Nothing Special   »   [go: up one dir, main page]

JP2015206665A - Sound field three-dimensional image measurement method by digital holography, and sound reproduction method - Google Patents

Sound field three-dimensional image measurement method by digital holography, and sound reproduction method Download PDF

Info

Publication number
JP2015206665A
JP2015206665A JP2014086948A JP2014086948A JP2015206665A JP 2015206665 A JP2015206665 A JP 2015206665A JP 2014086948 A JP2014086948 A JP 2014086948A JP 2014086948 A JP2014086948 A JP 2014086948A JP 2015206665 A JP2015206665 A JP 2015206665A
Authority
JP
Japan
Prior art keywords
sound
sound field
phase
time
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014086948A
Other languages
Japanese (ja)
Other versions
JP6391086B2 (en
Inventor
修 的場
Osamu Matoba
修 的場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
Original Assignee
Kobe University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC filed Critical Kobe University NUC
Priority to JP2014086948A priority Critical patent/JP6391086B2/en
Publication of JP2015206665A publication Critical patent/JP2015206665A/en
Application granted granted Critical
Publication of JP6391086B2 publication Critical patent/JP6391086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sound field image measurement method/device and a sound reproduction method/device that records a sound field as a three-dimensional field as a hologram and can perform reproduction of a sound field (reproduction of sound).SOLUTION: Object light passing a sound field and reference light are superimposed non-coaxially to be made interference light, the interference light is imaged time-serially, the object light is reconfigured by each interference intensity distribution, time serial phase distribution data is acquired from a time serial reconfiguration image, and sound information in a three-dimensional field is reconfigured. Imaging of the interference light is performed in a sampling cycle by twice or more frequency of sound to be measured. Reconfiguration of the sound information is performed by acquiring phase time waveform from the time serial phase distribution data. It is possible to identify a sound source position from the three-dimensional sound field data as well. Moreover, the phase time waveform is available for speech recognition and extraordinary noise measurement by acquiring a frequency spectrum of the sound field by Fourier transformation.

Description

本発明は、ディジタルホログラフィを用いて、音が3次元空間を伝搬する様子を、光を用いて非接触に計測し、その3次元音場を計算機で再生する、音場3次元画像計測方法および再生装置に関する。   The present invention relates to a sound field three-dimensional image measurement method in which a state in which sound propagates through a three-dimensional space using digital holography is measured in a non-contact manner using light, and the three-dimensional sound field is reproduced by a computer, and The present invention relates to a playback device.

通常、音の測定にはマイクロフォンが使用されている。しかし、音波の時空間的な挙動を把握する音場計測には、多数のマイクロフォンをアレイ状に配置する必要がある。マイクロフォンアレイを使用する場合、マイクロフォンの設置自体が障害物となって、音の反射が生じて音場を乱すなどの理由から、正確な分布を高分解能で計測することができないといった問題がある。また、物理的なマイクロフォンをアレイ状に配置するため、空間分解能に限界があるといった問題もある。   Usually, a microphone is used to measure sound. However, it is necessary to arrange a large number of microphones in an array for sound field measurement to grasp the spatio-temporal behavior of sound waves. When a microphone array is used, there is a problem that an accurate distribution cannot be measured with high resolution because the microphone installation itself becomes an obstacle and sound reflection occurs to disturb the sound field. In addition, since physical microphones are arranged in an array, there is a problem that spatial resolution is limited.

一方で、近年、3次元計測手法の研究が盛んに行われており、3次元情報を瞬間的に計測できるディジタルホログラフィが注目されている。ホログラフィは、図19に示すように、3次元物体50の物体光2(反射光または透過光)と参照光4を干渉させて干渉縞をフィルム7に記録し、再生する時は、記録した時と同様の参照光4を干渉縞に照射して、立体画像を映し出すというものである。ディジタルホログラフィは、3次元物体からの光波の情報(複素振幅分布)を干渉によりイメージセンサに記録し、計算機を用いた光伝搬計算により定量的に物体を再構成する技術である。これにより、3次元空間情報の瞬時記録が可能となるため、ダイナミックな事象の記録を可能にする。   On the other hand, research on three-dimensional measurement techniques has been actively conducted in recent years, and digital holography capable of instantaneously measuring three-dimensional information has attracted attention. In the holography, as shown in FIG. 19, when the object light 2 (reflected light or transmitted light) of the three-dimensional object 50 interferes with the reference light 4 to record the interference fringes on the film 7, when reproducing, The same reference light 4 is irradiated onto the interference fringes to project a stereoscopic image. Digital holography is a technique for recording light wave information (complex amplitude distribution) from a three-dimensional object on an image sensor by interference and reconstructing the object quantitatively by light propagation calculation using a computer. As a result, instantaneous recording of the three-dimensional spatial information becomes possible, so that dynamic events can be recorded.

図20に、ディジタルホログラフィによる光学測定系の構成例を示す。
レーザー光源10から射出されたレーザー光6は、振幅変調板11で強度を調整され、その後、第1のビームスプリッター12で物体光2と参照光4に分離される。レーザー光のビーム径はビームエクスパンダーで拡大され、3次元物体50に物体光2が照射される。そして、3次元物体50を通過した物体光3と参照光4が、第2のビームスプリッター19で重ね合わされる。物体光3と参照光4が重ね合わされ干渉光となり、干渉縞がCCDイメージセンサ20で記録される。そして、CCDイメージセンサ20で撮影したホログラムを計算機内で光伝搬計算して、3次元物体50の再構成像を生成する。このとき、物体光3と参照光4は同軸または角度をつけて非共軸として重ね合わされる。
FIG. 20 shows a configuration example of an optical measurement system using digital holography.
The intensity of the laser light 6 emitted from the laser light source 10 is adjusted by the amplitude modulation plate 11 and then separated into the object light 2 and the reference light 4 by the first beam splitter 12. The beam diameter of the laser light is enlarged by a beam expander, and the object light 2 is irradiated onto the three-dimensional object 50. Then, the object light 3 and the reference light 4 that have passed through the three-dimensional object 50 are overlapped by the second beam splitter 19. The object light 3 and the reference light 4 are overlapped to become interference light, and interference fringes are recorded by the CCD image sensor 20. Then, the hologram imaged by the CCD image sensor 20 is calculated for light propagation in the computer, and a reconstructed image of the three-dimensional object 50 is generated. At this time, the object beam 3 and the reference beam 4 are overlapped as non-coaxial with the same axis or an angle.

従来から、音場情報を測定光と参照光の2つの光波の干渉によって可視化する、すなわち、光の干渉を用いて、音場の方向性、密度の粗密状態を可視化し、音を計測する装置や計測方法が知られている(例えば、特許文献1,2,非特許文献1を参照)。   Conventionally, sound field information is visualized by interference between two light waves of measurement light and reference light, that is, a device for measuring sound by visualizing the directionality and density of the sound field by using light interference. And measurement methods are known (see, for example, Patent Documents 1 and 2 and Non-Patent Document 1).

特許文献1に開示された音場可視化計測装置は、図22に示すように、レーザー光発生装置101と、レーザー光発生装置から発せられるレーザー点光源を平行光にするレンズ102と、レンズを通過したレーザー光を測定光と参照光に分割するビームスプリッター103と、分割された測定光114が音源107にて発生した音場を通過するように成し、かつ音場を測定する音場測定部108と、分割された測定光114と参照光115とを重ね合わせて干渉光とするビームスプリッター109と、干渉光を撮像する撮像手段112とを有し、分割されたレーザー光の測定光もしくは参照光のいずれか一方の光路上に光を逆位相に変換する半波長板104が設けられたものである。   As shown in FIG. 22, a sound field visualization measuring device disclosed in Patent Document 1 includes a laser light generation device 101, a lens 102 that makes a laser point light source emitted from the laser light generation device parallel light, and a lens passing through the lens. A beam splitter 103 that divides the laser light into measurement light and reference light, and a sound field measurement unit that measures the sound field so that the divided measurement light 114 passes through the sound field generated by the sound source 107 108, a beam splitter 109 that superimposes the divided measurement light 114 and the reference light 115 to make interference light, and an imaging unit 112 that images the interference light, and the measurement light or reference of the divided laser light A half-wave plate 104 that converts light into an opposite phase is provided on one of the light paths.

測定光は、音源107からの音場による空気密度変化部を通過する際に密度変化量に応じて位相が変調される。測定光と参照光が干渉する場合、密度変化により位相変調された部分が同位相部分に比べて僅かに光強度が低いが、この差が僅かであるために可視化や計測が困難である。そこで、特許文献1の音場可視化計測装置では、参照光を半波長板104によって逆位相にすることにより、密度変化の影響を受けない部分、すなわち、参照光路と測定光路の長さが同一、もしくは光の1波長分だけ違う部分を暗くしておき、音源107からの音場による密度変化で位相変調された部分が、位相変調されなかった部分に比べて明るくなるよう輝度差を生じさせている。位相変調された部分の光強度は僅かなので、干渉光を光増倍器110で増幅することで明部の光強度を大幅に上げ、暗部との差を増幅させてカメラで撮像している。   The phase of the measurement light is modulated in accordance with the density change amount when passing through the air density change portion due to the sound field from the sound source 107. When the measurement light and the reference light interfere with each other, the light intensity is slightly lower in the phase-modulated portion due to density change than in the same-phase portion, but visualization and measurement are difficult because the difference is small. Therefore, in the sound field visualization measurement device of Patent Document 1, by making the reference light in reverse phase by the half-wave plate 104, the part not affected by the density change, that is, the length of the reference optical path and the measurement optical path are the same. Alternatively, a portion that differs by one wavelength of light is darkened, and a luminance difference is generated so that the portion that is phase-modulated by the density change due to the sound field from the sound source 107 becomes brighter than the portion that is not phase-modulated. Yes. Since the light intensity of the phase-modulated part is slight, the light intensity of the bright part is greatly increased by amplifying the interference light by the optical multiplier 110, and the difference from the dark part is amplified and imaged by the camera.

上記の通り、特許文献1の音場可視化計測装置は、音の位相を計測して、音場を可視化するというものであるが、レンズによる結像作用を通して音場の存在する領域(音場測定部108)近傍を測定するものであり、被写界深度の深い3次元的な音場を測定できるものではなかった。
また、干渉光をカメラで撮像して、音場を可視化するが、音源107からの音場の再現(音の再生)を行えるものではなかった。
As described above, the sound field visualization measuring device of Patent Document 1 is to measure the phase of a sound and visualize the sound field. However, the region where the sound field exists (sound field measurement through the imaging action by the lens). Part 108) is for measuring the vicinity, and cannot measure a three-dimensional sound field having a deep depth of field.
Further, although the interference light is imaged with a camera and the sound field is visualized, the sound field from the sound source 107 cannot be reproduced (sound reproduction).

また、特許文献2に開示された音場可視化装置は、レーザー光のスペックル像の干渉を利用して音場の可視化を行うものであるが、特許文献1の音場可視化計測装置と同様に、3次元的な音場を測定できるものではなく、また音場の再現(音の再生)を行えるものではなかった。   The sound field visualization device disclosed in Patent Document 2 visualizes a sound field using interference of a speckle image of laser light, but is similar to the sound field visualization measurement device of Patent Document 1. It was not possible to measure a three-dimensional sound field, and it was not possible to reproduce the sound field (sound reproduction).

また、非特許文献1では、音波によって物を浮上させる時の定在波を観測する方法として、ディジタルホログラフィを用いた干渉計測で行う方法を開示している。非特許文献1に開示された観測装置は、図23に示すように、特許文献1の音場可視化計測装置と同様に、レーザー点光源を平行光とし、レンズの結像作用により音場の存在する領域近傍を測定するものであり、被写界深度の深い3次元的な音場を測定できるものではない。また、非特許文献1の観測装置は、干渉光をCCDイメージセンサで撮像してコンピュータで画像処理して、定在波を可視化するものであるが、定在波は時間的に安定していることから(図23(a)では、Emitterから出た音波がReflectorで反射されて定在波が形成されている)、CCDイメージセンサは遅い撮影速度でも観測可能である。しかしながら、通常の音の場合、定常波ではなく伝搬する3次元的な音場を形成しており、定常波を撮影するためのCCDイメージセンサでは撮影が困難である。   Non-Patent Document 1 discloses a method of performing interference measurement using digital holography as a method of observing a standing wave when an object is levitated by sound waves. As shown in FIG. 23, the observation apparatus disclosed in Non-Patent Document 1 uses a laser point light source as parallel light, as in the sound field visualization measurement apparatus of Patent Document 1, and the presence of a sound field due to the imaging action of the lens. However, it cannot measure a three-dimensional sound field with a deep depth of field. In addition, the observation apparatus of Non-Patent Document 1 captures interference light with a CCD image sensor and performs image processing with a computer to visualize standing waves. However, standing waves are temporally stable. For this reason (in FIG. 23A, the sound wave emitted from the Emitter is reflected by the reflector to form a standing wave), the CCD image sensor can be observed even at a low imaging speed. However, in the case of normal sound, a propagating three-dimensional sound field is formed instead of a standing wave, and it is difficult to shoot with a CCD image sensor for shooting a standing wave.

特開2005−241348号公報JP 2005-241348 A 特開昭61−148327号公報JP-A-61-148327

Optics Communications, 282(2009) pp4339-4344Optics Communications, 282 (2009) pp4339-4344

上記状況に鑑みて、本発明は、3次元場としての音場をホログラムとして記録し、音場の復元(音の再生)を行える音場画像計測方法/装置および音再生方法/装置を提供することを目的とする。   In view of the above situation, the present invention provides a sound field image measurement method / device and a sound reproduction method / device capable of recording a sound field as a three-dimensional field as a hologram and restoring the sound field (sound reproduction). For the purpose.

上記課題を解決すべく、本発明の第1の観点の音場3次元画像計測方法では、音場を通過する物体光と参照光とを非共軸で重ね合せて干渉光とし、干渉光を時系列に撮像し、それぞれの干渉強度分布から物体光を再構成し、時系列の再構成画像から時系列位相分布データを取得し、3次元場における音情報を再構成する。
かかる構成によれば、干渉光を時系列に撮像して、それぞれの干渉強度分布から、時系列に位相分布を計測して、3次元場としての音場をホログラムとして記録できる。そして、3次元場における音場の復元(音の再生)を可能にする。
In order to solve the above-described problem, in the sound field three-dimensional image measurement method according to the first aspect of the present invention, the object light passing through the sound field and the reference light are superposed non-coaxially to form interference light, and the interference light is Images are taken in time series, object light is reconstructed from the respective interference intensity distributions, time series phase distribution data is acquired from the time series reconstructed images, and sound information in a three-dimensional field is reconstructed.
According to such a configuration, it is possible to capture the interference light in time series, measure the phase distribution in time series from the respective interference intensity distributions, and record the sound field as a three-dimensional field as a hologram. The sound field can be restored (sound reproduction) in a three-dimensional field.

ここで、非共軸で重ね合せるとは、軸をずらすこと、軸はずしのことである。干渉強度分布から物体光を再構成する方法は、ディジタルホログラフィを用いた干渉計測で行う方法と同じで、干渉強度分布を使って、空間周波数空間でフィルタ処理を行い、物体光の複素振幅分布を抽出した後、計算機内で光伝搬計算(逆伝搬計算)を行うことにより、物体光を再構成する。   Here, superimposing in a non-coaxial direction means shifting the axis or removing the axis. The method of reconstructing the object light from the interference intensity distribution is the same as the method used in the interference measurement using digital holography. The interference intensity distribution is used for filtering in the spatial frequency space, and the complex amplitude distribution of the object light is obtained. After extraction, the object light is reconstructed by performing light propagation calculation (back propagation calculation) in the computer.

音は疎密波であり、また、空気が薄い(疎)時と空気が濃い(密)時では、光が透過した時の屈折率が異なることから、音場を通過する物体光は、時間的に光の位相が変化している。そのため、音場を通過する物体光の位相の時間分布として音波(疎密波)を検出する。時間的に物体光の位相が変化する様子を計測するため、干渉光を時系列に撮像し、それぞれの干渉強度分布から物体光を再構成し、時系列の再構成画像から時系列位相分布データを取得する。これにより、3次元場(音場)における音を計測し、また音を再現することができる。
すなわち、音場を通過した物体光を、音場を通過しない参照光と干渉させることによって、干渉縞として音場情報を記録することができ、ディジタルホログラフィ技術により、計算機中で3次元の音場の再構成を行うことができるのである。
The sound is a sparse wave, and when the air is thin (sparse) and when the air is dark (dense), the refractive index when light passes through is different, so the object light passing through the sound field is temporal The phase of the light has changed. Therefore, a sound wave (dense wave) is detected as a time distribution of the phase of the object light passing through the sound field. In order to measure how the phase of the object light changes over time, the interference light is imaged in time series, the object light is reconstructed from each interference intensity distribution, and the time-series phase distribution data from the time-series reconstructed image To get. Thereby, the sound in a three-dimensional field (sound field) can be measured and the sound can be reproduced.
That is, by making object light that has passed through the sound field interfere with reference light that does not pass through the sound field, sound field information can be recorded as interference fringes, and a three-dimensional sound field can be recorded in a computer using digital holography technology. Can be reconfigured.

本発明の音場3次元画像計測方法では、計測対象の3次元場に光を照射するだけで音場分布を計測できるため、マイクロフォンを用いて計測する場合に問題となる不要な障害物は存在しない。また、空間分解能は、干渉光を撮像するイメージセンサの解像度と大きさで決まるため、センサの解像度を上げること、またはセンサを大きくすることにより高分解能化を図ることができる。また、ディジタルホログラフィ技術により記録時に焦点合わせをする必要がなく、計算機中で3次元の音場を再構成することができる。   In the sound field three-dimensional image measurement method of the present invention, since the sound field distribution can be measured simply by irradiating light to the three-dimensional field to be measured, there is an unnecessary obstacle that becomes a problem when measuring using a microphone. do not do. In addition, since the spatial resolution is determined by the resolution and size of the image sensor that captures the interference light, the resolution can be increased by increasing the resolution of the sensor or by increasing the size of the sensor. Further, it is not necessary to perform focusing during recording by the digital holography technique, and a three-dimensional sound field can be reconstructed in a computer.

また、本発明の第2の観点の音場3次元画像計測方法では、音場となる物体に電磁波を通過させ、音場を通過する物体波と参照となる直接波とを共軸または非共軸で重ね合せて干渉波として時系列に受波し、或は、検出器内で物体波と直接波の位相差を時系列に検波して物体波の複素振幅情報を取得し、それぞれの干渉強度分布または複素振幅情報から物体波を再構成し、時系列の再構成画像から時系列位相分布データを取得し、3次元場における音情報を再構成する。
かかる構成によれば、干渉波を時系列に受波して、或は、位相差を時系列に検波して、それぞれの干渉強度分布または複素振幅情報から、時系列に位相分布を再生して、3次元場としての音場をホログラムとして記録できる。そして、3次元場における音場の復元(音の再生)を可能にする。
In the sound field three-dimensional image measurement method according to the second aspect of the present invention, an electromagnetic wave is allowed to pass through an object that is a sound field, and an object wave that passes through the sound field and a direct wave that is a reference are coaxial or non-shared. Axes are superimposed on the axis and received in time series as interference waves, or the phase difference between the object wave and direct wave is detected in time series in the detector to obtain complex amplitude information of the object wave, and each interference An object wave is reconstructed from intensity distribution or complex amplitude information, time-series phase distribution data is acquired from a time-series reconstructed image, and sound information in a three-dimensional field is reconstructed.
According to such a configuration, the interference wave is received in time series, or the phase difference is detected in time series, and the phase distribution is reproduced in time series from each interference intensity distribution or complex amplitude information. A sound field as a three-dimensional field can be recorded as a hologram. The sound field can be restored (sound reproduction) in a three-dimensional field.

一般に電磁波は、波長がミリ(mm)程度以上のものを電波、それより短く1μm程度までを赤外線、0.7〜0.4μm程度を可視光、さらに短く、数nm〜pmを紫外線、X線,γ線と称している。電磁波の周波数が低くなると直接電磁波の振幅と位相を検出することも可能である。周波数が高い場合には、音場を通過する電磁波(物体波)は、物体波と参照となる直接波とを共軸または非共軸で重ね合わせて干渉させて得られる干渉強度分布から物体波を再構成できる。また、検出器内で物体波と直接波の位相差を検波し、物体波の複素振幅情報を取得して、複素振幅情報から物体波を再構成できる。   In general, electromagnetic waves having a wavelength of about millimeters (mm) or more are radio waves, shorter than that, infrared rays are used up to about 1 μm, visible light is about 0.7 to 0.4 μm, shorter are several nm to pm ultraviolet rays, and X-rays. , Γ rays. When the frequency of the electromagnetic wave is lowered, it is also possible to directly detect the amplitude and phase of the electromagnetic wave. When the frequency is high, the electromagnetic wave (object wave) that passes through the sound field is obtained from the interference intensity distribution obtained by superimposing the object wave and the direct wave to be referenced in a coaxial or non-coaxial manner and causing interference. Can be reconfigured. Further, the phase difference between the object wave and the direct wave is detected in the detector, the complex amplitude information of the object wave is acquired, and the object wave can be reconstructed from the complex amplitude information.

本発明の第1または第2の観点の音場3次元画像計測方法において、干渉光の撮像は、計測対象となる音の周波数の2倍以上のサンプリング周期で行うことが好ましい。数値計算による超解像的な方法を用いることにより、計測対象となる音の周波数の2倍未満のサンプリング周期でも、再構成は可能である。しかし、サンプリング定理から、計測対象となる音の周波数の2倍以上のサンプリング周期でデータをサンプリングして再構成を行うことにより、超解像的な方法を用いる必要がなく、再構成処理の簡便化を図ることができる。   In the sound field three-dimensional image measurement method according to the first or second aspect of the present invention, it is preferable that the imaging of the interference light is performed at a sampling period that is twice or more the frequency of the sound to be measured. By using a super-resolution method by numerical calculation, reconstruction is possible even with a sampling period less than twice the frequency of the sound to be measured. However, according to the sampling theorem, it is not necessary to use a super-resolution method by sampling data at a sampling period that is at least twice the frequency of the sound to be measured, so that the reconstruction process is simple. Can be achieved.

本発明の音場3次元画像計測方法において、音情報の再構成は、時系列位相分布データから位相時間波形を取得し、位相時間波形を音声データとして再生する。さらに、位相時間波形をフーリエ変換により音場の周波数スペクトルを取得することで、認識などの応用に使うことができる。   In the sound field three-dimensional image measurement method of the present invention, sound information is reconstructed by acquiring a phase time waveform from time-series phase distribution data and reproducing the phase time waveform as audio data. Furthermore, by acquiring the frequency spectrum of the sound field by Fourier transform of the phase time waveform, it can be used for applications such as recognition.

また、本発明の音場3次元画像計測方法において、定常時の音声データまたは周波数スペクトルに基づいて、定常時に発生しない音を検知することが好ましい。
定常時に発生しない音を検知することで、装置や設備などの異常を非接触で検知することができる。
Moreover, in the sound field three-dimensional image measurement method of the present invention, it is preferable to detect a sound that does not occur in the steady state based on the sound data or the frequency spectrum in the steady state.
By detecting a sound that does not occur in a steady state, it is possible to detect an abnormality of the device or equipment in a non-contact manner.

上記の本発明の音場3次元画像計測方法において、音場に音源が存在する場合に、撮像位置あるいは受波位置からの前記音源の3次元相対位置を計測し得ることが好ましい。   In the sound field three-dimensional image measurement method of the present invention described above, it is preferable that the three-dimensional relative position of the sound source from the imaging position or the receiving position can be measured when a sound source exists in the sound field.

本発明の音再生方法は、上記の音場3次元画像計測方法を用いて、3次元場としての音場を時系列の再構成画像として記録し、位相時間波形に基づいて音を再生する。   The sound reproduction method of the present invention records the sound field as a three-dimensional field as a time-series reconstructed image using the sound field three-dimensional image measurement method described above, and reproduces the sound based on the phase time waveform.

次に、本発明の音場3次元画像計測装置について説明する。
本発明の第1の観点の音場3次元画像計測装置は、下記1)〜6)を備える。
1)音場を通過する物体光と参照光とを非共軸で重ね合せて干渉光とする光学測定系
2)干渉光を時系列に撮像する撮像手段
3)それぞれの干渉強度分布から物体光を再構成し、時系列の再構成画像から時系列位相分布データを取得する時系列位相分布取得手段
4)時系列位相分布データから位相時間波形を取得する位相時間波形取得手段
5)位相時間波形を音声データとして取得する音声データ取得手段
6)位相時間波形をフーリエ変換により音場の周波数スペクトルを取得する周波数スペクトル取得手段
Next, the sound field three-dimensional image measurement apparatus of the present invention will be described.
The sound field three-dimensional image measurement apparatus according to the first aspect of the present invention includes the following 1) to 6).
1) An optical measurement system in which object light passing through a sound field and reference light are superposed non-coaxially to form interference light 2) imaging means for imaging interference light in time series 3) object light from each interference intensity distribution And time series phase distribution acquisition means for acquiring time series phase distribution data from time series reconstructed images 4) phase time waveform acquisition means for acquiring phase time waveform from time series phase distribution data 5) phase time waveform Audio data acquisition means for acquiring the frequency spectrum of the sound field by Fourier transform of the phase time waveform.

本発明の第2の観点の音場3次元画像計測装置は、下記a1)或いはa2)、b)〜e)を備える。
a1)音場となる物体に電磁波を通過させて、物体波と参照となる直接波とを共軸または非共軸で重ね合せて干渉波とする電磁波測定系および干渉波を時系列に受波する受波手段
或は、
a2)音場となる物体に電磁波を通過させて、検出器内で物体波と参照となる直接波の位相差を時系列に検波し、物体波の複素振幅情報を取得する手段
b)それぞれの干渉強度分布または複素振幅情報から物体光を再構成し、時系列の再構成画像から時系列位相分布データを取得する時系列位相分布取得手段
c)時系列位相分布データから位相時間波形を取得する位相時間波形取得手段
d)位相時間波形を音声データとして取得する音声データ取得手段
e)位相時間波形をフーリエ変換により前記音場の周波数スペクトルを取得する周波数スペクトル取得手段
A sound field three-dimensional image measurement apparatus according to a second aspect of the present invention includes the following a1) or a2) and b) to e).
a1) An electromagnetic wave measurement system that passes an electromagnetic wave through an object that is a sound field and superimposes the object wave and a reference direct wave in a coaxial or non-coaxial manner to generate an interference wave and receives the interference wave in time series Receiving means or
a2) Means for passing electromagnetic waves through an object as a sound field, detecting a phase difference between the object wave and a reference direct wave in a detector in time series, and acquiring complex amplitude information of the object wave b) Time series phase distribution acquisition means for reconstructing object light from interference intensity distribution or complex amplitude information and obtaining time series phase distribution data from a time series reconstructed image c) obtaining a phase time waveform from time series phase distribution data Phase time waveform acquisition means d) audio data acquisition means for acquiring the phase time waveform as audio data e) frequency spectrum acquisition means for acquiring the frequency spectrum of the sound field by Fourier transform of the phase time waveform

本発明の第1または第2の観点の音場3次元画像計測装置において、干渉光の撮像は、計測対象となる音の周波数の2倍以上のサンプリング周期で行うことが好ましい。   In the sound field three-dimensional image measurement apparatus according to the first or second aspect of the present invention, it is preferable that imaging of interference light is performed at a sampling period that is twice or more the frequency of the sound to be measured.

本発明の音再生装置は、上記の第1又は第2の観点の音場3次元画像計測装置を用いて、音場を時系列の再構成画像として記録し、位相時間波形に基づいて音を再生する。   The sound reproduction device of the present invention records a sound field as a time-series reconstructed image using the sound field three-dimensional image measurement device according to the first or second aspect, and generates a sound based on the phase time waveform. Reproduce.

本発明によれば、3次元の音場をホログラムとして記録し、音場の再現(音の再生)を行えるといった効果がある。   According to the present invention, there is an effect that a three-dimensional sound field is recorded as a hologram and the sound field can be reproduced (sound reproduction).

音場3次元画像計測方法の説明図Illustration of the sound field 3D image measurement method 音場3次元画像計測方法における光学測定系の構成例Configuration example of optical measurement system in sound field three-dimensional image measurement method 音場3次元画像計測方法における位相時間波形の再現の説明図Explanatory drawing of reproduction of phase time waveform in sound field 3D image measurement method 音叉の音場3次元画像計測方法の実験説明図Explanatory diagram of the tuning fork sound field 3D image measurement method マイクロフォンで計測した音叉による波形図Waveform diagram by tuning fork measured with microphone マイクロフォンで計測した音叉の周波数スペクトルTuning fork frequency spectrum measured with a microphone 音場3次元画像計測方法で計測した音叉の位相時間分布Tuning fork phase time distribution measured by sound field 3D image measurement method 音場3次元画像計測方法で計測した音叉の周波数スペクトルTuning fork frequency spectrum measured by sound field 3D image measurement method 人の音声の音場を通過した物体光の干渉光を撮影したホログラムと再構成像Hologram and reconstructed image of interference light of object light that passed through the sound field of human voice 再構成画像の位相時間変化を示す図Diagram showing phase time change of reconstructed image “a”(あ)の音場の位相時間分布Phase time distribution of sound field “a” “a”(あ)の音場の周波数スペクトルFrequency spectrum of sound field “a” (A) “i”(い)の音場の位相時間分布Phase time distribution of sound field of “i” (ii) “i”(い)の音場の周波数スペクトルFrequency spectrum of the sound field of “i” (ii) “a”(あ)の周波数スペクトルとフォルマント周波数の相関図Correlation diagram of frequency spectrum of “a” (a) and formant frequency “i”(い)の周波数スペクトルとフォルマント周波数の相関図Correlation diagram of frequency spectrum of “i” (ii) and formant frequency “a”(あ)の周波数スペクトル"A" (A) frequency spectrum “i”(い)の周波数スペクトルFrequency spectrum of “i” (ii) ホログラフィの原理説明図Illustration of the principle of holography ディジタルホログラフィの光学測定系の構成例Configuration example of optical measurement system for digital holography ミリ波を用いた場合の構成例Configuration example using millimeter wave 先行技術の構成図Prior art block diagram 先行技術の説明図Illustration of prior art

以下、本発明の実施形態の一例を、図面を参照しながら詳細に説明していく。なお、本発明の範囲は、以下の実施例や図示例に限定されるものではなく、幾多の変更及び変形が可能である。   Hereinafter, an example of an embodiment of the present invention will be described in detail with reference to the drawings. The scope of the present invention is not limited to the following examples and illustrated examples, and many changes and modifications can be made.

音は、気体、液体、固体などを伝わる振動であり、音を伝える物質(媒質)が、空気(気体)である場合、音は圧力変動が伝搬する現象である。空気中の音は大気圧のように変動しないと見なせる圧力、すなわち静圧に重畳される形で加わる圧力変動であり、人間が聞き取ることのできる最小の音の圧力変化は約2×10−5(Pa)、通常の会話音が概ね10−2(Pa)程度であるので、空気中の音の圧力変動は大気圧である約1.013×10(Pa)に比べ大変微小な振動である。
音は、空気中を疎密波となって伝搬する。空気には常に大気圧がかかっているので、疎になるところは大気圧より圧力が低く、密になるところは圧力が高くなる。この変動分が音圧である。
Sound is vibration transmitted through gas, liquid, solid, etc. When the substance (medium) that transmits sound is air (gas), sound is a phenomenon in which pressure fluctuations propagate. A sound in the air is a pressure that can be regarded as not changing like atmospheric pressure, that is, a pressure fluctuation applied in a form superimposed on a static pressure, and a minimum sound pressure change that a human can hear is about 2 × 10 −5. (Pa), since the normal conversational sound is approximately 10 −2 (Pa), the pressure fluctuation of the sound in the air is a very small vibration compared to about 1.013 × 10 5 (Pa) which is atmospheric pressure. is there.
Sound propagates in the air as dense waves. Since the atmospheric pressure is always applied to the air, the pressure is lower than the atmospheric pressure in the sparse area, and the pressure is higher in the dense area. This variation is the sound pressure.

従来知られている音の観測手法であるマイクロフォンの場合、マイクロフォン内部の振動膜が音圧に応じて膨らんだりへこんだりするので、これを電気的に検出し電気信号として出力する。また、レーザーで音を検出するレーザーマイクは、音圧を直接的に計るものではなく、疎密波である音は疎の部分と密の部分では屈折率が異なるため位相が変化することから、これを受光素子で光強度を検出し、電気信号として音を検出する。   In the case of a microphone that is a conventionally known sound observation method, the diaphragm inside the microphone swells or dents depending on the sound pressure, and this is electrically detected and output as an electrical signal. Laser microphones that detect sound with a laser do not directly measure the sound pressure. Sounds that are sparse and dense waves vary in phase because the refractive index differs between the sparse and dense parts. The light intensity is detected by the light receiving element, and the sound is detected as an electrical signal.

一方、本発明では、ディジタルホログラフィにより音場を計測する。ディジタルホログラフィにより音場を計測することにより、マイクロフォンと異なり、音場を乱さずに遠隔から音を観測することができ、音場のホログラムを計算機内で再構成することにより音の広がる様子を可視化することができる。   On the other hand, in the present invention, the sound field is measured by digital holography. By measuring the sound field using digital holography, unlike a microphone, the sound can be observed remotely without disturbing the sound field, and the sound spreading can be visualized by reconstructing the sound field hologram in the computer. can do.

音は疎密波として空気中を伝搬するので、図1に示すように、音場(1A,1B)にレーザー2を照射すると、空気密度が高い時(密)と低い時(疎)では屈折率が異なるために光の位相が時間的に変化する。音の周波数をf,音の周期をT,音の波長λ,音速をv(=340m/秒)とすると、f=1/T,v=f×λの関係が成り立つ。例えば、200Hzの音声では、1/200秒が疎密波の一周期(T)となり、その波長は1.7mとなる。つまり、T/2秒毎に、時間的に光の位相が変化するので、音波(疎密波)を位相の時間分布として検出できる。
本発明では、CCDイメージセンサ20で干渉縞を連続撮影して時系列に干渉縞イメージを取得し、3次元的な音場をホログラムとして記録する。コンピュータ30で光伝搬計算を行って物体光の再構成像(40A,40B)を取得する。また、再構成像(40A,40B)の同じ位置のピクセル(41A,41B)で異なる位相が検出されることになる。時系列の位相変化を位相波形として捉えることにより、3次元場としての音場の再現(音の再生)を行える。
Since sound propagates in the air as a sparse and dense wave, as shown in FIG. 1, when the sound field (1A, 1B) is irradiated with the laser 2, the refractive index is high when the air density is high (dense) and low (sparse). Are different, the phase of the light changes with time. When the sound frequency is f, the sound period is T, the sound wavelength λ, and the sound speed is v (= 340 m / sec), the relationship f = 1 / T and v = f × λ holds. For example, in a 200 Hz sound, 1/200 second is one period (T) of the sparse / dense wave, and its wavelength is 1.7 m. That is, since the phase of light changes with time every T / 2 seconds, sound waves (dense waves) can be detected as a time distribution of phases.
In the present invention, interference fringes are continuously photographed by the CCD image sensor 20, the interference fringe images are acquired in time series, and a three-dimensional sound field is recorded as a hologram. The computer 30 performs a light propagation calculation and acquires reconstructed images (40A, 40B) of the object light. Further, different phases are detected in the pixels (41A, 41B) at the same position in the reconstructed image (40A, 40B). By capturing a time-series phase change as a phase waveform, it is possible to reproduce a sound field (sound reproduction) as a three-dimensional field.

図2は、音場3次元画像計測方法における光学測定系の構成例を示している。
図2に示すように、レーザー光源10から照射されたレーザー光6を振幅変調板11で強度を調整し、その後、第1のビームスプリッター12で物体光2と参照光4に分ける。共にビームエクスパンダー(13,14,16,17)でレーザー光のビーム径を拡大し、物体光2を観測したい音場1に照射する。そして、音場1を通過した物体光3と参照光4を第2のビームスプリッター19で重ね合わせる。参照光4を少し傾けることでキャリア周波数をもつ干渉縞をCCDイメージセンサ20で記録する。
FIG. 2 shows a configuration example of an optical measurement system in the sound field three-dimensional image measurement method.
As shown in FIG. 2, the intensity of the laser light 6 emitted from the laser light source 10 is adjusted by the amplitude modulation plate 11, and then divided into the object light 2 and the reference light 4 by the first beam splitter 12. In both cases, the beam expander (13, 14, 16, 17) is used to expand the beam diameter of the laser beam, and the object field 2 is irradiated onto the sound field 1 to be observed. Then, the object beam 3 and the reference beam 4 that have passed through the sound field 1 are superposed by the second beam splitter 19. By tilting the reference beam 4 slightly, interference fringes having a carrier frequency are recorded by the CCD image sensor 20.

図3に示すように、CCDイメージセンサ20で時系列に撮影したホログラムを計算機内で、バンドパスフィルタを施すことで物体光の複素振幅分布を抽出し、その後に光伝搬計算して、音場1を通過した物体光3を再構成する。再構成した画像には、音場1を通過した物体光3の振幅と位相の情報が存在する。そこから位相情報を検出することにより、音場1による空気密度の変化によって変動している物体光3の位相を検出する。1枚の再構成像には瞬間的な位相情報しかない。あくまで位相の変動を検出したいため、ハイスピードのCCDイメージセンサ20により、ホログラムを連続的に撮影する。そして、ホログラムの再構成像から1枚ずつ、同じ点の位相を検出することで、位相時間波形が音波の波形になる。   As shown in FIG. 3, a hologram captured in time series by the CCD image sensor 20 is subjected to a band-pass filter in a computer to extract a complex amplitude distribution of object light, and then a light propagation calculation is performed to obtain a sound field. The object light 3 that has passed through 1 is reconstructed. The reconstructed image includes information on the amplitude and phase of the object light 3 that has passed through the sound field 1. By detecting the phase information therefrom, the phase of the object light 3 that is fluctuating due to the change in air density due to the sound field 1 is detected. One reconstructed image has only instantaneous phase information. In order to detect phase fluctuations to the last, holograms are continuously photographed by the high-speed CCD image sensor 20. Then, by detecting the phase of the same point one by one from the reconstructed image of the hologram, the phase time waveform becomes a waveform of a sound wave.

実施例1において使用したレーザーの波長は532nm、CCDイメージセンサは解像度が512×512(ピクセル)、ピクセルサイズは16×16μm、フレームレートが2000(fps)のものを使用した。サンプリング定理から、このCCDイメージセンサでは1000Hz以下の周波数の音を観測することができる。   The laser wavelength used in Example 1 was 532 nm, the CCD image sensor used had a resolution of 512 × 512 (pixels), a pixel size of 16 × 16 μm, and a frame rate of 2000 (fps). From the sampling theorem, this CCD image sensor can observe sound having a frequency of 1000 Hz or less.

(音叉の音場3次元画像計測の実験)
単一周波数の音を発生させることができる音叉を、観測する音場の音源として使用する。純音とは正弦波で表される音であり、自然界の音は基本周波数の整数倍の周波数成分である倍音を持つが、純音では倍音を一切もたない。音叉においては、わずかに倍音が含まれるものの、ほぼ純音に近い音を発生させることができる。
(Tuning fork sound field 3D image measurement experiment)
A tuning fork capable of generating a single frequency sound is used as a sound source for the sound field to be observed. A pure tone is a sound represented by a sine wave, and a natural sound has a harmonic that is a frequency component that is an integral multiple of the fundamental frequency, but a pure tone has no harmonics. A tuning fork can generate a sound that is almost pure, although it contains slightly overtones.

本実験では、440Hzの純音を発生させる音叉を用いた。音叉を叩いた直後は440Hz以上の上音が含まれるので、叩いた直後の1〜2秒は計測せずに、その後の音を利用した。音叉自体の音は極めて弱いため、音叉の周りの空間に物体光を照射するのではなく、音叉に直接、物体光を照射し、より音叉に近い空間の音場を再構成することにする。
図4(1)は、音叉に直接、物体光を照射して、図4(2)に示すように干渉光を撮像してホログラムを取得し、図4(3)に示すように特定箇所(257,100)の位置のピクセル(画素)における位相変化を取得して、時系列位相分布データを取得し、3次元場における音情報を再構成する。
In this experiment, a tuning fork that generates a pure tone of 440 Hz was used. Immediately after hitting the tuning fork, overtones of 440 Hz or higher were included, so the subsequent sound was used without measuring for 1-2 seconds immediately after hitting. Since the sound of the tuning fork itself is extremely weak, instead of irradiating the object light around the tuning fork, the object light is directly irradiated to the tuning fork to reconstruct the sound field in a space closer to the tuning fork.
In FIG. 4 (1), the tuning fork is directly irradiated with object light, the interference light is imaged as shown in FIG. 4 (2), and a hologram is obtained. As shown in FIG. 257, 100) at the position of the pixel (pixel) is acquired, time-series phase distribution data is acquired, and sound information in the three-dimensional field is reconstructed.

一般的なマイクロフォンで計測した音叉による波形を図5に示す。
図5に示す波形に対してフーリエ変換を行い、この音波のスペクトル解析を行ったものを図6に示す。図6から、略440Hz以外のピークが見られないことが分かる。
音が発生している音叉を、光学系に設置し、CCDイメージセンサのフレームレートを2000(fps)に設定して、物体光を照射し、参照光で干渉させ、2秒間、4000枚のホログラムをCCDイメージセンサで連続撮影した。ホログラムの再構成像(512,512)の中の位置(257,100)で位相を検出し、時間的には2秒間の位相の時間分布をグラフにしたものを図7に示す。また、周波数特性を得るため、図7の位相の時間分布をフーリエ変換したものを図8に示す。
A waveform of a tuning fork measured with a general microphone is shown in FIG.
FIG. 6 shows the result of performing Fourier transform on the waveform shown in FIG. 5 and analyzing the spectrum of this sound wave. It can be seen from FIG. 6 that no peaks other than approximately 440 Hz are observed.
The tuning fork where the sound is generated is installed in the optical system, the frame rate of the CCD image sensor is set to 2000 (fps), the object light is irradiated, the reference light is interfered, and 4000 holograms for 2 seconds. Were continuously photographed with a CCD image sensor. FIG. 7 shows a graph showing the time distribution of the phase for 2 seconds in terms of time detected at the position (257, 100) in the reconstructed image (512, 512) of the hologram. FIG. 8 shows the result of Fourier transform of the time distribution of the phase in FIG. 7 in order to obtain frequency characteristics.

図7を見ると位相の平均値が時間経過とともに減少しているが、正弦波が存在していることがわかる。さらに、図8には図5同じように440Hzの位置にピークが見られる。これらから、位相分布を用いて音場の記録と再構成ができることが分かった。   FIG. 7 shows that the average value of the phase decreases with time, but a sine wave exists. Further, FIG. 8 shows a peak at a position of 440 Hz as in FIG. From these, it was found that recording and reconstruction of the sound field can be performed using the phase distribution.

(人の声の音場3次元画像計測の実験)
音声波形の1周期の時間を基本周期といい、その逆数を基本周波数という。男性の平均基本周波数は約120Hzで、女性の平均基本周波数は約240Hzである。CCDイメージセンサのフレームレートを2000(fps)に設定することで、十分にサンプリング定理を満たすことになる。観測音声は1つの単語にした。日本語の母音の“a”(あ)と“i”(い)を観測する。観測手法としては2秒間の撮影の間に物体光に向かって横から“a”(あ)、続けて“i”(い)と発声する。上述の音叉の実験とは異なり、対象物体は音源ではなく、音場が発生している空間である。撮影したホログラムの一例と再構成像を図9に示す。
(Experiment for 3D image measurement of human voice)
The time of one period of the speech waveform is called a basic period, and its reciprocal is called a basic frequency. The average fundamental frequency for men is about 120 Hz, and the average fundamental frequency for women is about 240 Hz. By setting the frame rate of the CCD image sensor to 2000 (fps), the sampling theorem is sufficiently satisfied. The observation voice was made into one word. Observe the Japanese vowels “a” (a) and “i” (i). As an observation method, “a” (a) and “i” (i) are uttered from the side toward the object light during 2 seconds of photographing. Unlike the tuning fork experiment described above, the target object is not a sound source but a space in which a sound field is generated. An example of a photographed hologram and a reconstructed image are shown in FIG.

音場は不可視であるので、図9に示すホログラムおよび再構成した画像の中に物体などは写っていない。しかしながら、音場は存在している。図9に示す再構成画像の中央(257,257)での位相変化を図10に示す。
図11の正弦波は“a”(あ)の音場による位相時間分布であり、図11の位相時間分布をフーリエ変換したものを図12に示す。また、図13の正弦波は“i”(い)の音場による位相時間分布であり、図13をフーリエ変換したものを図14に示す。図12や図14の周波数スペクトルをみると計測した音場が約260Hzの基本周波数を持っていることが分かる。
Since the sound field is invisible, no object or the like is shown in the hologram and the reconstructed image shown in FIG. However, a sound field exists. FIG. 10 shows the phase change at the center (257, 257) of the reconstructed image shown in FIG.
The sine wave of FIG. 11 is a phase time distribution by the sound field “a” (A), and FIG. 12 shows a result of Fourier transform of the phase time distribution of FIG. Moreover, the sine wave of FIG. 13 is a phase time distribution by the sound field of “i” (ii), and FIG. 14 shows the result of Fourier transform of FIG. It can be seen from the frequency spectra of FIGS. 12 and 14 that the measured sound field has a fundamental frequency of about 260 Hz.

上記の実験で日本語の母音である“a”(あ)と“i”(い)をディジタルホログラフィにより再構成することができた。この“a”(あ)と“i”(い)を音素認識という面から評価する。音声の波形は複雑であり、その波形を見ても特徴が分かりにくい。同じ“a”(あ)という音声に聞こえても声の大きさや人により、波の形、周波数ともに大きく異なる。そこで音声波形を特徴づけるものとして、フォルマント周波数というものがある。音声波形の特徴は、その周波数スペクトルに表れる。音声の周波数スペクトルは周期的な細かいピークを持つ周波数成分と、大まかにいくつかピークを持つ全体的な形(概形)を重ね合わせた形をしている。   In the above experiment, Japanese vowels “a” (a) and “i” (i) could be reconstructed by digital holography. This “a” (a) and “i” (i) are evaluated from the aspect of phoneme recognition. The waveform of speech is complex, and its characteristics are difficult to understand by looking at the waveform. Even if you hear the same voice “a” (a), the shape and frequency of the waves differ greatly depending on the volume of the voice and the person. Therefore, there is a formant frequency that characterizes the speech waveform. The characteristics of the speech waveform appear in the frequency spectrum. The frequency spectrum of speech is formed by superimposing frequency components with periodic fine peaks and the general shape (rough shape) with some peaks.

周期的なピークは音声の基本周期に関連したピークであり、その間隔が基本周波数に対応している。また周波数スペクトルの概形に見られるピークをフォルマントと呼び、その周波数をフォルマント周波数と呼ぶ。フォルマント周波数を低い方から第1フォルマント(F1),第2フォルマント(F2),・・・と呼ぶ。これらのフォルマント周波数は、音響管としての声道の共振周波数に対応している。日本語の母音ではフォルマント周波数のうち、F1,F2が重要であり、母音はF1とF2により区別することができる。   The periodic peak is a peak related to the fundamental period of speech, and the interval corresponds to the fundamental frequency. Moreover, the peak seen in the outline of the frequency spectrum is called formant, and the frequency is called formant frequency. The formant frequencies are called the first formant (F1), the second formant (F2),. These formant frequencies correspond to the resonance frequency of the vocal tract as an acoustic tube. In Japanese vowels, F1 and F2 are important among formant frequencies, and vowels can be distinguished by F1 and F2.

例えば、マイクで録音した母音“a”(あ)の周波数スペクトルとフォルマント周波数の関係を図15に示す。
次に、同じくマイクで録音した母音“i”(い)の周波数スペクトルとフォルマント周波数の関係を図16に示す。
これらから“a”(あ)と“i”(い)共に基本周波数は約120Hzと等しいが、周波数スペクトルの概形が大きく異なることが分かる。“a”(あ)は母音の中で最もF1とF2の値が近いフォルマント周波数を持ち、一方、“i”(い)は母音の中で最もF1とF2の値が離れているという特徴を有する。また、同じ母音であれば基本周波数が異なっても周波数スペクトルの概形は似ている。マイクで録音した基本周波数が約240Hzの“a”(あ)および“i”(い)の周波数スペクトルをそれぞれ図17,図18に示す。
For example, FIG. 15 shows the relationship between the frequency spectrum of the vowel “a” (A) recorded by the microphone and the formant frequency.
Next, FIG. 16 shows the relationship between the frequency spectrum of the vowel “i” (ii) recorded by the microphone and the formant frequency.
From these, it can be seen that the basic frequency of both “a” (a) and “i” (i) is equal to about 120 Hz, but the outline of the frequency spectrum is greatly different. “A” (A) has the formant frequency with the closest values of F1 and F2 among vowels, while “i” (I) has the feature that the values of F1 and F2 are the farthest among vowels. Have. In addition, if the fundamental frequency is different for the same vowel, the outline of the frequency spectrum is similar. FIGS. 17 and 18 show frequency spectra of “a” (A) and “i” (I) having a fundamental frequency of about 240 Hz recorded by the microphone, respectively.

図17,図18を、図15,図16と比べると、基本周波数が大きくなると、概形は同じだがフォルマント周波数がより高周波数となることが分かる。
ここで、ディジタルホログラフィによって計測した音場(基本周波数260Hz)の周波数スペクトル図12、図14を確認すると、マイクで計測した240Hzの“a”(あ), “i”(い)の周波数スペクトル図17,図18とほぼ同形であることが分かる。
従って、ディジタルホログラフィで計測した音場において、フォルマント周波数の特徴がマイクで録音するときと同様に現れていることが分かる。このことから、ディジタルホログラフィでもマイクと同じように音素認識できるほど正確な音が計測できていることになる。
17 and 18 are compared with FIGS. 15 and 16, it can be seen that when the fundamental frequency is increased, the outline is the same, but the formant frequency is higher.
Here, when the frequency spectrum diagrams 12 and 14 of the sound field (basic frequency 260 Hz) measured by digital holography are confirmed, the frequency spectrum diagrams of “a” (a) and “i” (i) at 240 Hz measured by the microphone. 17, it can be seen that the shape is almost the same as FIG.
Therefore, it can be seen that in the sound field measured by digital holography, the characteristic of formant frequency appears in the same manner as when recording with a microphone. From this, even with digital holography, it is possible to measure sound that is accurate enough to be recognized as phonemes in the same way as a microphone.

次に、電磁波の一例であるミリ波を用いて、物体波の複素振幅情報を取得し、音場を3次元的に計測する方法について説明する。
音場となる物体にミリ波を通過させ、検出器内で物体波と直接波の位相差を時系列に検波して物体波の複素振幅情報を取得し、それぞれの複素振幅情報から物体波を再構成する場合の構成例を図21に示す。
図21に示すように、ミリ波発生源60から発振されたミリ波は、ミリ波ビーム径を拡大するビーム径拡大系61を通過した後、ビームスプリッター62により分波され、一方のミリ波は音場1を通過し、物体波としてミリ波検出器アレイ63により受波される。他方のミリ波は音場1を通過せずに、直接波としてミリ波検出器アレイ63により受波される。受波された双方のミリ波の信号は、位相比較器64に取り込まれ、物体波と直接波の位相差を検波される。位相比較器64が検出器となり、検出器内で物体波と直接波の位相差を時系列に検波し、物体波の複素振幅情報を取得し、コンピュータ(図示せず)がそれぞれの複素振幅情報から物体波を再構成する。また、参照となる直接波の位相検出にはミリ波検出器アレイを用いずに、単一検出器で代用することも可能である。さらに、空間的に一定値である場合には直接波の位相計測を省略することも可能である。
Next, a method of acquiring the complex amplitude information of the object wave and measuring the sound field three-dimensionally using millimeter waves, which are an example of electromagnetic waves, will be described.
The millimeter wave is passed through the object that becomes the sound field, the phase difference between the object wave and the direct wave is detected in time series in the detector to obtain the complex amplitude information of the object wave, and the object wave is obtained from each complex amplitude information. A configuration example in the case of reconfiguration is shown in FIG.
As shown in FIG. 21, the millimeter wave oscillated from the millimeter wave generating source 60 passes through a beam diameter expanding system 61 that expands the millimeter wave beam diameter, and then is split by a beam splitter 62. It passes through the sound field 1 and is received by the millimeter wave detector array 63 as an object wave. The other millimeter wave does not pass through the sound field 1 and is received by the millimeter wave detector array 63 as a direct wave. Both millimeter wave signals received are received by the phase comparator 64, and the phase difference between the object wave and the direct wave is detected. The phase comparator 64 serves as a detector, and the phase difference between the object wave and the direct wave is detected in time series in the detector to obtain complex amplitude information of the object wave, and a computer (not shown) receives each complex amplitude information. The object wave is reconstructed from Further, instead of using the millimeter wave detector array, a single detector can be substituted for the phase detection of the direct wave as a reference. Furthermore, when the value is spatially constant, direct wave phase measurement can be omitted.

本発明は、居住空間やコンサートホールの設計ツールとして有用である。また、人工声帯や楽器中の音場形成の可視化が可能になり、改良や製品化の設計ツールとして有用である。   The present invention is useful as a design tool for living spaces and concert halls. In addition, visualization of sound field formation in artificial vocal cords and musical instruments becomes possible, which is useful as a design tool for improvement and commercialization.

1,1A,1B 音場
2,3,3A,3B 物体光
4 参照光
5 干渉光
6 振幅変調板
7 フィルム
8 ホログラム
9 透過光
10 レーザー光源
12,19 ビームスプリッター
13,14,16,17 ビームエクスパンダー
15,18 ミラー
20 CCDイメージセンサ
30 コンピュータ
40A,40B,51 再構成像
41A,41B ピクセル(画素)
50 3次元物体
60 ミリ波発生源
61 ビーム径拡大系
62 ビームスプリッター
63 ミリ波検出器アレイ
64 位相比較器

1, 1A, 1B Sound field 2, 3, 3A, 3B Object light 4 Reference light 5 Interference light 6 Amplitude modulation plate 7 Film 8 Hologram 9 Transmitted light 10 Laser light source 12, 19 Beam splitter 13, 14, 16, 17 Beam x Pander 15, 18 Mirror 20 CCD image sensor 30 Computer 40A, 40B, 51 Reconstructed image 41A, 41B Pixel (pixel)
50 Three-dimensional object 60 Millimeter wave source 61 Beam diameter expansion system 62 Beam splitter 63 Millimeter wave detector array 64 Phase comparator

Claims (11)

音場を通過する物体光と参照光とを非共軸で重ね合せて干渉光とし、
前記干渉光を時系列に撮像し、それぞれの干渉強度分布から前記物体光を再構成し、時系列の再構成画像から時系列位相分布データを取得し、3次元場における音情報を再構成することを特徴とする音場3次元画像計測方法。
The object light passing through the sound field and the reference light are superposed non-coaxially to form interference light,
The interference light is imaged in time series, the object light is reconstructed from the respective interference intensity distributions, time series phase distribution data is acquired from the time series reconstructed images, and sound information in a three-dimensional field is reconstructed. A sound field three-dimensional image measurement method characterized by the above.
音場となる物体に電磁波を通過させ、前記音場を通過する物体波と参照となる直接波とを非共軸または共軸で重ね合せて干渉波として時系列に受波し、或は、検出器内で前記物体波と前記直接波の位相差を時系列に検波して前記物体波の複素振幅情報を取得し、
それぞれの干渉強度分布または前記複素振幅情報から前記物体波を再構成し、時系列の再構成画像から時系列位相分布データを取得し、3次元場における音情報を再構成することを特徴とする音場3次元画像計測方法。
An electromagnetic wave is passed through an object that is a sound field, and the object wave that passes through the sound field and a direct wave that is a reference are superimposed in a non-coaxial or coaxial manner and received in time series as an interference wave, or In the detector, the phase difference between the object wave and the direct wave is detected in time series to obtain complex amplitude information of the object wave,
The object wave is reconstructed from each interference intensity distribution or the complex amplitude information, time-series phase distribution data is acquired from a time-series reconstructed image, and sound information in a three-dimensional field is reconstructed. Sound field 3D image measurement method.
前記干渉光の撮像は、計測対象となる音の周波数の2倍以上のサンプリング周期で行うことを特徴とする請求項1又は2に記載の音場3次元画像計測方法。   3. The sound field three-dimensional image measurement method according to claim 1, wherein the imaging of the interference light is performed at a sampling period that is twice or more the frequency of the sound to be measured. 前記音情報の再構成は、前記時系列位相分布データから位相時間波形を取得し、前記位相時間波形を音声データとして取得し、前記位相時間波形をフーリエ変換により前記音場の周波数スペクトルを取得することを特徴とする請求項1〜3の何れかに記載の音場3次元画像計測方法。   The sound information is reconstructed by acquiring a phase time waveform from the time-series phase distribution data, acquiring the phase time waveform as sound data, and acquiring a frequency spectrum of the sound field by Fourier transform of the phase time waveform. The sound field three-dimensional image measurement method according to any one of claims 1 to 3. 定常時の前記音声データまたは前記周波数スペクトルに基づいて、定常時に発生しない音を検知することを特徴とする請求項4に記載の音場3次元画像計測方法。   5. The sound field three-dimensional image measurement method according to claim 4, wherein a sound that does not occur in a steady state is detected based on the sound data or the frequency spectrum at a constant time. 前記音場に音源が存在する場合に、撮像位置あるいは受波位置からの前記音源の3次元相対位置を計測し得ることを特徴とする請求項1〜5の何れかに記載の音場3次元画像計測方法。   The three-dimensional sound field according to any one of claims 1 to 5, wherein when a sound source is present in the sound field, a three-dimensional relative position of the sound source from an imaging position or a receiving position can be measured. Image measurement method. 請求項1〜4の何れかの音場3次元画像計測方法を用いて、
前記音場を時系列の再構成画像として記録し、前記位相時間波形に基づいて音を再生する音再生方法。
Using the sound field three-dimensional image measurement method according to claim 1,
A sound reproduction method for recording the sound field as a time-series reconstructed image and reproducing the sound based on the phase time waveform.
音場を通過する物体光と参照光とを非共軸で重ね合せて干渉光とする光学測定系と、
前記干渉光を時系列に撮像する撮像手段と、
それぞれの干渉強度分布から前記物体光を再構成し、時系列の再構成画像から時系列位相分布データを取得する時系列位相分布取得手段と、
前記時系列位相分布データから位相時間波形を取得する位相時間波形取得手段と、
前記位相時間波形を音声データとして取得する音声データ取得手段と、
前記位相時間波形をフーリエ変換により前記音場の周波数スペクトルを取得する周波数スペクトル取得手段と、
を備えたことを特徴とする音場3次元画像計測装置。
An optical measurement system in which object light passing through the sound field and reference light are superposed non-coaxially to form interference light;
Imaging means for imaging the interference light in time series;
Reconstructing the object light from each interference intensity distribution, time series phase distribution acquisition means for acquiring time series phase distribution data from a time series reconstructed image;
Phase time waveform acquisition means for acquiring a phase time waveform from the time-series phase distribution data;
Audio data acquisition means for acquiring the phase time waveform as audio data;
A frequency spectrum acquisition means for acquiring a frequency spectrum of the sound field by Fourier transform of the phase time waveform;
A sound field three-dimensional image measurement apparatus comprising:
音場となる物体に電磁波を通過させて、物体波と参照となる直接波とを非共軸または共軸で重ね合せて干渉波とする電磁波測定系および前記干渉波を時系列に受波する受波手段と、
或は、
検出器内で前記物体波と前記直接波の位相差を時系列に検波し、前記物体波の複素振幅情報を取得する手段と、
それぞれの干渉強度分布または前記複素振幅情報から前記物体光を再構成し、時系列の再構成画像から時系列位相分布データを取得する時系列位相分布取得手段と、
前記時系列位相分布データから位相時間波形を取得する位相時間波形取得手段と、
前記位相時間波形を音声データとして取得する音声データ取得手段と、
前記位相時間波形をフーリエ変換により前記音場の周波数スペクトルを取得する周波数スペクトル取得手段と、
を備えたことを特徴とする音場3次元画像計測装置。
An electromagnetic wave measurement system that passes an electromagnetic wave through an object to be a sound field and superimposes the object wave and a reference direct wave on a non-coaxial or coaxial axis to form an interference wave, and receives the interference wave in time series Receiving means;
Or
Means for detecting a phase difference between the object wave and the direct wave in a detector in time series, and acquiring complex amplitude information of the object wave;
Time series phase distribution acquisition means for reconstructing the object light from each interference intensity distribution or the complex amplitude information and acquiring time series phase distribution data from a time series reconstructed image;
Phase time waveform acquisition means for acquiring a phase time waveform from the time-series phase distribution data;
Audio data acquisition means for acquiring the phase time waveform as audio data;
A frequency spectrum acquisition means for acquiring a frequency spectrum of the sound field by Fourier transform of the phase time waveform;
A sound field three-dimensional image measurement apparatus comprising:
前記干渉光の撮像は、計測対象となる音の周波数の2倍以上のサンプリング周期で行うことを特徴とする請求項8又は9に記載の音場3次元画像計測装置。   The sound field three-dimensional image measurement apparatus according to claim 8 or 9, wherein the imaging of the interference light is performed at a sampling period that is twice or more the frequency of the sound to be measured. 請求項8〜10の何れかの音場3次元画像計測装置を用いて、
前記音場を時系列の再構成画像として記録し、前記位相時間波形に基づいて音を再生する音再生装置。
Using the sound field three-dimensional image measurement device according to any one of claims 8 to 10,
A sound reproducing apparatus for recording the sound field as a time-series reconstructed image and reproducing the sound based on the phase time waveform.
JP2014086948A 2014-04-19 2014-04-19 Sound field three-dimensional image measurement method and sound reproduction method by digital holography Active JP6391086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014086948A JP6391086B2 (en) 2014-04-19 2014-04-19 Sound field three-dimensional image measurement method and sound reproduction method by digital holography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014086948A JP6391086B2 (en) 2014-04-19 2014-04-19 Sound field three-dimensional image measurement method and sound reproduction method by digital holography

Publications (2)

Publication Number Publication Date
JP2015206665A true JP2015206665A (en) 2015-11-19
JP6391086B2 JP6391086B2 (en) 2018-09-19

Family

ID=54603559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014086948A Active JP6391086B2 (en) 2014-04-19 2014-04-19 Sound field three-dimensional image measurement method and sound reproduction method by digital holography

Country Status (1)

Country Link
JP (1) JP6391086B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111707353A (en) * 2020-05-29 2020-09-25 西安交通大学 A method of reconstructing the sound field of a curved surface of revolution based on near-field acoustic holography
CN112697269A (en) * 2020-12-07 2021-04-23 福州大学 Sound intensity sparse measurement high-resolution imaging method based on simulation sound field prior information

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220032932A1 (en) * 2020-07-29 2022-02-03 Micron Technology, Inc. Image sensor for processing sensor data to reduce data traffic to host system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6038041A (en) * 1997-09-17 2000-03-14 Virginia Tech Intellectual Properties, Inc. Three-dimensional holographic fluorescence microscope
JP2001289781A (en) * 2000-04-07 2001-10-19 Japan Science & Technology Corp Light wave vertical cross section tomography observation apparatus
JP2005241348A (en) * 2004-02-25 2005-09-08 Matsushita Electric Ind Co Ltd Sound field visualizing/measuring instrument
CN103728868A (en) * 2013-12-20 2014-04-16 北京工业大学 Digital holography recording and representing integrated imaging system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6038041A (en) * 1997-09-17 2000-03-14 Virginia Tech Intellectual Properties, Inc. Three-dimensional holographic fluorescence microscope
JP2001289781A (en) * 2000-04-07 2001-10-19 Japan Science & Technology Corp Light wave vertical cross section tomography observation apparatus
JP2005241348A (en) * 2004-02-25 2005-09-08 Matsushita Electric Ind Co Ltd Sound field visualizing/measuring instrument
CN103728868A (en) * 2013-12-20 2014-04-16 北京工业大学 Digital holography recording and representing integrated imaging system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
粟辻 安浩 ほか: "並列位相シフトディジタルホログラフィを用いた高速透明物体の動画像定量可視化", 精密工学会誌, vol. Vol.79, No.7, 2013, JPN6018008377, 5 January 2014 (2014-01-05), JP, pages 622 - 625 *
高橋 功 ほか: "位相シフトデジタルホログラフィを用いた面外変位計測", 実験力学, vol. 3, no. 2, JPN6018008376, June 2003 (2003-06-01), JP, pages 98 - 102 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111707353A (en) * 2020-05-29 2020-09-25 西安交通大学 A method of reconstructing the sound field of a curved surface of revolution based on near-field acoustic holography
CN111707353B (en) * 2020-05-29 2021-11-09 西安交通大学 Near-field acoustic holography technology-based revolution surface sound field reconstruction method
CN112697269A (en) * 2020-12-07 2021-04-23 福州大学 Sound intensity sparse measurement high-resolution imaging method based on simulation sound field prior information
CN112697269B (en) * 2020-12-07 2022-05-31 福州大学 A High-Resolution Imaging Method for Sound Intensity Sparse Measurement Based on Simulated Sound Field Prior Information

Also Published As

Publication number Publication date
JP6391086B2 (en) 2018-09-19

Similar Documents

Publication Publication Date Title
KR101584822B1 (en) Motion detection system and method
US10129658B2 (en) Method and apparatus for recovering audio signals from images
Davis et al. The visual microphone: Passive recovery of sound from video
Kakue et al. Digital holographic high-speed 3D imaging for the vibrometry of fast-occurring phenomena
KR101634170B1 (en) Digital holographic microscopy and method for generating digital holographic image
KR20050100646A (en) Method and device for imaged representation of acoustic objects, a corresponding information program product and a recording support readable by a corresponding computer
CN105549371B (en) A kind of continuous THz wave illumination digital holographic imaging method of multi-angle
Xu et al. Remote eavesdropping at 200 meters distance based on laser feedback interferometry with single-photon sensitivity
De Greef et al. Digital stroboscopic holography setup for deformation measurement at both quasi-static and acoustic frequencies
JP6391086B2 (en) Sound field three-dimensional image measurement method and sound reproduction method by digital holography
Ishikawa et al. Seeing the sound of castanets: Acoustic resonances between shells captured by high-speed optical visualization with 1-mm resolution
Kumar et al. Highly stable vibration measurements by common-path off-axis digital holography
Oikawa et al. Optical sound field measurement and imaging using laser and high-speed camera
Harvey et al. Visualization of acoustic waves in air and subsequent audio recovery with a high-speed schlieren imaging system: experimental and computational development of a schlieren microphone
Rajput et al. Multimodal sound field imaging using digital holography
Huang et al. Real-time high sensibility vibration detection based on phase correlation of line speckle patterns
JP5033501B2 (en) Scanning microscope for optical measurement of objects
Zhong et al. Visual measurement of instable sound field using common-path off-axis digital holography
Li et al. LDV remote voice acquisition and enhancement
Molin et al. Optical methods of today for visualizing sound fields in musical acoustics
Zhou et al. MFCC based real-time speech reproduction and recognition using distributed acoustic sensing technology
Lin et al. Study of optical-based speech acquisition system using vibration signals from speakers' medical masks
JP2001289781A (en) Light wave vertical cross section tomography observation apparatus
CN113495470A (en) Lens-free digital holographic image capturing system using holographic optical element
Livens et al. Measuring the motion of the eardrum using Digital Image Correlation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180816

R150 Certificate of patent or registration of utility model

Ref document number: 6391086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250