JP2015030926A - Method of producing dope for acrylic fiber - Google Patents
Method of producing dope for acrylic fiber Download PDFInfo
- Publication number
- JP2015030926A JP2015030926A JP2013160304A JP2013160304A JP2015030926A JP 2015030926 A JP2015030926 A JP 2015030926A JP 2013160304 A JP2013160304 A JP 2013160304A JP 2013160304 A JP2013160304 A JP 2013160304A JP 2015030926 A JP2015030926 A JP 2015030926A
- Authority
- JP
- Japan
- Prior art keywords
- acrylonitrile
- solvent
- polymer
- based polymer
- acrylonitrile polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Artificial Filaments (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
Abstract
Description
本発明は、衣料用繊維や炭素繊維用前駆体繊維束等の製造に用いられるアクリル繊維用紡糸原液の製造方法に関する。 The present invention relates to a method for producing a spinning dope for acrylic fibers used in the production of clothing fibers, precursor fiber bundles for carbon fibers, and the like.
アクリル繊維は羊毛に似た優れた嵩高性、風合い、染色鮮明性等の特性を有し、広範な用途に利用されている。さらにアクリル繊維は炭素繊維前駆体繊維束(プレカーサー)としても用いられ、アクリル繊維を焼成工程にて炭素化することにより、ポリアクリロニトリル系炭素繊維を得ることができる。ポリアクリロニトリル系炭素繊維は、強度、弾性率、耐熱性などに優れることから、複合材料用補強繊維として、スポーツ用途や航空・宇宙用途に加え、自動車、土木建築、圧力容器、風車ブレード等の一般産業用とにも幅広く展開されつつある。 Acrylic fibers have excellent bulkiness similar to wool, texture, dyeing clarity, and the like, and are used in a wide range of applications. Furthermore, the acrylic fiber is also used as a carbon fiber precursor fiber bundle (precursor), and a polyacrylonitrile-based carbon fiber can be obtained by carbonizing the acrylic fiber in a firing step. Polyacrylonitrile-based carbon fiber is superior in strength, elastic modulus, heat resistance, etc., and as a reinforcing fiber for composite materials, it is used in general applications such as automobiles, civil engineering buildings, pressure vessels, windmill blades, in addition to sports and aerospace applications. Widely deployed for industrial use.
アクリル繊維は、一般にアクリロニトリル系重合体を有機または無機溶剤に溶解した紡糸原液を湿式或いは乾湿式紡糸して繊維状に賦形した後、延伸、洗浄、乾燥緻密化することにより得られる。溶剤としては、ジメチルホルムアミドやジメチルアセトアミドといったアミド系溶剤やジメチルスルホキシドなどの有機溶剤が広く使用されている。 Acrylic fibers are generally obtained by drawing a spinning stock solution obtained by dissolving an acrylonitrile polymer in an organic or inorganic solvent into wet or dry-wet spinning and shaping it into a fiber, and then drawing, washing, and drying and densifying. As the solvent, amide solvents such as dimethylformamide and dimethylacetamide and organic solvents such as dimethyl sulfoxide are widely used.
紡糸原液中に含まれる粉塵といった異物や紡糸原液自体が熱劣化することによって発生するゲル状物は、炭素繊維前駆体アクリル繊維の製造に悪影響を及ぼすだけでなく、このような異物は炭素繊維を製造する過程にて表面欠陥点、内在欠陥点となり、炭素繊維の強度低下を引き起こしてしまう。したがって、紡糸原液をフィルター材にて濾過することにより前述の異物やゲル状物を除去することが一般的である。 The foreign matter such as dust contained in the spinning dope and the gel-like material generated by the thermal degradation of the spinning dope not only adversely affect the production of the carbon fiber precursor acrylic fiber. It becomes a surface defect point and an intrinsic defect point in the manufacturing process, and causes a decrease in strength of the carbon fiber. Therefore, it is common to remove the above-mentioned foreign matters and gels by filtering the spinning dope with a filter material.
アクリロニトリル系重合体の溶剤への溶解性は、得られる繊維製品の性能だけでなく、紡糸原液の濾過工程における工程通過性に対しても大きな影響を及ぼすことが知られている。よって、紡糸原料としてのアクリロニトリル系重合体には、溶剤への溶解性が優れていることが求められる。 It is known that the solubility of the acrylonitrile-based polymer in the solvent has a great influence not only on the performance of the resulting fiber product but also on the process passability in the filtration process of the spinning dope. Therefore, the acrylonitrile-based polymer as a spinning raw material is required to have excellent solubility in a solvent.
特許文献1には、アクリロニトリル単量体単位を95〜99.5質量%、アクリルアミド単量体単位を0.5〜5質量%、任意成分としてアクリロニトリルと共重合可能なビニル系単量体単位を0〜4.5質量%を含み、嵩比重が0.30g/cm3より大きく、0.40g/cm3以下であり、平均粒径が30μm以上40μm以下であり、表面からの厚さが5μm以内である表層部の空孔率が30%以下であるアクリロニトリル系重合体は溶剤への分散性が向上し、溶解しやすくなると開示されている。しかしながら、アクリロニトリル系重合体の製造条件を変更しなければならず、また、アクリロニトリル重合体の単量体組成を変更すれば、紡糸工程での凝固性や延伸性、焼成工程での反応性に大きな影響を及ぼす恐れがある。 Patent Document 1 includes 95 to 99.5% by mass of an acrylonitrile monomer unit, 0.5 to 5% by mass of an acrylamide monomer unit, and a vinyl monomer unit copolymerizable with acrylonitrile as an optional component. The bulk specific gravity is greater than 0.30 g / cm 3 and not greater than 0.40 g / cm 3 , the average particle size is not less than 30 μm and not more than 40 μm, and the thickness from the surface is 5 μm. It is disclosed that an acrylonitrile-based polymer having a surface layer portion porosity of 30% or less is improved in dispersibility in a solvent and easily dissolved. However, the production conditions for the acrylonitrile polymer must be changed, and if the monomer composition of the acrylonitrile polymer is changed, the solidification and stretchability in the spinning process and the reactivity in the firing process are large. May have an effect.
特許文献2には、アクリロニトリル重合体を連続的に定量自由落下させ、溶剤を噴出させ、落下途中のアクリロニトリル重合体を噴射流で混合することによって、アクリロニトリル重合体の溶剤への分散性を向上させる手法が開示されている。 In Patent Document 2, the dispersibility of the acrylonitrile polymer in the solvent is improved by allowing the acrylonitrile polymer to continuously and freely fall freely, ejecting the solvent, and mixing the acrylonitrile polymer in the middle of the dropping with a jet flow. A technique is disclosed.
本発明は、アクリロニトリル系重合体の性状を変更せず、アクリロニトリル系重合体の溶剤への分散性および溶解性を向上させ、アクリル繊維用紡糸原液の濾過工程における工程通過性を向上させることを目的とする。 An object of the present invention is to improve the dispersibility and solubility of an acrylonitrile polymer in a solvent without changing the properties of the acrylonitrile polymer, and to improve the process passability in the filtration process of the spinning solution for acrylic fibers. And
本発明のポリアクリロニトリル系繊維用紡糸原液の製造方法は、アクリロニトリル系重合体の温度を10℃以下に冷却する工程、前記アクリロニトリル系重合体を−20℃以上25℃以下の溶剤に分散させる工程、アクリロニトリル系重合体分散液を加熱してアクリロニトリル系重合体を溶解させる工程を順に有するアクリル繊維用紡糸原液の製造方法である。 The method for producing the spinning solution for polyacrylonitrile fiber of the present invention includes a step of cooling the temperature of the acrylonitrile polymer to 10 ° C. or less, a step of dispersing the acrylonitrile polymer in a solvent of −20 ° C. or more and 25 ° C. or less, This is a method for producing a spinning dope for acrylic fiber, which in turn includes a step of dissolving an acrylonitrile polymer by heating an acrylonitrile polymer dispersion.
本発明のポリアクリロニトリル系繊維用紡糸原液の製造方法は、前記アクリロニトリル系重合体の温度を−20℃以上5℃以下に冷却する工程であることが好ましい。 The method for producing a spinning solution for polyacrylonitrile fiber of the present invention is preferably a step of cooling the temperature of the acrylonitrile polymer to -20 ° C or higher and 5 ° C or lower.
アクリロニトリル系重合体を分散させる溶剤の温度だけでなく、アクリロニトリル系重合体の温度を低温に制御することにより、アクリロニトリル系重合体の性状を変更せず、アクリロニトリル系重合体の溶剤への分散性および溶解性を向上させ、アクリル繊維用紡糸原液の濾過工程における工程通過性を向上させることができる。 By controlling not only the temperature of the solvent for dispersing the acrylonitrile polymer, but also the temperature of the acrylonitrile polymer at a low temperature, the properties of the acrylonitrile polymer are not changed, and the dispersibility of the acrylonitrile polymer in the solvent and Solubility can be improved and the process passability in the filtration process of the spinning solution for acrylic fibers can be improved.
以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
本発明のアクリル繊維用紡糸原液の製造方法は、アクリロニトリル系重合体分散液(単に分散液と称することもある)を加熱してアクリロニトリル系重合体を溶解させ、紡糸原液を製造する方法である。分散液は、アクリロニトリル系重合体を溶剤に分散させたものである。 The method for producing a spinning dope for acrylic fibers of the present invention is a method for producing a spinning dope by heating an acrylonitrile polymer dispersion (sometimes referred to simply as a dispersion) to dissolve the acrylonitrile polymer. The dispersion is obtained by dispersing an acrylonitrile-based polymer in a solvent.
アクリロニトリル系重合体は、アクリロニトリル単量体単位を90質量%以上、好ましくは95質量%以上含有するものである。このようなアクリロニトリル系重合体を原料とすると、充分な性能を有する高品質な炭素繊維を最終的に得ることができる。アクリロニトリル単位の割合が上記範囲未満では、アクリロニトリル単位以外の共重合成分が欠陥点となり易く、得られる炭素繊維の品質や性能が不十分となる可能性がある。共重合成分はエチレン性不飽和結合を有する単量体であれば特に限定されない。 The acrylonitrile-based polymer contains 90% by mass or more, preferably 95% by mass or more of acrylonitrile monomer units. When such an acrylonitrile-based polymer is used as a raw material, a high-quality carbon fiber having sufficient performance can be finally obtained. If the ratio of the acrylonitrile unit is less than the above range, the copolymer component other than the acrylonitrile unit tends to be a defect point, and the quality and performance of the obtained carbon fiber may be insufficient. A copolymerization component will not be specifically limited if it is a monomer which has an ethylenically unsaturated bond.
紡糸原液中のアクリロニトリル系重合体の濃度は13〜25質量%であることが好ましい。13質量%以上であれば、伸長粘度の低下に伴う曳糸性の低下を防ぐことができ、また溶剤の使用量を抑えることができ、紡糸原液を凝固させた際にその内部にボイドが生じたりして品質が低下することを防止することもできる。また、25質量%以下であれば、せん断粘度、および伸長粘度を高くさせすぎずに紡糸することができ、アクリロニトリル系重合体の溶解性も確保することができる。 The concentration of the acrylonitrile polymer in the spinning dope is preferably 13 to 25% by mass. If it is 13% by mass or more, it is possible to prevent a decrease in spinnability due to a decrease in elongational viscosity, to suppress the amount of solvent used, and when a spinning stock solution is solidified, voids are generated inside it. It is also possible to prevent the quality from deteriorating. Moreover, if it is 25 mass% or less, it can spin without making shear viscosity and elongation viscosity too high, and can also ensure the solubility of an acrylonitrile-type polymer.
溶剤は凝固速度が速く、生産性を向上させやすい、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシドを用いることが好ましく、単独で用いても、混合してもよい。 As the solvent, it is preferable to use dimethylformamide, dimethylacetamide, or dimethylsulfoxide, which has a high solidification rate and is easy to improve productivity, and may be used alone or in combination.
アクリロニトリル系重合体を溶剤へ分散させる際の溶剤の温度は−20℃以上25℃以下にすることが好ましい。−20℃以上とすることで、分散液の粘度がわずかな溶解の進行によって適度に増加し、分散液中のアクリロニトリル系重合体の沈降による濃度斑を防ぐことができる。また、25℃以下とすることで、分散液の過剰な粘度上昇を抑えることができ、工程通過性が向上する。 The temperature of the solvent when the acrylonitrile polymer is dispersed in the solvent is preferably -20 ° C or higher and 25 ° C or lower. By setting the temperature to −20 ° C. or higher, the viscosity of the dispersion liquid increases moderately due to the slight progress of dissolution, and density spots due to precipitation of the acrylonitrile-based polymer in the dispersion liquid can be prevented. Moreover, the excess viscosity increase of a dispersion liquid can be suppressed by setting it as 25 degrees C or less, and process passability improves.
アクリロニトリル系重合体を溶剤へ分散させる際のアクリロニトリル系重合体の温度は−20℃以上5℃以下にすることが好ましく、0℃以下がより好ましい。5℃以下とすることで、アクリロニトリル系重合体の溶解の進行が抑えられ、分散液の粘度上昇を抑制することができる。また、−20℃以上とすることで分散液の粘度がわずかな溶解の進行によって適度に増加し、分散液中のアクリロニトリル系重合体の沈降による濃度斑を防ぐことができる。
アクリロニトリル系重合体の冷却方法は、除湿した乾燥空気中で行い、結露を防止することが好ましい。
アクリロニトリル系重合体を冷却した後は、続けて溶媒に溶解することが好ましい。
The temperature of the acrylonitrile polymer when the acrylonitrile polymer is dispersed in the solvent is preferably -20 ° C or higher and 5 ° C or lower, more preferably 0 ° C or lower. By setting it as 5 degrees C or less, the progress of melt | dissolution of an acrylonitrile-type polymer can be suppressed, and the viscosity raise of a dispersion liquid can be suppressed. Moreover, by setting it as -20 degreeC or more, the viscosity of a dispersion liquid will increase moderately by progress of slight melt | dissolution, and the density spot by sedimentation of the acrylonitrile-type polymer in a dispersion liquid can be prevented.
The method for cooling the acrylonitrile polymer is preferably performed in dehumidified dry air to prevent condensation.
After the acrylonitrile-based polymer is cooled, it is preferable to continuously dissolve it in the solvent.
分散液を加熱する温度は60℃以上125℃以下とし、加熱する時間は5分以上12分以内とすることが好ましい。加熱温度を60℃以上とすることで、未溶解物の量を少なくすることができ、125℃以下とすることで、ゲル状物の発生を抑えることができる。また、加熱時間を5分以上とすることで未溶解物の量を少なくすることができ、12分以下とすることで、ゲル状物の発生を抑えることができる。 The temperature for heating the dispersion is preferably 60 ° C. or more and 125 ° C. or less, and the heating time is preferably 5 minutes or more and 12 minutes or less. By setting the heating temperature to 60 ° C. or higher, the amount of undissolved material can be reduced, and by setting it to 125 ° C. or lower, the generation of gel-like materials can be suppressed. Further, the amount of undissolved material can be reduced by setting the heating time to 5 minutes or longer, and the generation of gel-like material can be suppressed by setting the heating time to 12 minutes or shorter.
分散液を加熱して得られた紡糸原液はフィルター材で濾過し、紡糸原液中に含まれる粉塵といった異物や紡糸原液自体が熱劣化することによって発生するゲル状物を除去する。こうして得られた紡糸原液が紡糸され、衣料用繊維や炭素繊維用前駆体繊維束等として用いられる。 The spinning dope obtained by heating the dispersion is filtered with a filter material to remove foreign matters such as dust contained in the spinning dope and gel-like substances generated by thermal degradation of the spinning dope itself. The spinning dope thus obtained is spun and used as clothing fibers, precursor fiber bundles for carbon fibers, or the like.
以上説明したように、このようなアクリル繊維用紡糸原液の製造法によれば、アクリロニトリル系重合体の性状を変更せず、アクリロニトリル系重合体の溶剤への分散性および溶解性を向上させ、アクリル繊維用紡糸原液の濾過工程における工程通過性を向上させることができる。 As described above, according to such a method for producing a spinning dope for acrylic fiber, the dispersibility and solubility of the acrylonitrile polymer in the solvent are improved without changing the properties of the acrylonitrile polymer. The process passability in the filtration process of the fiber spinning dope can be improved.
以下、実施例により本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited to these Examples.
(分散性評価)
アクリロニトリル系重合体の溶剤への分散性評価は、TAインスツルメント社製レオメーターAR550を用いて行った。測定は、直径40mm、コーン角2゜のコーンを用い、0℃、0.1〜1000(/sec)のせん断速度にて行い、10(/sec)のせん断粘度(Pa・s)を指標とした。せん断粘度が小さいほど、アクリロニトリル系重合体の分散性が高い。
(Dispersibility evaluation)
Evaluation of dispersibility of the acrylonitrile-based polymer in a solvent was performed using a rheometer AR550 manufactured by TA Instruments. The measurement was performed using a cone having a diameter of 40 mm and a cone angle of 2 ° at a shear rate of 0 ° C. and 0.1 to 1000 (/ sec), and using a shear viscosity (Pa · s) of 10 (/ sec) as an index. did. The smaller the shear viscosity, the higher the dispersibility of the acrylonitrile polymer.
(濾過性評価)
紡糸原液の濾過性は、90%捕集効率5μmの金属不織布のフィルター(日本精線製ナスロン)に、1kg/mm2・hrの割合にて0.65kg通過させた時の差圧上昇の値を昇圧度(MPa)として評価した。昇圧度が小さいほど濾過工程通過性に優れる。
(Filterability evaluation)
The filterability of the spinning dope is the value of the differential pressure increase when 0.65 kg is passed through a metal nonwoven fabric filter (Nasslon manufactured by Nippon Seisen) with a 90% collection efficiency at a rate of 1 kg / mm 2 · hr. Was evaluated as the degree of pressure increase (MPa). The smaller the pressure increase, the better the filtration process passability.
(実施例)
0℃に冷却したジメチルホルムアミドに、0℃に冷却したアクリロニトリル系重合体を固形分23%で均一に分散させ、分散液を得て分散性の評価を行った。さらにこの分散液を、熱媒を循環可能なジャケット付きの内径12mmの配管に通過させ、滞在時間9分で110℃まで加熱して溶解させて紡糸原液を得て、濾過性を評価した。結果を表に示す。
(Example)
The acrylonitrile polymer cooled to 0 ° C. was uniformly dispersed at a solid content of 23% in dimethylformamide cooled to 0 ° C., and a dispersion was obtained to evaluate the dispersibility. Further, this dispersion was passed through a pipe having an inner diameter of 12 mm with a jacket capable of circulating the heat medium, heated to 110 ° C. and dissolved in a residence time of 9 minutes to obtain a spinning dope, and the filterability was evaluated. The results are shown in the table.
(比較例)
アクリロニトリル系重合体の温度を、25℃に変更した以外は、実施例と同様にして評価した。
(Comparative example)
Evaluation was performed in the same manner as in the Examples except that the temperature of the acrylonitrile-based polymer was changed to 25 ° C.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013160304A JP2015030926A (en) | 2013-08-01 | 2013-08-01 | Method of producing dope for acrylic fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013160304A JP2015030926A (en) | 2013-08-01 | 2013-08-01 | Method of producing dope for acrylic fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015030926A true JP2015030926A (en) | 2015-02-16 |
Family
ID=52516503
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013160304A Pending JP2015030926A (en) | 2013-08-01 | 2013-08-01 | Method of producing dope for acrylic fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015030926A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015132040A (en) * | 2014-01-10 | 2015-07-23 | モンテフィブレ マエ テクノロジース ソシエタ ア レスポンサビリタ リミタータMontefibre Mae Technologies S.R.L. | Process for production of acrylic fibers |
ITUA20161499A1 (en) * | 2016-03-09 | 2017-09-09 | Montefibre Mae Tech S R L | Production process of acrylic or modacrylic fibers |
CN112680812A (en) * | 2019-10-18 | 2021-04-20 | 中国石油化工股份有限公司 | Polyacrylonitrile-based milk protein fiber and preparation method thereof |
JP2021514203A (en) * | 2018-02-16 | 2021-06-10 | ユニヴェルシテ ドュ モンペリエUniversite De Montpellier | Biocompatible 3D network and its use as a cell support |
-
2013
- 2013-08-01 JP JP2013160304A patent/JP2015030926A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015132040A (en) * | 2014-01-10 | 2015-07-23 | モンテフィブレ マエ テクノロジース ソシエタ ア レスポンサビリタ リミタータMontefibre Mae Technologies S.R.L. | Process for production of acrylic fibers |
ITUA20161499A1 (en) * | 2016-03-09 | 2017-09-09 | Montefibre Mae Tech S R L | Production process of acrylic or modacrylic fibers |
EP3216898A1 (en) * | 2016-03-09 | 2017-09-13 | Montefibre Mae Technologies S.R.L. | Process for the production of acrylic or modacrylic fibers |
JP2017160587A (en) * | 2016-03-09 | 2017-09-14 | モンテフィブレ マエ テクノロジース ソシエタ ア レスポンサビリタ リミタータMontefibre Mae Technologies S.R.L. | Manufacturing method of acryl and modacrylic fiber |
CN107177896A (en) * | 2016-03-09 | 2017-09-19 | 蒙特美艾意技术有限责任公司 | The method for producing acrylonitrile or modified propylene nitrile series fiber |
JP2021514203A (en) * | 2018-02-16 | 2021-06-10 | ユニヴェルシテ ドュ モンペリエUniversite De Montpellier | Biocompatible 3D network and its use as a cell support |
CN112680812A (en) * | 2019-10-18 | 2021-04-20 | 中国石油化工股份有限公司 | Polyacrylonitrile-based milk protein fiber and preparation method thereof |
CN112680812B (en) * | 2019-10-18 | 2024-01-23 | 中国石油化工股份有限公司 | Polyacrylonitrile-based milk protein fiber and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kaur et al. | Producing high‐quality precursor polymer and fibers to achieve theoretical strength in carbon fibers: A review | |
Park et al. | Precursors and manufacturing of carbon fibers | |
CN107313126B (en) | Method for producing graphene modified polyamide-6 fiber through high-speed spinning | |
JP5697258B2 (en) | Method for producing precursor fiber for obtaining high strength and high modulus carbon fiber | |
JP2015030926A (en) | Method of producing dope for acrylic fiber | |
JP5251524B2 (en) | Method for producing precursor fiber for obtaining high strength and high modulus carbon fiber | |
JP2010185163A (en) | Production method of precursor fiber for obtaining carbon fiber having high strength and high elastic modulus | |
JPWO2011102400A1 (en) | Method for producing precursor fiber for obtaining high strength and high modulus carbon fiber | |
KR102157184B1 (en) | Methode for preparing acrylonitrile based copolymer fiber | |
JPWO2020090597A1 (en) | Carbon fiber precursor fiber and method for producing carbon fiber | |
JP2010168724A (en) | Method for producing precursor fiber for obtaining carbon fiber having high strength and high elastic modulus | |
JP2007291557A (en) | Carbon fiber and method for producing the same | |
JP6909453B2 (en) | High-performance fiber manufacturing method | |
JP7322327B2 (en) | Carbon fiber bundle and its manufacturing method | |
JP2012193465A (en) | Acrylic precursor fiber for carbon fiber, method for producing the same, and carbon fiber obtained from the precursor fiber | |
JP4604911B2 (en) | Carbon fiber precursor fiber, method for producing the same, and method for producing ultrafine carbon fiber | |
JP2011001653A (en) | Method for producing polyacrylonitrile-based fiber | |
JP4887219B2 (en) | Method for producing carbon fiber precursor acrylonitrile fiber | |
JP4194964B2 (en) | Carbon fiber and method for producing the same | |
JP4582819B1 (en) | Method for producing high-strength polyacrylonitrile-based carbon fiber | |
JP2018084002A (en) | Method for producing polyacrylonitrile precursor fiber and method for producing carbon fiber | |
JP2008280632A (en) | Method for producing precursor fiber bundle of carbon fiber | |
JP2015078451A (en) | Dope and production method thereof | |
JP2019094589A (en) | Production method of precursor fiber for carbon fiber | |
JP6232814B2 (en) | Acrylic fiber manufacturing method |