材料成型工程と、溶接、貼り付け、嵌め込みのプロセスで前記高強度材料を球状船首と船体本体の接続部位に取り付け、球状船首と船体本体を接続する取付工程と、前記接続部位を研磨し、球状船首と船体本体を平滑な移行になるように接続する研磨処理工程と、ショットブラストや被覆を採用する錆防止処理工程と、球状船首と船体本体の接続部位に対して無損水密検査を行う無損水密検査と、を備えることを特徴とする主動分離型球状船首の製造方法。   In order to solve the above-described problems, the present invention provides a material selection step for selecting a high-strength material and the high-strength material corresponding to the size and shape of the connecting portion between the spherical bow and the hull body. A material molding process for processing into a size and a shape, an attachment process for connecting the spherical bow and the hull body, and attaching the high-strength material to the connection part between the spherical bow and the hull body by a process of welding, pasting and fitting, and the connection Grinding the part, connecting the spherical bow and the hull body so as to make a smooth transition, the rust prevention treatment process adopting shot blasting and coating, and the connection part between the spherical bow and the hull body are lossless And a non-damaged watertight inspection for performing a watertight inspection.

前記高強度材料は、低合金高強度金属材料であることが好ましい。
球状船首の外板と船体本体の外板の接続部位に前記低合金高強度金属材料を取り付けることは好ましい。
前記低合金高強度金属材料の降伏強度は、390MPa以上であり、前記低合金高強度金属材料の降伏強度は、それに隣接する船体本体の外板材料と球状船首の外板材料の降伏強度よりも大きくなっていることが好ましい。
The high-strength material is preferably a low alloy high-strength metal material.
It is preferable to attach the low alloy high-strength metal material to the connection portion between the outer plate of the spherical bow and the outer plate of the hull body.
The yield strength of the low-alloy high-strength metal material is 390 MPa or more, and the yield strength of the low-alloy high-strength metal material is higher than the yield strength of the outer shell material of the hull body and the outer bow material of the spherical bow. It is preferable that it is large.

前記低合金高強度金属材料の厚さは、それに隣接する船体本体の外板と球状船首の外板の厚さよりも小さくなっており、前記低合金高強度金属材料の中心での厚さは、該低合金高強度金属材料とそれに隣接する船体本体の外板と球状船首の外板の接続部での厚さよりも小さくなっていることが好ましい。   The thickness of the low alloy high strength metal material is smaller than the thickness of the outer plate of the hull body adjacent to it and the outer plate of the spherical bow, the thickness at the center of the low alloy high strength metal material is It is preferable that the thickness is smaller than the thickness at the connecting portion of the low alloy high strength metal material and the outer plate of the hull main body and the outer plate of the spherical bow.

前記低合金高強度金属材料とそれに隣接する船体本体の外板と球状船首の外板の接続部は、平滑のように接続されていることが好ましい。
前記低合金高強度金属材料の質量パーセントは、Cが0.2以下、Siが0.55以下、Pが0.045以下、Sが0.045以下、Vが0.2以下、Nbが0.06以下、Tiが0.2以下、Alが0.7以下、Crが1.2以下、Niが0.45と1.5の間にあり、Mnが1.3と1.6の間にあることを備えることが好ましい。
It is preferable that the low alloy high-strength metal material, the outer shell of the hull body adjacent thereto, and the connecting portion of the outer shell of the spherical bow are connected in a smooth manner.
The mass percentage of the low alloy high-strength metal material is as follows: C is 0.2 or less, Si is 0.55 or less, P is 0.045 or less, S is 0.045 or less, V is 0.2 or less, Nb is 0.06 or less, Ti is 0.2 or less, and Al is 0.7. Hereinafter, it is preferable to provide that Cr is 1.2 or less, Ni is between 0.45 and 1.5, and Mn is between 1.3 and 1.6.

前記溶接のプロセスに用いる溶剤は、低合金高強度金属材料であることが好ましい。
前記溶剤の質量パーセントは、Cが0.15以下、Siが0.8以下、Pが0.03以下、Sが0.03以下、Vが0.05以下、Alが1.8以下、Crが0.15以下、Niが2と2.6の間にあり、Mnが1.75と2.25の間にあることを備えることが好ましい。
The solvent used in the welding process is preferably a low alloy high strength metal material.
The weight percentage of the solvent is: C is 0.15 or less, Si is 0.8 or less, P is 0.03 or less, S is 0.03 or less, V is 0.05 or less, Al is 1.8 or less, Cr is 0.15 or less, and Ni is between 2 and 2.6. Preferably, Mn is between 1.75 and 2.25.

前記溶剤は、低合金高強度金属材料の代わりに、直接、球状船首の外板と船体本体の外板の接続部位を溶接することが好ましい。   It is preferable that the solvent is welded directly to the connecting portion of the outer plate of the spherical bow and the outer plate of the hull body instead of the low alloy high strength metal material.

本発明によれば、高強度材料は、一般に、塑性が常用の低強度材料よりも悪く、脆性が常用の低強度材料よりも良く、強度の向上に従って高強度材料の塑性が低減し、脆性の特徴が益々明らかになる利点がある。そして、高強度材料は、常用の低強度材料よりも低いひずみの場合に、断裂を発生すると共に、クラックが速やかに発展する。本発明は、高強度材料のこのような脆性断裂性質を使用することで、球状船首の構造強度を低減しない前提で、高強度材料の破壊を利用して、球状船首と船体本体の分離を制御し、船舶衝突保護の目的を達成できる。   In accordance with the present invention, high strength materials generally have poorer plasticity than conventional low strength materials and are more brittle than conventional low strength materials, and as the strength increases, the plasticity of high strength materials decreases and brittleness increases. There is an advantage that the features become increasingly clear. In the case of a high-strength material, when the strain is lower than that of a normal low-strength material, the high-strength material breaks and the crack develops quickly. The present invention controls the separation of the spherical bow and the hull body using the fracture of the high-strength material on the premise that the structural strength of the spherical bow is not reduced by using the brittle fracture property of the high-strength material. The purpose of ship collision protection can be achieved.

(1)球状船首での材料の入れ替えは、球状船首自身強度を低減しない条件で行われる。
(2)従来技術は、球状船首の構造が大きく変形するようにし、球状船首の構造の変形で船舶衝突の動エネルギーを吸収しするものであるが、本発明は、球状船首を断裂し、球状船首の長さを減少することで、突出した球状船首が対象の船舶の隔壁に差し込む可能性を低減し、衝突の保護目的を実現するものである。
(3)従来技術(特許番号:JP2004314825)は、降伏強度の低い金属材料を使用することで、球状船首の構造が衝突過程いおいて容易に湾曲変形するようにし、球状船首の湾曲変形で衝突接触力を低減するものである。本発明は、球状船首を断裂し、球状船首の長さを減少することで、突出した球状船首が対象の船舶の隔壁に差し込む可能性を低減し、衝突の保護目的を実現するものである。
(1) Material replacement at the spherical bow is performed under the condition that the strength of the spherical bow itself is not reduced.
(2) The prior art is designed to greatly deform the structure of the spherical bow and absorb the kinetic energy of the ship collision by the deformation of the structure of the spherical bow. By reducing the length of the bow, it is possible to reduce the possibility that the protruding spherical bow will be inserted into the bulkhead of the target ship, and to realize the collision protection purpose.
(3) The conventional technology (patent number: JP2004314825) uses a metal material with low yield strength, so that the structure of the spherical bow easily curves and deforms during the collision process, and collides with the curved deformation of the spherical bow. The contact force is reduced. The present invention breaks the spherical bow and reduces the length of the spherical bow, thereby reducing the possibility that the protruding spherical bow is inserted into the bulkhead of the target ship and realizing the collision protection purpose.

図1Aは、主動分離型球状船首構造の概略図である。FIG. 1A is a schematic view of a main dynamic separation type spherical bow structure. 図1Bは、主動分離型球状船首構造の概略図である。FIG. 1B is a schematic diagram of a main dynamic separation type spherical bow structure. 図2Aは、図1AのA−A横向き断面に対応する概略図である。FIG. 2A is a schematic view corresponding to the AA lateral cross section of FIG. 1A. 図2Bは、図1AのA−A横向き断面に対応する概略図である。FIG. 2B is a schematic view corresponding to the AA lateral cross section of FIG. 1A. 図3Aは、図1AのB−B横向き断面に対応する概略図である。FIG. 3A is a schematic view corresponding to the BB transverse section of FIG. 1A. 図3Bは、図1AのB−B横向き断面に対応する概略図である。FIG. 3B is a schematic view corresponding to the BB lateral cross section of FIG. 1A. 図4は、主動主動分離型球状船首構造の水平C―C断面概略図である。FIG. 4 is a horizontal CC cross-sectional schematic view of a main-drive main-drive separation type spherical bow structure. 図5は、主動主動分離型球状船首構造の水平C―C断面、D領域部分拡大図である。FIG. 5 is a horizontal CC cross-section and D region enlarged view of a main-drive main-separation type spherical bow structure. 図6は、船舶衝突の概略図である。FIG. 6 is a schematic view of a ship collision. 図7は、主動主動分離型球状船首の衝突効果の概略図である。FIG. 7 is a schematic view of a collision effect of a main-motion main-motion separation type spherical bow. 図8は、本発明に係る製造方法プロセスのフローチャートである。FIG. 8 is a flowchart of a manufacturing method process according to the present invention.

実施例一
以下、このような主動分離型球状船首(bulb bow)を詳細に説明し、普通の低炭素鋼の代わりに、高強度の材料を使用するのをも備える。このような高強度材料は、一定の特性を有し、これらの特製は、降伏強度、高い脆性、低い破壊ひずみを備える。
Example 1 Hereinafter, such a main-separation type spherical bow will be described in detail, and it is also possible to use a high-strength material instead of ordinary low-carbon steel. Such high-strength materials have certain properties, and these special features provide yield strength, high brittleness, and low fracture strain.

船体に、主動分離型球状船首を使用すると、船舶に対する球状船首の影響を極めて大きく減少できる。高エネルギーの衝突過程において、この高強度材料の破壊により球状船首と船体本体を分離させ、船舶に対する球状船首の破壊を減少できるようになっており、低エネルギーの衝突過程において、高強度材料が基本的に弾性範囲にあり、球状船首の変形が本来の形状に戻るようにできると共に、後の衝突を抵抗するように十分な整合性を保持できるようになっている。   When the main dynamic separation type spherical bow is used for the hull, the influence of the spherical bow on the ship can be greatly reduced. The high-strength material breaks off the high-strength material to separate the spherical bow and hull body to reduce the breakage of the spherical bow against the ship. In the elastic range, the deformation of the spherical bow can be restored to its original shape, and sufficient consistency can be maintained so as to resist the subsequent collision.

具体的に図面を参照し、図1Aと図1Bは、本発明の技術案に係る二種類の主動分離型球状船首の構造を示す概略図であり、図1Aと図1Bに示すように、黒い領域部分7は、高強度材料7であり、そのほかの形式および寸法は、従来の船舶建造規範により決まるものである。   Referring specifically to the drawings, FIGS. 1A and 1B are schematic diagrams showing the structures of two types of main dynamic separation type spherical bows according to the technical solution of the present invention, as shown in FIGS. 1A and 1B. The region portion 7 is a high strength material 7 and other types and dimensions are determined by conventional ship building codes.

高強度材料7の厚さは、材料などの強度入替の原則で決まるものであり、たとえば、通常の場合、板厚18mmの降伏強度が235MPaである球状船首の外板6を、降伏強度が690MPaである高強度材料板7に入れ替えることとし、板厚が(18×235)÷690=6.13(mm)に選択されれば、最初の強度要求が満たされる。   The thickness of the high-strength material 7 is determined by the principle of replacing the strength of the material.For example, in the normal case, the outer plate 6 of the spherical bow having a yield strength of 235 MPa with a thickness of 18 mm is obtained, and the yield strength is 690 MPa. If the plate thickness is selected as (18 × 235) ÷ 690 = 6.13 (mm), the first strength requirement is satisfied.

船長方向(縦方向)に沿う高強度材料7の寸法は、該船リブ間隔がL0であり、高強度材料7の縦方向長さが(1%〜100%)×L0である。
高強度材料7の縦方向の配置位置は、高強度材料7が衝突防止隔壁に設けられる前に、球状船首内部の横方向補強フレーム9の先端に設けられるのが好ましく、具体的な位置は、横隔壁の位置及び使用される要求に応じて決めることができ、図1に示すように、該高強度材料7は、横方向補強フレーム9の前方に設けられる。
The dimensions of the high-strength material 7 along the ship length direction (longitudinal direction) are such that the ship rib interval is L 0 and the length of the high-strength material 7 in the vertical direction is (1% to 100%) × L 0 .
The longitudinal arrangement position of the high-strength material 7 is preferably provided at the tip of the lateral reinforcement frame 9 inside the spherical bow before the high-strength material 7 is provided in the collision prevention partition wall, and the specific position is The high strength material 7 is provided in front of the lateral reinforcing frame 9, as shown in FIG.

高強度材料7と常用船体材料の溶接移行は、板厚の変化による板接続部での応力集中を防止するために、異なる板厚の間に平滑な移行を保証する必要があり、研磨等のプロセスで溶接部位が平ら、且つ平滑になるようにすることができる。
以下は、幾つかの組の選択される低合金高強度材料の化学成分であるが、本発明の選択される高強度材料は、挙げられたいくつかの組に限られるものではない。
The welding transition between the high-strength material 7 and the regular hull material needs to guarantee a smooth transition between different plate thicknesses in order to prevent stress concentration at the plate joints due to changes in plate thickness. The weld site can be flat and smooth in the process.
The following are the chemical components of several sets of selected low alloy high strength materials, but the selected high strength materials of the present invention are not limited to the several sets listed.

Figure 2015517951
Figure 2015517951

以下は、前記幾つかの組の選択される低合金高強度材料の力学性能であるが、本発明の選択される高強度材料は、挙げられたいくつかの組に限られるものではない。   The following is the mechanical performance of the several sets of selected low alloy high strength materials, but the selected high strength materials of the present invention are not limited to the several sets listed.

Figure 2015517951
Figure 2015517951

以下は、幾つか種類の選択される前記高強度材料の溶接に適用する溶剤及び溶接方法であるが、本発明の選択される高強度材料を溶接するための溶剤及び溶接方法は、挙げられたいくつか種類に限られるものではない。   The following are solvents and welding methods that apply to the welding of several types of the selected high strength materials, but the solvents and welding methods for welding selected high strength materials of the present invention are listed. It is not limited to several types.

Figure 2015517951
Figure 2015517951

当業者は、前記の一組の低合金高強度材料および対応の溶接方法を選択すると共に、前記の取付方法を使用することで、容易に本発明に係る技術案を実現できる。   A person skilled in the art can easily realize the technical solution according to the present invention by selecting the set of low-alloy high-strength materials and the corresponding welding methods and using the mounting method.

実施例二
本願に係る技術案を実現するために、更なる簡潔な入替案としては、本発明の高強度材料溶剤で船体本体の外板と球状船首を接続することが考えられる。溶剤自身が既に低合金高強度材料の各々の力学性能を有するので、適切な低合金高強度材料を選択する必要がまったくなく、製造成型の必要もなく、本発明に係る高強度材料溶剤で直接、船体本体の外板と球状船首の外板を一体に溶接すれば、同じ脆性の主動断裂性能を奏する。
Example 2 In order to realize the technical plan according to the present application, as a further simple replacement plan, it is conceivable to connect the outer plate of the hull body and the spherical bow with the high-strength material solvent of the present invention. Since the solvent itself already has the mechanical performance of each of the low alloy high strength materials, there is no need to select an appropriate low alloy high strength material, no need for production molding, and direct use with the high strength material solvent of the present invention. If the outer plate of the hull body and the outer plate of the spherical bow are welded together, the same brittle main dynamic tearing performance is achieved.

以下は、選択される本発明の幾つか組の低合金高強度材料溶剤であり、本発明に係る選択される高強度材料溶剤は、挙げられた幾つかの組に限られない。   The following are selected sets of low alloy high strength material solvents of the present invention, and selected high strength material solvents according to the present invention are not limited to the listed several sets.

Figure 2015517951
Figure 2015517951

Figure 2015517951
Figure 2015517951

当業者は、前記の何れか一組の本発明に係る低合金高強度材料溶剤を選択すると共に、前記の取付方法を使用することで、容易に本発明に係る技術案を実現できる。   A person skilled in the art can easily realize the technical solution according to the present invention by selecting any one of the above-described low-alloy high-strength material solvents according to the present invention and using the mounting method described above.

実施例三
球状船首の外板と船体本体の接続部位は、一部だけに前記低合金高強度金属材料を取り付けてもよい。図1Bに示すように、前記低合金高強度金属材料の上下部分は、転位装着の方式で取り付けられてもよく、図2BのA―A断面矢視図に上部分材料が低合金高強度金属材料であり、下部分材料が従来の球状船首の外板材料であることを明確に示しており、球状船首の外板と船体本体の外板の接続部位に、間隔装着で前記低合金高強度金属材料を取り付ける方式を採用してもよく、これは、図示されない。
Example 3 The low alloy high-strength metal material may be attached to only a part of the connection portion between the outer plate of the spherical bow and the hull body. As shown in FIG. 1B, the upper and lower parts of the low alloy high-strength metal material may be attached by a dislocation mounting method, and the upper part material is a low alloy high-strength metal in the AA cross-sectional arrow view of FIG. 2B. It clearly shows that the lower part material is the outer plate material of the conventional spherical bow, and the low alloy high strength can be obtained by installing the gap between the outer plate of the spherical bow and the outer plate of the hull body. A method of attaching a metal material may be employed, which is not shown.

図6に示すように、前記の方法で製造された主動分離型球状船首5に関しては、船舶の衝突が発生した際に、球状船首5が被衝突船のカーゴエリア2に接触することとなり、船体本体1が一定の航速を有することで、球状船首5が被衝突船のカーゴエリア2の船側にぶつかり、船舶カーゴエリア2の被衝突船のハウジング3が変形することとなる。被衝突船のカーゴエリア2は、一定の前向きの速度をも有することで、被衝突船のカーゴエリア2の前進方向に沿って、球状船首5と被衝突船のカーゴエリア2の船側とが相対の運動を発生することとなる。一方、球状船首5が被衝突船のハウジング3に嵌め入れられるので、相対の運動で球状船首5に対する被衝突船のハウジング3のプッシュ作用が発生し、球状船首5が巨大なトルクおよび横向きの剪断力を受けることとなり、他方、球状船首5と被衝突船のハウジング3の間に相対運動が存在し、両者の間に相当大きい摩擦力が存在し、摩擦力の効果は、球状船首5の構造がかなり大きい剪断力を受けるようにするためものである。   As shown in FIG. 6, with respect to the main dynamic separation type spherical bow 5 manufactured by the method described above, when a ship collision occurs, the spherical bow 5 comes into contact with the cargo area 2 of the ship to be collided, and the hull Since the main body 1 has a constant navigation speed, the spherical bow 5 collides with the ship side of the cargo area 2 of the collision ship, and the housing 3 of the collision ship in the ship cargo area 2 is deformed. The cargo area 2 of the impacted ship also has a certain forward speed, so that the spherical bow 5 and the ship side of the cargo area 2 of the impacted ship are relative to each other along the forward direction of the cargo area 2 of the impacted ship. Will generate the movement. On the other hand, since the spherical bow 5 is fitted into the housing 3 of the impacted ship, the push motion of the impacted ship's housing 3 with respect to the spherical bow 5 occurs due to relative movement, and the spherical bow 5 has a huge torque and lateral shear. On the other hand, there is a relative motion between the spherical bow 5 and the housing 3 of the impacted ship, and there is a considerable friction force between them, and the effect of the friction force is the structure of the spherical bow 5 Is to receive a considerably large shear force.

衝突のエネルギーが大きい場合、高強度材料7での板の厚さが隣接する板より薄く、該位置での応力が大きい場合、該位置での応力が高強度材料の断裂応力までに達すると、該位置での構造が断裂し、高強度材料7の構造が速やかに破壊し、衝突船舶1の球状船首5の先端と衝突船舶の船体本体構造が速やかに分離する。   When the energy of the collision is large, the thickness of the plate at the high-strength material 7 is thinner than the adjacent plate, and when the stress at the position is large, when the stress at the position reaches the breaking stress of the high-strength material, The structure at the position is torn, the structure of the high-strength material 7 is quickly broken, and the tip of the spherical bow 5 of the collision ship 1 and the hull body structure of the collision ship are quickly separated.

図7に示すように、船体本体1と被衝突船のカーゴエリア2の相対運動が依然として存在し、球状船首5の先端が被衝突船のハウジング3の作用で被衝突船のハウジング3と共に運動し、その後、船体本体1の船体本体の外板8が離れ、球状船首5と船体本体1の船体本体の分離を達成する。   As shown in FIG. 7, there is still relative movement between the hull body 1 and the cargo area 2 of the impacted ship, and the tip of the spherical bow 5 moves together with the housing 3 of the impacted ship due to the action of the housing 3 of the impacted ship. Thereafter, the outer plate 8 of the hull main body 1 of the hull main body 1 is separated, and separation of the spherical bow 5 and the hull main body of the hull main body 1 is achieved.

この時、船体本体1は、依然として大きい航速があり、引き続き前向きに運動し、引き続き、被衝突船のカーゴエリア2に作用する。この際に、球状船首5の長さが小さくなり、且つ両船の接触境界面の面積が増大するので、球状船首5の先端が、被衝突船のカーゴエリア2に嵌め入れられる可能性が大きく減少し、被衝突船の縦方向隔壁4の破壊を避け、衝突保護の作用を奏する。   At this time, the hull body 1 still has a high navigation speed, continues to move forward, and continues to act on the cargo area 2 of the collision ship. At this time, since the length of the spherical bow 5 is reduced and the area of the contact boundary surface between the two ships is increased, the possibility that the tip of the spherical bow 5 is fitted into the cargo area 2 of the collision ship is greatly reduced. Thus, the vertical bulkhead 4 of the ship to be collided is prevented from being destroyed and the collision protection function is obtained.

上述は、本発明の好適な実施形態であり、本発明の保護範囲が前記の実施形態に限らず、当業者は、本発明に掲示の内容による変更がいずれも請求の範囲に記載の保護範囲に収められるべきである。   The above is a preferred embodiment of the present invention, and the scope of protection of the present invention is not limited to the above-described embodiment, and those skilled in the art will understand that any modifications according to the contents posted in the present invention are described in the claims. Should fit in.

1 : 船体本体
2 : 被衝突船のカーゴエリア
3 : 被衝突船のハウジング
4 : 被衝突船の縦方向隔壁
5 : 球状船首
6 : 球状船首の外板
7 : 高強度材料
8 : 船体本体の外板
9 : 横方向補強フレーム
10 : 横方向普通フレーム
1: Hull body
2: Cargo area of the impacted ship
3: Housing of the impacted ship
4: Longitudinal bulkhead of the impacted ship
5: Spherical bow
6: Spherical bow skin
7: High strength material
8: Hull body skin
9: Lateral reinforcement frame
10: Horizontal normal frame

Claims (10)

高強度材料を選択する材料選択工程と、
球状船首と船体本体の接続部位の寸法及び形状に応じて、前記高強度材料を、対応するような寸法及び形状に加工する材料成型工程と、
溶接、貼り付け、嵌め込みのプロセスで前記高強度材料を球状船首と船体本体の接続部位に取り付け、球状船首と船体本体を接続する取付工程と、
前記接続部位を研磨し、球状船首と船体本体を平滑な移行になるように接続する研磨処理工程と、
ショットブラストや被覆を採用する錆防止処理工程と、
球状船首と船体本体の接続部位に対して無損水密検査を行う無損水密検査と、
を備えることを特徴とする主動分離型球状船首の製造方法。
A material selection process for selecting a high-strength material;
A material molding step of processing the high-strength material into a corresponding size and shape according to the size and shape of the connecting portion between the spherical bow and the hull body,
Attaching the high-strength material to the connecting portion between the spherical bow and the hull body by a process of welding, pasting, and fitting, and connecting the spherical bow and the hull body; and
Polishing the connection part, polishing processing step for connecting the spherical bow and the hull body so as to make a smooth transition,
Rust prevention treatment process that uses shot blasting and coating,
Non-damaged watertight inspection to perform a lossless watertight inspection on the connecting part of the spherical bow and the hull body,
A method for manufacturing a main dynamic separation type spherical bow.
前記高強度材料は、低合金高強度金属材料である、請求項1に記載の主動分離型球状船首の製造方法。   2. The method of manufacturing a main dynamic separation type spherical bow according to claim 1, wherein the high-strength material is a low alloy high-strength metal material. 球状船首の外板と船体本体の外板の接続部位に前記低合金高強度金属材料を取り付ける、請求項2に記載の主動分離型球状船首の製造方法。   3. The method of manufacturing a main dynamic separation type spherical bow according to claim 2, wherein the low alloy high-strength metal material is attached to a connection portion between the outer plate of the spherical bow and the outer plate of the hull body. 前記低合金高強度金属材料の降伏強度は、390MPa以上であり、
前記低合金高強度金属材料の降伏強度は、それに隣接する船体本体の外板材料と球状船首の外板材料の降伏強度よりも大きくなっている、請求項3に記載の主動分離型球状船首の製造方法。
The yield strength of the low alloy high strength metal material is 390 MPa or more,
The yield strength of the low-alloy high-strength metallic material is greater than the yield strength of the outer shell material of the hull body adjacent to it and the outer shell material of the spherical bow. Production method.
前記低合金高強度金属材料の厚さは、それに隣接する船体本体の外板と球状船首の外板の厚さよりも小さくなっており、
前記低合金高強度金属材料の中心での厚さは、該低合金高強度金属材料とそれに隣接する船体本体の外板と球状船首の外板の接続部での厚さよりも小さくなっている、請求項3に記載の主動分離型球状船首の製造方法。
The thickness of the low-alloy high-strength metal material is smaller than the thickness of the outer shell of the hull body adjacent to it and the outer shell of the spherical bow,
The thickness at the center of the low alloy high-strength metal material is smaller than the thickness at the connection portion between the low alloy high-strength metal material and the outer shell of the hull body and the outer plate of the spherical bow, which are adjacent to the low-alloy high-strength metal material. 4. A method for manufacturing a main dynamic separation type spherical bow according to claim 3.
前記低合金高強度金属材料とそれに隣接する船体本体の外板と球状船首の外板の接続部は、平滑のように接続されている、請求項5に記載の主動分離型球状船首の製造方法。   6. The method of manufacturing a main dynamic separation type spherical bow according to claim 5, wherein the low alloy high-strength metal material and the connecting portion between the outer shell of the hull body and the outer shell of the spherical bow that are adjacent to each other are connected in a smooth manner. . 前記低合金高強度金属材料の質量パーセントは、Cが0.2以下、Siが0.55以下、Pが0.045以下、Sが0.045以下、Vが0.2以下、Nbが0.06以下、Tiが0.2以下、Alが0.7以下、Crが1.2以下、Niが0.45と1.5の間にあり、Mnが1.3と1.6の間にあることを備える、請求項2に記載の主動分離型球状船首の製造方法。   The mass percentage of the low alloy high-strength metal material is as follows: C is 0.2 or less, Si is 0.55 or less, P is 0.045 or less, S is 0.045 or less, V is 0.2 or less, Nb is 0.06 or less, Ti is 0.2 or less, and Al is 0.7. 3. The method of manufacturing a main dynamic separation type spherical bow according to claim 2, wherein Cr is 1.2 or less, Ni is between 0.45 and 1.5, and Mn is between 1.3 and 1.6. 前記溶接のプロセスに用いる溶剤は、低合金高強度金属材料である、請求項3に記載の主動分離型球状船首の製造方法。   4. The method for producing a main dynamic separation type spherical bow according to claim 3, wherein the solvent used in the welding process is a low alloy high strength metal material. 前記溶剤の質量パーセントは、Cが0.15以下、Siが0.8以下、Pが0.03以下、Sが0.03以下、Vが0.05以下、Alが1.8以下、Crが0.15以下、Niが2と2.6の間にあり、Mnが1.75と2.25の間にあることを備える、請求項8に記載の主動分離型球状船首の製造方法。   The weight percentage of the solvent is: C is 0.15 or less, Si is 0.8 or less, P is 0.03 or less, S is 0.03 or less, V is 0.05 or less, Al is 1.8 or less, Cr is 0.15 or less, and Ni is between 2 and 2.6. 9. The method of manufacturing a main dynamic separation type spherical bow according to claim 8, wherein Mn is between 1.75 and 2.25. 前記溶剤は、低合金高強度金属材料の代わりに、直接、球状船首の外板と船体本体の外板の接続部位を溶接する、請求項9に記載の主動分離型球状船首の製造方法。   10. The method for manufacturing a main dynamic separation type spherical bow according to claim 9, wherein the solvent directly welds a connection portion between the outer plate of the spherical bow and the outer plate of the hull body instead of the low alloy high-strength metal material.
JP2015504863A 2013-03-11 2013-08-05 Manufacturing method of main-separation type spherical bow Expired - Fee Related JP5927598B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201310076788X 2013-03-11
CN201310076788.XA CN103144739B (en) 2013-03-11 2013-03-11 The initiatively manufacture method of divergence type bulbous bow
PCT/CN2013/080801 WO2014139254A1 (en) 2013-03-11 2013-08-05 Method for manufacturing actively separable bulbous bow

Publications (2)

Publication Number Publication Date
JP2015517951A true JP2015517951A (en) 2015-06-25
JP5927598B2 JP5927598B2 (en) 2016-06-01

Family

ID=48543142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015504863A Expired - Fee Related JP5927598B2 (en) 2013-03-11 2013-08-05 Manufacturing method of main-separation type spherical bow

Country Status (4)

Country Link
JP (1) JP5927598B2 (en)
KR (1) KR101638376B1 (en)
CN (1) CN103144739B (en)
WO (1) WO2014139254A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3150481A1 (en) 2015-10-02 2017-04-05 OSK-Shiptech A/S A bulbous bow, a sea-going vessel with such bow, and methods of its manufacture and its mounting
RU2652502C1 (en) * 2017-04-05 2018-04-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет" Ship hull bulb bow

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103144739B (en) * 2013-03-11 2015-08-19 韩通(上海)新能源船舶设计研发有限公司 The initiatively manufacture method of divergence type bulbous bow
CN103407546B (en) * 2013-07-29 2016-12-28 福建新胜海船业有限公司 A kind of left and right divides system to close the bulb bow manufacturing process of system again
CN106828771A (en) * 2017-02-09 2017-06-13 大连中远船务工程有限公司 Container ship bulb bow block renews installation method
CN107640280A (en) * 2017-08-15 2018-01-30 舟山长宏国际船舶修造有限公司 A kind of super large marine bulb bow renews method
CN109895943A (en) * 2019-02-13 2019-06-18 中国舰船研究设计中心 A kind of double Shell titanium alloy pod acoustics Three dimensions control method
CN114291226A (en) * 2021-12-20 2022-04-08 上海中远船务工程有限公司 Sliding carrying device in irregular curved surface structure segmentation dock

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3735023A1 (en) * 1987-10-16 1989-05-03 Schultz Hans Georg Prof Dr Ing Impact-absorbent ship's bow
JP2004314825A (en) * 2003-04-17 2004-11-11 National Maritime Research Institute Vessel having lateral bending absorption type bow
JP2009185380A (en) * 2008-01-08 2009-08-20 Nippon Steel Corp Steel plate exhibiting excellent bendability by line heating and process for production of the plate
JP2009248916A (en) * 2008-04-10 2009-10-29 Nippon Steel Corp Bulbous bow excellent in collision energy absorption capacity
WO2011024743A1 (en) * 2009-08-24 2011-03-03 新日本製鐵株式会社 Bow structure

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4323026A (en) * 1979-10-24 1982-04-06 Gallagher John J Drag reducing structure to minimize vessel collision damage
JPS57155185A (en) * 1981-03-18 1982-09-25 Yamaha Motor Co Ltd Production method of bulbous bow
JPH08164887A (en) * 1994-12-14 1996-06-25 Mitsubishi Heavy Ind Ltd Collision energy absorption type bulbous bow structure
JPH09240573A (en) * 1996-03-08 1997-09-16 Ishikawajima Harima Heavy Ind Co Ltd Frictional resistance reducing device of ship
JP3870265B2 (en) * 2003-04-17 2007-01-17 独立行政法人海上技術安全研究所 Ship with lateral bending buffer type bow
CN101279415A (en) * 2008-04-15 2008-10-08 扬帆集团有限公司 Method for manufacturing shipping stempost
KR20110075285A (en) * 2009-12-28 2011-07-06 삼성중공업 주식회사 Eco-friendly ship
TWI381977B (en) * 2010-07-28 2013-01-11 Ship & Ocean Ind R & D Ct Side bend can be broken buffer type bow
CN102336248B (en) * 2011-08-11 2015-10-21 舟山欣臻船舶设计有限公司 Large-scale bulbous bow bow module
CN103144739B (en) * 2013-03-11 2015-08-19 韩通(上海)新能源船舶设计研发有限公司 The initiatively manufacture method of divergence type bulbous bow

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3735023A1 (en) * 1987-10-16 1989-05-03 Schultz Hans Georg Prof Dr Ing Impact-absorbent ship's bow
JP2004314825A (en) * 2003-04-17 2004-11-11 National Maritime Research Institute Vessel having lateral bending absorption type bow
JP2009185380A (en) * 2008-01-08 2009-08-20 Nippon Steel Corp Steel plate exhibiting excellent bendability by line heating and process for production of the plate
JP2009248916A (en) * 2008-04-10 2009-10-29 Nippon Steel Corp Bulbous bow excellent in collision energy absorption capacity
WO2011024743A1 (en) * 2009-08-24 2011-03-03 新日本製鐵株式会社 Bow structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3150481A1 (en) 2015-10-02 2017-04-05 OSK-Shiptech A/S A bulbous bow, a sea-going vessel with such bow, and methods of its manufacture and its mounting
US9926041B2 (en) 2015-10-02 2018-03-27 Osk-Shiptech A/S Bulbous bow, a sea-going vessel with such bow, and methods of its manufacture
RU2652502C1 (en) * 2017-04-05 2018-04-26 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет" Ship hull bulb bow

Also Published As

Publication number Publication date
CN103144739B (en) 2015-08-19
KR20140128961A (en) 2014-11-06
JP5927598B2 (en) 2016-06-01
WO2014139254A1 (en) 2014-09-18
KR101638376B1 (en) 2016-07-11
CN103144739A (en) 2013-06-12

Similar Documents

Publication Publication Date Title
JP5927598B2 (en) Manufacturing method of main-separation type spherical bow
JP6583557B2 (en) Car body structure
JP2011143762A (en) Vehicle skeleton structure
CN206141628U (en) Strike energy -absorbing device and vehicle
JP4869094B2 (en) Impact property prediction method for marine steel
CN201859488U (en) Crash protecting component for flight recorder
CN107574944B (en) A kind of anti-buckling fan-shaped metal damper applied to assembled beam-column node region
WO2004092004A1 (en) Marine vessel having lateral bending buffering bow
JP2019158028A (en) Vehicle collision energy absorption component
JP5283405B2 (en) Automotive reinforcement
Prabowo et al. Investigation on the structural damage of a double-hull ship, Part II–Grounding impact
CN105927019A (en) Square-section buckling-preventing support with two-stage yielding
CN207617970U (en) A kind of overturning pipe energy absorber
JPS6217438A (en) Compression energy absorbing member
JP2008045736A (en) Resin member, and method for manufacturing the same
CN208630538U (en) A kind of automobile buffer beam section structure
Murillo et al. Design parameter study of a CFRP T-joint under overpressure conditions due to ballistic impact
CN101021135A (en) Anticollision structure of vehicle door
JP6244827B2 (en) Hollow cross-section automotive structural member
EP4316951A1 (en) Impact-absorbing structure for automobile
CN105397647A (en) Noise reduction device of automobile hub shot blasting machine
CN217227485U (en) Connecting mechanism for preventing collision
EP4275968A1 (en) Collision energy absorption component for automobile, and method for manufacturing said collision energy absorption component for automobile
CN103350745B (en) Ship side composite sandwich plate structure and construction method
JP2011084272A (en) Shock absorbing type bow

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160331

R150 Certificate of patent or registration of utility model

Ref document number: 5927598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees