JP2015226926A - Slide member production method - Google Patents
Slide member production method Download PDFInfo
- Publication number
- JP2015226926A JP2015226926A JP2014113861A JP2014113861A JP2015226926A JP 2015226926 A JP2015226926 A JP 2015226926A JP 2014113861 A JP2014113861 A JP 2014113861A JP 2014113861 A JP2014113861 A JP 2014113861A JP 2015226926 A JP2015226926 A JP 2015226926A
- Authority
- JP
- Japan
- Prior art keywords
- sliding
- periodic structure
- wear
- periodic
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 19
- 230000000737 periodic effect Effects 0.000 claims abstract description 99
- 229910003481 amorphous carbon Inorganic materials 0.000 claims abstract description 12
- 239000000843 powder Substances 0.000 claims description 44
- 238000000034 method Methods 0.000 claims description 38
- 230000008569 process Effects 0.000 claims description 24
- 239000000463 material Substances 0.000 claims description 16
- 238000012545 processing Methods 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 7
- 238000005299 abrasion Methods 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 238000012546 transfer Methods 0.000 abstract description 39
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 abstract description 25
- 229910052799 carbon Inorganic materials 0.000 abstract description 25
- 230000001788 irregular Effects 0.000 abstract description 2
- 230000008033 biological extinction Effects 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 32
- 230000003287 optical effect Effects 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 8
- 239000001301 oxygen Substances 0.000 description 8
- 229910052760 oxygen Inorganic materials 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000005498 polishing Methods 0.000 description 5
- 238000005461 lubrication Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 230000001603 reducing effect Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 230000000452 restraining effect Effects 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- -1 hydrocarbon ions Chemical class 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 206010053759 Growth retardation Diseases 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 238000002679 ablation Methods 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000010891 electric arc Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 229910021397 glassy carbon Inorganic materials 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910001105 martensitic stainless steel Inorganic materials 0.000 description 1
- FXNGWBDIVIGISM-UHFFFAOYSA-N methylidynechromium Chemical group [Cr]#[C] FXNGWBDIVIGISM-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000008207 working material Substances 0.000 description 1
Landscapes
- Laser Beam Processing (AREA)
Abstract
Description
本発明は、摺動部材および摺動部材の製造方法に関するものである。 The present invention relates to a sliding member and a method for manufacturing the sliding member.
ダイヤモンドライクカーボン(DLC)膜は優れたトライボロジー特性を示す。このため、従来から様々な分野で注目されている。DLC膜と鋼材の摺動では摩耗粉に起因する移着膜が低摩擦化に寄与することが示唆されている。また、低摩擦を示す移着膜では、最表面にDLC由来のグラファイト化されたカーボンが生成されており、低硬度カーボン移着物が低摩擦の要因と考えられている。 Diamond-like carbon (DLC) films exhibit excellent tribological properties. For this reason, it has been attracting attention in various fields. It has been suggested that the transfer film caused by the wear powder contributes to lower friction in sliding between the DLC film and the steel material. In the transfer film showing low friction, DLC-derived graphitized carbon is generated on the outermost surface, and the low hardness carbon transfer product is considered to be a factor of low friction.
シリコンを添加したSi−DLC膜に酸素プラズマ処理を施すと、シリコン酸化物がカーボン移着物を固着させるバインダーの役割を果たし、低摩擦化することが報告されている。このように、低摩擦化を実現するためには低硬度カーボンの生成とともに移着膜の固着性が重要となる。 It has been reported that when an oxygen plasma treatment is performed on a Si-DLC film to which silicon is added, silicon oxide serves as a binder for fixing the carbon transfer material and lowers the friction. As described above, in order to realize low friction, the adhesion of the transfer film is important along with the generation of low hardness carbon.
一方、サブミクロンの周期ピッチと溝深さをもつグレーティング状の周期構造を鋼材摺動面に付与すると、DLC膜と鋼材の微細な摩耗粉が生成される。その結果、マイルド摩耗面に似た滑らかで強固に固着したカーボン移着膜が鋼材側に形成され、摩擦低減効果の発現が期待できる。 On the other hand, when a grating-like periodic structure having a submicron periodic pitch and groove depth is applied to the steel sliding surface, fine wear powder of the DLC film and the steel is generated. As a result, a smooth and firm carbon transfer film similar to a mild wear surface is formed on the steel material side, and an effect of reducing friction can be expected.
DLC膜の摩擦特性を向上させるために、基材の摺動面に成膜されたDLC膜に、フェムト秒レーザ等を照射することで、照射領域をガラス状炭素に改質された改質領域を形成するようにした摺動材(摺動部材)が従来においては提案されている(特許文献1)。 In order to improve the friction characteristics of the DLC film, the irradiated area is modified to glassy carbon by irradiating the DLC film formed on the sliding surface of the substrate with a femtosecond laser or the like. In the past, a sliding material (sliding member) that has been formed has been proposed (Patent Document 1).
また、従来には、基材の表面に、水素を含有した非晶質炭素被膜を成膜する工程と、非晶質炭素被膜の表面に紫外線を照射する工程とで、摺動部材を製造するものもある(特許文献2)。 Conventionally, a sliding member is manufactured by a process of forming an amorphous carbon film containing hydrogen on the surface of a substrate and a process of irradiating the surface of the amorphous carbon film with ultraviolet rays. There is also a thing (patent document 2).
前記特許文献1に示すものでは、DLC層を形成した後、そのDLC層の表面にレーザ照射するものであり、特許文献2では、DLC層を形成した後、そのDLC層の表面に紫外線を照射するものである。このため、レーザ照射等によって、DLCをグラファイト化していることになり、DLC本来の物性が損なわれることになる。また、長期に渡る使用によって、改質層が消滅すれば、摺動部材としての機能を損なうことになっていた。 In the above-mentioned Patent Document 1, after the DLC layer is formed, the surface of the DLC layer is irradiated with laser. In Patent Document 2, after the DLC layer is formed, the surface of the DLC layer is irradiated with ultraviolet rays. To do. For this reason, DLC is graphitized by laser irradiation or the like, and the original physical properties of DLC are impaired. Further, if the modified layer disappears after long-term use, the function as the sliding member is impaired.
本発明は、上記課題に鑑みて、強固に固着された低硬度カーボン移着層を形成し、周期構造が消滅した後も長期に渡って摺動特性が向上する摺動部材およびこのような摺動部材の製造方法を提供する。 In view of the above problems, the present invention provides a sliding member that forms a firmly bonded low-hardness carbon transfer layer, and whose sliding characteristics are improved over a long period of time after the periodic structure disappears, and such a sliding member. A method for manufacturing a moving member is provided.
本発明の摺動部材の製造方法は、第1部材の摺動面に、凸部頂点が非平坦面となって連続的に高さが変化するグレーティング状凹凸の周期構造を形成する周期構造形成工程と、第2部材の摺動面に、鏡面仕上げされた非晶質炭素膜を形成する膜形成工程と、第1部材の摺動面と第2部材の摺動面とを相対的に摺動させて、第1部材の周期構造を犠牲層として摩滅させる摩耗工程とを備えたものである。 The method for manufacturing a sliding member according to the present invention includes forming a periodic structure of a grating-like unevenness in which the height of a convex portion is a non-flat surface and the height continuously changes on the sliding surface of the first member. A step of forming a mirror-finished amorphous carbon film on the sliding surface of the second member, and the sliding surface of the first member relative to the sliding surface of the second member. And a wear process in which the periodic structure of the first member is worn as a sacrificial layer.
本発明の摺動部材の製造方法によれば、連続的に高さが変化するグレーティング状凹凸の周期構造を第1部材に設けているため、摺動時に小さな曲率半径をもつ周期構造先端が摩耗し、なじみが進行する。この際、第1部材からマイルド摩耗粉のような微細な摩耗粉が発生する。また、周期構造は精密な加工ツールとして作用し、第2部材の非晶質炭素膜(DLC膜)から極微細な摩耗粉を生成しながらDLC膜のさらなる平滑化が進行する。DLC膜の極微細な摩耗粉はグラファイト化され、低摩擦化の実現に重要な低硬度カーボンが生成される。このとき、周期構造は摩耗粉をトラップすることで移着粒子の成長抑制に寄与する。この段階では顕著な摩擦低減効果は得られないが、周期構造を犠牲層として摩滅させる工程において、微細な摩耗粉がのしつぶされ、強固に固着された低硬度カーボン移着層が形成されるとともに第1部材と第2部材が平滑化する。 According to the manufacturing method of the sliding member of the present invention, since the periodic structure of the grating-like irregularities whose height continuously changes is provided in the first member, the tip of the periodic structure having a small curvature radius is worn when sliding. And familiarity progresses. At this time, fine wear powder such as mild wear powder is generated from the first member. Further, the periodic structure acts as a precise processing tool, and further smoothing of the DLC film proceeds while generating extremely fine wear powder from the amorphous carbon film (DLC film) of the second member. The extremely fine wear powder of the DLC film is graphitized, and low hardness carbon that is important for realizing low friction is generated. At this time, the periodic structure contributes to the suppression of the growth of transfer particles by trapping the wear powder. At this stage, no significant friction reduction effect can be obtained, but in the process of wearing the periodic structure as a sacrificial layer, fine wear powder is crushed and a firmly fixed low hardness carbon transfer layer is formed. At the same time, the first member and the second member are smoothed.
グレーティング状凹凸の周期構造を摺動方向に配向させるのが好ましい。摩耗粉を摺動面内に拘束する作用が大きくなり、摺動痕周囲に散逸する摩耗粉が大幅に減少する。 It is preferable to orient the periodic structure of the grating-like irregularities in the sliding direction. The action of restraining the wear powder in the sliding surface is increased, and the wear powder scattered around the slide mark is greatly reduced.
第1部材の少なくとも摺動面が、前記摩耗工程において酸化物の摩耗粉を生じる材質としているのが好ましい。第1部材は、周期構造を摩滅させる工程において酸化物の摩耗粉を生じる材質であることで、酸素に富んだ微細な摩耗粉がのしつぶされて、摩耗率がシビア摩耗の1/10〜1/1000となるマイルド摩耗面のような移着層を形成することができる。 It is preferable that at least the sliding surface of the first member is made of a material that generates oxide abrasion powder in the wear process. The first member is a material that generates oxide wear powder in the process of rubbing the periodic structure, so that fine wear powder rich in oxygen is crushed and the wear rate is 1/10 to 10-10 that of severe wear. A transfer layer such as a mild wear surface of 1/1000 can be formed.
前記第1部材の基材表面にあらかじめ形成する周期構造は、加工闘値近傍の照射強度で直線偏光のレーザを照射し、その照射部分をオーバーラップさせながら走査して、自己組織的に形成されるが好ましい。 The periodic structure formed in advance on the substrate surface of the first member is formed in a self-organized manner by irradiating a linearly polarized laser beam with an irradiation intensity in the vicinity of the processing threshold value and scanning while overlapping the irradiated portions. It is preferable.
摺動部材は、前記摺動部材の製造方法を用いて製造された摺動部材であって、凸部頂点が非平坦面となって連続的に高さが変化するグレーティング状凹凸の周期構造を有する周期構造の凹凸が50nm以上500nm以下かつ周期ピッチが10μm以下であるのが好ましい。 The sliding member is a sliding member manufactured by using the above-described manufacturing method of the sliding member, and has a periodic structure of grating-like irregularities in which the height of the convex portion becomes a non-flat surface and the height continuously changes. It is preferable that the irregularities of the periodic structure have 50 nm or more and 500 nm or less and the periodic pitch is 10 μm or less.
本発明では、周期構造を犠牲層として摩滅させる工程において、微細な摩耗粉がのしつぶされ、強固に固着された低硬度カーボン移着層が形成されるとともに第1部材と第2部材が平滑化することで、周期構造が消滅した後も長期に渡って摺動特性が向上する摺動部材が得られる。 In the present invention, in the step of wearing the periodic structure as a sacrificial layer, fine wear powder is crushed to form a firmly fixed low-hardness carbon transfer layer, and the first member and the second member are smooth. As a result, a sliding member having improved sliding characteristics over a long period of time after the periodic structure has disappeared can be obtained.
グレーティング状凹凸の周期構造が摺動方向に配向したものでは、摺動痕周囲に散逸する摩耗粉が大幅に減少するので、摺動面に取り込まれた微細な摩耗粉がのしつぶされ、強固に固着された低硬度カーボン移着層が効率的に形成される。 When the periodic structure of the grating-like irregularities is oriented in the sliding direction, the amount of wear powder that dissipates around the slide marks is greatly reduced, so that the fine wear powder taken into the sliding surface is crushed and firm. A low-hardness carbon transfer layer fixed to the substrate is efficiently formed.
第1部材の少なくとも摺動面が、前記摩耗工程において酸化物の摩耗粉を生じる材質であれば、摩耗率がシビア摩耗の1/10〜1/1000となるマイルド摩耗面のような移着層を形成することができる。マイルド摩耗面のような移着層は強固にカーボン移着物をピンに固着させるバインダーの働きをして、摺動特性向上に寄与する。 If at least the sliding surface of the first member is a material that generates oxide wear powder in the wear process, a transfer layer such as a mild wear surface having a wear rate of 1/10 to 1/1000 of severe wear. Can be formed. The transfer layer such as the mild wear surface acts as a binder that firmly fixes the carbon transfer product to the pin, and contributes to the improvement of the sliding characteristics.
加工闘値近傍の照射強度で直線偏光のレーザを照射し、その照射部分をオーバーラップさせながら走査して、自己組織的に形成するものでは、機械加工では困難なサブミクロンの周期ピッチと凹凸深さをもつ周期構造を容易に得ることができる。 When a linearly polarized laser beam is irradiated with an irradiation intensity in the vicinity of the processing threshold and the irradiated part is overlapped and scanned to form a self-organized structure, it is difficult to machine with a submicron periodic pitch and uneven depth. A periodic structure having a thickness can be obtained easily.
グレーティング状凹凸の周期構造を有する第1部材の凹凸が50nm以上500nm以下かつ周期ピッチが10μm以下とすることで、低硬度カーボンの生成促進と移着粒子の成長抑制により、マイルド摩耗面に似た移着層を形成することができる。 The first member having the periodic structure of the grating-like irregularities has an irregularity of 50 nm or more and 500 nm or less and a periodic pitch of 10 μm or less, which is similar to a mild wear surface by promoting the generation of low hardness carbon and suppressing the growth of transfer particles. A transfer layer can be formed.
以下本発明の実施の形態を図1〜図10に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS.
図1は本発明に係る摺動部材の製造方法を示すブロック図を示し、この製造方法は、周期構造形成工程P1と膜形成工程P2と摩耗工程P3とを備える。周期構造形成工程P1は、図3と図4に示すように、第1部材1の摺動面1aにグレーティング状凹凸の周期構造3を形成するものであり、膜形成工程P2は、図2に示すように、第2部材2の摺動面2a(図3参照)に対して鏡面仕上げする研磨工程P2aと、鏡面仕上げした面に対してダイヤモンドライクカーボン(DLC)膜4を形成する成膜工程P2bとを備えるものである。摩耗工程P3は、第1部材1の摺動面1aと第2部材2の摺動面2aとを相対的に摺動させて、周期構造3を犠牲層として摩滅させるものである。 FIG. 1 is a block diagram showing a method for manufacturing a sliding member according to the present invention, and this manufacturing method includes a periodic structure forming step P1, a film forming step P2, and a wear step P3. In the periodic structure forming step P1, as shown in FIGS. 3 and 4, the periodic structure 3 having grating-like irregularities is formed on the sliding surface 1a of the first member 1, and the film forming step P2 is shown in FIG. As shown, a polishing step P2a for mirror-finishing the sliding surface 2a (see FIG. 3) of the second member 2 and a film-forming step for forming a diamond-like carbon (DLC) film 4 on the mirror-finished surface. P2b. In the wear process P3, the sliding surface 1a of the first member 1 and the sliding surface 2a of the second member 2 are relatively slid to wear the periodic structure 3 as a sacrificial layer.
図例における第1部材1は球体で構成し、第2部材2としては平板体で構成した。また、第1部材1は、SUJ2(高炭素クロム軸受鋼鋼材)等の金属製であり、第2部材2は、SUS440C(マルテンサイト系ステンレス)等の金属製である。 The 1st member 1 in the example was comprised with the spherical body, and the 2nd member 2 was comprised with the flat plate body. The first member 1 is made of metal such as SUJ2 (high carbon chromium bearing steel), and the second member 2 is made of metal such as SUS440C (martensitic stainless steel).
周期構造形成工程P1は、図5に示すように、レーザ発生器11と光学系10とを備えたレーザ表面加工装置を使用して形成する。このレーザ表面加工装置では、レーザ発生器11は、ミラー12により加工材料Wに向けて折り返され、メカニカルシャッタ13に導かれる。レーザ照射時はメカニカルシャッタ13を開放し、レーザ照射強度は1/2波長板14と偏光ビームスプリッタ16によって調整可能とし、1/2波長板15によって偏光方向を調整し、集光レンズ17によって、XYθステージ19上の加工材料W表面に集光照射することになる。 As shown in FIG. 5, the periodic structure forming process P <b> 1 is formed using a laser surface processing apparatus including a laser generator 11 and an optical system 10. In this laser surface processing apparatus, the laser generator 11 is folded back toward the processing material W by the mirror 12 and guided to the mechanical shutter 13. At the time of laser irradiation, the mechanical shutter 13 is opened, the laser irradiation intensity can be adjusted by the half-wave plate 14 and the polarization beam splitter 16, the polarization direction is adjusted by the half-wave plate 15, and the condenser lens 17 The surface of the work material W on the XYθ stage 19 is focused and irradiated.
周期構造形成工程P1では、加工閾値近傍の照射強度で直線偏光のレーザを照射し、その照射部分をオーバーラップさせながら走査して、自己組織的に形成している。すなわち、アブレーション閾値近傍のフルエンスで直線偏光のレーザをワーク(加工材料)Wに照射した場合、入射光と加工材料Wの表面に沿った散乱光またはプラズマ波の干渉により、レーザ波長と同程度の周期間隔で、エネルギー分布にわずかな粗密が生じる。一般的な加工方法ではレーザ照射面全体が加工されるが、加工閾値近傍のエネルギー密度でレーザ照射することで、高エネルギー部分を選択的に加工することができる。その結果、1光軸のレーザ照射でありながら、グレーティング状の周期構造が形成される。このとき、加工に用いるレーザのパルス幅が長くなるほど熱影響や加工蒸散物との相互作用によるレーザの散乱によって周期構造に乱れが生じることになる。 In the periodic structure forming step P1, linearly polarized laser is irradiated with an irradiation intensity in the vicinity of the processing threshold, and the irradiated portions are scanned while being overlapped to form in a self-organized manner. That is, when a workpiece (working material) W is irradiated with a linearly polarized laser beam at a fluence near the ablation threshold, interference between the incident light and the scattered light or plasma wave along the surface of the processing material W is approximately the same as the laser wavelength. At periodic intervals, a slight roughness occurs in the energy distribution. In a general processing method, the entire laser irradiation surface is processed, but a high energy portion can be selectively processed by laser irradiation at an energy density near the processing threshold. As a result, a grating-like periodic structure is formed while performing laser irradiation with one optical axis. At this time, the longer the pulse width of the laser used for processing, the more disturbed the periodic structure is due to the influence of heat and the scattering of the laser due to the interaction with the processed evaporation.
鏡面仕上げとしては、光に対して、表面の散乱、局部屈折のバラツキが少なく、光学的に機能する面に仕上げる研磨(光学研磨)を行うことになる。この場合、算術平均粗さRaが10nm以下となるのが好ましい。この研磨工程P2aは、公知公用の既存の研磨装置にて行うことができ、第2部材2の使用する材質、形状、及び目標とする算術平均粗さRaに応じて種々の研磨装置を選択することができる。 As the mirror finish, polishing (optical polishing) is performed to finish the optically functional surface with less scattering of the surface and variations in local refraction with respect to light. In this case, the arithmetic average roughness Ra is preferably 10 nm or less. This polishing process P2a can be performed by a known publicly known existing polishing apparatus, and various polishing apparatuses are selected according to the material and shape used by the second member 2 and the target arithmetic average roughness Ra. be able to.
算術平均粗さRaは、図6に示すように、粗さ曲線からその平均線の方向に基準長さだけを抜き取り、この抜取り部分の平均線mの方向にX軸を、縦倍率の方向にY軸を取り、粗さ曲線をy=f(x)で表したときに、次の数1の式によって求められる値をマイクロメートル(μm)で表したものをいう。
グレーティング状凹凸の周期構造3は、連続的に高さが変化するものである。周期構造3の凹凸の高低差(凹部5の底部から凸部6の頂点までの高さ)が50nm以上500nm以下とするのが好ましい。また、周期構造3の周期ピッチを10μm以下とするのが好ましい。 The grating-like irregular structure 3 has a continuously changing height. It is preferable that the height difference of the unevenness of the periodic structure 3 (height from the bottom of the concave portion 5 to the top of the convex portion 6) be 50 nm or more and 500 nm or less. Moreover, it is preferable that the periodic pitch of the periodic structure 3 is 10 μm or less.
成膜工程P2bは、DLCコーティングであり、例えば、プラズマイオン注入法を採用することができる。プラズマイオン注入法は、高真空中でのプラズマプロセスであるイオン化蒸着により成膜する方法である。すなわち、真空チャンバ中にトルエンガスや他の炭化水素ガスが導入され直流アーク放電プラズマ中で炭化水素イオンが励起されたラジカルが生成される。このため、炭化水素イオンは直流の負電圧にバイアスされた基板(コーティングされる部材)にバイアス電圧に応じたエネルギーで衝突し固体化し成膜する。成膜工程P2bにて形成された非晶質炭素膜(DLC膜)4の厚さとしては、1μm程度とする。 The film forming process P2b is DLC coating, and for example, a plasma ion implantation method can be adopted. The plasma ion implantation method is a method of forming a film by ionization vapor deposition which is a plasma process in a high vacuum. In other words, toluene gas or other hydrocarbon gas is introduced into the vacuum chamber, and radicals in which hydrocarbon ions are excited in DC arc discharge plasma are generated. For this reason, hydrocarbon ions collide with a substrate (a member to be coated) biased to a negative DC voltage with energy corresponding to the bias voltage to solidify into a film. The thickness of the amorphous carbon film (DLC film) 4 formed in the film forming process P2b is about 1 μm.
摩耗工程P3において、第1部材1の摺動面1aと第2部材2の摺動面2aとを相対的に摺動させれば、連続的に高さが変化するグレーティング状凹凸の周期構造3を第1部材1に設けているため、摺動時に小さな曲率半径をもつ周期構造3先端が摩耗し、なじみが進行する。この際、第1部材1からマイルド摩耗粉のような微細な摩耗粉が発生する。また、周期構造3は精密な加工ツールとして作用し、第2部材の非晶質炭素膜(DLC膜)4から極微細な摩耗粉を生成しながらDLC膜4のさらなる平滑化が進行する。DLC膜4の極微細な摩耗粉はグラファイト化され、低摩擦化の実現に重要な低硬度カーボンが生成される。このとき、周期構造3は摩耗粉をトラップすることで移着粒子の成長抑制に寄与する。この段階では顕著な摩擦低減効果は得られないが、周期構造3を犠牲層として摩滅させる工程において、微細な摩耗粉がのしつぶされ、強固に固着された低硬度カ−ボン移着層が形成されるとともに第1部材1と第2部材2が平滑化することで、周期構造3が消滅した後も長期に渡って摺動特性が向上する摺動部材が得られる。 In the wear process P3, if the sliding surface 1a of the first member 1 and the sliding surface 2a of the second member 2 are relatively slid, the periodic structure 3 of the grating-like irregularities whose height continuously changes. Is provided on the first member 1, the tip of the periodic structure 3 having a small radius of curvature is worn during sliding, and the familiarity proceeds. At this time, fine wear powder such as mild wear powder is generated from the first member 1. Further, the periodic structure 3 acts as a precise processing tool, and further smoothing of the DLC film 4 proceeds while generating extremely fine wear powder from the amorphous carbon film (DLC film) 4 of the second member. The extremely fine wear powder of the DLC film 4 is graphitized, and low-hardness carbon important for realizing low friction is generated. At this time, the periodic structure 3 contributes to the growth suppression of the transfer particles by trapping the wear powder. At this stage, a remarkable friction reducing effect is not obtained, but in the process of wearing the periodic structure 3 as a sacrificial layer, a fine wear powder is crushed and a firmly fixed low hardness carbon transfer layer is formed. When the first member 1 and the second member 2 are smoothed as they are formed, a sliding member having improved sliding characteristics over a long period of time after the periodic structure 3 disappears can be obtained.
グレーティング状凹凸の周期構造3が摺動方向に沿って配向していることで、摩耗粉を摺動面内に拘束する作用が大きくなり、摺動痕周囲に散逸する摩耗粉が大幅に減少する。その結果、摺動面に取り込まれた微細な摩耗粉がのしつぶされ、強固に固着された低硬度カーボン移着層が効率的に形成される。 Since the periodic structure 3 of the grating-like irregularities is oriented along the sliding direction, the action of restraining the abrasion powder in the sliding surface is increased, and the abrasion powder dissipated around the sliding trace is greatly reduced. . As a result, the fine wear powder taken into the sliding surface is crushed and a low hardness carbon transfer layer firmly fixed is efficiently formed.
第1部材1は、周期構造3を摩滅させる工程において酸化物の摩耗粉を生じる材質であることで、酸素に富んだ微細な摩耗粉がのしつぶされて、摩耗率がシビア摩耗の1/10〜1/1000となるマイルド摩耗面のような移着層を形成することができる。マイルド摩耗面のような移着層は強固にカ−ボン移着物をピンに固着させるバインダーの働きをして、摺動特性向上に寄与する。 The first member 1 is made of a material that generates oxide wear powder in the process of abrasion of the periodic structure 3, so that fine wear powder rich in oxygen is crushed and the wear rate is 1 / of that of severe wear. A transfer layer such as a mild wear surface of 10 to 1/1000 can be formed. The transfer layer such as the mild wear surface acts as a binder that firmly fixes the carbon transfer product to the pin, and contributes to the improvement of the sliding characteristics.
加工関値近傍の照射強度で直線偏光のレーザを照射し、その照射部分をオーバーラップさせながら走査して、自己組織的に形成することで、機械加工では困難なサブミクロンの周期ピッチと凹凸深さをもつ周期構造を容易に得ることができる。 By irradiating a linearly polarized laser beam with an irradiation intensity in the vicinity of the processing value, scanning the overlapping part, and forming it in a self-organized manner, it is difficult to machine with a submicron periodic pitch and uneven depth. A periodic structure having a thickness can be obtained easily.
グレーティング状凹凸の周期構造3を有する第1部材1の凹凸が50nm以上500nm以下かつ周期ピッチが10μm以下とすることで、低硬度カーボンの生成促進と移着粒子の成長抑制により、マイルド摩耗面に似た移着層を形成することができる。 The unevenness of the first member 1 having the periodic structure 3 of the grating-like irregularities is 50 nm or more and 500 nm or less and the periodic pitch is 10 μm or less. Similar transfer layers can be formed.
以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、前記実施形態では、第1部材1を球体にて構成し、第2部材2を平板体にて構成したが、第1部材1と第2部材2の形状としても、図例のものに限らず、他の種々の形状のものにて構成できる。 As described above, the embodiment of the present invention has been described. However, the present invention is not limited to the above-described embodiment, and various modifications are possible. For example, in the above-described embodiment, the first member 1 is configured by a sphere. Although the 2nd member 2 was comprised by the flat body, it can comprise with the thing of not only the thing of an example of a figure but the shape of the 1st member 1 and the 2nd member 2 with a various other shape.
周期構造形成工程に使用するレーザとしては、フェムト秒レーザ、ピコ秒レーザ、及びナノ秒レーザといったパルスレーザを使用することができる。また、摩耗工程P3において、第1部材1側を固定して第2部材2を第1部材1に対して摺動させても、逆に、第2部材2側を固定して第1部材1を第2部材2に対して摺動させても、第1部材1と第2部材2とを摺動させてもよい。 As a laser used for the periodic structure forming step, a pulse laser such as a femtosecond laser, a picosecond laser, and a nanosecond laser can be used. Further, in the wear process P3, even if the first member 1 side is fixed and the second member 2 is slid with respect to the first member 1, conversely, the second member 2 side is fixed and the first member 1 is fixed. The first member 1 and the second member 2 may be slid with respect to the second member 2.
また、摺動方向として、周期構造3の配向方向に対して、平行方向であっても、直交方
向であっても、さらには、所定角度(例えば、45度程度)に傾斜したものであってもよ
い。また、摺動方向として直線状ではなく、円形や楕円形状であってもよい。摺動時の荷重、摺動ストローク、往復周波数等も任意に設定できる。
In addition, the sliding direction may be parallel or orthogonal to the orientation direction of the periodic structure 3, and may be inclined at a predetermined angle (for example, about 45 degrees). Also good. Further, the sliding direction is not linear but may be circular or elliptical. The load during sliding, sliding stroke, reciprocating frequency, etc. can be arbitrarily set.
ところで、DLCコーティングの処理には、化学蒸着(CVD、Chemical Vapor Deposition)法および物理蒸着(PVD、Physical Vapor Deposition)法によるプラズマ技術等がある。このため、本発明では、プラズマCVD法、イオン化蒸着法、スパッタ法、アークイオンプレーティング法の従来からある種々の方法で、非晶質炭素膜を形成することができる。 By the way, in the processing of DLC coating, there are a plasma technique using a chemical vapor deposition (CVD) method and a physical vapor deposition (PVD) method. Therefore, in the present invention, the amorphous carbon film can be formed by various conventional methods such as plasma CVD, ionized vapor deposition, sputtering, and arc ion plating.
鋼材側に周期構造3を形成し、光学鏡面DLCの摩擦係数に及ぼす影響について検証した。この検証には、往復式ボールオンプレート試験機を用いた。光学研磨したSUS440c基板(Ra2nm)にプラズマイオン注入法でa−C:HのDLC膜を成膜したプレート試験片を形成し、このプレート試験片が本発明での第2部材2を構成する。この場合、DLCの膜厚は1μmとした。また、このプレート試験片を光学鏡面DLCと呼ぶ。第1部材1として、直径6.35mmのSUJ2ボール(Ra8nm)のボール試験片を用いた。ボール試験片にはフェムト秒レーザを加工しきい値近傍のエネルギー密度で照射し、グレーティング状の周期構造(ピッチ約700nm、深さ約200nm)を形成した。 The periodic structure 3 was formed on the steel material side, and the influence on the friction coefficient of the optical mirror surface DLC was verified. For this verification, a reciprocating ball-on-plate tester was used. A plate test piece in which an aC: H DLC film is formed by plasma ion implantation is formed on an optically polished SUS440c substrate (Ra 2 nm), and this plate test piece constitutes the second member 2 of the present invention. In this case, the film thickness of DLC was 1 μm. Moreover, this plate test piece is called optical mirror surface DLC. As the first member 1, a SUJ2 ball (Ra 8 nm) ball test piece having a diameter of 6.35 mm was used. The ball specimen was irradiated with a femtosecond laser at an energy density near the processing threshold to form a grating-like periodic structure (pitch: about 700 nm, depth: about 200 nm).
摺動方向は、周期構造の配向方向に対して直交および平行の2方向とした。直交方向に沿って往復摺動したものを周期直交SUJ2と呼び、平行方向に沿って往復摺動したものを周期平行SUJ2と呼ぶ。また、この検証には、比較のため、未加工のボール試験片も用いた。この未加工のボール試験片を未加工SUJ2と呼ぶ。摺動条件は荷重5N、ストローク20mm、往復周波数0.5Hzとし、10000往復までの摺動抵抗をロードセルにより測定した。潤滑条件は無潤滑とした。 The sliding directions were two directions orthogonal and parallel to the orientation direction of the periodic structure. What was reciprocated along the orthogonal direction is called periodic orthogonal SUJ2, and what was reciprocated along the parallel direction is called periodic parallel SUJ2. In this verification, an unprocessed ball specimen was also used for comparison. This raw ball specimen is referred to as raw SUJ2. The sliding conditions were a load of 5 N, a stroke of 20 mm, a reciprocation frequency of 0.5 Hz, and the sliding resistance up to 10,000 reciprocations was measured with a load cell. The lubrication conditions were no lubrication.
無潤滑下での各種SUJ2ボールの摩擦係数を図7に示す。3000往復以降では、周期平行SUJ2は未加工SUJ2に対して30%を超える顕著な摩擦低減効果が得られた。一方、周期直交SUJ2の摩擦係数は、3000往復までは周期平行SUJ2と極めてよく一致したが、5000往復以降は単調増加し、10000往復では未加工SUJ2の摩擦係数を上回った。 FIG. 7 shows the friction coefficients of various SUJ2 balls without lubrication. After 3000 round trips, the periodic parallel SUJ2 has a remarkable friction reduction effect exceeding 30% with respect to the unprocessed SUJ2. On the other hand, the friction coefficient of the periodic orthogonal SUJ2 agreed very well with the period parallel SUJ2 until 3000 reciprocations, but increased monotonically after 5000 reciprocations, and exceeded the friction coefficient of unprocessed SUJ2 after 10,000 reciprocations.
図8に光学鏡面DLCに10000往復させた各種SUJ2ボールの摺動痕写真を示す。摩擦低減効果が得られた周期平行SUJ2は摺動方向の中心線上に明瞭な移着膜が認められた。各種SUJ2ボールと摺動させたDLC膜摺動痕周囲の摩耗粉の様子を図9に示す。 FIG. 8 shows slide trace photographs of various SUJ2 balls reciprocated 10,000 times on the optical mirror surface DLC. A clear transfer film was observed on the center line in the sliding direction of the periodic parallel SUJ2 in which the friction reduction effect was obtained. The state of the wear powder around the DLC film sliding traces slid with various SUJ2 balls is shown in FIG.
未加工SUJ2では移着粒子が成長し、大量の摩耗粉が生じた。一方、周期構造3を形成したSUJ2ボール(周期平行SUJ2および周期直交SUJ2)では摩耗粉が微細化し、摩耗量が低減された。特に周期平行SUJ2では大幅に摩耗粉が減少した。周期構造は摩耗粉をトラップすることで移着粒子の成長を抑制し、摩耗粉の微細化に寄与したと推察される。周期平行SUJ2では摩耗粉を摺動面内に拘束する作用が大きいため、摺動痕周囲に散逸する摩耗粉が大幅に減少したと考えられる。すなわち、摩耗粉が摺動面内に拘束され、強固な移着膜形成に寄与する。また、EDX(エネルギー分散型X線分光法)分析の結果、摩耗粉はSUJ2ボール由来の金属酸化物が主体であった。また、微細な摩耗粉の方が高い酸素含有率を示した。 In the unprocessed SUJ2, transfer particles grew and a large amount of wear powder was generated. On the other hand, in the SUJ2 ball (periodic parallel SUJ2 and periodic orthogonal SUJ2) in which the periodic structure 3 was formed, the wear powder was refined and the amount of wear was reduced. In particular, in the case of periodic parallel SUJ2, the wear powder was greatly reduced. The periodic structure is thought to have contributed to the refinement of the wear powder by trapping the wear powder and suppressing the growth of transfer particles. The periodic parallel SUJ2 has a large effect of restraining the wear powder in the sliding surface, and therefore, it is considered that the wear powder dissipated around the sliding trace is greatly reduced. That is, the wear powder is constrained in the sliding surface and contributes to the formation of a strong transfer film. As a result of EDX (energy dispersive X-ray spectroscopy) analysis, the wear powder was mainly composed of metal oxide derived from SUJ2 balls. The fine wear powder showed a higher oxygen content.
移着膜をSEM(走査型電子顕微鏡)観察したところ、移着膜は2層構造になっており、第1層は金属酸化物(SUJ2ボールの摩耗粉)とカーボンの混合物、第2層はDLC由来のカーボン移着物であった。また、強固に固着した移着膜の第1層は高い酸素含有事を示した。したがって、酸素含有率の高い第1層はカーボン移着物をSUJ2ボールに強固に固着させるバインダーの働きをしていると考えられる。周期平行SUJ2の低摩擦化は、酸素に富んだ微細な摩耗粉がのしつぶされ、マイルド摩耗面に似た滑らかで強固に固着したカーボン移着膜を形成することが主要因であると考えられる。周期直交SUJ2はバインダーの働きをする酸素に富んだ微細な摩耗粉が不足し、移着膜の密着性が弱かったため、5000往復以降に摩擦係数が増加したと考えられる。 When the transfer film was observed by SEM (scanning electron microscope), the transfer film had a two-layer structure, the first layer was a mixture of metal oxide (SUJ2 ball wear powder) and carbon, and the second layer was It was a carbon transfer product derived from DLC. Further, the first layer of the transfer film firmly adhered showed a high oxygen content. Therefore, it is considered that the first layer having a high oxygen content functions as a binder that firmly fixes the carbon transfer product to the SUJ2 ball. The low friction of the periodic parallel SUJ2 is thought to be mainly due to the formation of a smooth and firmly adhered carbon transfer film that resembles a mild wear surface by crushing fine wear powder rich in oxygen. It is done. It is considered that the friction coefficient increased after 5000 reciprocations because the periodic orthogonal SUJ2 lacked fine oxygen-rich wear powder acting as a binder and the adhesion of the transfer film was weak.
図10は、光学鏡面DLCの摺動面を示す。未加工SUJ2では摩耗生成物が周囲に大量に生成され、周期平行SUJ2では摩耗生成物が周囲に少量に生成され、周期直交SUJ2では摩耗生成物が周囲に中量に生成されることが分かる。 FIG. 10 shows a sliding surface of the optical mirror surface DLC. It can be seen that a large amount of wear product is generated around the unprocessed SUJ2, a small amount of wear product is generated around the periodic parallel SUJ2, and a medium amount of wear product is generated around the periodic orthogonal SUJ2.
このように、DLC膜の摩擦係数に及ぼす相手材テクスチャの影響を評価した結果、摺動方向に平行の周期構造は、無潤滑下で強固に固着した移着膜を形成し、摩擦低減効果が得られる。 As described above, as a result of evaluating the influence of the texture of the counterpart material on the friction coefficient of the DLC film, the periodic structure parallel to the sliding direction forms a transfer film that is firmly fixed under no lubrication, and has a friction reducing effect. can get.
1 第1部材
1a 摺動面
2 第2部材
2a 摺動面
3 周期構造
4 非晶質炭素膜
P1 周期構造形成工程
P2 膜形成工程
P3 摩耗工程
DESCRIPTION OF SYMBOLS 1 1st member 1a Sliding surface 2 2nd member 2a Sliding surface 3 Periodic structure 4 Amorphous carbon film P1 Periodic structure formation process P2 Film formation process P3 Wear process
本発明は、摺動部材の製造方法に関するものである。 The present invention relates to a manufacturing method of the sliding member.
本発明は、上記課題に鑑みて、強固に固着された低硬度カーボン移着層を形成し、周期構造が消滅した後も長期に渡って摺動特性が向上する摺動部材の製造方法を提供する。 The present invention is, in view of the above problems, a manufacturing method of firmly anchored to form a low hardness carbon transfer adhesive layer, after the periodic structure is extinguished even you improved sliding characteristics over a prolonged sliding member provide.
本発明の摺動部材の製造方法は、第1部材の摺動面に、凸部頂点が非平坦面となって連続的に高さが変化するグレーティング状凹凸の周期構造を形成する周期構造形成工程と、第2部材の摺動面に、鏡面仕上げされた非晶質炭素膜を形成する膜形成工程と、第1部材の摺動面と第2部材の摺動面とを相対的に摺動させて、第1部材の周期構造を犠牲層として摩滅させることにより、第1部材からの摩耗粉を含む第1層と、第2部材からのカーボン移着物からなる第2層とを有する2層構造の移着膜を形成する摩耗工程とを備えたものである。 The method for manufacturing a sliding member according to the present invention includes forming a periodic structure of a grating-like unevenness in which the height of a convex portion is a non-flat surface and the height continuously changes on the sliding surface of the first member. A step of forming a mirror-finished amorphous carbon film on the sliding surface of the second member, and the sliding surface of the first member relative to the sliding surface of the second member. by moving, by Rukoto abrading the periodic structure of the first member as the sacrificial layer has a first layer containing wear debris from the first member, and a second layer of carbon transferred materials from the second member it is obtained by a wear process you forming a transfer film deposition of a two-layer structure.
Claims (5)
第2部材の摺動面に、鏡面仕上げされた非晶質炭素膜を形成する膜形成工程と、
第1部材の摺動面と第2部材の摺動面とを相対的に摺動させて、第1部材の周期構造を犠牲層として摩滅させる摩耗工程とを備えたことを特徴とする摺動部材の製造方法。 A periodic structure forming step of forming a periodic structure of grating-like irregularities in which the height of the convex portion is a non-flat surface and the height continuously changes on the sliding surface of the first member;
A film forming step of forming a mirror-finished amorphous carbon film on the sliding surface of the second member;
A sliding step characterized by comprising a wear process in which the sliding surface of the first member and the sliding surface of the second member are relatively slid to wear the periodic structure of the first member as a sacrificial layer. Manufacturing method of member.
凸部頂点が非平坦面となって連続的に高さが変化するグレーティング状凹凸の周期構造
を有する周期構造の凹凸が50nm以上500nm以下かつ周期ピッチが10μm以下であることを特徴とする摺動部材。 A sliding member manufactured using the manufacturing method of the sliding member according to any one of claims 1 to 4,
Sliding characterized in that the irregularities of the periodic structure having a grating-like irregularity structure in which the height of the convex part is a non-flat surface and the height continuously changes are 50 nm to 500 nm and the periodic pitch is 10 μm or less Element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014113861A JP5917600B2 (en) | 2014-06-02 | 2014-06-02 | Manufacturing method of sliding member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014113861A JP5917600B2 (en) | 2014-06-02 | 2014-06-02 | Manufacturing method of sliding member |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015226926A true JP2015226926A (en) | 2015-12-17 |
JP5917600B2 JP5917600B2 (en) | 2016-05-18 |
Family
ID=54884772
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014113861A Active JP5917600B2 (en) | 2014-06-02 | 2014-06-02 | Manufacturing method of sliding member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5917600B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12055893B2 (en) | 2019-04-12 | 2024-08-06 | Rolex Sa | Method for producing a surface of revolution of a clock or watch component |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004035255A1 (en) * | 2002-09-27 | 2004-04-29 | Nec Machinery Corporation | Cyclic structure formation method and surface treatment method |
JP2007232026A (en) * | 2006-02-28 | 2007-09-13 | Riken Corp | Sliding member |
JP2011068943A (en) * | 2009-09-25 | 2011-04-07 | Ntn Corp | Method for depositing hard film, and hard film |
JP2011102712A (en) * | 2009-11-10 | 2011-05-26 | Nissin Electric Co Ltd | Film adhesion evaluation method |
-
2014
- 2014-06-02 JP JP2014113861A patent/JP5917600B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004035255A1 (en) * | 2002-09-27 | 2004-04-29 | Nec Machinery Corporation | Cyclic structure formation method and surface treatment method |
JP2007232026A (en) * | 2006-02-28 | 2007-09-13 | Riken Corp | Sliding member |
JP2011068943A (en) * | 2009-09-25 | 2011-04-07 | Ntn Corp | Method for depositing hard film, and hard film |
JP2011102712A (en) * | 2009-11-10 | 2011-05-26 | Nissin Electric Co Ltd | Film adhesion evaluation method |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12055893B2 (en) | 2019-04-12 | 2024-08-06 | Rolex Sa | Method for producing a surface of revolution of a clock or watch component |
Also Published As
Publication number | Publication date |
---|---|
JP5917600B2 (en) | 2016-05-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kawasegi et al. | Development and machining performance of a textured diamond cutting tool fabricated with a focused ion beam and heat treatment | |
Bonse | Femtosecond laser-induced surface nanostructures for tribological applications | |
JP6096065B2 (en) | Manufacturing method of sliding member | |
Xie et al. | Femtosecond laser modification of silicon carbide substrates and its influence on CMP process | |
US20200338551A1 (en) | Master for micro flow path creation, transfer copy, and method for producing master for micro flow path creation | |
US20100190036A1 (en) | Systems and Methods for Surface Modification by Filtered Cathodic Vacuum Arc | |
JP2006212646A (en) | Method for preparing periodic structure | |
TWI616544B (en) | Coated tool and method for producing the same | |
JP6964392B2 (en) | Sliding surface structure and manufacturing method of sliding surface structure | |
Kawasegi et al. | Improving machining performance of single-crystal diamond tools irradiated by a focused ion beam | |
Xing et al. | Multiple nanoscale parallel grooves formed on Si3N4/TiC ceramic by femtosecond pulsed laser | |
JP7022411B2 (en) | Diamond smoothing method | |
CN104174884A (en) | Edge tool | |
WO2006027850A1 (en) | Method for enhancing adhesion of thin film | |
JP5917600B2 (en) | Manufacturing method of sliding member | |
Xing et al. | Angle-dependent tribological properties of AlCrN coatings with microtextures induced by nanosecond laser under dry friction | |
Kameyama et al. | Fabrication of micro-textured and plateau-processed functional surface by angled fine particle peening followed by precision grinding | |
JP7349082B2 (en) | Hydrogen-containing carbon film | |
Segu et al. | Experimental characterization of friction and wear behavior of textured Titanium alloy (Ti-6Al-4V) for enhanced tribological performance | |
Musavi et al. | Manufacturing of durable tribological surface by grinding process | |
JP5917646B2 (en) | Manufacturing method of sliding member | |
JP2008173693A (en) | Mirror finished surface working method | |
Yoshino et al. | Nanosurface fabrication of hard brittle materials by structured tool imprinting | |
JP6211004B2 (en) | Surface curing method | |
JP2012223808A (en) | Surface treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151013 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20151201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20160118 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20160201 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160324 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160406 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5917600 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |