JP2015047638A - Laser processing method using beam branched rotary optical system - Google Patents
Laser processing method using beam branched rotary optical system Download PDFInfo
- Publication number
- JP2015047638A JP2015047638A JP2013197481A JP2013197481A JP2015047638A JP 2015047638 A JP2015047638 A JP 2015047638A JP 2013197481 A JP2013197481 A JP 2013197481A JP 2013197481 A JP2013197481 A JP 2013197481A JP 2015047638 A JP2015047638 A JP 2015047638A
- Authority
- JP
- Japan
- Prior art keywords
- laser
- processing
- solid
- processing method
- optical system
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Laser Beam Processing (AREA)
Abstract
Description
本発明はCFRPなど繊維強化複合材料などのレーザ加工を行う技術分野に関するもので、レーザビームの分岐およびまたは回転・合成に関する加工光学系、およびそれを用いた加工に関するものである。2種類の性質の異なるレーザをDOE(回折光学素子)などの加工光学系を用いて分岐し、それを高速回転しつつ、特殊金属ミラーを用いて別のレーザビームと光軸を一緒にして合成し、ワークに照射することで、従来のできなかった樹脂コーティングの金属板や繊維強化樹脂などの複合材料の除去加工や溶接を可能に、かつレーザ加工の能率を高める方法に関する。本技術は難加工材であるCFRPやCFRMの複合材料や各種コーティング材のレーザ加工法に関する新しい手法を提案した。 The present invention relates to a technical field for performing laser processing of a fiber reinforced composite material such as CFRP, and relates to a processing optical system related to branching and / or rotation / synthesis of a laser beam, and processing using the same. Two types of lasers with different properties are split by using a processing optical system such as DOE (diffractive optical element), and while rotating at high speed, another laser beam and optical axis are combined together using a special metal mirror. In addition, the present invention relates to a method for irradiating a workpiece to enable removal processing and welding of a composite material such as a resin-coated metal plate and fiber reinforced resin, which has not been possible in the past, and to increase the efficiency of laser processing. This technology has proposed a new technique for laser processing of complex materials such as CFRP and CFRM that are difficult to process and various coating materials.
自動車、航空機、船舶、鉄道車両などの産業が抱えている現在のエネルギー問題、環境問題、資源問題を解決するために、軽量化、高性能化、高効率化、省資源・リサイクル化を実現しうる新材料としてCFRP複合材料で代表される繊維強化複合材料の加工技術の開発が叫ばれている。
近年、CFRP、GFRPなどの繊維強化複合材料はすでに航空機産業や自動車産業では機体や車体および部品に適用されるようになった。現状として、その穴あけや切断にはダイヤモンドカッター、ダイヤモンドコーティングした切削工具を用いた機械切削・穴あけやウオータジェット切断などが利用されている。しかし、CFRP複合材料やFRM複合材料などの複合材料はマトリックスと強化材の繊維が異なる材質・物性であるために、その切断、穴あけ、溝加工などの除去加工が容易ではない。たとえば、ダイヤモンド工具による切削時には炭素繊維が空中に飛散したりすると作業者が吸引し、人体に大きな問題となる。また、高価な切削工具の摩耗が損傷しやすく、加工費が高価となる。また、金属および金属と非金属の複合材料からなる電機製品や機械部品に微細な穴あけを多数あけるとき、50μm以下の穴径になると、ドリルによる機械的穴あけも困難となる。ウオータジェット切断では機械が非常に高価であり、切断後に用いた研削材を水と分離処理する必要があるなど、問題点がある。Realizing light weight, high performance, high efficiency, resource saving and recycling in order to solve the current energy, environmental, and resource problems of industries such as automobiles, aircraft, ships, and railway vehicles. Development of processing technology for fiber reinforced composite materials represented by CFRP composite materials as a new material that can be used is screamed.
In recent years, fiber reinforced composite materials such as CFRP and GFRP have already been applied to airframes, car bodies and parts in the aircraft and automobile industries. Currently, for the drilling and cutting, diamond cutters, mechanical cutting / drilling using a diamond-coated cutting tool, and water jet cutting are used. However, since composite materials such as CFRP composite material and FRM composite material have different materials and physical properties of the matrix and the reinforcing material, removal processing such as cutting, drilling and grooving is not easy. For example, when cutting with a diamond tool, if the carbon fiber is scattered in the air, the operator sucks it, which causes a serious problem to the human body. Further, the wear of expensive cutting tools is easily damaged, and the processing cost becomes expensive. Further, when many fine holes are made in electrical products and machine parts made of metal and a composite material of metal and nonmetal, if the hole diameter is 50 μm or less, mechanical drilling with a drill becomes difficult. In water jet cutting, the machine is very expensive, and there is a problem that the abrasive used after cutting needs to be separated from water.
炭素繊維や強化ガラスなど繊維で強化された複合材料や表面を樹脂コーディングした金属部材の切削、切断、穴あけ、溝加工を高速度で高品質に行うことは非常に困難である。例えば、ダイヤモンドカッターやウオータジェット切断などの機械加工では、板厚2mmのCFRP複合材料を5m/分で切断することは非常に困難である。また、50μm以下の穴径を持つ穴の加工は非常に困難である。従来のレーザ加工法でも切断面の繊維のほぐれたり、加工速度が遅いという問題がある。結果的に、加工コストが非常に高くなり、自動車産業では適用が困難である。そのため、複合材料の応用分野を限定している。とくにCFRP(炭素繊維強化プラスチック)材の切断時には、細かい炭素繊維が空中に飛散し、人体に安全衛生上の問題があったり、材料費のみならず、加工費が高価あるという課題がある。 It is very difficult to perform cutting, cutting, drilling, and grooving of a composite material reinforced with fibers such as carbon fiber or tempered glass or a metal member whose surface is resin-coded at high speed and high quality. For example, in machining such as diamond cutter and water jet cutting, it is very difficult to cut a CFRP composite material having a thickness of 2 mm at 5 m / min. Moreover, it is very difficult to process a hole having a hole diameter of 50 μm or less. Even in the conventional laser processing method, there is a problem that the fibers on the cut surface are loosened and the processing speed is low. As a result, processing costs are very high and difficult to apply in the automotive industry. Therefore, the application field of composite materials is limited. In particular, when cutting a CFRP (carbon fiber reinforced plastic) material, there is a problem that fine carbon fibers are scattered in the air, causing problems on the human body in terms of safety and hygiene, and not only material costs but also processing costs are high.
本発明は、切削加工や穴あけが非常に困難な炭素繊維や強化ガラスなどの繊維で強化された複合材料の切削、切断、穴あけ、溝加工を高速度で高品質に行うレーザ加工法とその加工光学系を提案するものである。
上述の問題を解決するために、発明者は10ピコ秒以上で100ナノ秒以下のパルス幅を持つ固体パルスレーザから発振されたレーザビームを回折光学素子(以下DOEとよぶ)、またはビームスプリッターと集光レンズを用いて、ビームの多点分岐およびビーム径の縮小などを行い、加工物に多点照射することで、1点ごと照射に比べて、加工点を複数化することにより、加工速度を高めるだけでなく、各点におけるCFRP等の複合材料に与える熱的ダメージを極小にし、多点化された複数のビームを高速で回転・走査して、加工速度を高める方法を考案した。The present invention relates to a laser processing method that performs cutting, cutting, drilling, and grooving of composite materials reinforced with fibers such as carbon fiber and tempered glass, which are extremely difficult to cut and drill, at high speed and high quality, and the processing. An optical system is proposed.
In order to solve the above-described problem, the inventor used a diffractive optical element (hereinafter referred to as DOE) or a beam splitter to convert a laser beam oscillated from a solid-state pulse laser having a pulse width of 10 picoseconds or more and 100 nanoseconds or less. By using a condensing lens, multi-point branching of the beam and reduction of the beam diameter, etc., and irradiating the workpiece with multiple points, the processing speed can be increased by using multiple processing points as compared to irradiation for each point. We have devised a method to increase the processing speed by minimizing thermal damage to the composite material such as CFRP at each point, and rotating and scanning multiple multi-point beams at high speed.
すなわち、10ピコ秒から100ナノ秒の間のパルス幅の超短パルスレーザを0.1GW/cm2以上で25GW/cm2以下の出力密度で物体に照射すると、レーザ光が物体の原子構造中の電子と瞬時に作用し、物体の表面を8000℃以上に加熱し、物質の熱拡散時間よりもパルスの時間幅が短いので、熱の蓄積が表面に生じて、材料(物質)の照射面近傍でのみ熱が発生し、その熱により材料は加熱、溶融、蒸発が起こり、イオン化、プラズマ化に至る。この結果、CFRPなどの複合材料に適用すると炭素繊維が高い切断品質でアブレーション加工できる。また、金属と非金属の複合材料に照射しても同様の効果が期待できる。 That is, when an object is irradiated with an ultrashort pulse laser having a pulse width of between 10 picoseconds and 100 nanoseconds with an output density of 0.1 GW / cm 2 or more and 25 GW / cm 2 or less, the laser light emits electrons in the atomic structure of the object. Since the surface of the object is heated to 8000 ° C or higher and the pulse duration is shorter than the thermal diffusion time of the substance, heat accumulation occurs on the surface, and near the irradiation surface of the material (substance) Only the heat is generated, and the heat causes the material to be heated, melted, and evaporated, resulting in ionization and plasma. As a result, when applied to a composite material such as CFRP, carbon fibers can be ablated with high cutting quality. Moreover, the same effect can be expected even when the composite material of metal and nonmetal is irradiated.
しかし、超短パルスの固体パルスレーザの平均出力はいまでも低く、加工速度に限界がある。また、従来の連続発振の大出力レーザによる加工ではCFRPの切断において、投入熱量が高く、熱の逃散速度が遅くて樹脂と強化繊維の剥離が生じるなど、切断品質に問題がある。そこで、上述の超短パルスの固体パルスレーザと連続発振の高輝度(100kW/mm2以上)の固体レーザを加工速度20m/min以上で切断する技術を特殊光学系を利用して加工する方法を考案した。すなわち、切断対象となる部材のトリミング加工ではコーナー部は走行速度が1m/min以下に低下するので、連続発振のレーザで20m/min以上で加工速度で加工することが困難であるので、直線部など20m/min以上の高速で切断できる部分を大出力(300W以上)の高輝度固体レーザ(例えば、シングルモードファイバーレーザ)で切断し、コーナーなどの低速走行部を上記超短パルスの固体パルスレーザを用いて、低速でも高品質を確保して切断する方法を考案した。特に、繊維強化複合材料の板厚が5mm以上のなると、超短パルスレーザによる加工法では加工速度が非常におそく、工業的でないので、これらを併用することにより高能率のレーザ加工法および加工システムを提案したものである。 However, the average output of the ultrashort pulse solid-state pulse laser is still low, and the processing speed is limited. Further, in the conventional processing using a continuous-wave high-power laser, there is a problem in cutting quality, such as a large amount of input heat and a slow heat escape rate in the CFRP cutting, causing separation of the resin and the reinforcing fiber. Therefore, a method for processing the above-described ultrashort pulse solid-state laser and a continuous-wave high-intensity (100 kW / mm2 or more) solid-state laser at a processing speed of 20 m / min or more using a special optical system has been devised. did. That is, in the trimming process of the member to be cut, the traveling speed of the corner portion is reduced to 1 m / min or less, so that it is difficult to process at a processing speed of 20 m / min or more with a continuous wave laser. The part that can be cut at a high speed of 20 m / min or higher is cut with a high-power (300 W or higher) high-intensity solid-state laser (for example, a single-mode fiber laser), and the low-speed traveling part such as a corner is a solid pulse laser with the above ultrashort pulse. Devised a method of cutting with high quality even at low speeds. In particular, when the fiber reinforced composite material has a thickness of 5 mm or more, the processing method using an ultra-short pulse laser is very slow and not industrial, so by using these together, a highly efficient laser processing method and processing system can be used. Is proposed.
すなわち、図1に示すようなDOE8やビームスプリッター8で多点に分岐し、集光レンズ7で集光した固体パルスレーザ6をDOEホルダ9ごとモーター10で回転しつつ、連続発振の高輝度固体レーザ1が貫通する孔をもつ金属ミラー3の反射面5に照射し、ほぼ90度ビームを曲げて、ワーク表面12に照射する。このとき、連続発振の高輝度固体レーザ1のビームスポット(約30μmから100μmの径)15の周辺14に部分的に重ねるようにこの超短パルスレーザをリング状に照射する異種ビーム併用レーザ加工システムを提案するものである。 That is, a continuous-wave high-intensity solid wave that is branched into multiple points by a DOE 8 or a beam splitter 8 as shown in FIG. The reflecting surface 5 of the metal mirror 3 having a hole through which the laser 1 passes is irradiated, the beam is bent approximately 90 degrees, and the work surface 12 is irradiated. At this time, a laser processing system using different types of beams for irradiating the ultrashort pulse laser in a ring shape so as to partially overlap the periphery 14 of the beam spot (diameter of about 30 μm to 100 μm) 15 of the continuous wave high-intensity solid-state laser 1 This is a proposal.
超短パルスレーザを集光光学系で集光し、DOEで4本や8本にビーム分岐した後、それぞれのビームスポット径を10μm〜100μmの範囲に集光光学系で絞り、設置したDOEまたはビームスプリッタのホルダ9をモーター10などで高速回転し、分岐多点化したビームを回転しつつ連続発振の高輝度高出力の固体レーザ周辺に照射して加工する。この場合、3kWまたは5kWの大出力のシングルモードファイバーレーザを用いて厚板加工をしたときに、当然、熱影響部に繊維の剥離現像が生じるが、これをそのビームの外周部にリング状に高速回転する超短パルスの固体パルスレーザビームが高品質のレーザアブレーション加工により加工面の品質を向上させる仕組みのレーザ加工システムである。 After condensing an ultrashort pulse laser with a condensing optical system and branching into 4 or 8 beams by DOE, each beam spot diameter is reduced to a range of 10 μm to 100 μm by the condensing optical system, and the installed DOE or beam The splitter holder 9 is rotated at a high speed by a motor 10 or the like, and is processed by irradiating the periphery of a continuous oscillation, high-intensity, high-power solid-state laser while rotating the multi-branched beam. In this case, when thick plate processing is performed using a single mode fiber laser with a high output of 3 kW or 5 kW, naturally, fiber peeling development occurs in the heat affected zone, but this is formed in a ring shape on the outer periphery of the beam. This is a laser processing system in which a solid pulse laser beam of ultra-short pulse rotating at high speed improves the quality of the processed surface by high-quality laser ablation processing.
請求項1の発明は、固体パルスレーザ(レーザA)装置から伝送されたレーザビームを回折光学素子(DOE)またはビームスプリッターで複数に分岐し、集光レンズで集光した後、このレーザビームをDOEまたはビームスプリッタのホルダごとに回転しつつ、別の種類の固体レーザ(レーザB)ビームが貫通する垂直孔をもつ金属ミラーの反射面(約45度傾斜の底面)に照射し、全反射させてほぼ90度ビームを曲げて、この金属ミラーの下部に設置したガスノズルを通し、レーザBのビーム光軸に合わせ、ワーク表面に照射することで、別の光路から来た連続発振の高輝度固体レーザ(レーザB)と空間的にも時間的にも合成(重畳)することができる加工光学系およびこの加工光学系を用いたレーザ加工法である。 In the first aspect of the present invention, the laser beam transmitted from the solid-state pulse laser (laser A) device is branched into a plurality of parts by a diffractive optical element (DOE) or a beam splitter, and condensed by a condenser lens. Rotate each DOE or beam splitter holder, and irradiate the reflective surface (bottom surface of about 45 degrees) of the metal mirror with a vertical hole through which another type of solid-state laser (laser B) beam penetrates, making it totally reflected By bending the beam approximately 90 degrees and passing through the gas nozzle installed at the bottom of this metal mirror, aligning with the beam optical axis of laser B and irradiating the workpiece surface, it is a continuous oscillation high-intensity solid coming from another optical path A machining optical system that can be combined (superposed) with a laser (laser B) both spatially and temporally, and a laser machining method using this machining optical system.
請求項2の発明は、請求項1に記載の加工光学系のレーザAは、パルス幅が10ピコ秒以上で100ナノ秒以下の範囲のQ−スイッチYAGレーザ、YVO4レーザ、ピコ秒固体レーザを含む固体パルスレーザであり、その波長は532nm〜1080nmの範囲にあり、DOEで複数ビームに分岐した後、それぞれのビームスポット径を20μm〜80μmの範囲に集光光学系で絞り、集光後の出力密度が100kW/mm2以上となるようにし、このDOEのレンズホルダをモーターなどで高速回転し、分岐多点化したビームを回転させ、300W以上の連続発振の高出力固体レーザのレーザBのビームスポットの周辺に一部重なる(合成した)ように照射するレーザ加工システムであり、この場合、レーザAとレーザBを入れ替えた加工システムも含む。According to a second aspect of the present invention, the laser A of the processing optical system according to the first aspect is a Q-switched YAG laser, a YVO4 laser, or a picosecond solid-state laser having a pulse width in the range of 10 picoseconds to 100 nanoseconds. The solid-state pulse laser includes a wavelength of 532 nm to 1080 nm, and after branching into a plurality of beams by DOE, the diameter of each beam spot is reduced to a range of 20 μm to 80 μm by a condensing optical system. The output density is set to 100 kW / mm 2 or more, the DOE lens holder is rotated at high speed with a motor or the like, the multi-branched beam is rotated, and the laser beam B of a continuous-wave high-power solid-state laser of 300 W or more is rotated. This is a laser processing system that irradiates the laser beam so that it partially overlaps (synthesizes) around the spot. Includes systems.
請求項3の発明は、請求項1および2のいずれかの1項に記載の加工光学系において、固体パルスレーザ(レーザA)の超短パルスレーザを0.1GW/cm2以上で25GW/cm2以下の出力密度になるように集光レンズで絞って物体表面で約50μmから100μm)となるように照射し、連続発振固体レーザ(レーザB)のビームスポット径(約30μmから80μm)の周辺に部分的に重ねるようにこの固体パルスレーザ(レーザA)をリング状に照射する2種の異なる発振モードのレーザビームを併用するレーザ加工システムであり、固体パルスレーザ(レーザA)と連続発振高出力固体レーザ(レーザB)を被加工物の加工部位により使い分けるためにシーケンサーにより時間的に制御し、▲1▼固体パルスレーザのみでの加工、▲2▼固体パルスレーザによる加工および高輝度(100kW/mm2以上)の連続発振高出力固体レーザを用いて、加工速度を20m/min以上で加工する加工、および▲3▼高輝度(100kW/mm2以上)の連続発振高出力固体レーザを用いて、加工速度を20m/min以上で加工する加工と3つに使い分けることができることを特徴とする加工システムおよびレーザ加工法である。 The invention of claim 3 is the processing optical system according to any one of claims 1 and 2, wherein an ultrashort pulse laser of a solid pulse laser (laser A) is 0.1 GW / cm 2 or more and 25 GW / cm 2 or less. It is irradiated with a condensing lens so that the output density is about 50 μm to 100 μm on the surface of the object, and a portion around the beam spot diameter (about 30 μm to 80 μm) of the continuous wave solid-state laser (Laser B). This laser processing system uses two types of laser beams of different oscillation modes that irradiate the solid pulse laser (laser A) in a ring shape so as to overlap each other, and the solid pulse laser (laser A) and a continuous wave high output solid state In order to properly use the laser (laser B) according to the processing part of the workpiece, it is controlled in time by a sequencer, and (1) processing using only a solid pulse laser (2) Processing using a solid-state pulse laser and processing using a continuous-wave high-power solid-state laser with high brightness (100 kW / mm2 or more) and processing at a processing speed of 20 m / min or more, and (3) High brightness (100 kW / mm2) The processing system and the laser processing method are characterized in that the continuous oscillation high-power solid-state laser can be used in three ways, that is, processing at a processing speed of 20 m / min or more.
請求項4の発明は、請求項1、2および3のいずれかの1項に記載の加工光学系および加工法において、ワーク表面でのビームスポットは中心部の静止ビームと外周部の回転ビームが部分的に合成されており、2つのレーザビーム(レーザAとレーザB)の焦点距離の調整により、それぞれのビームの重なり面積の比が調整できる機構を持つレーザ加工システムに関するものである。According to a fourth aspect of the present invention, in the machining optical system and the machining method according to any one of the first, second, and third aspects, the beam spot on the workpiece surface includes a stationary beam at the center and a rotating beam at the outer periphery. The present invention relates to a laser processing system which is partially synthesized and has a mechanism capable of adjusting the ratio of overlapping areas of two beams by adjusting the focal length of two laser beams (laser A and laser B).
請求項5の発明は、請求項1、2、3および4の1項に記載の加工光学系およびレーザ加工法を用いて繊維強化複合材料を切削、切断、穴あけ、溝加工、クリーニングおよび接合加工するレーザ加工方法に関するものである。The invention of claim 5 cuts, cuts, drills, grooves, cleans and joins a fiber-reinforced composite material using the processing optical system and laser processing method according to one of claims 1, 2, 3 and 4. The present invention relates to a laser processing method.
請求項6の発明は、請求項1、2、3および4のいずれか1項に記載の加工光学系およびレーザ加工法を用いて樹脂コートおよび金属コートした金属材料および表面処理部材の切削、切断、穴あけ、溝加工、クリーニングおよび接合するレーザ加工法に関するものである。Invention of Claim 6 cuts and cut | disconnects the metal material and surface treatment member which carried out resin coating and metal coating using the processing optical system and laser processing method of any one of Claim 1, 2, 3 and 4 Further, the present invention relates to a laser processing method for drilling, grooving, cleaning, and bonding.
請求項7の発明は、請求項1、2、3および4のいずれか1項に記載の加工光学系およびレーザ加工法を用いてセラミック、宝石、ガラス、サファイヤ、ダイヤモンドなどの無機材料ならびに各種ポリマーを切削、切断、穴あけ、溝加工、クリーニングおよび接合するレーザ加工法に関するものである。The invention according to claim 7 is an inorganic material such as ceramic, gemstone, glass, sapphire, diamond, and various polymers, using the processing optical system and the laser processing method according to any one of claims 1, 2, 3, and 4. The present invention relates to a laser processing method for cutting, cutting, drilling, grooving, cleaning and bonding.
請求項8の発明は、請求項1、2、3および4のいずれか1項に記載の加工光学系およびレーザ加工法を用いて、表面の上下でレーザ吸収率が異なる異種材料を切削、切断、穴あけ、溝加工、クリーニングおよび接合することを特徴とするレーザ加工法に関するものである。The invention of claim 8 cuts and cuts dissimilar materials having different laser absorption rates above and below the surface using the processing optical system and laser processing method according to any one of claims 1, 2, 3 and 4. Further, the present invention relates to a laser processing method characterized by drilling, grooving, cleaning and joining.
従来は炭素繊維や強化ガラスなど繊維で強化された複合材料や表面を樹脂コーディングした金属部材の切削、切断、穴あけ、溝加工を高速度で高品質に行うことは非常に困難であったが、本発明の技術を用いれば、板厚2mmのCFRP複合材料を5m/分で切断することも可能になったり、切断面の切断精度を向上したり、加工速度の向上により、加工コストが低くなり、結果的に、自動車産業や産業機械分野でも難切削材のレーザ加工が可能となる。また、加工環境が改善され、オペレータの安全衛生が確保される。
CFRP(炭素繊維強化プラスチック)のみならず、樹脂コート金属板も容易にレーザ加工できるなどの効果が期待できる。In the past, it was very difficult to cut, cut, drill, and groove high-quality composite materials reinforced with fibers such as carbon fiber and tempered glass, and metal members with resin-coated surfaces. By using the technology of the present invention, it becomes possible to cut a CFRP composite material having a thickness of 2 mm at 5 m / min, improving the cutting accuracy of the cut surface, and improving the processing speed, thereby reducing the processing cost. As a result, laser processing of difficult-to-cut materials becomes possible in the automotive industry and industrial machinery fields. In addition, the processing environment is improved and the safety and health of the operator is ensured.
It is expected that not only CFRP (carbon fiber reinforced plastic) but also resin-coated metal plates can be easily laser processed.
以下、本発明の好適な実施の形態を図面を参照しながら詳細に説明する。DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the drawings.
実施例1では本発明の加工光学系を用いて、矩形のCFRP複合材料12をコーナー部をもつ切断線に沿ってレーザ切断する場合について図1〜3を用いて説明する。
図1に示す加工光学系は、超短パルスの固体レーザ(レーザA)装置から伝送されたレーザビーム6を回折光学素子(DOE)8またはビームスプリッター8で複数に分岐した後、集光レンズ7で集光し、DOEまたはビームスプリッタのホルダ9ごとにモータで拘束回転しつつ、別の種類の固体レーザ(レーザB)ビーム1が貫通する垂直孔4をもつ金属ミラー3の反射面(約45度傾斜の底面)5に照射し、ほぼ90度ビームを曲げて、この金属ミラーの下部に設置したガスノズル11を通し、レーザB1のビーム光軸を合わせ、ワーク12の表面に照射することで、別の光路から集光レンズ2で就航され金属ミラーの垂直孔を通して来た連続発振の高輝度高出力の固体レーザ(レーザB)1と空間的にも時間的にもワーク表面上で合成することができる加工光学系である。In Example 1, a case where a rectangular CFRP composite material 12 is laser cut along a cutting line having a corner portion using the processing optical system of the present invention will be described with reference to FIGS.
The processing optical system shown in FIG. 1 splits a laser beam 6 transmitted from an ultrashort solid-state laser (laser A) device into a plurality of beams by a diffractive optical element (DOE) 8 or a beam splitter 8, and then collects a condensing lens 7. The reflecting surface of the metal mirror 3 having a vertical hole 4 through which another kind of solid-state laser (laser B) beam 1 penetrates while being constrained and rotated by a motor for each holder 9 of the DOE or beam splitter. By irradiating the bottom surface 5), bending the beam approximately 90 degrees, passing through the gas nozzle 11 installed at the lower part of this metal mirror, aligning the beam optical axis of the laser B1, and irradiating the surface of the workpiece 12, Combined with a continuous-wave, high-intensity, high-power solid-state laser (Laser B) 1 in service through a condensing lens 2 from another optical path and through a vertical hole in a metal mirror, both spatially and temporally on the workpiece surface Rukoto a machining optical system capable.
この加工光学系を用いると図2に示すように、CFRP複合材料の切断線16の上を切断加工する時は、縦および横の直線部を切断する時は連続発振の高輝度高出力の固体レーザ(レーザB)のみで20m/min以上の高速で加工テーブル13を移動させ切断したり、板厚が厚い時は超短パルスの固体レーザ(レーザA)を回転しつつ、連続発振の高輝度高出力の固体レーザ(レーザB)を併用して、繰返し切断する。しかし、コーナー部に近づけば、図3に示すように走行速度を落とすひつようがあり、この部分では連続発振の高輝度高出力の固体レーザ(レーザB)のレーザ出力を低下させ、逆に超短パルスの固体レーザ(レーザA)の出力を上げて、固体パルスレーザのみで切断することにより、切断品質の確保を図ることができる。コーナー部を通過すれば、再び、連続発振の高輝度高出力の固体レーザ(レーザB)のレーザ出力を上げ、高速で切断する。品質の要求に応じて、回転した超短パルスの固体レーザ(レーザA)ビームを利用する。
これらの時間変化を模式的に図3に示した。特に 厚板切断でレーザBのレーザ出力を上げると、切断溝17の周辺の樹脂が熱的ダメージを受けるので、このように超短パルスの固体レーザ(レーザA)ビームを利用することで、品質の良い切断ができ、最終的な切断溝18は切断面が高品質になる。When this machining optical system is used, as shown in FIG. 2, when cutting on the cutting line 16 of the CFRP composite material, when cutting the vertical and horizontal straight line portions, a continuous oscillation high brightness high output solid The processing table 13 is moved and cut at a high speed of 20 m / min or more with only the laser (laser B), or when the plate is thick, the solid laser (laser A) with an ultrashort pulse is rotated and the continuous oscillation is high in brightness. Using a high-power solid-state laser (Laser B) in combination, cutting is repeated. However, if it is close to the corner portion, there is a possibility that the traveling speed is lowered as shown in FIG. 3. In this portion, the laser output of the continuous oscillation high-intensity high-power solid-state laser (Laser B) is lowered, and on the contrary The cutting quality can be ensured by increasing the output of the short pulse solid-state laser (laser A) and cutting only with the solid-state pulse laser. If it passes through the corner portion, the laser output of the continuous-wave high-intensity high-power solid-state laser (Laser B) is increased again, and cutting is performed at high speed. Depending on quality requirements, a rotating ultrashort pulsed solid state laser (Laser A) beam is utilized.
These time changes are schematically shown in FIG. In particular, if the laser output of laser B is increased by cutting a thick plate, the resin around the cutting groove 17 is thermally damaged. Thus, by using such an ultrashort pulse solid laser (laser A) beam, the quality can be improved. The final cut groove 18 has a high quality cut surface.
実施例2は、図4に示すCFRP製バッテリーケースの例であり、コーナー部のみ超短パルスの固体パルスレーザで切断し、直線部部を高輝度固体レーザで20m/minの速度でレーザ切断した。この時の切断品質は炭素繊維のほぐれもなく良好であった。Example 2 is an example of the CFRP battery case shown in FIG. 4, in which only the corner portion was cut with an ultrashort pulse solid-state pulse laser, and the straight portion was laser cut with a high-intensity solid-state laser at a speed of 20 m / min. . The cutting quality at this time was good without loosening of the carbon fibers.
実施例3は 耐食性や耐薬品性の確保などから鋼板の表面に樹脂をコーディングした表面処理鋼板を本技術を用いてレーザ切断する場合である。図5に示すように、鋼板19の表面に樹脂20がコーティングされている。 樹脂は小入熱で容易に切断できるので、回転した超短パルスの固体レーザ(レーザA)ビーム6を利用することで高品質の切断ができる。鋼板は2mm厚さ以上であるとkW以上のレーザが必要であり、連続発振の高輝度高出力の固体レーザ(レーザB)1を用いると良好な品質の高速切断が可能となる。
レーザ切断のみならず、このような鋼板をI形突合せ溶接することも容易となる。なぜなら、回転している超短パルスの固体レーザ(レーザA)ビーム6が先行しているので、表面の樹脂層を鋼板の溶接前に除去してくれるので、通常のレーザ溶接のように溶接できる。アルミニウムメッキ鋼板や亜鉛メッキ鋼板のレーザ溶接にも応用でき、ポロシティのないレーザ溶接も可能となる。Example 3 is a case where a surface-treated steel sheet in which a resin is coded on the surface of the steel sheet is laser-cut using this technology in order to ensure corrosion resistance and chemical resistance. As shown in FIG. 5, the resin 20 is coated on the surface of the steel plate 19. Since the resin can be easily cut with a small heat input, high-quality cutting can be performed by using the rotated ultrashort pulse solid-state laser (laser A) beam 6. If the steel plate is 2 mm thick or more, a laser of kW or more is required, and high-speed cutting with good quality can be achieved by using a continuous-wave high-intensity and high-power solid-state laser (Laser B) 1.
Not only laser cutting, but also I-shaped butt welding of such steel sheets becomes easy. This is because the rotating ultrashort pulse solid-state laser (laser A) beam 6 is preceded, so that the resin layer on the surface is removed before welding the steel plate, so that welding can be performed as in normal laser welding. . It can also be applied to laser welding of aluminum plated steel sheets and galvanized steel sheets, and laser welding without porosity is also possible.
本発明は繊維強化複合材料や樹脂または金属コートした部材のレーザ加工(切断、穴あけ、接合、クリーニングなど)に関するもので、工業的応用分野も航空機部材のみならず、自動車、高速列車、船舶、建築、産業機械、航空宇宙機器、駐車施設、圧力容器などの部材として利用されるので、産業上の利用範囲は大きい。The present invention relates to laser processing (cutting, drilling, joining, cleaning, etc.) of a fiber reinforced composite material or resin or metal-coated member. Industrial applications include not only aircraft members but also automobiles, high-speed trains, ships, and architecture. Since it is used as a member for industrial machinery, aerospace equipment, parking facilities, pressure vessels, etc., the industrial application range is large.
1:連続発振高輝度固体レーザ、2:集光レンズ1、3:光合成用金属ミラー、
4:ビーム貫通孔、5:反射面、6 固体パルスレーザ、7:集光レンズ2、
8:DOE(回折光学素子)またはビームスプリッタ、9:DOEホルダ、
10:回転機構(モータ)、11:ガスノズル、12:ワーク、
13:加工テーブル、14:回転ビームスポット、15:静止ビームスポット
16:切断線、17:静止ビームによる切断溝、18:回転ビームによる切断溝
19:鋼板 20:樹脂または金属コート層1: continuous-wave high-intensity solid-state laser, 2: condenser lens 1, 3: metal mirror for photosynthesis,
4: beam through-hole, 5: reflecting surface, 6 solid-state pulse laser, 7: condenser lens 2,
8: DOE (diffractive optical element) or beam splitter, 9: DOE holder,
10: Rotating mechanism (motor), 11: Gas nozzle, 12: Workpiece,
13: processing table, 14: rotating beam spot, 15: stationary beam spot 16: cutting line, 17: cutting groove by stationary beam, 18: cutting groove by rotating beam 19: steel plate 20: resin or metal coating layer
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013197481A JP2015047638A (en) | 2013-09-04 | 2013-09-04 | Laser processing method using beam branched rotary optical system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013197481A JP2015047638A (en) | 2013-09-04 | 2013-09-04 | Laser processing method using beam branched rotary optical system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2015047638A true JP2015047638A (en) | 2015-03-16 |
Family
ID=52698109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013197481A Pending JP2015047638A (en) | 2013-09-04 | 2013-09-04 | Laser processing method using beam branched rotary optical system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2015047638A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017159532A1 (en) * | 2016-03-18 | 2017-09-21 | 日立オートモティブシステムズ株式会社 | High energy beam welding quality determining method, quality determining device using determining method, and welding management system using determining method |
JP2017164767A (en) * | 2016-03-15 | 2017-09-21 | 住友ベークライト株式会社 | Laser processing method and manufacturing method for optical waveguide |
KR20170112150A (en) * | 2016-03-31 | 2017-10-12 | 주식회사 엘지화학 | Laser beam machining device and Laser beam machining method |
JP2017217677A (en) * | 2016-06-09 | 2017-12-14 | 福井県 | Laser processing method and laser processing device |
JPWO2016208686A1 (en) * | 2015-06-24 | 2018-04-05 | 株式会社豊田自動織機 | Cutting device |
DE102018000441A1 (en) | 2017-01-19 | 2018-07-19 | Fanuc Corporation | Laser processing method |
KR20180120281A (en) * | 2016-03-25 | 2018-11-05 | 어플라이드 머티어리얼스, 인코포레이티드 | Hybrid Wafer Dicing Approach Using Rotating Beam Laser Scribing Process and Plasma Etching Process |
JP2019000904A (en) * | 2017-06-16 | 2019-01-10 | 株式会社タカラ工芸社 | Laser processing method for carbon fiber-reinforced composite-laminated sheet, and laser-processed carbon fiber-reinforced composite-laminated sheet |
CN110202859A (en) * | 2019-05-31 | 2019-09-06 | 华南理工大学 | A kind of carbon fiber-reinforced resin laminate bonded joint and preparation method thereof |
JP2020179403A (en) * | 2019-04-24 | 2020-11-05 | 株式会社アマダ | Laser beam machine and laser beam machining method |
JP2022521845A (en) * | 2019-04-04 | 2022-04-12 | バオスチール テイラード ブランクス ゲゼルシャフトミット ベシュレンクテル ハフツング | Method for fusion welding of thin steel sheets of one or more press-hardened steels |
-
2013
- 2013-09-04 JP JP2013197481A patent/JP2015047638A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2016208686A1 (en) * | 2015-06-24 | 2018-04-05 | 株式会社豊田自動織機 | Cutting device |
JP2017164767A (en) * | 2016-03-15 | 2017-09-21 | 住友ベークライト株式会社 | Laser processing method and manufacturing method for optical waveguide |
WO2017159532A1 (en) * | 2016-03-18 | 2017-09-21 | 日立オートモティブシステムズ株式会社 | High energy beam welding quality determining method, quality determining device using determining method, and welding management system using determining method |
KR102377901B1 (en) | 2016-03-25 | 2022-03-23 | 어플라이드 머티어리얼스, 인코포레이티드 | A hybrid wafer dicing approach using a rotating beam laser scribing process and a plasma etching process |
KR20180120281A (en) * | 2016-03-25 | 2018-11-05 | 어플라이드 머티어리얼스, 인코포레이티드 | Hybrid Wafer Dicing Approach Using Rotating Beam Laser Scribing Process and Plasma Etching Process |
KR102202933B1 (en) * | 2016-03-31 | 2021-01-14 | 주식회사 엘지화학 | Laser beam machining device and Laser beam machining method |
KR20170112150A (en) * | 2016-03-31 | 2017-10-12 | 주식회사 엘지화학 | Laser beam machining device and Laser beam machining method |
JP2017217677A (en) * | 2016-06-09 | 2017-12-14 | 福井県 | Laser processing method and laser processing device |
DE102018000441B4 (en) | 2017-01-19 | 2021-10-07 | Fanuc Corporation | Laser machining process |
DE102018000441A1 (en) | 2017-01-19 | 2018-07-19 | Fanuc Corporation | Laser processing method |
JP2019000904A (en) * | 2017-06-16 | 2019-01-10 | 株式会社タカラ工芸社 | Laser processing method for carbon fiber-reinforced composite-laminated sheet, and laser-processed carbon fiber-reinforced composite-laminated sheet |
JP2022521845A (en) * | 2019-04-04 | 2022-04-12 | バオスチール テイラード ブランクス ゲゼルシャフトミット ベシュレンクテル ハフツング | Method for fusion welding of thin steel sheets of one or more press-hardened steels |
JP2020179403A (en) * | 2019-04-24 | 2020-11-05 | 株式会社アマダ | Laser beam machine and laser beam machining method |
JP7291527B2 (en) | 2019-04-24 | 2023-06-15 | 株式会社アマダ | Laser processing machine and laser processing method |
CN110202859A (en) * | 2019-05-31 | 2019-09-06 | 华南理工大学 | A kind of carbon fiber-reinforced resin laminate bonded joint and preparation method thereof |
CN110202859B (en) * | 2019-05-31 | 2021-03-30 | 华南理工大学 | Carbon fiber reinforced resin laminated board adhesive joint and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2015047638A (en) | Laser processing method using beam branched rotary optical system | |
JP2015000434A (en) | Laser processing method using beam branching and synthesizing optical system | |
Wolynski et al. | Laser ablation of CFRP using picosecond laser pulses at different wavelengths from UV to IR | |
WO2010119995A1 (en) | Method of laser machining of fiber-reinforced composite material and product made by the method | |
US20210008664A1 (en) | Laser welding of transparent workpieces | |
JP2011056583A (en) | Method of machining composite material by laser beam | |
CN102091872A (en) | Laser offset welding method suitable for magnesium/steel and magnesium/titanium | |
US9522442B2 (en) | Method for the cutting machining of workpieces using a laser beam | |
Schmidt et al. | Advances in macro-scale laser processing | |
Bogue | Lasers in manufacturing: a review of technologies and applications | |
JP2005279730A (en) | Laser cutting method and device | |
JP2012192420A (en) | Laser processing method and laser processing apparatus | |
Pathak et al. | Application of Laser Technology in the Mechanical and Machine Manufacturing Industry | |
CN105689896A (en) | Coating removing and welding integrated laser processing method for hot-rolled steel plates | |
Sen et al. | Experimental studies on fibre laser micro-machining of Ti-6al-4v | |
Shin et al. | Morphologies of cemented tungsten carbide ablated by pulsed femtosecond laser to manufacture next-generation blades of a cutting tool | |
Wirth et al. | Friction press joining of laser-texturized aluminum with fiber reinforced thermoplastics | |
US20230249290A1 (en) | Laser deburring and chamfering method and system | |
US20210276127A1 (en) | Butt welding of two workpieces with an ultrashort pulse laser beam, and associated optical elements | |
JP2017217677A (en) | Laser processing method and laser processing device | |
Löffler | Developments in disk laser welding | |
CN110818241A (en) | Glass cutting method | |
Tsoukantas et al. | Overview of 3D laser materials processing concepts | |
Darvish et al. | Advantages of three-focal fiber technology in laser brazing of galvanized steel | |
Deng et al. | Optics and Apparatus for Solid State Laser Micro-processing |