Nothing Special   »   [go: up one dir, main page]

JP2014014867A - Base resin for soldering flux, soldering flux, and solder paste - Google Patents

Base resin for soldering flux, soldering flux, and solder paste Download PDF

Info

Publication number
JP2014014867A
JP2014014867A JP2013124293A JP2013124293A JP2014014867A JP 2014014867 A JP2014014867 A JP 2014014867A JP 2013124293 A JP2013124293 A JP 2013124293A JP 2013124293 A JP2013124293 A JP 2013124293A JP 2014014867 A JP2014014867 A JP 2014014867A
Authority
JP
Japan
Prior art keywords
flux
component
base resin
rosin
solder paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013124293A
Other languages
Japanese (ja)
Other versions
JP6160861B2 (en
Inventor
Yasushi Funakoshi
靖 舟越
Takashi Nakatani
隆 中谷
Tetsuya Yoshimoto
哲也 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP2013124293A priority Critical patent/JP6160861B2/en
Publication of JP2014014867A publication Critical patent/JP2014014867A/en
Application granted granted Critical
Publication of JP6160861B2 publication Critical patent/JP6160861B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide new base resin for soldering flux in which fluidity of flux as well as viscosity stability and adhesiveness of solder paste are improved, and a color tone of flux residue and anti-crack resistance are excellent.SOLUTION: A rosin (A') including rosin (a-1) derived from slash pine and/or rosin (a-2) derived from merkus pine is purified, and is further subjected to a hydrogenation reaction and/or a disproportionation reaction so as to provide a product (A). Base resin for soldering flux includes the product (A).

Description

本発明はハンダ付フラックス用ベース樹脂、ハンダ付フラックスおよびソルダペーストに関する。   The present invention relates to a base resin for soldered flux, a soldered flux, and a solder paste.

回路基板の表面実装は通常、回路基板上の電極に、フラックスとハンダ粉末の混合物であるソルダペーストを、スクリーン印刷やディスペンサー吐出等の方法で供給し、その上にコンデンサー等の電子部品を搭載した後、当該回路基板をリフロー炉内で加熱してハンダ粉末を溶融させ、電子部品と電極とを接合することにより行われる。   For surface mounting of circuit boards, solder paste, which is a mixture of flux and solder powder, is usually supplied to the electrodes on the circuit board by methods such as screen printing and dispenser discharge, and electronic components such as capacitors are mounted on it. Thereafter, the circuit board is heated in a reflow furnace to melt the solder powder, and the electronic component and the electrode are joined.

フラックスのベース樹脂としては従来天然ロジンが賞用されてきたが、天然ロジンは非常に酸化されやすく、加熱下に容易に変色するなど熱安定性に劣る。そのため、天然ロジンをフラックスのベース樹脂とした場合、ハンダ接合部に生ずる残渣に強い着色が生じて後の検品または洗浄が困難になったり、クラックが発生してマイグレーション現象が誘発されたりする。なお、こうした問題は、融点が高い鉛フリーハンダ粉末を使用する場合において特に深刻化する。   Conventionally, natural rosin has been used as a base resin for the flux. However, natural rosin is very easily oxidized and has poor thermal stability, such as being easily discolored under heating. For this reason, when natural rosin is used as the base resin for the flux, the residue generated at the solder joint is strongly colored, making subsequent inspection or cleaning difficult, or causing cracks to induce a migration phenomenon. Such a problem becomes particularly serious when a lead-free solder powder having a high melting point is used.

そこで斯界では、天然ロジンに代えて熱安定性に優れる所謂水添ロジンや不均化ロジン(特許文献1、2参照)が利用されることもあったが(特許文献3参照)、本発明者の検討により、それらの原料となる天然ロジンの樹種が異なるときに、フラックスの流動性やソルダペーストの粘度が経時的に大きく低下したり、ソルダペーストについてはその粘着性が失われたりする場合があることが見出された。   Therefore, in this field, instead of natural rosin, so-called hydrogenated rosin or disproportionated rosin (see Patent Documents 1 and 2) having excellent thermal stability has been used (see Patent Document 3). As a result, when the natural rosin species used as the raw materials are different, the fluidity of the flux and the viscosity of the solder paste may greatly decrease over time, or the adhesiveness of the solder paste may be lost. It was found that there was.

特開平5−271622号公報JP-A-5-271622 特開平6−329991号公報JP-A-6-329991 特開平11−73869号公報Japanese Patent Laid-Open No. 11-73869

本発明は、ハンダ付フラックスの流動性ならびにソルダペーストの粘度安定性および粘着性を改善し、かつフラックス残渣の色調および耐クラック性も良好なものとする、新規なハンダ付フラックス用ベース樹脂を提供することを主たる課題とする。   The present invention provides a new base resin for soldered flux that improves the flowability of soldered flux and the viscosity stability and adhesiveness of solder paste, and also has good color tone and crack resistance of the flux residue. The main task is to do.

本発明者は前記課題を解決すべく鋭意検討を重ねた結果、特定の松種より得られるロジンを淡色化処理したものが前記課題を解決可能なベース樹脂足りえることを見出した。   As a result of intensive studies to solve the above problems, the present inventor has found that a rosin obtained from a specific pine seed is light-colored and a base resin capable of solving the above problems is sufficient.

即ち本発明は、スラッシュ松に由来するロジン(a−1)および/またはメルクシ松に由来するロジン(a−2)を含有するロジン類(A’)を精製し、更に水素化反応および/または不均化反応させて得られる生成物(A)からなるハンダ付フラックス用ベース樹脂、当該ベース樹脂を含有するハンダ付フラックス、ならびに当該ハンダ付フラックス及びハンダ粉末を含有するソルダペースト、に関する。   That is, the present invention purifies rosins (A ′) containing rosin (a-1) derived from slash pine and / or rosin (a-2) derived from Merck pine, and further hydrogenation reaction and / or The present invention relates to a soldered flux base resin comprising a product (A) obtained by a disproportionation reaction, a soldered flux containing the base resin, and a solder paste containing the soldered flux and solder powder.

本発明のベース樹脂によれば、ハンダ付フラックスの流動性ならびにソルダペーストの粘度安定性および粘着性が改善される。また、当該ベース樹脂は熱安定性に優れており、フラックス残渣の色調および耐クラック性も改善される。   According to the base resin of the present invention, the fluidity of the soldered flux and the viscosity stability and adhesiveness of the solder paste are improved. Further, the base resin is excellent in thermal stability, and the color tone and crack resistance of the flux residue are also improved.

また、本発明のハンダ付フラックスは、室温で長時間保存した後も流動性が保たれており、これによりソルダペーストの粘度安定性および粘着性、ならびにハンダ付け性(濡れ性)も良好となる。また、ハンダ付け後に生ずるフラックス残渣の色調も良好であるため、例えば検品作業が容易となり、洗浄工程を省略することも可能となる。また、フラックス残渣にクラックが生じ難いことから、水分の付着に伴うマイグレーション等、回路の電気信頼性に関わる問題も生じ難くなる。   In addition, the soldered flux of the present invention maintains its fluidity even after being stored at room temperature for a long time, thereby improving the viscosity stability and adhesiveness of the solder paste and the solderability (wetting property). . In addition, since the color tone of the flux residue generated after soldering is good, for example, inspection work is facilitated, and the cleaning process can be omitted. In addition, since cracks are unlikely to occur in the flux residue, problems relating to the electrical reliability of the circuit, such as migration accompanying adhesion of moisture, are also unlikely to occur.

また、本発明のソルダペーストは経時の粘度安定性に優れており、長期保存に適しているだけでなく、その粘着力も良好であり、しかもその経時的な変化幅が小さい。また、ハンダ付け性(濡れ性)も良好であり、ハンダ付け後に生ずるフラックス残渣の色調および耐クラック性も良好である。   Further, the solder paste of the present invention is excellent in viscosity stability over time, is not only suitable for long-term storage, but also has good adhesive strength, and its change over time is small. Moreover, solderability (wetting property) is also good, and the color tone and crack resistance of the flux residue generated after soldering are also good.

なお、本発明に係る生成物(A)は、ソルダペースト用のフラックスのベース樹脂としてのみならず、プレフラックスまたはポストラックス(ディップハンダ付用フラックス)、ヤニ入りハンダ、糸ハンダ等におけるフラックスのベース樹脂としても有用である。特に、本発明のベース樹脂を含むポストフラックスは、経時安定性に優れ、ハンダ付け性が良好であり、ハンダ付け後に生ずるフラックス残渣の色調が良好である。   The product (A) according to the present invention is not only used as a flux base resin for solder paste, but also as a flux base in preflux or postlux (dip soldered flux), crab solder, yarn solder, etc. It is also useful as a resin. In particular, the post-flux containing the base resin of the present invention has excellent temporal stability, good solderability, and good color tone of the flux residue generated after soldering.

本発明のハンダ付フラックス用ベース樹脂は、スラッシュ松に由来するロジン(a−1)(以下、「(a−1)成分」という。)および/またはメルクシ松に由来するロジン(a−2)(以下、「(a−2)成分」という。)を含有するロジン類(A’)(以下、「(A’)成分」という。)を精製し、更に水素化反応および/または不均化反応させて得られる生成物(A)(以下、「(A)成分」という。)である。   The soldering flux base resin of the present invention includes rosin (a-1) derived from slash pine (hereinafter referred to as “component (a-1)”) and / or rosin derived from Merck pine (a-2). (Hereinafter referred to as “component (a-2)”) is purified, and further hydrogenation and / or disproportionation is performed. It is a product (A) obtained by reaction (hereinafter referred to as “component (A)”).

スラッシュ松(Pinus elliottii)とは、アメリカ合衆国南東部を主な原産地とするマツ科の植物であり、現在は、中国や東南アジア、タイなどでも植林されている。また、特に中国を産地とするスラッシュ松は、湿地松と別称されることがある。   The slash pine (Pinus elliottii) is a pine family plant mainly originating in the southeastern part of the United States, and is currently planted in China, Southeast Asia and Thailand. In particular, slash pine, which originates in China, is sometimes referred to as wetland pine.

(a−1)成分は、前記スラッシュ松に由来するロジン類であれば特に限定されず、例えば、スラッシュ松から採取された生松脂や、これを蒸留・精製してなるガムロジン、スラッシュ松材を使用して得られるトール油ロジン、ウッドロジン等が挙げられる。   The component (a-1) is not particularly limited as long as it is a rosin derived from the slash pine. For example, raw pine oil collected from the slash pine, gum rosin obtained by distilling and purifying this, and slash pine wood Examples include tall oil rosin and wood rosin obtained by use.

また、メルクシ松(Pinus merukusii)とは、東南アジアを主な原産地とするマツ科の植物であり、ベトナム、カンボジア、インドネシア等で生育している。また、ラオスを産地とするメルクシ松は、ラオス松と別称されることがある。   In addition, Pinus merukusii is a pine family plant mainly originating in Southeast Asia and grows in Vietnam, Cambodia, Indonesia, and so on. In addition, the Merkushi pine that originates in Laos is sometimes called Laos pine.

(a−2)成分は、前記メルクシ松に由来するロジン類であれば特に限定されず、例えば、メルクシ松から採取された生松脂や、これを蒸留・精製してなるガムロジンや、メルクシ松材を使用して得られるトール油ロジン、ウッドロジン等が挙げられる。   The component (a-2) is not particularly limited as long as it is a rosin derived from the Merck pine, for example, raw pine oil collected from Merck pine, gum rosin obtained by distillation / purification of this, or Merck pine wood And tall oil rosin, wood rosin and the like obtained by using

(A’)成分には、前記スラッシュ松や前記メルクシ松以外の松に由来するロジン類(a−3)(以下、「(a−3)成分」という。)が含有されていてもよい。そのような松としては、馬尾松(Pinus
massoniana)、雲南松(Pinus yunnanensis)、樟子松(Pinus sylvestris var. mongolica)、アレッポ松(Pinus
halepensis)等が挙げられる。
The component (A ′) may contain rosins (a-3) (hereinafter referred to as “component (a-3)”) derived from pine trees other than the slash pine and the Merck pine. As such a pine, Pinus pine (Pinus)
massoniana), Yunnan pine (Pinus yunnanensis), Lion pine (Pinus sylvestris var. mongolica), Aleppo pine (Pinus)
halepensis) and the like.

(A’)成分中における(a−1)成分および/または(a−2)成分の含有量は特に限定されないが、本発明の所期の効果を考慮すると、通常は50重量%以上、好ましくは60〜100重量%程度である。また、(a−3)成分の含有量は50重量%未満、好ましくは40〜0重量%程度である。   The content of the component (a-1) and / or the component (a-2) in the component (A ′) is not particularly limited, but usually 50% by weight or more is preferable in consideration of the intended effect of the present invention. Is about 60 to 100% by weight. Moreover, content of (a-3) component is less than 50 weight%, Preferably it is about 40 to 0 weight%.

(A)成分は、(A’)成分を各種公知の方法で精製し、更に水素化反応および/または不均化反応させることにより得られる。なお、(a−1)成分および(a−2)成分を用いる場合や、さらに(a−3)成分を用いる場合、それらを混合したものを(A’)成分としてよい。   The component (A) can be obtained by purifying the component (A ′) by various known methods and further subjecting it to a hydrogenation reaction and / or a disproportionation reaction. In addition, when (a-1) component and (a-2) component are used, and also when (a-3) component is used, what mixed them is good also as (A ') component.

前記精製工程としては、各種公知の方法、例えば蒸留法、抽出法、再結晶法等を採用することができる。蒸留法は、例えば、通常200〜300℃程度の温度、0.01〜3kPa程度の減圧下で実施することができる。また、抽出法では、(A’)成分(原料ロジン)をアルカリ水溶液とし、不溶性の不ケン化物を各種の有機溶媒により抽出した後に水層を中和すればよい。また、再結晶法では、(A’)成分を良溶媒としての有機溶媒に溶解し、ついで溶媒を留去して濃厚な溶液となし、更に貧溶媒としての有機溶媒を添加する方法が挙げられる。   As the purification step, various known methods such as a distillation method, an extraction method, and a recrystallization method can be employed. The distillation method can be carried out, for example, usually at a temperature of about 200 to 300 ° C. and a reduced pressure of about 0.01 to 3 kPa. In the extraction method, the component (A ′) (raw material rosin) may be an alkaline aqueous solution, the insoluble unsaponified product may be extracted with various organic solvents, and then the aqueous layer may be neutralized. Further, in the recrystallization method, there is a method in which the component (A ′) is dissolved in an organic solvent as a good solvent, then the solvent is distilled off to form a concentrated solution, and further an organic solvent as a poor solvent is added. .

前記水素化反応としては、各種公知の方法を採用できる。具体的には、水素化触媒の存在下で(A’)成分を水素化反応させればよい。なお、反応温度は通常100〜300℃程度であり、水素圧は1〜25MPa程度であり、反応時間は1〜10時間程度である。また、水素化触媒としては例えばパラジウム、ロジウム、ルテニウム、白金等をカーボン、アルミナ、シリカ、シリカアルミナ、ゼオライト等に担持した担持触媒;ニッケル、白金等の金属粉末;ヨウ素、ヨウ素化鉄等のヨウ素化物;等が挙げられる。水素化触媒の使用量は(A’)成分に対して通常0.01〜10重量%程度である。   Various known methods can be adopted as the hydrogenation reaction. Specifically, the component (A ′) may be hydrogenated in the presence of a hydrogenation catalyst. The reaction temperature is usually about 100 to 300 ° C., the hydrogen pressure is about 1 to 25 MPa, and the reaction time is about 1 to 10 hours. Examples of the hydrogenation catalyst include palladium, rhodium, ruthenium, platinum and the like supported on carbon, alumina, silica, silica alumina, zeolite, etc .; metal powders such as nickel and platinum; iodine such as iodine and iron iodide And the like. The amount of the hydrogenation catalyst used is usually about 0.01 to 10% by weight relative to the component (A ′).

前記不均化反応としては、各種公知の方法を採用できる。具体的には、不均化触媒の存在下で(A’)成分を不均化反応させればよい。なお、反応温度は通常100〜300℃程度であり、反応圧力は常圧または1MPa未満であり、反応時間は1〜10時間程度である。また、不均化触媒としては前記した水素化触媒と同じものを用いることができ、その使用量は(A’)成分に対して通常0.01〜10重量%程度である。   Various known methods can be adopted as the disproportionation reaction. Specifically, the component (A ′) may be subjected to a disproportionation reaction in the presence of a disproportionation catalyst. In addition, reaction temperature is about 100-300 degreeC normally, reaction pressure is a normal pressure or less than 1 MPa, and reaction time is about 1 to 10 hours. Further, as the disproportionation catalyst, the same one as the above-described hydrogenation catalyst can be used, and the amount used is usually about 0.01 to 10% by weight with respect to the component (A ′).

こうして得られる(A)成分の物性は特に限定されないが、例えば色調は、フラックス及びソルダペーストの経時安定性ならびにフラックス残渣の色調(透明性)等を考慮すると、ガードナー色調2以下であるのが好ましい。   The physical properties of the component (A) thus obtained are not particularly limited. For example, the color tone is preferably a Gardner color tone of 2 or less in consideration of the temporal stability of the flux and solder paste and the color tone (transparency) of the flux residue. .

また、フラックスの活性やソルダペーストのハンダ付け性(濡れ性)を考慮すると、(A)成分の酸価(JIS K 5902)は通常150〜190mgKOH/g程度、軟化点(JIS K 5902)は通常70〜90℃程度である。   In consideration of flux activity and solder paste solderability (wetting), the acid value (JIS K 5902) of component (A) is usually about 150 to 190 mg KOH / g, and the softening point (JIS K 5902) is usually normal. It is about 70-90 degreeC.

本発明の第一のフラックスは、本発明のベース樹脂((A)成分)、フラックス用溶剤(B)(以下、(B)成分という。)およびチキソトロピック剤(C)(以下、(C)成分という。)ならびに必要に応じて活性剤(D)(以下、(D)成分という。)を含む組成物である。当該組成物は、特にソルダペースト用フラックスとして好適である。   The first flux of the present invention comprises a base resin (component (A)) of the present invention, a flux solvent (B) (hereinafter referred to as component (B)) and a thixotropic agent (C) (hereinafter referred to as (C). And a composition containing an active agent (D) (hereinafter referred to as component (D)) as necessary. The composition is particularly suitable as a solder paste flux.

また、本発明の第二のフラックスは、(A)成分、(B)成分および必要に応じて(D)成分を含有し、かつチキソトロピック剤(C)を含まない組成物である。当該組成物は、特に、ソルダペースト用フラックス以外のフラックス、例えばプレフラックス及びポストラックス(ディップハンダ付用フラックス)、並びにヤニ入りハンダ及び糸ハンダ等におけるフラックス等として使用でき、特にポストフラックスとして好適である。   Moreover, the 2nd flux of this invention is a composition which contains (A) component, (B) component, and (D) component as needed, and does not contain a thixotropic agent (C). The composition can be used particularly as a flux in fluxes other than solder paste flux, such as pre-flux and post-lux (flux for dip solder), solder with solder, yarn solder, etc., and particularly suitable as post-flux. is there.

(B)成分としては、各種公知のものを特に制限なく使用することができる。具体的には、例えば、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールモノブチルエーテル、エチレングリコールモノヘキシルエーテル、エチレングリコールモノエチルヘキシルエーテル、ブチルカルビトール、ヘキシルカルビトール等のエーテル系アルコール類;イソプロピルアルコール、オクタンジオール、ベンジルアルコール、1,3−ブタンジオール、1,4−ブタンジオール、2−(2−n−ブトキシエトキシ)エタノール、テルピネオール、ベンジルアルコール等の非エーテル系アルコール類;酢酸イソプロピル、プロピオン酸エチル、安息香酸ブチル、アジピン酸ジエチル等のエステル類;n−ヘキサン、ドデカン、テトラデセン等の炭化水素類;N−メチル−2−ピロリドン等のピロリドン類などが挙げられる。これらの中でも、本発明のフラックスをソルダペーストとして使用する場合には、リフロー時の温度(通常230〜260℃)を考慮すると、高沸点である前記エーテル系アルコール類が好ましく、特に沸点が230〜260℃程度のエーテル系アルコール類が好ましい。また、本発明のフラックスをソルダペースト用フラックス以外のフラックスとして、特にポストフラックスとして使用する場合には、非エーテル系アルコール類が好ましい。   As the component (B), various known compounds can be used without particular limitation. Specifically, for example, ether alcohols such as diethylene glycol monohexyl ether, diethylene glycol monobutyl ether, ethylene glycol monohexyl ether, ethylene glycol monoethyl hexyl ether, butyl carbitol, hexyl carbitol; isopropyl alcohol, octanediol, benzyl alcohol 1,3-butanediol, 1,4-butanediol, 2- (2-n-butoxyethoxy) ethanol, terpineol, benzyl alcohol, and other non-ether alcohols; isopropyl acetate, ethyl propionate, butyl benzoate, Esters such as diethyl adipate; hydrocarbons such as n-hexane, dodecane and tetradecene; pyrrolidones such as N-methyl-2-pyrrolidone It is. Among these, when the flux of the present invention is used as a solder paste, the ether alcohols having a high boiling point are preferable in consideration of the temperature during reflow (usually 230 to 260 ° C.), and particularly the boiling point is 230 to Ether-based alcohols at about 260 ° C. are preferred. Further, when the flux of the present invention is used as a flux other than the solder paste flux, particularly as a post flux, non-ether alcohols are preferred.

(C)成分としては、例えば、ひまし油、硬化ひまし油、蜜ロウ、カルナバワックス等動植物系チキソトロピック剤;ステアリン酸アミド、12−ヒドロキシステアリン酸エチレンビスアミド等のアミド系チキソトロピック剤などが挙げられる。これらは1種を単独で、または2種以上を組み合わせて用いることができる。(C)成分を含む本発明のフラックスは、ソルダペースト用途に好適であり、ソルダペーストのスクリーン印刷適性を(C)成分によって調整することができる。   Examples of the component (C) include animal and plant thixotropic agents such as castor oil, hydrogenated castor oil, beeswax and carnauba wax; amide thixotropic agents such as stearamide and 12-hydroxystearic acid ethylenebisamide. These can be used alone or in combination of two or more. The flux of the present invention containing the component (C) is suitable for solder paste applications, and the screen printing suitability of the solder paste can be adjusted by the component (C).

(D)成分は、本発明の(A)成分の活性作用を補うことにより、本発明のフラックスを適用するハンダ金属の溶融時の濡れ性を高める目的において、必要に応じて使用できる。具体的には、例えば、パルミチン酸、ステアリン酸、安息香酸、ピコリン酸等のモノカルボン酸類;コハク酸、アジピン酸、グルタル酸、アゼライン酸、セバシン酸、ドデカン二酸、ダイマー酸等のジカルボン酸類;1−ブロモ−2−ブタノール、1−ブロモ−2−プロパノール、3−ブロモ−1−プロパノール、3−ブロモ−1,2−プロパンジオール、1,4−ジブロモ−2−ブタノール、1,3−ジブロモ−2−プロパノール、2,3−ジブロモ−1−プロパノール、1,4−ジブロモ−2,3−ブタンジオール、2,3−ジブロモ−1,4−ブテンジオール、2,3−ジブロモ−2−ブテン−1,4−ジオール、2,2−ビス(ブロモメチル)−1,3−プロパンジオール等のブロモアルコール類;エチルアミン臭化水素酸塩、ジエチルアミン臭化水素酸塩、メチルアミン臭化水素酸塩等の有機アミンのハロゲン化水素酸塩類;1,2,3,4−テトラブロモブタン、1,2−ジブロモ−1−フェニルエタン等のブロモアルカン類;1−ブロモ−3−メチル−1−ブテン、1,4−ジブロモブテン、1−ブロモ−1−プロペン、2,3−ジブロモプロペン、1,2−ジブロモスチレン等のブロモアルケン類;4−ステアロイルオキシベンジルブロマイド、4−ステアリルオキシベンジルブロマイド、4−ステアリルベンジルブロマイド、4−ブロモメチルベンジルステアレート、4−ステアロイルアミノベンジルブロマイド、2,4−ビスブロモメチルべンジルステアレート、4−パルミトイルオキシベンジルブロマイド、4−ミリストイルオキシベンジルブロマイド、4−ラウロイルオキシべンジルブロマイド、4−ウンデカノイルオキシベンジルブロマイド等のベンジルブロマイド類;N,N’−ビス(4−アミノブチル)−1,2−エタンジアミン、トリエチレンテトラミン、N,N’−(3−アミノプロピル)エチレンジアミン、N,N’−ビス(3−アミノプロピル)ピペラジン等のポリアミン類;ジエチルアミン塩酸塩等の塩素系活性剤等が挙げられ、これらは1種を単独で、または2種以上を組み合わせて用いることができる。   (D) component can be used as needed for the purpose of improving the wettability at the time of fusion | melting of the solder metal which applies the flux of this invention by supplementing the active effect | action of (A) component of this invention. Specifically, for example, monocarboxylic acids such as palmitic acid, stearic acid, benzoic acid and picolinic acid; dicarboxylic acids such as succinic acid, adipic acid, glutaric acid, azelaic acid, sebacic acid, dodecanedioic acid and dimer acid; 1-bromo-2-butanol, 1-bromo-2-propanol, 3-bromo-1-propanol, 3-bromo-1,2-propanediol, 1,4-dibromo-2-butanol, 1,3-dibromo -2-propanol, 2,3-dibromo-1-propanol, 1,4-dibromo-2,3-butanediol, 2,3-dibromo-1,4-butenediol, 2,3-dibromo-2-butene Bromo alcohols such as 1,4-diol and 2,2-bis (bromomethyl) -1,3-propanediol; ethylamine hydrobromide, die Hydrohalogenates of organic amines such as ruamine hydrobromide and methylamine hydrobromide; Bromo such as 1,2,3,4-tetrabromobutane and 1,2-dibromo-1-phenylethane Alkanes; bromoalkenes such as 1-bromo-3-methyl-1-butene, 1,4-dibromobutene, 1-bromo-1-propene, 2,3-dibromopropene, 1,2-dibromostyrene; 4 -Stearoyloxybenzyl bromide, 4-stearyloxybenzyl bromide, 4-stearylbenzyl bromide, 4-bromomethylbenzyl stearate, 4-stearoylaminobenzyl bromide, 2,4-bisbromomethylbenzyl stearate, 4-palmitoyl Oxybenzyl bromide, 4-myristoyloxybenzyl bromide, 4 Benzyl bromides such as lauroyloxybenzil bromide, 4-undecanoyloxybenzyl bromide; N, N′-bis (4-aminobutyl) -1,2-ethanediamine, triethylenetetramine, N, N′— And polyamines such as (3-aminopropyl) ethylenediamine and N, N′-bis (3-aminopropyl) piperazine; and chlorine-based activators such as diethylamine hydrochloride. A combination of more than one species can be used.

なお、本発明のフラックスには、必要に応じてさらに(A)成分以外のベース樹脂(E)(以下、(E)成分という。)や添加剤(以下、(F)成分という。)を含めてもよい。   The flux of the present invention further includes a base resin (E) other than the component (A) (hereinafter referred to as (E) component) and an additive (hereinafter referred to as (F) component) as necessary. May be.

(E)成分としては、前記(a−1)成分〜(a−3)成分およびそれらの精製物;その他の原料ロジン類およびその精製物(精製ロジン類);その他の原料ロジン類を原料とする不均化ロジンや水素化ロジン、ホルミル化ロジン、重合ロジン等の(A)成分以外のロジン系ベース樹脂の他、エポキシ樹脂、アクリル樹脂、ポリイミド樹脂、ポリアミド樹脂(ナイロン樹脂)、ポリエステル樹脂、ポリアクリロニトリル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、ポリオレフイン樹脂、フッ素系樹脂、ABS樹脂等の合成樹脂が挙げられる。   As the component (E), the components (a-1) to (a-3) and purified products thereof; other raw material rosins and purified products (purified rosins); and other raw material rosins as raw materials. In addition to rosin base resins other than component (A) such as disproportionated rosin, hydrogenated rosin, formylated rosin, polymerized rosin, epoxy resin, acrylic resin, polyimide resin, polyamide resin (nylon resin), polyester resin, Examples thereof include synthetic resins such as polyacrylonitrile resin, vinyl chloride resin, vinyl acetate resin, polyolefin resin, fluorine-based resin, and ABS resin.

(F)成分としては、例えば、酸化防止剤、防黴剤、艶消し剤等が挙げられる。当該酸化防止剤としては、例えば、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、トリエチレングリコール−ビス〔3−(3−t−ブチル−5−メチル−4−ヒドロキシフェニル)プロピオネート〕、1,6−ヘキサンジオール−ビス−〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、2,4−ビス−(n−オクチルチオ)−6−(4−ヒドロキシ−3,5−ジ−t−ブチルアニリノ)−1,3,5−トリアジン、2,2−チオ−ジエチレンビス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート〕、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート、N,N’−ヘキサメチレンビス(3,5−ジ−t−ブチル−4−ヒドロキシ−ヒドロシンアミド)、3,5−ジ−t−ブチル−4−ヒドロキシベンジルフォスフォネート−ジエチルエステル、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼンのヒンダードフェノール系酸化防止剤;2,6−ジ−t−ブチル−p−クレゾール、2,4−ジメチル−6−t−ブチル−フェノール、スチレネートフェノール、2,4−ビス[(オクチルチオ)メチル]−o−クレゾール等の他のフェノール系酸化防止剤;トリフェニルフォスファイト、トリエチルフォスファイト、トリラウリルトリチオフォスファエト、トリス(トリデシル)フォスファイト等のリン系酸化防止剤;ジラウリルチオジプロピオネート、ジラウリルサルファイド、2−メルカプトベンゾイミダゾール、ラウリルステアリルチオジプロピオネート等の硫黄系酸化防止剤などを例示でき、これらは1種を単独で、又は2種以上を組み合わせて使用できる。   Examples of the component (F) include antioxidants, antifungal agents, and matting agents. Examples of the antioxidant include pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], triethylene glycol-bis [3- (3-t-butyl). -5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis- [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,4-bis- (N-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, 2,2-thio-diethylenebis [3- (3,5-di- t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, N, N′-hexa Tylene bis (3,5-di-tert-butyl-4-hydroxy-hydrocinnamide), 3,5-di-tert-butyl-4-hydroxybenzylphosphonate-diethyl ester, 1,3,5-trimethyl- Hindered phenolic antioxidant of 2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene; 2,6-di-t-butyl-p-cresol, 2,4 -Other phenolic antioxidants such as dimethyl-6-tert-butyl-phenol, styrenate phenol, 2,4-bis [(octylthio) methyl] -o-cresol; triphenyl phosphite, triethyl phosphite, tri Phosphorous antioxidants such as lauryl trithiophosphato, tris (tridecyl) phosphite; dilauryl thiodipropionate, Lauryl sulfide, 2-mercaptobenzimidazole, can be exemplified and sulfur-based antioxidants such as lauryl stearyl thiodipropionate, they alone, or used in combination of two or more.

フラックスにおける各成分の含有量は、該フラックスの利用態様に応じて適宜に設定することができる。例えば該フラックスをソルダペースト用途に供する場合には、各成分の含有量は例えば以下の通りである。
(A)成分:20〜60重量%程度、好ましくは30〜60重量%
(B)成分:60〜20重量%程度、好ましくは55〜30重量%
(C)成分:0〜20重量%程度、好ましくは1〜10重量%
(D)成分:0〜20重量%程度、好ましくは1〜10重量%
(E)成分:0〜20重量%程度、好ましくは0〜10重量%
(F)成分:0〜10重量%程度、好ましくは1〜5重量%
The content of each component in the flux can be appropriately set according to the usage mode of the flux. For example, when the flux is used for solder paste, the content of each component is, for example, as follows.
Component (A): about 20 to 60% by weight, preferably 30 to 60% by weight
Component (B): about 60 to 20% by weight, preferably 55 to 30% by weight
Component (C): about 0 to 20% by weight, preferably 1 to 10% by weight
Component (D): about 0 to 20% by weight, preferably 1 to 10% by weight
Component (E): about 0 to 20% by weight, preferably 0 to 10% by weight
Component (F): about 0 to 10% by weight, preferably 1 to 5% by weight

また、該フラックスをソルダペースト用フラックス以外のフラックスに供する場合には、各成分の含有量は例えば以下の通りであり、そのような組成のフラックスは特にポストフラックスとして好適である。
(A)成分:20〜60重量%程度、好ましくは25〜50重量%
(B)成分:80〜40重量%程度、好ましくは70〜45重量%
(C)成分:0重量%
(D)成分:0〜10重量%程度、好ましくは1〜5重量%
(E)成分:0〜10重量%程度、好ましくは0〜5重量%
(F)成分:0〜10重量%程度、好ましくは1〜5重量%
Moreover, when using this flux for fluxes other than the solder paste flux, the content of each component is, for example, as follows, and a flux having such a composition is particularly suitable as a post flux.
Component (A): about 20 to 60% by weight, preferably 25 to 50% by weight
Component (B): about 80 to 40% by weight, preferably 70 to 45% by weight
Component (C): 0% by weight
Component (D): about 0 to 10% by weight, preferably 1 to 5% by weight
Component (E): about 0 to 10% by weight, preferably 0 to 5% by weight
Component (F): about 0 to 10% by weight, preferably 1 to 5% by weight

本発明のソルダペーストは、本発明のフラックス及びハンダ粉末を含有するものである。それぞれの含有量は特に限定されないが、通常は前者が5〜20重量%程度、および後者が80〜95重量%程度である。また、当該ソルダペーストは、各種公知の手段(プラネタリーミル等)で製造することができる。   The solder paste of the present invention contains the flux of the present invention and solder powder. Although each content is not specifically limited, Usually, the former is about 5 to 20% by weight, and the latter is about 80 to 95% by weight. The solder paste can be produced by various known means (planetary mill or the like).

ハンダ粉末としては、Sn−Pb系ハンダ粉末等の従来の鉛共晶ハンダ粉末;Snハンダ粉末、Sn−Ag系ハンダ粉末、Sn−Cu系ハンダ粉末、Sn−Zn系ハンダ粉末、Sn−Sb系ハンダ粉末、Sn−Ag−Cu系ハンダ粉末、Sn−Ag−Bi系ハンダ粉末、Sn−Ag−Cu−Bi系ハンダ粉末、Sn−Ag−Cu−In系ハンダ粉末、Sn−Ag−Cu−S系ハンダ粉末、Sn−Ag−Cu−Ni−Ge系ハンダ粉末等の鉛フリーハンダ粉末が挙げられる。なお、ハンダ粉末の平均一次粒子径は特に限定されないが、通常は1〜50μm程度、好ましくは20〜40μm程度である。   As the solder powder, conventional lead eutectic solder powder such as Sn-Pb solder powder; Sn solder powder, Sn-Ag solder powder, Sn-Cu solder powder, Sn-Zn solder powder, Sn-Sb solder Solder powder, Sn-Ag-Cu solder powder, Sn-Ag-Bi solder powder, Sn-Ag-Cu-Bi solder powder, Sn-Ag-Cu-In solder powder, Sn-Ag-Cu-S And lead-free solder powders such as Sn solder powder and Sn-Ag-Cu-Ni-Ge solder powder. In addition, although the average primary particle diameter of solder powder is not specifically limited, Usually, it is about 1-50 micrometers, Preferably it is about 20-40 micrometers.

以下、実施例および比較例を挙げて本発明をさらに具体的に説明するが、本発明の範囲がそれらにより限定されないことはもとよりである。なお、「部」および「%」はいずれも重量基準である。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further more concretely, as a matter of course, the scope of the present invention is not limited by them. “Part” and “%” are both based on weight.

(ベース樹脂(A)の調製)
製造例1
中国産スラッシュ松より得られたガムロジン(ガードナー色調7、酸価170、軟化点77℃;以下、「原料1」という。)200gを減圧蒸留容器に仕込み、窒素シール下に0.4kPaの減圧下で蒸留し、精製ロジンを得た。次いで、当該精製ロジン150gと5%パラジウムカーボン(含水率50%)0.7gを0.3リットル回転式オートクレーブに仕込み、系内の酸素を除去した後、水素にて10MPaに加圧し、220℃まで昇温し、同温度で3時間水素化反応させることにより、ベース樹脂(A1)を得た。表1にベース樹脂(A1)の物性を示す(以下、同様)。
(Preparation of base resin (A))
Production Example 1
200 g of gum rosin obtained from Chinese slash pine (Gardner color tone 7, acid value 170, softening point 77 ° C .; hereinafter referred to as “raw material 1”) was placed in a vacuum distillation vessel, and under a vacuum of 0.4 kPa under a nitrogen seal And purified rosin was obtained. Next, 150 g of the purified rosin and 0.7 g of 5% palladium carbon (water content 50%) were charged into a 0.3 liter rotary autoclave to remove oxygen in the system, and then pressurized to 10 MPa with hydrogen at 220 ° C. The base resin (A1) was obtained by performing a hydrogenation reaction at the same temperature for 3 hours. Table 1 shows the physical properties of the base resin (A1) (hereinafter the same).

製造例2
製造例1において、原料ロジンとして、インドネシア産メルクシ松より得られたガムロジン(ガードナー色調8、酸価185、軟化点81℃;以下、「原料2」という。)200gを用いた他は同様にして、ベース樹脂(A2)を得た。
Production Example 2
In Production Example 1, gum rosin (Gardner color tone 8, acid value 185, softening point 81 ° C .; hereinafter referred to as “raw material 2”) 200 g obtained from Indonesian Merck pine was used as the raw material rosin. Base resin (A2) was obtained.

製造例3
製造例1において、原料ロジンとして、原料2と中国産馬尾松より得られたガムロジン(ガードナー色調7、酸価171、軟化点78℃;以下、「原料3」という。)の6:4(重量比)混合物200gを用いた他は同様にして、ベース樹脂(A3)を得た。
Production Example 3
In Production Example 1, as raw material rosin, 6: 4 (weight) of raw material 2 and gum rosin (Gardner color tone 7, acid value 171, softening point 78 ° C .; hereinafter referred to as “raw material 3”) obtained from Mao pine from China. Ratio) A base resin (A3) was obtained in the same manner except that 200 g of the mixture was used.

製造例4
製造例1において、原料ロジンとして、原料1と原料2の5:5(重量比)混合物200gを用いた他は同様にして、ベース樹脂(A4)を得た。
Production Example 4
A base resin (A4) was obtained in the same manner as in Production Example 1 except that 200 g of a 5: 5 (weight ratio) mixture of Raw Material 1 and Raw Material 2 was used as the raw material rosin.

製造例5
原料1と原料3の9:1(重量比)混合物250gを減圧蒸留容器に仕込み、窒素シール下に0.4kPaの減圧下で蒸留し、精製ロジンを得た。次いで、当該精製ロジン200gと5%パラジウムカーボン(含水率50%)0.4gを0.5リットルフラスコに仕込み、窒素雰囲気下で260℃まで昇温し、同温度で3時間不均化反応させることにより、ベース樹脂(A5)を得た。
Production Example 5
250 g of a 9: 1 (weight ratio) mixture of raw material 1 and raw material 3 was charged into a vacuum distillation vessel and distilled under a vacuum of 0.4 kPa under a nitrogen seal to obtain a purified rosin. Next, 200 g of the purified rosin and 0.4 g of 5% palladium carbon (water content 50%) are charged into a 0.5 liter flask, heated to 260 ° C. in a nitrogen atmosphere, and subjected to a disproportionation reaction at the same temperature for 3 hours. As a result, a base resin (A5) was obtained.

比較製造例1
製造例1において、原料ロジンとして、原料3を200g用いた他は同様にして、ベース樹脂(イ)を得た。表2にベース樹脂(イ)の物性を示す(以下、同様)。
Comparative production example 1
A base resin (I) was obtained in the same manner as in Production Example 1 except that 200 g of raw material 3 was used as the raw material rosin. Table 2 shows the physical properties of the base resin (A) (hereinafter the same).

比較製造例2
製造例1において、原料ロジンとして、中国産雲南松より得られたガムロジン(ガードナー色調7、酸価170、軟化点78℃;以下、「原料4」という。)200g用いた他は同様にして、ベース樹脂(ロ)を得た。
Comparative production example 2
In Production Example 1, gum rosin (Gardner color tone 7, acid value 170, softening point 78 ° C .; hereinafter referred to as “raw material 4”) 200 g obtained from Yunnan pine produced in China was used as the raw material rosin. Base resin (b) was obtained.

比較製造例3
原料2と原料3の8:2混合物200gを減圧蒸留容器に仕込み、窒素シール下に0.4kPaの減圧下で蒸留し、ベース樹脂(ハ)を得た。
Comparative production example 3
200 g of an 8: 2 mixture of raw material 2 and raw material 3 was placed in a vacuum distillation vessel and distilled under a vacuum of 0.4 kPa under a nitrogen seal to obtain a base resin (c).

比較製造例4
原料3を200g、5%パラジウムカーボン(含水率50%)を0.7g、0.3リットル回転式オートクレーブに仕込み、系内の酸素を除去した後、水素にて10MPaに加圧し、220℃まで昇温し、同温度で3時間水素化反応させることにより、ベース樹脂(ニ)を得た。
Comparative production example 4
200 g of raw material 3, 0.7 g of 5% palladium carbon (moisture content 50%), 0.7 g, charged in a 0.3 liter rotary autoclave, and after removing oxygen in the system, pressurized to 10 MPa with hydrogen, up to 220 ° C. The temperature was raised and a hydrogenation reaction was carried out at the same temperature for 3 hours to obtain a base resin (d).

比較製造例5
原料3を200g、5%パラジウムカーボン(含水率50%)を0.06g、0.5リットルフラスコに仕込み、窒素雰囲気下で280℃まで昇温し、同温度で3時間不均化反応させることにより、ベース樹脂(ホ)を得た。
Comparative Production Example 5
200 g of material 3, 0.06 g of 5% palladium carbon (water content 50%), charged in a 0.5 liter flask, heated to 280 ° C. in a nitrogen atmosphere, and allowed to disproportionate at that temperature for 3 hours. As a result, a base resin (e) was obtained.

実施例1〜5および比較例1〜5
<ソルダペースト用フラックスおよびソルダペーストの製造>
製造例1で得られた(A1)成分50部、12−ヒドロキシステアリン酸エチレンビスアミド5部、およびジエチレングリコールモノヘキシルエーテル45部をビーカーに入れ、撹拌下に加熱溶融させることによりソルダペースト用フラックスを調製した。次いで、当該フラックス10部および鉛フリーハンダ粉末(Sn−Ag−Cu合金;96.5重量%/3重量%/0.5重量%、平均粒子径25〜38μm)90部を撹拌混合することによりソルダペーストを調製した。製造例2〜5および比較製造例1〜5で得られたベース樹脂についても同様にしてソルダペースト用フラックスおよびソルダペーストを調製した。
Examples 1-5 and Comparative Examples 1-5
<Manufacture of solder paste flux and solder paste>
Flux for solder paste is prepared by placing 50 parts of component (A1) obtained in Production Example 1, 5 parts of 12-hydroxystearic acid ethylenebisamide, and 45 parts of diethylene glycol monohexyl ether in a beaker and heating and melting under stirring. did. Next, by stirring and mixing 10 parts of the flux and 90 parts of lead-free solder powder (Sn—Ag—Cu alloy; 96.5 wt% / 3 wt% / 0.5 wt%, average particle size 25 to 38 μm) A solder paste was prepared. For the base resins obtained in Production Examples 2 to 5 and Comparative Production Examples 1 to 5, solder paste flux and solder paste were prepared in the same manner.

<ソルダペースト用フラックス試験>
(経時安定性)
実施例1〜5および比較例1〜5のソルダペースト用フラックスを室温で1ヶ月保管した後、流動性を以下の基準で確認した。結果を表3に示す。
1:室温で流動する。
2:室温で流動しないが、柔らかく撹拌が容易である。
3:室温で固化しており、撹拌も困難である。
<Flux test for solder paste>
(Stability over time)
After the solder paste fluxes of Examples 1 to 5 and Comparative Examples 1 to 5 were stored at room temperature for 1 month, the fluidity was confirmed according to the following criteria. The results are shown in Table 3.
1: Flows at room temperature.
2: Although it does not flow at room temperature, it is soft and easy to stir.
3: Solidified at room temperature and difficult to stir.

<ソルダペースト試験>
(経時安定性)
実施例1〜5および比較例1〜5のソルダペーストを40℃で7日間保存した後、自動粘度測定装置PCU−205((株)マルコム製)により粘度を測定し、ペースト調製時(0日目)からの粘度変化を確認した。粘度変化が小さいほど、経時安定性に優れる。結果を表3に示す。
1:粘度変化が20Pa・S未満
2:粘度変化が20Pa・S以上40Pa・S未満
3:粘度変化が40Pa・S以上
<Solder paste test>
(Stability over time)
After the solder pastes of Examples 1 to 5 and Comparative Examples 1 to 5 were stored at 40 ° C. for 7 days, the viscosity was measured by an automatic viscosity measuring apparatus PCU-205 (manufactured by Malcolm Co., Ltd.), and the paste was prepared (0 days) The change in viscosity from the eye) was confirmed. The smaller the viscosity change, the better the stability over time. The results are shown in Table 3.
1: Change in viscosity is less than 20 Pa · S 2: Change in viscosity is 20 Pa · S or more and less than 40 Pa · S 3: Change in viscosity is 40 Pa · S or more

(粘着性)
実施例1〜5および比較例1〜5のソルダペーストを銅板上に印刷し、タッキネステスターTK−1((株)マルコム製)により粘着力を測定した。数値が大きいほど、粘着性に優れる。結果を表3に示す。
1:測定値が80gf以上
2:測定値が30gf以上80gf未満
3:測定値が30gf未満
(Adhesive)
The solder pastes of Examples 1 to 5 and Comparative Examples 1 to 5 were printed on a copper plate, and the adhesive strength was measured with a tackiness tester TK-1 (manufactured by Malcolm). The larger the value, the better the adhesiveness. The results are shown in Table 3.
1: Measurement value is 80 gf or more 2: Measurement value is 30 gf or more and less than 80 gf 3: Measurement value is less than 30 gf

(ハンダ付性)
実施例1〜5および比較例1〜5のソルダペーストについて、「JIS Z3284 附属書10 ぬれ効力およびディウェッティング試験」に準拠し、ハンダ付け性(濡れ性)を評価したところ、いずれのソルダペーストもハンダ付け性良好(広がり度合いの区分1または2)であった。
(Solderability)
The solder pastes of Examples 1 to 5 and Comparative Examples 1 to 5 were evaluated for solderability (wetability) in accordance with “JIS Z3284 Annex 10 Wetting Efficacy and Dewetting Test”. The solderability was also good (spreading degree category 1 or 2).

(フラックス残渣の色調)
実施例1〜5および比較例1〜5のソルダペーストを銅基板上に印刷し、ハンダ付部位を顕微鏡VW−6000((株)キーエンス製:30倍)で観察することによって、フラックス残渣の色調を以下の基準で確認した。結果を表3に示す。
(Flux residue color tone)
The solder pastes of Examples 1 to 5 and Comparative Examples 1 to 5 are printed on a copper substrate, and the soldered part is observed with a microscope VW-6000 (manufactured by Keyence Corporation: 30 times), whereby the color tone of the flux residue Was confirmed according to the following criteria. The results are shown in Table 3.

1:無色透明
2:若干の着色有り
3:着色有り
1: colorless and transparent 2: slightly colored 3: colored

(フラックス残渣のクラック)
フラックス残渣の色調の評価と併せ、クラックの発生の有無を確認した。実施例1〜5および比較例1〜5のソルダペーストは、いずれも残渣にクラックが認められなかった。
(Flux residue cracks)
Together with the evaluation of the color tone of the flux residue, the presence or absence of cracks was confirmed. In any of the solder pastes of Examples 1 to 5 and Comparative Examples 1 to 5, no cracks were observed in the residue.

実施例6〜10および比較例6〜10
<ポストフラックスの製造>
製造例1で得られた(A1)成分50部、およびイソプロピルアルコール50部をビーカーに入れ、撹拌下に加熱溶融させることによりポストフラックスを調製した。製造例2〜5および比較製造例1〜5で得られたロジンについても同様にしてポストフラックスを調製した。
Examples 6 to 10 and Comparative Examples 6 to 10
<Post flux production>
A post flux was prepared by putting 50 parts of the component (A1) obtained in Production Example 1 and 50 parts of isopropyl alcohol into a beaker and heating and melting them under stirring. Post fluxes were similarly prepared for the rosins obtained in Production Examples 2 to 5 and Comparative Production Examples 1 to 5.

<ポストフラックス試験>
(経時安定性)
実施例6〜10および比較例6〜10のポストフラックスを室温で1週間保管した後、沈殿物の発生具合を以下の基準で評価した。沈殿物の発生が少ないほど、経時安定性に優れる。結果を表4に示す。
1:沈殿物が全く発生していない。
2:沈殿物が僅かに発生している。
3:沈殿物がかなり発生している。
<Post flux test>
(Stability over time)
After the post fluxes of Examples 6 to 10 and Comparative Examples 6 to 10 were stored at room temperature for 1 week, the generation of precipitates was evaluated according to the following criteria. The less precipitate is generated, the better the stability over time. The results are shown in Table 4.
1: No precipitate is generated at all.
2: A slight precipitate is generated.
3: Precipitates are considerably generated.

(ハンダ付け性)
実施例6〜10および比較例6〜10のポストフラックスを用いて、「JIS Z3197 はんだ広がり法」に準拠し、ハンダ付け性(濡れ性)を評価したところ、いずれのポストフラックスもハンダ付け性良好(広がり度合いの区分1または2)であった。
(Solderability)
Using the post-flux of Examples 6 to 10 and Comparative Examples 6 to 10, the solderability (wetting property) was evaluated in accordance with “JIS Z3197 Solder Spreading Method”. (Expansion degree category 1 or 2).

(フラックス残渣の色調)
また、ハンダ付部位を顕微鏡VW−6000((株)キーエンス製:30倍)で観察することによって、フラックス残渣の色調を以下の基準で確認した。結果を表4に示す。
1:無色透明
2:若干の着色有り
3:着色有り
(Flux residue color tone)
Moreover, the color tone of the flux residue was confirmed according to the following criteria by observing the soldered portion with a microscope VW-6000 (manufactured by Keyence Corporation: 30 times). The results are shown in Table 4.
1: colorless and transparent 2: slightly colored 3: colored

実施例1〜5の結果より、(A)成分をベース樹脂とするソルダペースト用フラックスは経時安定性が良好であり、またこのフラックスを用いたソルダペーストも粘度の経時安定性および粘着性に優れることがわかった。また、当該ソルダペーストはハンダ付性(濡れ性)ならびにフラックス残渣の色調および耐クラック性も良好であった。   From the results of Examples 1 to 5, the solder paste flux using the component (A) as a base resin has good temporal stability, and the solder paste using this flux is also excellent in viscosity temporal stability and adhesiveness. I understood it. The solder paste also had good solderability (wetability), color tone of the flux residue, and crack resistance.

一方、比較例1、2、4および5の結果より、(A’)成分中に(a−1)成分または(a−2)成分が含まれていない場合や、含まれていても精製処理がなされていない場合には、フラックスの経時安定性ならびにソルダペーストの粘度安定性および粘着性が不良になることがわかった。また、比較例4の場合には、フラックス残渣の色調も良くなかった。   On the other hand, from the results of Comparative Examples 1, 2, 4, and 5, the case where the component (A-1) or the component (a-2) is not contained in the component (A ′) or the purification treatment is performed even if it is contained. It was found that when the soldering was not performed, the flux stability with time and the viscosity stability and tackiness of the solder paste were poor. Moreover, in the case of the comparative example 4, the color tone of the flux residue was also not good.

また、比較例3の結果より、(A’)成分中に(a−1)成分または(a−2)成分が含まれていても、水素化反応および不均化反応のいずれをも経由させていない場合にはソルダペーストの粘度安定性が不良となり、フラックス残渣の色調も良くないことがわかった。   Moreover, from the result of Comparative Example 3, even if the component (A ′) or the component (a-2) is contained in the component (A ′), both the hydrogenation reaction and the disproportionation reaction are allowed to pass through. When it was not, the viscosity stability of the solder paste was poor, and it was found that the color tone of the flux residue was not good.

実施例6〜10の結果より、(A)成分をベース樹脂とするポストフラックスは経時安定性が良好であり、またこのフラックスを用いた際のハンダ付け性(濡れ性)ならびにフラックス残渣の色調も良好であった。   From the results of Examples 6 to 10, the post-flux having the component (A) as a base resin has good temporal stability, and solderability (wetting) and the color tone of the flux residue when using this flux are also shown. It was good.

一方、比較例6、7、9および10の結果より、(A’)成分中に(a−1)成分または(a−2)成分が含まれていない場合や、含まれていても精製処理がなされていない場合には、ポストフラックスの経時安定性が不良になることがわかった。また、比較例9の場合には、フラックス残渣の色調も良くなかった。   On the other hand, from the results of Comparative Examples 6, 7, 9 and 10, the case where the component (A-1) or the component (a-2) is not included in the component (A ′) or the purification treatment is performed even if it is included. It was found that the stability of the postflux with time is poor when no is performed. In the case of Comparative Example 9, the color tone of the flux residue was not good.

また、比較例8の結果より、(A’)成分中に(a−1)成分または(a−2)成分が含まれていても、水素化反応および不均化反応のいずれをも経由させていない場合には、フラックス残渣の色調が良くないことがわかった。
Moreover, from the result of Comparative Example 8, even if the component (A-1) or the component (a-2) is contained in the component (A ′), both the hydrogenation reaction and the disproportionation reaction are allowed to pass through. If not, it was found that the color tone of the flux residue was not good.

Claims (8)

スラッシュ松に由来するロジン(a−1)および/またはメルクシ松に由来するロジン(a−2)を含有するロジン類(A’)を精製し、更に水素化反応および/または不均化反応させて得られる生成物(A)からなるハンダ付フラックス用ベース樹脂。 The rosin (A ′) containing rosin (a-1) derived from slash pine and / or rosin (a-2) derived from Merck pine is purified, and further hydrogenated and / or disproportionated. Soldering flux base resin comprising the product (A) obtained in this manner. (A’)成分における(a−1)成分および/または(a−2)成分の含有量が50重量%以上である、請求項1のハンダ付フラックス用ベース樹脂。 The base resin for soldered flux according to claim 1, wherein the content of the component (a-1) and / or the component (a-2) in the component (A ') is 50% by weight or more. (A)成分のガードナー色調が2以下である、請求項1または2のハンダ付フラックス用ベース樹脂。 The base resin for soldered flux according to claim 1 or 2, wherein the (A) component has a Gardner color tone of 2 or less. (A)成分の酸価が150〜190mgKOH/gである、請求項1〜3のいずれかのハンダ付フラックス用ベース樹脂。 The base resin for soldered flux according to any one of claims 1 to 3, wherein the acid value of the component (A) is 150 to 190 mgKOH / g. (A)成分の軟化点が70〜90℃である、請求項1〜4のいずれかのハンダ付フラックス用ベース樹脂。 The base resin for soldered flux according to any one of claims 1 to 4, wherein the softening point of the component (A) is 70 to 90 ° C. 請求項1〜5のいずれかのハンダ付フラックス用ベース樹脂、フラックス用溶剤(B)およびチキソトロピック剤(C)、ならびに必要に応じて活性剤(D)を含有するハンダ付フラックス。 Soldering flux containing the soldering flux base resin according to any one of claims 1 to 5, the fluxing solvent (B) and the thixotropic agent (C), and optionally the activator (D). 請求項1〜5のいずれかのハンダ付フラックス用ベース樹脂、フラックス用溶剤(B)および必要に応じて活性剤(D)を含有し、かつチキソトロピック剤(C)を含有しないハンダ付フラックス。 Soldering flux containing the base resin for soldering flux according to any one of claims 1 to 5, the solvent for flux (B) and optionally the activator (D) and not containing the thixotropic agent (C). 請求項6のハンダ付フラックス及びハンダ粉末を含有するソルダペースト。 A solder paste containing the soldered flux and solder powder of claim 6.
JP2013124293A 2012-06-13 2013-06-13 Solder flux base resin, solder flux and solder paste Active JP6160861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013124293A JP6160861B2 (en) 2012-06-13 2013-06-13 Solder flux base resin, solder flux and solder paste

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012133522 2012-06-13
JP2012133522 2012-06-13
JP2013124293A JP6160861B2 (en) 2012-06-13 2013-06-13 Solder flux base resin, solder flux and solder paste

Publications (2)

Publication Number Publication Date
JP2014014867A true JP2014014867A (en) 2014-01-30
JP6160861B2 JP6160861B2 (en) 2017-07-12

Family

ID=50110032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013124293A Active JP6160861B2 (en) 2012-06-13 2013-06-13 Solder flux base resin, solder flux and solder paste

Country Status (1)

Country Link
JP (1) JP6160861B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159325A (en) * 2015-02-27 2016-09-05 住友金属鉱山株式会社 Flux for solder, and solder paste
JP2017064758A (en) * 2015-09-30 2017-04-06 株式会社タムラ製作所 Flux composition, solder composition and electronic substrate
JP2018008287A (en) * 2016-07-12 2018-01-18 千住金属工業株式会社 flux
JP2020090767A (en) * 2018-11-22 2020-06-11 東邦化学工業株式会社 Rosin emulsion size agent
JP2020192579A (en) * 2019-05-28 2020-12-03 千住金属工業株式会社 New rosin compound, method for producing the same, and flux and solder paste
JP2021154332A (en) * 2020-03-26 2021-10-07 株式会社タムラ製作所 Solder composition and electronic substrate

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051856A (en) * 1973-09-07 1975-05-08
JPH05271621A (en) * 1992-03-26 1993-10-19 Arakawa Chem Ind Co Ltd Production of colorless rosin
JP2011521980A (en) * 2008-06-06 2011-07-28 中国林▲業▼科学研究院林▲産▼化学工▲業▼研究所 Isopimaric acid production process
JP2011224652A (en) * 2010-03-30 2011-11-10 Arakawa Chem Ind Co Ltd Flux for solder and solder composition
JP2011243985A (en) * 2010-05-18 2011-12-01 Rohm & Haas Electronic Materials Llc Method of forming current tracks on semiconductors
JP2012001714A (en) * 2010-05-19 2012-01-05 Arakawa Chem Ind Co Ltd Rosin-modified phenolic resin, printing ink varnish, and printing ink
WO2013172295A1 (en) * 2012-05-18 2013-11-21 荒川化学工業株式会社 Base resin for soldering flux, soldering flux and solder paste

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051856A (en) * 1973-09-07 1975-05-08
JPH05271621A (en) * 1992-03-26 1993-10-19 Arakawa Chem Ind Co Ltd Production of colorless rosin
JP2011521980A (en) * 2008-06-06 2011-07-28 中国林▲業▼科学研究院林▲産▼化学工▲業▼研究所 Isopimaric acid production process
JP2011224652A (en) * 2010-03-30 2011-11-10 Arakawa Chem Ind Co Ltd Flux for solder and solder composition
JP2011243985A (en) * 2010-05-18 2011-12-01 Rohm & Haas Electronic Materials Llc Method of forming current tracks on semiconductors
JP2012001714A (en) * 2010-05-19 2012-01-05 Arakawa Chem Ind Co Ltd Rosin-modified phenolic resin, printing ink varnish, and printing ink
WO2013172295A1 (en) * 2012-05-18 2013-11-21 荒川化学工業株式会社 Base resin for soldering flux, soldering flux and solder paste

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016159325A (en) * 2015-02-27 2016-09-05 住友金属鉱山株式会社 Flux for solder, and solder paste
JP2017064758A (en) * 2015-09-30 2017-04-06 株式会社タムラ製作所 Flux composition, solder composition and electronic substrate
JP2018008287A (en) * 2016-07-12 2018-01-18 千住金属工業株式会社 flux
TWI697375B (en) * 2016-07-12 2020-07-01 日商千住金屬工業股份有限公司 solder
JP2020090767A (en) * 2018-11-22 2020-06-11 東邦化学工業株式会社 Rosin emulsion size agent
JP7438620B2 (en) 2018-11-22 2024-02-27 東邦化学工業株式会社 Rosin emulsion sizing agent
JP2020192579A (en) * 2019-05-28 2020-12-03 千住金属工業株式会社 New rosin compound, method for producing the same, and flux and solder paste
JP2021154332A (en) * 2020-03-26 2021-10-07 株式会社タムラ製作所 Solder composition and electronic substrate
JP7133579B2 (en) 2020-03-26 2022-09-08 株式会社タムラ製作所 Solder composition and electronic substrate

Also Published As

Publication number Publication date
JP6160861B2 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
JP5545421B2 (en) Solder flux base resin, solder flux and solder paste
JP5246452B2 (en) Rosin flux and solder paste for soldering
JP6566248B2 (en) Flux for lead-free solder for clearance resist and lead-free solder paste for clearance resist
JP6160861B2 (en) Solder flux base resin, solder flux and solder paste
JP6191896B2 (en) Flux for lead-free solder paste and lead-free solder paste
JP5423789B2 (en) Flux composition for lead-free solder and lead-free solder composition
JP6204007B2 (en) Flux composition, solder paste composition, and printed wiring board
JP5019057B2 (en) Solder flux and cream solder
JP6120139B2 (en) Lead-free solder flux, lead-free solder paste and lead-free thread solder
JP5490959B1 (en) Rosin for solder flux and solder flux using the same
JP2022037999A (en) Rosin base resin for lead-free solder flux, lead-free solder flux, and lead-free solder paste
JPWO2012081688A1 (en) Lead-free solder flux and lead-free solder paste
JP2017113776A (en) Flux for resin flux-cored solder, and resin flux-cored solder
JP6238007B2 (en) Flux for lead-free solder for clearance resist and lead-free solder paste for clearance resist
JP2015006687A (en) Flux for lead-free solder, and lead-free solder paste
JP6660018B2 (en) Flux for lead-free solder paste and lead-free solder paste
JP2021091008A (en) Rosin-based base resin for lead-free solder flux, lead-free solder flux, lead-free solder paste
JP5481753B2 (en) Flux composition and solder paste composition
JP6566272B2 (en) Flux for lead-free solder paste, lead-free solder paste
JP2019147185A (en) Flux and solder paste
JP2021016871A (en) Rosin base resin for lead-free solder flux, lead-free solder flux, and lead-free solder paste
JP2019150870A (en) Flux and solder paste

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170301

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170518

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170531

R150 Certificate of patent or registration of utility model

Ref document number: 6160861

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250