Nothing Special   »   [go: up one dir, main page]

JP2014005526A - Method for manufacturing bearing ring of rolling bearing and bearing ring of rolling bearing - Google Patents

Method for manufacturing bearing ring of rolling bearing and bearing ring of rolling bearing Download PDF

Info

Publication number
JP2014005526A
JP2014005526A JP2012144111A JP2012144111A JP2014005526A JP 2014005526 A JP2014005526 A JP 2014005526A JP 2012144111 A JP2012144111 A JP 2012144111A JP 2012144111 A JP2012144111 A JP 2012144111A JP 2014005526 A JP2014005526 A JP 2014005526A
Authority
JP
Japan
Prior art keywords
cooling
inner ring
induction
correction
carbonitriding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012144111A
Other languages
Japanese (ja)
Inventor
Riichiro Matoba
理一郎 的場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2012144111A priority Critical patent/JP2014005526A/en
Publication of JP2014005526A publication Critical patent/JP2014005526A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a bearing ring of a rolling bearing, capable of reducing deformation at the time of heat treatment and enhancing a lifetime under foreign matter contamination or lubrication, and having excellent dimensional stability and high production efficiency.SOLUTION: A method for manufacturing the bearing ring of a rolling bearing comprises: heating and carbonitriding an inner ring 7 at a temperature exceeding an Atransformation point and cooling it to less than the Atransformation point in a carbonitriding/cooling chamber 1; induction-heating the inner ring at a heating temperature or more of carbonitriding and less than the heating temperature+100°C in an induction heating coil 22 of an induction heating part 2; hardening and reforming the inner ring in a cooling/reforming part 3; cooling the inner ring 7 until it is put into an outer diameter restraining form 34 and a cooling temperature becomes equal to or less than an Mpoint in the middle of the cooling before reaching the Mpoint; annealing the inner ring at a high frequency and reforming it by an outer diameter restraining ceramic form 42 in an annealing/reforming part 4; and removing an oxide film formed on the surface of the inner ring in an oxide film removing chamber 5.

Description

この発明は、熱処理工程に特徴を有する転がり軸受軌道輪の製造方法に関する。   The present invention relates to a method of manufacturing a rolling bearing race having characteristics in a heat treatment process.

近年、転がり軸受においては、軌道輪の厚さを薄くすることが求められている。厚さの薄い軌道輪は、熱処理時の変形が大きい。熱処理時の変形に伴って真円度が悪くなった軌道輪には、研削工程で黒皮残りが生じ易い。黒皮を除去するために研削工程を繰り返すことで生産性が低下する。熱処理時の変形が非常に大きな場合は、研削工程を繰り返し行っても真円度が設定範囲にならず、不良品となっている。このように、転がり軸受の軌道輪には、熱処理時の変形を小さくすることが求められている。
特許文献1には、環状体の肉厚の変化に関わらず、効率的に環状体の矯正焼入れを行うことができるとともに、研磨処理等の後処理作業を大幅に削減することができる矯正焼入れ装置として、マルテンサイト変態膨張を伴う環状体の焼入後の外径寸法を矯正する矯正焼入れ装置が記載されている。
In recent years, in rolling bearings, it has been required to reduce the thickness of the bearing rings. A thin bearing ring is greatly deformed during heat treatment. The raceway whose roundness has deteriorated due to deformation during heat treatment is likely to cause black skin residue in the grinding process. Productivity is reduced by repeating the grinding process to remove the black skin. If the deformation during heat treatment is very large, the roundness is not within the set range even if the grinding process is repeated, resulting in a defective product. As described above, it is required for the bearing ring of the rolling bearing to reduce deformation during heat treatment.
Patent Document 1 discloses a straightening and quenching apparatus capable of efficiently performing straightening and quenching of the annular body regardless of changes in the thickness of the annular body and greatly reducing post-processing work such as polishing. Describes a straightening and quenching device that corrects the outer diameter after quenching of an annular body with martensitic transformation expansion.

この装置には、環状体を加熱する環状の加熱コイルと、環状体の内周及び外周に冷却水を噴射して冷却する環状の冷却ジャケットと、環状体の外周を圧入して矯正する環状の外径拘束型と、が上下方向に同軸に配置されている。この装置は、環状体を、前記加熱コイルの環状空間、前記冷却ジャケットの環状空間、および前記外径拘束型の内部に同軸に移動させる昇降機構と、加熱コイル内に移動した環状体を回転させる回転手段とを備えている。
特許文献2には、焼き入れ硬化後の環状部材の外周面および端面の少なくとも一方を拘束する矯正型と、矯正型に拘束された環状部材を所望のテンパ温度に誘導加熱する加熱手段とを備えた環状部材の変形矯正装置として、矯正型の少なくとも環状部材と接触する部分が導電性セラミックス製である変形矯正装置が記載されている。
This device includes an annular heating coil for heating the annular body, an annular cooling jacket for cooling by injecting cooling water onto the inner and outer circumferences of the annular body, and an annular jacket that press-fits and corrects the outer circumference of the annular body. The outer diameter restraining type is arranged coaxially in the vertical direction. This device rotates an annular body moved into the heating coil, and an elevating mechanism for moving the annular body coaxially into the annular space of the heating coil, the annular space of the cooling jacket, and the outer diameter restraining type. And rotating means.
Patent Document 2 includes a correction die that restrains at least one of the outer peripheral surface and the end surface of the annular member after quench hardening, and a heating unit that induction-heats the annular member restricted by the correction die to a desired tempering temperature. As a deformation correction device for an annular member, a deformation correction device in which at least a portion of the correction mold that comes into contact with the annular member is made of conductive ceramics is described.

一方、自動車などの低燃費化の要求に伴って、機械部品の小型化や高効率化が行われている。そのため、機械部品の使用環境は、潤滑不良下や異物混入下などのより厳しい条件下となっている。
異物混入潤滑下で使用する転がり軸受の寿命を長くするためには、異物の噛み込みによって軌道面に生じた圧痕の周辺部に、応力が集中することを緩和する必要がある。このような応力集中の緩和を達成できる方法として、軌道面の残留オーステナイト量を多くする方法がある。軌道面に浸炭処理や浸炭窒化処理を行うことで、軌道面の残留オーステナイト量を多くすることができる。
On the other hand, along with demands for reducing fuel consumption of automobiles and the like, miniaturization and high efficiency of machine parts have been performed. For this reason, the use environment of machine parts is under more severe conditions such as poor lubrication and contamination with foreign matter.
In order to extend the life of the rolling bearing used under the contamination with foreign matter, it is necessary to alleviate the concentration of stress on the periphery of the indentation generated on the raceway surface due to the foreign matter being caught. As a method for achieving such relaxation of stress concentration, there is a method for increasing the amount of retained austenite on the raceway surface. By performing carburization or carbonitriding on the raceway surface, the amount of retained austenite on the raceway surface can be increased.

特許文献3には、軸受部品(内輪、外輪および転動体の少なくとも一つ)に対する熱処理として、A1 変態点(オーステナイト変態温度)を超える温度(T1)に加熱して浸炭窒化処理を行った後に、A1 変態点未満に冷却する浸炭窒化・冷却工程と、前記浸炭窒化・冷却工程後の軌道輪を、A1 変態点以上であって浸炭窒化・冷却工程の加熱温度(T1)未満の温度(T2<T1)に加熱(二次加熱)した後に冷却する焼入れ工程とを、この順に行う方法が記載されている。 In Patent Document 3, as a heat treatment for bearing parts (at least one of an inner ring, an outer ring, and a rolling element), after carbonitriding by heating to a temperature (T1) exceeding the A 1 transformation point (austenite transformation temperature). a carbonitriding and cooling step of cooling to below the a 1 transformation point, the carbonitriding-bearing rings after the cooling step, the heating temperature of the carbonitriding and cooling step comprising at a 1 transformation point or above (T1) lower than the temperature A method is described in which a quenching step of cooling after heating (secondary heating) to (T2 <T1) is performed in this order.

特許文献3には、この方法によれば、オーステナイト結晶粒度の粒径が従来の2分の1以下となるミクロ組織を得ることができるため、一次加熱(浸炭窒化処理)に引き続いてそのまま1回焼入れし、二次加熱を行わない通常の浸炭窒化・焼入れ方法と比較して、表層部分を浸炭窒化しつつ、割れ強度を向上させ、経年寸法変化率を減少させることができるとの記載がある。
特許文献3には、また、この方法により、軸受部品の窒素富化層における残留オーステナイト量を11%以上25%以下の範囲にすることで、耐表面損傷特性と耐経年寸法変化特性とのバランスをとることが記載されている。
According to Patent Document 3, according to this method, a microstructure in which the grain size of the austenite crystal grain size is less than or equal to the conventional one can be obtained. Therefore, the primary heating (carbonitriding treatment) is performed once as it is. There is a description that it is possible to improve the cracking strength and reduce the aging dimensional change rate while carbonitriding the surface layer portion, compared with the usual carbonitriding / quenching method without quenching and secondary heating. .
Patent Document 3 also discloses that the balance between surface damage resistance and aging dimensional change characteristics is achieved by setting the amount of retained austenite in the nitrogen-enriched layer of the bearing component in the range of 11% to 25% by this method. Is described.

特許文献4および5には、鋼製部品をA1 変態点を越える温度(T1)に加熱した後、A1 変態点未満に冷却して表面に窒素富化層を形成する一次熱処理装置と、一次熱処理後の鋼製部品を、A1 変態点を越える温度(T2)に加熱した後、A1 変態点未満に冷却する二次熱処理装置とを備え、二次熱処理装置が誘導加熱で加熱する装置であると共に、二次熱処理装置で型焼入れすることが記載されている。
そして、特許文献4には、一次熱処理装置と二次熱処理装置とにおける加熱温度の関係をT2<T1とすることで、鋼中のオーステナイト粒が微細化されると記載されている。特許文献5にはT2<T1でもT2≧T1でもよいと記載されている。
In Patent Documents 4 and 5, a primary heat treatment apparatus for heating a steel part to a temperature exceeding the A 1 transformation point (T1) and then cooling to a temperature below the A 1 transformation point to form a nitrogen-enriched layer on the surface; The steel part after the primary heat treatment is heated to a temperature exceeding the A 1 transformation point (T2) and then cooled to below the A 1 transformation point, and the secondary heat treatment device is heated by induction heating. In addition to being an apparatus, it is described that mold hardening is performed with a secondary heat treatment apparatus.
And patent document 4 describes that the austenite grain in steel is refined | miniaturized by making the relationship of the heating temperature in a primary heat processing apparatus and a secondary heat processing apparatus into T2 <T1. Patent Document 5 describes that T2 <T1 or T2 ≧ T1 may be satisfied.

特許文献6には、軌道輪をオーステナイト変態温度以上に誘導加熱した後、回転している軌道輪に向けて冷却液を噴射することにより、軌道輪の表面温度がマルテンサイト変態開始温度より高い温度から500℃までの温度範囲となるまで水冷した後、マルテンサイト変態開始温度以下となるまでガス冷する焼入れ工程を備え、前記水冷またはガス冷中に、軌道輪を筒状の外径矯正型に入れて拘束し、軌道輪の外形寸法を矯正することを特徴とする転がり軸受軌道輪の製造方法が記載されている。   Patent Document 6 discloses a method in which the surface temperature of the raceway is higher than the martensite transformation start temperature by injecting the coolant toward the rotating raceway after induction heating the raceway to an austenite transformation temperature or higher. To a temperature range of from 500 to 500 ° C., followed by a quenching step of gas cooling until the temperature falls below the martensite transformation start temperature. During the water cooling or gas cooling, the raceway ring is formed into a cylindrical outer diameter correction mold. A method of manufacturing a rolling bearing race is described, which includes inserting and restraining and correcting the outer dimensions of the race.

特許4539164号公報Japanese Patent No. 4539164 特開2001−64721号公報JP 2001-64721 A 特開2006−316821号公報JP 2006-316821 A 特開2005−113213号公報JP 2005-113213 A 特開2005−133212号公報JP 2005-133212 A 特開2009−203522号公報JP 2009-203522 A

この発明の課題は、転がり軸受の軌道輪を製造する方法として、熱処理後の真円度が高く、異物混入潤滑下での寿命を長くでき、寸法安定性にも優れた軌道輪が得られる方法を提供することである。   An object of the present invention is a method for producing a bearing ring for a rolling bearing that has a high roundness after heat treatment, can increase the life under foreign matter-mixed lubrication, and can provide a bearing ring with excellent dimensional stability. Is to provide.

上記課題を解決するために、この発明の転がり軸受軌道輪の製造方法は、転がり軸受を構成する鋼製の軌道輪(内輪または外輪)を、A1 変態点(オーステナイト変態温度)を超える温度(T1)に加熱して浸炭窒化を行った後に、A1 変態点未満に冷却する浸炭窒化・冷却工程と、前記浸炭窒化・冷却工程後の軌道輪を、前記浸炭窒化・冷却工程の加熱温度以上前記加熱温度+100℃未満の温度(T2;T1+100℃>T2≧T1)に誘導加熱した後に、MS 点(マルテンサイト変態開始温度)以下になるまで冷却する工程であって、冷却途中のMS 点に到達する前に前記軌道輪を外径拘束型に入れることで、焼入れと矯正を行う高周波焼入れ・矯正工程と、前記高周波焼入れ・矯正工程後の軌道輪をセラミックス製の矯正型で拘束した状態で誘導加熱することで、焼戻しと矯正を行う高周波焼戻し・矯正工程と、前記高周波焼戻し・矯正工程後の軌道輪の表面に形成された酸化膜を除去する酸化膜除去工程と、をこの順に行うことを特徴とする。 In order to solve the above-described problems, a method for manufacturing a rolling bearing race of the present invention is a method in which a steel bearing ring (inner ring or outer ring) constituting a rolling bearing exceeds a temperature exceeding the A 1 transformation point (austenite transformation temperature) ( after the carbonitriding was heated to T1), and carbonitriding-cooling step of cooling to below the a 1 transformation point, the carbonitriding-bearing rings after the cooling step, or the heating temperature of the carbonitriding and cooling process The heating temperature is a step of induction heating to a temperature lower than 100 ° C. (T2; T1 + 100 ° C.> T2 ≧ T1) and then cooling to a temperature below the M S point (martensitic transformation start temperature), and M S during cooling Before reaching the point, the raceway is placed in the outer diameter restraint type, and induction hardening and straightening process for quenching and straightening, and the raceway after the induction hardening and straightening process are restrained with a ceramic straightening die. Induction heating in this state, induction tempering / correction process for tempering and correction, and oxide film removal process for removing the oxide film formed on the surface of the raceway after the induction tempering / correction process in this order It is characterized by performing.

この発明の方法では、前記高周波焼入れ・矯正工程において、焼入れ時の冷却途中で軌道輪を外径拘束型に入れて矯正を行うだけでなく、高周波焼戻し時にも矯正を行うことにより、軌道輪の熱処理時の変形を小さくし、熱処理後の軌道輪の真円度を高くすることができる。
また、セラミックスは非磁性材料であるため外部磁場によって磁化され難いことから、誘導加熱で温度が上昇し難い。そのため、前記高周波焼戻し・矯正工程でセラミックス製の矯正型を使用することにより、矯正型の温度上昇が抑えられる。よって、セラミックス製以外の矯正型を使用した場合と比較して、矯正型の寸法変化が小さくなり、高周波焼戻し・矯正工程での矯正精度が高くなる。
In the method of the present invention, in the induction hardening / correction step, not only is the correction performed by putting the race ring into an outer diameter constrained type during cooling during quenching, but also the correction is performed during induction tempering, thereby correcting the race ring. The deformation during the heat treatment can be reduced, and the roundness of the race after the heat treatment can be increased.
In addition, since ceramic is a non-magnetic material and is not easily magnetized by an external magnetic field, the temperature is difficult to increase by induction heating. For this reason, by using a ceramic correction die in the induction tempering / correction step, the temperature rise of the correction die can be suppressed. Therefore, the dimensional change of the correction mold is smaller than when a correction mold other than ceramics is used, and the correction accuracy in the induction tempering / correction process is increased.

なお、高周波焼入れ時の矯正は、軌道輪を構成する金属のマルテンサイト変態時の膨張を利用した矯正であり、冷却しながら行われる。前記高周波焼入れ・矯正工程で使用する矯正型としては、例えば高炭素鋼からなるものが挙げられる。
さらに、この発明の方法では、一次加熱(浸炭窒化時の加熱)後に行う二次加熱を、一次加熱時の温度(T1)以上T1+100℃未満の温度(T2)で誘導加熱法で行うことにより、表層部の残留オーステナイト量を多くしながら、芯部の残留オーステナイト量を少なくすることができる。具体例として、この発明の方法によれば、軌道面の表層部(表面から50μmまでの深さの範囲)の残留オーステナイト量を20体積%以上45体積%以下とし、芯部の残留オーステナイト量を15体積%以下にすることができる。
In addition, the correction at the time of induction hardening is correction using the expansion | swelling at the time of the martensitic transformation of the metal which comprises a bearing ring, and is performed, cooling. Examples of the straightening mold used in the induction hardening and straightening process include those made of high carbon steel.
Furthermore, in the method of the present invention, the secondary heating performed after the primary heating (heating during carbonitriding) is performed by induction heating at a temperature (T1) that is equal to or higher than the temperature (T1) during primary heating and lower than T1 + 100 ° C. While increasing the amount of retained austenite in the surface layer portion, the amount of retained austenite in the core portion can be decreased. As a specific example, according to the method of the present invention, the amount of retained austenite in the surface layer portion (in the depth range from the surface to 50 μm) of the raceway surface is set to 20% by volume or more and 45% by volume or less, and the amount of retained austenite in the core portion is set. It can be made into 15 volume% or less.

軌道面の表層部の残留オーステナイト量が20体積%以上45体積%以下で、芯部の残留オーステナイト量が15体積%以下になっている軌道輪を有する転がり軸受は、異物混入潤滑下での寿命が長く、寸法安定性にも優れたものとなる。
軌道面の表層部の残留オーステナイト量が20体積%未満であると、異物混入潤滑下で転がり疲労特性が不十分である。軌道面の表層部の残留オーステナイト量が45体積%を超えると、軌道面の十分な硬さが得られず、転がり疲労特性が不十分である。芯部の残留オーステナイト量が15体積%を超えると、時効変形による膨張量が大きく、寸法安定性が不十分である。
A rolling bearing having a bearing ring in which the amount of retained austenite in the surface layer portion of the raceway surface is 20% by volume or more and 45% by volume or less and the amount of retained austenite in the core portion is 15% by volume or less has a life under lubrication mixed with foreign matter. Is long and excellent in dimensional stability.
When the amount of retained austenite in the surface layer portion of the raceway surface is less than 20% by volume, rolling fatigue characteristics are insufficient under the contamination with foreign matter. When the amount of retained austenite in the surface layer portion of the raceway surface exceeds 45% by volume, sufficient hardness of the raceway surface cannot be obtained, and rolling fatigue characteristics are insufficient. When the amount of retained austenite in the core exceeds 15% by volume, the amount of expansion due to aging deformation is large, and the dimensional stability is insufficient.

この発明の方法では、浸炭窒化・冷却工程後に行う高周波焼入れ時の冷却途中で軌道輪を外径拘束型に入れて矯正を行う(前記高周波焼入れ・矯正工程を行う)ことにより、高周波焼入れ時に矯正を行わない場合と比較して軌道輪の真円度が高くなるため、研削工程で軌道輪の真円度を設定範囲にするための研削量を少なくすることができる。そして、前記高周波焼入れ・矯正工程の前後での前記軌道輪の真円度の変化率が大きいほど、この研削量を少なくできる効果が高い。例えば、前記高周波焼入れ・矯正工程の前後での前記軌道輪の真円度の変化率が40%以上であると、研削量が少なくなることによる研削工程の効率化が確実に得られる。   In the method of the present invention, correction is performed during induction quenching by performing the correction by placing the bearing ring in an outer diameter constrained mold during the induction quenching after the carbonitriding / cooling step (performing the induction quenching / correction step). Since the roundness of the raceway is higher than in the case where no rounding is performed, it is possible to reduce the amount of grinding for setting the roundness of the raceway within a set range in the grinding process. And the effect which can reduce this grinding amount is so high that the change rate of the roundness of the said bearing ring before and behind the said induction hardening and correction process is large. For example, when the change rate of the roundness of the raceway before and after the induction hardening / correction process is 40% or more, the grinding process can be efficiently performed by reducing the grinding amount.

この発明の方法では、前記高周波焼入れ・矯正工程で軌道輪が矯正された後、前記高周波焼戻し・矯正工程でさらに矯正される。すなわち、前記高周波焼入れ・矯正工程で改善された軌道輪の真円度が前記高周波焼戻し・矯正工程によって変化する。前記高周波焼戻し・矯正工程の前後での前記軌道輪の真円度の変化率が±30%を超えると、 前記高周波焼戻し・矯正工程後に追加の矯正工程を行う必要があるため、生産効率が低下する。よって、前記高周波焼戻し・矯正工程の前後での前記軌道輪の真円度の変化率が±30%以内になっていることが好ましい。   In the method of the present invention, after the raceway is corrected in the induction hardening / correction step, it is further corrected in the induction tempering / correction step. That is, the roundness of the raceway improved by the induction hardening / correction process is changed by the induction tempering / correction process. When the rate of change in the roundness of the raceway before and after the induction tempering / correction process exceeds ± 30%, it is necessary to perform an additional correction process after the induction tempering / correction process, resulting in reduced production efficiency. To do. Therefore, it is preferable that the change rate of the roundness of the raceway before and after the induction tempering / correction step is within ± 30%.

矯正工程(高周波焼入れ・矯正工程または高周波焼戻し・矯正工程)前後の真円度の変化率Chは、矯正工程直前の真円度をCb、矯正工程直後の真円度をCaとして、下記の式(1) で算出される。
Ch(%)=((Cb−Ca)/Cb)×100‥‥(1)
The change rate Ch of roundness before and after the straightening process (induction hardening / correction process or induction tempering / correction process) is expressed by the following formula, where Cb is the roundness immediately before the straightening process and Ca is the roundness immediately after the straightening process. Calculated in (1).
Ch (%) = ((Cb−Ca) / Cb) × 100 (1)

この発明の方法は、転がり軸受の軌道輪を製造する方法であって、熱処理後の真円度が高く、異物混入潤滑下での寿命を長くでき、寸法安定性にも優れた軌道輪が得られる方法である。   The method of the present invention is a method of manufacturing a bearing ring for a rolling bearing, which has a high roundness after heat treatment, can extend the life under foreign matter-mixed lubrication, and has excellent dimensional stability. Is the method.

実施形態の方法を実施可能な処理ラインを示す概略構成図である。It is a schematic block diagram which shows the processing line which can implement the method of embodiment. 図1の処理ラインを構成する誘導加熱部で、内輪を加熱している状態を示す図である。It is a figure which shows the state which is heating the inner ring | wheel by the induction heating part which comprises the processing line of FIG. 図1の処理ラインを構成する冷却・矯正部で、内輪を冷却しながら矯正している状態を示す図である。It is a figure which shows the state which is correct | amending while cooling the inner ring | wheel in the cooling and correction part which comprises the processing line of FIG. 図1の処理ラインを構成する焼戻し・矯正部で、内輪を加熱しながら矯正している状態を示す図である。It is a figure which shows the state which is correcting, heating the inner ring | wheel in the tempering / correcting part which comprises the processing line of FIG.

以下、この発明の実施形態について説明する。
この実施形態の方法では、図1に示す処理ラインを使用して、転がり軸受の内輪(軌道輪)に対する処理を行う。
この処理ラインは、浸炭窒化・冷却室1と、誘導加熱部2と、冷却・矯正部3と、焼戻し・矯正部4と、酸化膜除去室5と、コンベヤ6とを有する。内輪7は、各室および部間をコンベヤ6で搬送される。
Embodiments of the present invention will be described below.
In the method of this embodiment, the processing line shown in FIG. 1 is used to perform processing on the inner ring (race ring) of the rolling bearing.
This processing line includes a carbonitriding / cooling chamber 1, an induction heating unit 2, a cooling / correcting unit 3, a tempering / correcting unit 4, an oxide film removing chamber 5, and a conveyor 6. The inner ring 7 is conveyed by a conveyor 6 between each chamber and part.

浸炭窒化・冷却室1は、加熱炉と冷却室を有する。加熱炉は、浸炭窒化処理の雰囲気ガスが導入でき、内部をA1 変態点以上に加熱できる炉である。冷却室には、空冷、油冷、水冷を行うことができる装置が設置されている。
誘導加熱部2には、回転テーブル21と、環状の誘導加熱コイル22と、ピストン23が配置されている。回転テーブル21は、下方に延びる回転軸21aを有し、この回転軸21aに沿って昇降自在に構成されている。回転テーブル21はコンベヤ6とほぼ同じ高さの位置に待機している。
The carbonitriding / cooling chamber 1 has a heating furnace and a cooling chamber. The heating furnace is a furnace in which an atmosphere gas for carbonitriding can be introduced and the inside can be heated to the A 1 transformation point or higher. A device capable of air cooling, oil cooling, and water cooling is installed in the cooling chamber.
In the induction heating unit 2, a rotary table 21, an annular induction heating coil 22, and a piston 23 are arranged. The rotary table 21 has a rotary shaft 21a extending downward, and is configured to be movable up and down along the rotary shaft 21a. The rotary table 21 stands by at a position substantially the same height as the conveyor 6.

誘導加熱コイル22は、回転テーブル21の回転軸21aと中心を合わせて、コンベヤ6より高い位置に配置されている。誘導加熱コイル22としては、処理対象の内輪7の外側に一定の間隔が生じる内径のものを使用する。
ピストン23は、円板状の押え板23aと上方に延びる軸23bを有し、軸23bに沿って昇降自在に構成されている。ピストン23は、回転テーブル21の回転軸21aと中心を合わせて、誘導加熱コイル22よりも高い位置に配置されている。
The induction heating coil 22 is arranged at a position higher than the conveyor 6 with the rotation axis 21 a of the turntable 21 being centered. As the induction heating coil 22, an induction heating coil having an inner diameter that produces a constant interval outside the inner ring 7 to be processed is used.
The piston 23 has a disc-shaped presser plate 23a and a shaft 23b extending upward, and is configured to be movable up and down along the shaft 23b. The piston 23 is arranged at a position higher than the induction heating coil 22 so as to be aligned with the rotation shaft 21 a of the turntable 21.

誘導加熱部2で内輪7を加熱する際には、内輪7を載せた回転テーブル21を上昇させて、図2に示すように、誘導加熱コイル22内に内輪7を配置し、ピストン23を下降させて押え板23aで内輪7を上から押える。この状態で、回転テーブル21を回転させ、誘導加熱コイル22に通電する。
冷却・矯正部3には、回転テーブル31と、環状の冷却ジャケット32と、内部冷却装置33と、円筒形の外径矯正型34と、ピストン35が配置されている。回転テーブル31は、下方に延びる回転軸31aを有し、この回転軸31aに沿って昇降自在に構成されている。回転テーブル31はコンベヤ6とほぼ同じ高さの位置に待機している。
When the inner ring 7 is heated by the induction heating unit 2, the rotary table 21 on which the inner ring 7 is placed is raised, and the inner ring 7 is disposed in the induction heating coil 22 as shown in FIG. Then, the inner ring 7 is pressed from above with the presser plate 23a. In this state, the rotary table 21 is rotated and the induction heating coil 22 is energized.
The cooling / correcting unit 3 includes a rotary table 31, an annular cooling jacket 32, an internal cooling device 33, a cylindrical outer diameter correcting die 34, and a piston 35. The rotary table 31 has a rotary shaft 31a extending downward, and is configured to be movable up and down along the rotary shaft 31a. The rotary table 31 stands by at a position substantially the same height as the conveyor 6.

冷却ジャケット32は、外径矯正型34より内径および軸方向寸法が大きい環状体からなる。冷却ジャケット32の内側には多数のノズルが配置されている。冷却ジャケット32に冷却液を供給する冷却液供給装置が、冷却ジャケット32に接続されている。この冷却液供給装置により、所定のタイミングで設定量の冷却液が、冷却ジャケット32のノズルから噴射される。冷却ジャケット32は、回転テーブル31の回転軸31aと中心を合わせて、コンベヤ6より高い位置に配置されている。   The cooling jacket 32 is made of an annular body having an inner diameter and an axial dimension larger than those of the outer diameter correcting die 34. A large number of nozzles are arranged inside the cooling jacket 32. A cooling liquid supply device that supplies a cooling liquid to the cooling jacket 32 is connected to the cooling jacket 32. By this coolant supply device, a predetermined amount of coolant is injected from the nozzle of the cooling jacket 32 at a predetermined timing. The cooling jacket 32 is arranged at a position higher than the conveyor 6 so as to be aligned with the rotation shaft 31 a of the turntable 31.

内部冷却装置33はピストン35の下部に固定されている。内部冷却装置33の外側には多数のノズルが配置されている。内部冷却装置33に冷却液を供給する冷却液供給装置が、ピストン35を介して内部冷却装置33に接続されている。この冷却液供給装置により、所定のタイミングで設定量の冷却液が、内部冷却装置33のノズルから内輪7に向けて噴射される。   The internal cooling device 33 is fixed to the lower part of the piston 35. A large number of nozzles are arranged outside the internal cooling device 33. A coolant supply device that supplies coolant to the internal cooling device 33 is connected to the internal cooling device 33 via the piston 35. By this coolant supply device, a predetermined amount of coolant is injected from the nozzle of the internal cooling device 33 toward the inner ring 7 at a predetermined timing.

外径矯正型34は、冷却ジャケット32の内部の上側に、回転テーブル31の回転軸31aと中心を合わせて配置されている。
ピストン35は、円板状の押え板35aと上方に延びる軸35bを有し、軸35bに沿って昇降自在に構成されている。押え板35aの下面の中央部に内部冷却装置33が固定されている。ピストン35は、回転テーブル31の回転軸31aと中心を合わせて、外径矯正型34の内部の上側に配置されている。
The outer diameter correction die 34 is arranged on the upper side inside the cooling jacket 32 so as to be aligned with the rotation shaft 31 a of the rotary table 31.
The piston 35 has a disc-shaped presser plate 35a and a shaft 35b extending upward, and is configured to be movable up and down along the shaft 35b. An internal cooling device 33 is fixed to the central portion of the lower surface of the presser plate 35a. The piston 35 is arranged on the upper side of the outer diameter correction die 34 so as to align with the rotation shaft 31a of the rotary table 31.

冷却・矯正部3で内輪7を冷却する際には、内輪7を載せた回転テーブル31を上昇させて、図3(a)に示すように、冷却ジャケット32内の内径矯正型34より下側に内輪7を配置する。また、ピストン35を下降させて押え板34aで内輪7を上から押える。これにより、内部冷却装置33が内輪7の内部に入る。この状態で、冷却ジャケット32および内部冷却装置33を作動させて、回転テーブル31を回転させる。   When the inner ring 7 is cooled by the cooling / correcting unit 3, the rotary table 31 on which the inner ring 7 is placed is raised, and the lower side of the inner diameter correcting die 34 in the cooling jacket 32 as shown in FIG. The inner ring 7 is disposed on the inner side. Further, the piston 35 is lowered and the inner ring 7 is pressed from above by the pressing plate 34a. Thereby, the internal cooling device 33 enters the inner ring 7. In this state, the cooling jacket 32 and the internal cooling device 33 are operated to rotate the rotary table 31.

冷却・矯正部3で内輪7を矯正する際には、内輪7を載せた回転テーブル31を、図3(a)の状態からさらに上昇させて、図3(b)に示すように、内輪7を外径矯正型34に圧入する。この状態で、冷却ジャケット32および内部冷却装置33を作動させて、回転テーブル31を回転させる。
焼戻し・矯正部4には、回転テーブル41と、円筒形の外径矯正型42と、ピストン43と、環状の誘導加熱コイル44とが配置されている。回転テーブル41は、下方に延びる回転軸41aを有し、この回転軸41aに沿って昇降自在に構成されている。回転テーブル41はコンベヤ6とほぼ同じ高さの位置に待機している。
When the inner ring 7 is corrected by the cooling / correcting unit 3, the rotary table 31 on which the inner ring 7 is placed is further raised from the state shown in FIG. 3A, and as shown in FIG. Is pressed into the outer diameter correction die 34. In this state, the cooling jacket 32 and the internal cooling device 33 are operated to rotate the rotary table 31.
In the tempering / correcting unit 4, a rotary table 41, a cylindrical outer diameter correcting die 42, a piston 43, and an annular induction heating coil 44 are arranged. The rotary table 41 has a rotary shaft 41a extending downward, and is configured to be movable up and down along the rotary shaft 41a. The rotary table 41 stands by at a position almost the same height as the conveyor 6.

外径矯正型42は、回転テーブル31の回転軸31aと中心を合わせて、コンベヤ6より高い位置に配置されている。
ピストン43は、円板状の押え板43aと上方に延びる軸43bを有し、軸43bに沿って昇降自在に構成されている。ピストン43は、回転テーブル41の回転軸41aと中心を合わせて、外径矯正型42の内部の上側に配置されている。
The outer diameter correction die 42 is arranged at a position higher than the conveyor 6 with the rotation axis 31a of the turntable 31 being aligned with the center.
The piston 43 has a disc-shaped pressing plate 43a and a shaft 43b extending upward, and is configured to be movable up and down along the shaft 43b. The piston 43 is arranged on the upper side of the outer diameter correction die 42 so as to align with the rotation shaft 41 a of the rotary table 41.

誘導加熱コイル44は、外径矯正型42の下部の外側に、外径矯正型42および回転テーブル41の回転軸41aと中心を合わせて配置されている。誘導加熱コイル44としては、外径矯正型42の外側に一定の間隔が生じる内径のものを使用する。
焼戻し・矯正部4で内輪7を加熱しながら矯正する際には、内輪7を載せた回転テーブル41を上昇させて、図4に示すように、外径矯正型42の内部の下側に内輪7を圧入し、外径矯正型42の下部の外側に誘導加熱コイル44を配置する。また、ピストン43を下降させて押え板43aで内輪7を上から押える。この状態で、回転テーブル41を回転させ、誘導加熱コイル44に通電する。
The induction heating coil 44 is arranged outside the lower portion of the outer diameter correction mold 42 so as to be aligned with the outer diameter correction mold 42 and the rotation shaft 41 a of the rotary table 41. As the induction heating coil 44, an induction heating coil having an inner diameter that produces a constant interval outside the outer diameter correction mold 42 is used.
When the inner ring 7 is heated and corrected by the tempering / correcting section 4, the rotary table 41 on which the inner ring 7 is placed is raised, and the inner ring is placed below the inside of the outer diameter correcting die 42 as shown in FIG. 7 is press-fitted, and an induction heating coil 44 is disposed outside the lower portion of the outer diameter correction die 42. Further, the piston 43 is lowered and the inner ring 7 is pressed from above by the pressing plate 43a. In this state, the rotary table 41 is rotated and the induction heating coil 44 is energized.

焼戻し・矯正部4で内輪7を矯正せずに加熱する際には、外径矯正型42とピストン43を上方に退避させた状態で、内輪7を載せた回転テーブル41を上昇させて、誘導加熱コイル44内に内輪7を配置する。この状態で、回転テーブル41を回転させ、誘導加熱コイル44に通電する。
酸化膜除去室5内には、ショットブラスト装置が配置されている。
When the inner ring 7 is heated without being corrected by the tempering / correcting unit 4, the rotary table 41 on which the inner ring 7 is placed is lifted while the outer diameter correcting die 42 and the piston 43 are retracted upward to guide the inner ring 7. The inner ring 7 is disposed in the heating coil 44. In this state, the rotary table 41 is rotated and the induction heating coil 44 is energized.
A shot blasting device is disposed in the oxide film removal chamber 5.

図1の処理ラインを使用し、以下の方法で、鋼製の内輪7に対する処理を行う。
先ず、浸炭窒化・冷却室1の加熱炉に内輪7を入れて、加熱炉の内部を浸炭窒化雰囲気に保持し、加熱炉の内部の温度をA1 変態点(726℃)を超える温度T1(800〜900℃)に所定時間保持する。これにより、内輪7に対する浸炭窒化処理を行う。次に、内輪7を冷却室に移動して、MS 点以下の温度になるまで冷却することにより、内輪7に対して一次焼入れを行う。
Using the processing line of FIG. 1, the steel inner ring 7 is processed by the following method.
First, the inner ring 7 is put in the heating furnace of the carbonitriding / cooling chamber 1, the inside of the heating furnace is maintained in a carbonitriding atmosphere, and the temperature inside the heating furnace is set to a temperature T1 (the temperature exceeding the A 1 transformation point (726 ° C.)). 800-900 ° C) for a predetermined time. Thereby, the carbonitriding process for the inner ring 7 is performed. Next, the inner ring 7 is moved to the cooling chamber and cooled to a temperature equal to or lower than the M S point, whereby the inner ring 7 is primarily quenched.

次に、内輪7をコンベヤ6に載せて誘導加熱部2まで搬送して、回転テーブル21の上に載せる。次に、内輪7を載せた回転テーブル21を上昇させて図2に示す状態とし、回転テーブル21を回転させて、誘導加熱コイル22に高周波(5〜15kHz)を短時間(2〜5秒)通電する。これにより、内輪7の軌道面71を、浸炭窒化・冷却工程の加熱温度T1以上T1+100℃未満の温度T2(T1の温度に応じて、例えば800〜900℃)に加熱する。通電終了後、軌道面71からの熱が内輪7の軌道面71以外の表面と芯部に伝達されて、軌道面71の深さ方向に温度勾配が形成される。   Next, the inner ring 7 is placed on the conveyor 6, conveyed to the induction heating unit 2, and placed on the rotary table 21. Next, the rotary table 21 on which the inner ring 7 is placed is raised to the state shown in FIG. 2, the rotary table 21 is rotated, and a high frequency (5 to 15 kHz) is applied to the induction heating coil 22 for a short time (2 to 5 seconds). Energize. Thereby, the raceway surface 71 of the inner ring 7 is heated to a temperature T2 that is equal to or higher than the heating temperature T1 in the carbonitriding / cooling step and is lower than T1 + 100 ° C. (for example, 800 to 900 ° C. depending on the temperature of T1). After the energization is completed, heat from the raceway surface 71 is transmitted to the surface of the inner ring 7 other than the raceway surface 71 and the core, and a temperature gradient is formed in the depth direction of the raceway surface 71.

次に、回転テーブル21をコンベヤ6の高さまで降下して、内輪7をコンベヤ6に載せて冷却・矯正部3まで搬送する。次に、コンベヤ6上の内輪7を回転テーブル31の上に載せて、回転テーブル31を上昇させるとともに、ピストン35を降下して図3(a)に示す状態とする。この状態で、冷却ジャケット32および内部冷却装置33を作動させて、回転テーブル31を回転させることにより、内輪7を冷却する。   Next, the rotary table 21 is lowered to the height of the conveyor 6, and the inner ring 7 is placed on the conveyor 6 and conveyed to the cooling / correcting unit 3. Next, the inner ring 7 on the conveyor 6 is placed on the rotary table 31, the rotary table 31 is raised, and the piston 35 is lowered to the state shown in FIG. In this state, the inner ring 7 is cooled by operating the cooling jacket 32 and the internal cooling device 33 and rotating the rotary table 31.

この冷却により、内輪7がMS 点より少し高い温度になった時点で、回転テーブル31をさらに上昇させて、図3(b)に示すように、内輪7を外径矯正型34に圧入する。この状態でMS 点以下の温度になるまで冷却を行う。これにより、内輪7の外径の矯正が焼入れ時に行われる。また、図3(a)および(b)の工程により、内輪7に対する二次焼入れが行われる。 By this cooling, when the inner ring 7 reaches a temperature slightly higher than the point M S , the rotary table 31 is further raised and the inner ring 7 is press-fitted into the outer diameter correction die 34 as shown in FIG. . In this state, cooling is performed until the temperature is equal to or lower than the M S point. Thereby, the outer diameter of the inner ring 7 is corrected at the time of quenching. Further, secondary quenching of the inner ring 7 is performed by the steps of FIGS. 3 (a) and 3 (b).

次に、回転テーブル31をコンベヤ6の高さまで降下して、内輪7をコンベヤ6に載せて焼戻し・矯正部4まで搬送する。次に、コンベヤ6上の内輪7を回転テーブル41の上に載せて、回転テーブル41を上昇させることで、図4に示すように、内輪7を外径矯正型42に圧入する。この状態で、回転テーブル41を回転させて、誘導加熱コイル44に高周波(3〜10kHz)を短時間(1〜10秒)通電することで、内輪7の軌道面71を、焼戻し加熱温度(180〜320℃)に加熱した後、所定時間(10秒〜1分)放置する。これにより、 内輪7に対する焼戻しと外径の矯正が行われる。   Next, the rotary table 31 is lowered to the height of the conveyor 6, and the inner ring 7 is placed on the conveyor 6 and conveyed to the tempering / correcting unit 4. Next, the inner ring 7 on the conveyor 6 is placed on the rotary table 41 and the rotary table 41 is raised, so that the inner ring 7 is press-fitted into the outer diameter correction die 42 as shown in FIG. In this state, the rotary table 41 is rotated and the induction heating coil 44 is energized with a high frequency (3 to 10 kHz) for a short time (1 to 10 seconds), whereby the raceway surface 71 of the inner ring 7 is tempered and heated (180). After heating to ˜320 ° C., it is left for a predetermined time (10 seconds to 1 minute). Thereby, tempering of the inner ring 7 and correction of the outer diameter are performed.

次に、回転テーブル41をコンベヤ6の高さまで降下して、内輪7をコンベヤ6に載せて酸化膜除去室5まで搬送する。酸化膜除去室5で、内輪7をショットブラスト装置にかけて、表面の酸化膜を除去する。
この実施形態の方法によれば、二次焼入れ時と焼戻し時に内輪7の外径の矯正を行うことにより、内輪7の熱処理時の変形を小さくし、熱処理後の内輪7の外径の真円度を高くすることができる。
Next, the rotary table 41 is lowered to the height of the conveyor 6, and the inner ring 7 is placed on the conveyor 6 and conveyed to the oxide film removing chamber 5. In the oxide film removal chamber 5, the inner ring 7 is applied to a shot blasting apparatus to remove the oxide film on the surface.
According to the method of this embodiment, by correcting the outer diameter of the inner ring 7 at the time of secondary quenching and tempering, deformation during the heat treatment of the inner ring 7 is reduced, and the perfect circle of the outer diameter of the inner ring 7 after the heat treatment is reduced. The degree can be increased.

この実施形態の方法では、一次加熱(浸炭窒化時の加熱)後に行う二次加熱(二次焼入れ時の加熱)を、誘導加熱部2で一次加熱時の温度(T1)以上T1+100℃未満の温度(T2)で行うことにより、表層部の残留オーステナイト量を多くしながら、芯部の残留オーステナイト量を少なくすることができる。
なお、この実施形態の方法では、浸炭窒化・冷却工程の冷却温度をMS 点以下の温度としているが、A1 変態点未満の温度であればMS 点より高い温度であってもよい。その場合、焼入れは高周波焼入れ・矯正工程のみで行われる。
また、酸化膜除去工程はショットブラスト処理でなくてもよい。ショットブラスト処理以外の酸化膜除去工程としては、例えば、光輝バレル処理、ホーニング加工などが挙げられる。
In the method of this embodiment, the secondary heating (heating at the time of secondary quenching) performed after primary heating (heating at the time of carbonitriding) is performed at a temperature not lower than T1 + 100 ° C. at a temperature (T1) at the time of primary heating in the induction heating unit 2. By performing in (T2), the amount of retained austenite in the core portion can be decreased while the amount of retained austenite in the surface layer portion is increased.
In the method of this embodiment, the cooling temperature of the carbonitriding and cooling process although the M S point below the temperature may be a temperature higher than M S point, if a temperature lower than the A 1 transformation point. In that case, quenching is performed only by induction quenching / correction process.
Further, the oxide film removal step may not be shot blasting. Examples of the oxide film removing process other than the shot blasting include a bright barrel process and a honing process.

以下、この発明の実施例について説明する。
SUJ2(MS 点:275℃)からなる素材を旋削することで、所定寸法(外径101.3mm、内径94.6mm、幅13mm、溝底厚さ2mm)の内輪に加工した。この内輪を16×200個用意し、サンプルNo. 1〜16の各200個の内輪に対して、下記の処理を行った。
Examples of the present invention will be described below.
SUJ2 (M S point: 275 ° C.) by turning the material consisting of, by processing a predetermined size (OD 101.3Mm, inner diameter 94.6Mm, width 13 mm, groove bottom thickness 2 mm) to the inner ring of. 16 × 200 inner rings were prepared, and the following processing was performed on 200 inner rings of sample Nos. 1-16.

サンプルNo. 1〜13では、図1の処理ラインを用いて、上述の実施形態の方法に基づき、浸炭窒化・冷却工程、高周波焼入れ・矯正工程、高周波焼戻し・矯正工程、酸化膜除去工程を行った。
サンプルNo. 14では、高周波焼戻し工程で矯正を行わなかった点以外はサンプルNo. 1〜13と同じ工程を行った。サンプルNo. 15では、高周波焼入れ工程で矯正を行わなかった点以外はサンプルNo. 1〜13と同じ工程を行った。サンプルNo. 16では、高周波焼入れ工程と高周波焼戻し工程の両方で矯正を行わなかった点以外はサンプルNo. 1〜13と同じ工程を行った。
In sample Nos. 1 to 13, the carbonitriding / cooling step, induction hardening / correction step, induction tempering / correction step, and oxide film removal step are performed based on the method of the above-described embodiment using the processing line of FIG. It was.
In sample No. 14, the same process as sample No. 1-13 was performed except that correction was not performed in the induction tempering process. In sample No. 15, the same process as sample No. 1-13 was performed except that correction was not performed in the induction hardening process. Sample No. 16 was subjected to the same steps as Sample Nos. 1 to 13 except that correction was not performed in both the induction hardening step and the induction tempering step.

浸炭窒化・冷却工程の加熱条件は、全サンプルについて同じ条件で行った。すなわち、同じ浸炭窒化ガス雰囲気とし、加熱炉内の温度も同じ850℃として、この温度に各内輪を3時間保持した。浸炭窒化・冷却工程での冷却は、表1に示すように、各サンプル毎に、空冷、油冷、水冷のいずれかの方法で、275℃(MS 点以下の温度)になるまで行うことにより、内輪7に対して一次焼入れを行った。空冷、油冷、水冷はそれぞれ同じ方法で行った。
No. 1〜6とNo. 13〜16では、誘導加熱部2における加熱条件を、高周波(周波数10kHz)で2秒間行うことで、軌道面71の温度(溝底位置で放射温度計で測定した温度)を850℃とした。No. 7と9では、高周波焼入れ・矯正工程の誘導加熱を、高周波(周波数10kHz)で3秒間行うことで、軌道面71の温度を880℃とした。
The heating conditions in the carbonitriding / cooling step were the same for all samples. That is, the same carbonitriding gas atmosphere was used, and the temperature in the heating furnace was the same 850 ° C., and each inner ring was held at this temperature for 3 hours. As shown in Table 1, cooling in the carbonitriding / cooling process should be performed for each sample until it reaches 275 ° C. (temperature below the M S point) by any one of air cooling, oil cooling, and water cooling. Thus, primary quenching was performed on the inner ring 7. Air cooling, oil cooling, and water cooling were performed in the same manner.
In No. 1-6 and No. 13-16, the heating condition in the induction heating unit 2 was performed at a high frequency (frequency: 10 kHz) for 2 seconds, so that the temperature of the track surface 71 (measured with a radiation thermometer at the groove bottom position). The temperature was 850 ° C. In Nos. 7 and 9, the temperature of the raceway surface 71 was set to 880 ° C. by performing induction heating in the induction hardening / correction process at a high frequency (frequency 10 kHz) for 3 seconds.

No. 8と10では、高周波焼入れ・矯正工程の誘導加熱を、高周波(周波数10kHz)で4秒間行うことで、軌道面71の温度を900℃とした。No. 11では、高周波焼入れ・矯正工程の誘導加熱を、高周波(周波数10kHz)で5秒間行うことで、軌道面の温度を950℃とした。No. 12では、高周波焼入れ・矯正工程の誘導加熱を、高周波(周波数10kHz)で1秒間行うことで、軌道面71の温度を820℃とした。
なお、全サンプルについて、誘導加熱コイル22に対する通電を終えた後に図2に示す状態を3秒間保持することにより、軌道面71以外の部分に軌道面71からの熱を伝導して、内輪7に温度勾配を形成した。
In Nos. 8 and 10, the temperature of the raceway surface 71 was set to 900 ° C. by performing induction heating in the induction hardening / correction process for 4 seconds at a high frequency (frequency 10 kHz). In No. 11, the temperature of the raceway surface was set to 950 ° C. by performing induction heating in the induction hardening / correction process at a high frequency (frequency 10 kHz) for 5 seconds. In No. 12, the temperature of the track surface 71 was set to 820 ° C. by performing induction heating in the induction hardening / correction process for 1 second at a high frequency (frequency 10 kHz).
For all samples, after the energization to the induction heating coil 22 is finished, the state shown in FIG. 2 is held for 3 seconds, so that heat from the raceway surface 71 is conducted to a portion other than the raceway surface 71 to the inner ring 7. A temperature gradient was formed.

次に、No. 1〜14では、冷却・矯正部3での冷却を、図3(a)の状態で2秒間行うことで内輪7の表面温度(軌道面71の溝底位置で放射温度計で測定した温度)を300℃とした後に、図3(b)の状態として、さらに10秒間冷却することで内輪7の表面温度を30℃とした。外径矯正型34としては高炭素鋼製のものを使用した。
No. 15と16では、冷却・矯正部3での冷却を、図3(a)の状態で12秒間行うことで内輪7の表面温度を30℃とした。
Next, in No. 1-14, the cooling in the cooling / correcting unit 3 is performed for 2 seconds in the state of FIG. 3A, so that the surface temperature of the inner ring 7 (radiation thermometer at the groove bottom position of the raceway surface 71). 3), the surface temperature of the inner ring 7 was set to 30 ° C. by further cooling for 10 seconds. As the outer diameter correcting die 34, a high carbon steel one was used.
In Nos. 15 and 16, the surface temperature of the inner ring 7 was set to 30 ° C. by performing cooling in the cooling / correcting unit 3 for 12 seconds in the state of FIG.

次に、No. 1、 2、 4〜8、11〜13、15では、図4に示すように、焼戻し・矯正部4で内輪7を外径矯正型42に圧入した状態で、高周波(周波数5kHz)を誘導加熱コイル44に5秒間通電することにより、内輪7の軌道面71を180℃(溝底位置で放射温度計で測定した温度)に加熱した後、10秒間放置した。これにより、内輪7に対する高周波焼戻しと矯正を行った。
No. 3では、図4に示すように、焼戻し・矯正部4で内輪7を外径矯正型42に圧入した状態で、高周波(周波数5kHz)を誘導加熱コイル44に6秒間通電することにより、内輪7の軌道面71を200℃に加熱した後、10秒間放置した。これにより、内輪7に対する高周波焼戻しと矯正を行った。
Next, in No. 1, 2, 4-8, 11-13, 15, as shown in FIG. 4, the inner ring 7 is press-fitted into the outer diameter correction die 42 by the tempering / correcting section 4, and the high frequency (frequency 5 kHz) was applied to the induction heating coil 44 for 5 seconds to heat the raceway surface 71 of the inner ring 7 to 180 ° C. (temperature measured with a radiation thermometer at the groove bottom position) and left for 10 seconds. As a result, induction tempering and correction for the inner ring 7 were performed.
In No. 3, as shown in FIG. 4, with the inner ring 7 being press-fitted into the outer diameter correction die 42 in the tempering / correcting section 4, a high frequency (frequency 5 kHz) was passed through the induction heating coil 44 for 6 seconds, The raceway surface 71 of the inner ring 7 was heated to 200 ° C. and left for 10 seconds. As a result, induction tempering and correction for the inner ring 7 were performed.

No. 9では、図4に示すように、焼戻し・矯正部4で内輪7を外径矯正型42に圧入した状態で、高周波(周波数5kHz)を誘導加熱コイル44に7秒間通電することにより、内輪7の軌道面71を240℃に加熱した後、10秒間放置した。これにより、内輪7に対する高周波焼戻しと矯正を行った。No. 10では、図4に示すように、焼戻し・矯正部4で内輪7を外径矯正型42に圧入した状態で、高周波(周波数5kHz)を誘導加熱コイル44に10秒間通電することにより、内輪7の軌道面71を320℃に加熱した後、10秒間放置した。これにより、内輪7に対する高周波焼戻しと矯正を行った。   In No. 9, as shown in FIG. 4, with the inner ring 7 being press-fitted into the outer diameter correction die 42 in the tempering / correcting section 4, a high frequency (frequency 5 kHz) was passed through the induction heating coil 44 for 7 seconds, The raceway surface 71 of the inner ring 7 was heated to 240 ° C. and left for 10 seconds. As a result, induction tempering and correction for the inner ring 7 were performed. In No. 10, as shown in FIG. 4, with the inner ring 7 being press-fitted into the outer diameter correction die 42 in the tempering / correcting section 4, a high frequency (frequency 5 kHz) was passed through the induction heating coil 44 for 10 seconds, The raceway surface 71 of the inner ring 7 was heated to 320 ° C. and left for 10 seconds. As a result, induction tempering and correction for the inner ring 7 were performed.

なお、No. 1〜12と15では、外径矯正型42として窒化珪素(セラミックス)製のもの(矯正型A)を使用した。No. 13では、外径矯正型42として冷却・矯正部3の外径矯正型34と同じ材質のもの(矯正型B)を使用した。
No. 14と16では、焼戻し・矯正部4で内輪7の外側に誘導加熱コイル44のみを配置した状態で、高周波(周波数5kHz)を誘導加熱コイル44に5秒間通電することにより内輪7の軌道面71を180℃に加熱した後、10秒間放置した。これにより、内輪7に対する高周波焼戻しを行った。
In Nos. 1 to 12 and 15, the outer diameter correcting die 42 made of silicon nitride (ceramics) (correcting die A) was used. In No. 13, the outer diameter correction mold 42 was made of the same material as the outer diameter correction mold 34 of the cooling / correcting section 3 (correction mold B).
In Nos. 14 and 16, when only the induction heating coil 44 is arranged outside the inner ring 7 in the tempering / correcting section 4, a high frequency (frequency 5 kHz) is energized to the induction heating coil 44 for 5 seconds to track the inner ring 7. The surface 71 was heated to 180 ° C. and left for 10 seconds. Thereby, induction tempering for the inner ring 7 was performed.

最後に、全てのサンプルについて同じ条件で酸化膜除去工程を行った。すなわち、SiC粒子を49〜196kPaの圧縮空気で投射するショットブラスト処理を行うことで、内輪7の表面に形成された酸化膜を除去した。
各サンプルについて、内輪7の軌道面71の表層部と芯部における残留オーステナイト量と、高周波焼入れ・矯正工程の前後と、高周波焼戻し・矯正工程の前後での内輪7の真円度の変化率を測定した。
Finally, the oxide film removal process was performed under the same conditions for all samples. That is, the oxide film formed on the surface of the inner ring 7 was removed by performing a shot blasting process in which SiC particles were projected with compressed air of 49 to 196 kPa.
For each sample, the amount of retained austenite in the surface layer portion and the core portion of the raceway surface 71 of the inner ring 7, the rate of change in the roundness of the inner ring 7 before and after the induction hardening / correction process, and before and after the induction tempering / correction process, It was measured.

残留オーステナイト量は、No. 1〜16の各200個の内輪全てについて、X線回折装置(XRD)を用いて、表面から深さ150μmの位置と深さ1mmの位置でX線回折パターンを測定し、各回折パターンのマルテンサイトα(211)面とオーステナイトγ(220)面の回折強度から算出した。そして、表面から深さ150μm位置での測定結果から得られた値を表層部の残留オーステナイト量とし、表面から深さ1mm位置での測定結果から得られた値を芯部の残留オーステナイト量とした。各値から、同じ処理をした各200個の内輪の平均値を算出して、No. 1〜16の残留オーステナイト量とした。   The amount of retained austenite was measured for all 200 inner rings of Nos. 1 to 16 using an X-ray diffractometer (XRD) at a depth of 150 μm and a depth of 1 mm from the surface. And it computed from the diffraction intensity of the martensite alpha (211) plane and austenite gamma (220) plane of each diffraction pattern. And the value obtained from the measurement result at a depth of 150 μm from the surface is the amount of retained austenite in the surface layer part, and the value obtained from the measurement result at the position of 1 mm depth from the surface is the amount of retained austenite at the core part. . From each value, an average value of 200 inner rings subjected to the same treatment was calculated, and the amount of retained austenite No. 1 to 16 was obtained.

内輪の真円度の変化率は、以下の方法で測定した。先ず、各矯正工程の直前直後で、No. 1〜16の各200個の内輪全てについて、軌道面の溝底位置での直径を全周に渡って測定した。次に、各内輪について測定された直径の最小値と最大値の差(δ)を算出し、同じ処理をした各200個のδの平均値を算出した。この平均値を、各矯正工程の直前の真円度Cb、直後の真円度をCaとして(1) 式に導入して、真円度の変化率Chを算出した。
これらの結果と各サンプルの熱処理方法の違いを表1に示す。
The change rate of the roundness of the inner ring was measured by the following method. First, immediately before and after each correction step, the diameter at the groove bottom position on the raceway surface was measured over the entire circumference for all 200 inner rings of No. 1 to No. 16. Next, the difference (δ) between the minimum value and the maximum value of the diameter measured for each inner ring was calculated, and the average value of 200 δ subjected to the same processing was calculated. This average value was introduced into equation (1) as the roundness Cb immediately before each correction step and the roundness immediately after it as Ca, and the change rate Ch of roundness was calculated.
Table 1 shows the difference between these results and the heat treatment method of each sample.

Figure 2014005526
Figure 2014005526

この結果から、この発明の方法に含まれる方法を実施したNo. 1〜10では、内輪軌道面の表層部の残留オーステナイト量が21〜43体積%で、芯部の残留オーステナイト量が5〜14体積%となっている。すなわち、「表層部の残留オーステナイト量が20体積%以上45体積%以下で、芯部の残留オーステナイト量が15体積%以下」を満たしている。   From this result, in No. 1-10 which implemented the method included in the method of this invention, the amount of retained austenite of the surface layer part of an inner ring raceway surface is 21-43 volume%, and the amount of retained austenite of a core part is 5-14. It is volume%. That is, “the amount of retained austenite in the surface layer part is 20% by volume or more and 45% by volume or less, and the amount of retained austenite in the core part is 15% by volume or less” is satisfied.

これに対して、高周波焼入れ・矯正工程での加熱温度がこの発明の方法の範囲(浸炭窒化・冷却工程での加熱温度が850℃のため、850℃以上950℃未満)外である方法を実施したNo. 11と12では、軌道面の表層部の残留オーステナイト量が17体積%と47体積%で、芯部の残留オーステナイト量が19体積%と6体積%になっている。すなわち、「表層部の残留オーステナイト量が20体積%以上45体積%以下で、芯部の残留オーステナイト量が15体積%以下」を満たしていない。   On the other hand, a method in which the heating temperature in the induction hardening / correction process is outside the range of the method of the present invention (the heating temperature in the carbonitriding / cooling process is 850 ° C., which is 850 ° C. or more and less than 950 ° C.) In Nos. 11 and 12, the retained austenite amounts in the surface layer portion of the raceway surface are 17% by volume and 47% by volume, and the retained austenite amounts in the core portion are 19% by volume and 6% by volume. That is, it does not satisfy “the amount of retained austenite in the surface layer part is 20% by volume or more and 45% by volume or less and the amount of retained austenite in the core part is 15% by volume or less”.

また、No. 13では、高周波焼戻し・矯正工程で使用した矯正型がセラミックス製でないため、高周波焼戻し・矯正工程の前後での内輪の真円度の変化率が−40%と大きかった。No. 14では、高周波焼戻し時に矯正を行わなかったため、高周波焼戻し工程の前後での内輪の真円度の変化率が−35%と大きかった。No. 15と16では、高周波焼入れ時に矯正を行わなかったため、高周波焼入れ工程の前後での内輪の真円度の変化率が−10%と大きかった。   Further, in No. 13, the straightening mold used in the induction tempering / correction process was not made of ceramics, so the rate of change in the roundness of the inner ring before and after the induction tempering / correction process was as large as -40%. In No. 14, since correction was not performed during induction tempering, the rate of change in the roundness of the inner ring before and after induction tempering was as high as -35%. In Nos. 15 and 16, since no correction was performed during induction hardening, the rate of change in the roundness of the inner ring before and after the induction hardening process was as large as -10%.

したがって、No. 1〜10の内輪を有する転がり軸受は、No. 11および12の内輪を有する転がり軸受と比較して、異物混入潤滑下での寿命が長く、寸法安定性にも優れたものとなる。また、No. 1〜10の内輪はNo. 13〜16の内輪と比較して、熱処理後の真円度が高くなるため、高周波焼戻し・矯正工程後に追加の矯正工程を行う必要がなく、研削工程での研削量も少なくなるため、生産効率が向上する。   Accordingly, the rolling bearing having the inner rings of No. 1 to 10 has a longer life under foreign matter-mixed lubrication and excellent dimensional stability compared to the rolling bearings having the inner rings of No. 11 and No. 12. Become. In addition, the inner rings of No. 1 to 10 have higher roundness after the heat treatment than the inner rings of No. 13 to 16, so there is no need to perform an additional correction process after the induction tempering / correction process. Since the amount of grinding in the process is reduced, the production efficiency is improved.

1 浸炭窒化・冷却室
2 誘導加熱部
21 回転テーブル
21a 回転軸
22 誘導加熱コイル
23 ピストン
23a 押え板
23b 軸
3 冷却・矯正部
31 回転テーブル
31a 回転軸
32 冷却ジャケット
33 内部冷却装置
34 外径矯正型
35 ピストン
35a 押え板
35b 軸
4 焼戻し・矯正部
41 回転テーブル
41a 回転軸
42 外径矯正型
44 誘導加熱コイル
43 ピストン
43a 押え板
43b 軸
5 酸化膜除去室
6 コンベヤ
7 内輪(軌道輪)
71 軌道面
DESCRIPTION OF SYMBOLS 1 Carbonitriding / cooling chamber 2 Induction heating part 21 Rotary table 21a Rotating shaft 22 Induction heating coil 23 Piston 23a Holding plate 23b Shaft 3 Cooling / correcting part 31 Rotating table 31a Rotating shaft 32 Cooling jacket 33 Internal cooling device 34 Outer diameter correction type 35 Piston 35a Presser plate 35b Shaft 4 Tempering / correcting part 41 Rotary table 41a Rotating shaft 42 Outer diameter correction type 44 Induction heating coil 43 Piston 43a Presser plate 43b Shaft 5 Oxide film removal chamber 6 Conveyor 7 Inner ring (Race ring)
71 Track surface

Claims (4)

転がり軸受を構成する鋼製の軌道輪を、A1 変態点を超える温度に加熱して浸炭窒化を行った後に、A1 変態点未満に冷却する浸炭窒化・冷却工程と、
前記浸炭窒化・冷却工程後の軌道輪を、前記浸炭窒化・冷却工程の加熱温度以上前記加熱温度+100℃未満の温度に誘導加熱した後に、MS 点以下になるまで冷却する工程であって、冷却途中のMS 点に到達する前に前記軌道輪を外径拘束型に入れることで、焼入れと矯正を行う高周波焼入れ・矯正工程と、
前記高周波焼入れ・矯正工程後の軌道輪をセラミックス製の矯正型で拘束した状態で誘導加熱することで、焼戻しと矯正を行う高周波焼戻し・矯正工程と、
前記高周波焼戻し・矯正工程後の軌道輪の表面に形成された酸化膜を除去する酸化膜除去工程と、
をこの順に行うことを特徴とする転がり軸受軌道輪の製造方法。
A carbonitriding / cooling step in which a steel bearing ring constituting the rolling bearing is heated to a temperature exceeding the A 1 transformation point and subjected to carbonitriding and then cooled to below the A 1 transformation point;
Wherein the bearing ring after carbonitriding and cooling step, after the induction heating to the carbonitriding and cooling temperature of the heating temperature of less than + 100 ° C. or higher heating temperature of step, a step of cooling until below M S point, Induction quenching and straightening process in which quenching and correction are performed by placing the raceway in an outer diameter constrained type before reaching the M S point during cooling,
An induction tempering / correction process for performing tempering and correction by induction heating in a state where the raceway ring after the induction hardening / correction process is constrained by a ceramic correction mold;
An oxide film removing step for removing an oxide film formed on the surface of the raceway after the induction tempering / correcting step;
A rolling bearing bearing ring manufacturing method characterized by performing the steps in this order.
請求項1記載の方法で製造され、軌道面の表層部の残留オーステナイト量が20体積%以上45体積%以下で、芯部の残留オーステナイト量が15体積%以下になっていることを特徴とする転がり軸受の軌道輪。   The amount of retained austenite in the surface layer portion of the raceway surface is 20% by volume or more and 45% by volume or less, and the amount of retained austenite in the core part is 15% by volume or less. Rolling bearing raceway. 前記高周波焼入れ・矯正工程の前後での前記軌道輪の真円度の変化率が40%以上である請求項1記載の転がり軸受軌道輪の製造方法。   2. The method of manufacturing a rolling bearing race according to claim 1, wherein a rate of change of the roundness of the raceway before and after the induction hardening / correction step is 40% or more. 前記高周波焼戻し・矯正工程の前後での前記軌道輪の真円度の変化率が±30%以内である請求項1記載の転がり軸受軌道輪の製造方法。   The method of manufacturing a rolling bearing race according to claim 1, wherein a rate of change of the roundness of the raceway before and after the induction tempering / correction step is within ± 30%.
JP2012144111A 2012-06-27 2012-06-27 Method for manufacturing bearing ring of rolling bearing and bearing ring of rolling bearing Pending JP2014005526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012144111A JP2014005526A (en) 2012-06-27 2012-06-27 Method for manufacturing bearing ring of rolling bearing and bearing ring of rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012144111A JP2014005526A (en) 2012-06-27 2012-06-27 Method for manufacturing bearing ring of rolling bearing and bearing ring of rolling bearing

Publications (1)

Publication Number Publication Date
JP2014005526A true JP2014005526A (en) 2014-01-16

Family

ID=50103510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012144111A Pending JP2014005526A (en) 2012-06-27 2012-06-27 Method for manufacturing bearing ring of rolling bearing and bearing ring of rolling bearing

Country Status (1)

Country Link
JP (1) JP2014005526A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108004387A (en) * 2017-12-29 2018-05-08 哈尔滨轴承集团公司 Bearing ring forges water cooling refining machine
CN109371223A (en) * 2019-01-02 2019-02-22 济南大学 Rolling bearing circle laser reinforcing device
CN110283985A (en) * 2019-07-30 2019-09-27 瓦房店爱国轴承研究院有限公司 Bearing ring targets heat treatment method and tooling
CN112501544A (en) * 2020-08-27 2021-03-16 苏州新豪轴承股份有限公司 Bearing part machining process
CN114196819A (en) * 2021-10-27 2022-03-18 内蒙古工业大学 Bearing ring heat treatment deformation control method
CN114350902A (en) * 2021-12-23 2022-04-15 中国航发哈尔滨东安发动机有限公司 Process method for improving hardness consistency of infiltrated layer of medium-small-sized thin-wall bushing
CN115109895A (en) * 2022-07-14 2022-09-27 宁波大学 Residual stress reduction method for bearing ring

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533059A (en) * 1991-07-31 1993-02-09 Ntn Corp Device for restrict-quenching outer diameter of thin ring
WO1996006194A1 (en) * 1994-08-24 1996-02-29 Nsk Ltd. Method and apparatus for correction tempering rolling part
JPH09256058A (en) * 1996-03-19 1997-09-30 Nippon Seiko Kk Production of ring-shaped member
JPH11140543A (en) * 1997-11-14 1999-05-25 Nippon Seiko Kk Production of bearing ring
JP2001064721A (en) * 1999-08-27 2001-03-13 Nsk Ltd Device for straightening deformation of annular member
JP2005133212A (en) * 2003-10-08 2005-05-26 Ntn Corp Heat treatment system
JP2005133214A (en) * 2003-10-08 2005-05-26 Ntn Corp Heat treatment system
JP2005133215A (en) * 2003-10-08 2005-05-26 Ntn Corp Heat treatment system
JP2007186760A (en) * 2006-01-13 2007-07-26 Nsk Ltd Manufacturing method of bearing ring for rolling bearing, and rolling bearing
JP2009001837A (en) * 2007-06-19 2009-01-08 Nsk Ltd Method for correcting deformation of annular material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533059A (en) * 1991-07-31 1993-02-09 Ntn Corp Device for restrict-quenching outer diameter of thin ring
WO1996006194A1 (en) * 1994-08-24 1996-02-29 Nsk Ltd. Method and apparatus for correction tempering rolling part
JPH09256058A (en) * 1996-03-19 1997-09-30 Nippon Seiko Kk Production of ring-shaped member
JPH11140543A (en) * 1997-11-14 1999-05-25 Nippon Seiko Kk Production of bearing ring
JP2001064721A (en) * 1999-08-27 2001-03-13 Nsk Ltd Device for straightening deformation of annular member
JP2005133212A (en) * 2003-10-08 2005-05-26 Ntn Corp Heat treatment system
JP2005133214A (en) * 2003-10-08 2005-05-26 Ntn Corp Heat treatment system
JP2005133215A (en) * 2003-10-08 2005-05-26 Ntn Corp Heat treatment system
JP2007186760A (en) * 2006-01-13 2007-07-26 Nsk Ltd Manufacturing method of bearing ring for rolling bearing, and rolling bearing
JP2009001837A (en) * 2007-06-19 2009-01-08 Nsk Ltd Method for correcting deformation of annular material

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108004387A (en) * 2017-12-29 2018-05-08 哈尔滨轴承集团公司 Bearing ring forges water cooling refining machine
CN108004387B (en) * 2017-12-29 2023-05-23 哈尔滨轴承集团公司 Bearing ring forging water-cooling refiner
CN109371223A (en) * 2019-01-02 2019-02-22 济南大学 Rolling bearing circle laser reinforcing device
CN109371223B (en) * 2019-01-02 2023-11-24 济南大学 Laser strengthening device for rolling bearing ring
CN110283985A (en) * 2019-07-30 2019-09-27 瓦房店爱国轴承研究院有限公司 Bearing ring targets heat treatment method and tooling
CN112501544A (en) * 2020-08-27 2021-03-16 苏州新豪轴承股份有限公司 Bearing part machining process
CN114196819A (en) * 2021-10-27 2022-03-18 内蒙古工业大学 Bearing ring heat treatment deformation control method
CN114196819B (en) * 2021-10-27 2023-08-08 内蒙古工业大学 Bearing ring heat treatment deformation control method
CN114350902A (en) * 2021-12-23 2022-04-15 中国航发哈尔滨东安发动机有限公司 Process method for improving hardness consistency of infiltrated layer of medium-small-sized thin-wall bushing
CN114350902B (en) * 2021-12-23 2023-11-07 中国航发哈尔滨东安发动机有限公司 Technological method for improving medium-small size thin-wall bushing seepage layer hardness consistency
CN115109895A (en) * 2022-07-14 2022-09-27 宁波大学 Residual stress reduction method for bearing ring
CN115109895B (en) * 2022-07-14 2024-03-08 宁波大学 Residual stress reduction method for bearing ring

Similar Documents

Publication Publication Date Title
JP2014005526A (en) Method for manufacturing bearing ring of rolling bearing and bearing ring of rolling bearing
JP2008303402A (en) High frequency induction-hardening apparatus and method for manufacturing rolling bearing, rolling bearing
JP5895493B2 (en) Rolling bearing manufacturing method, induction heat treatment apparatus
JP2013124416A (en) Method for manufacturing bearing ring of rolling bearing
JP2009197312A (en) Method for correcting deformation of annular member
EP3315619A1 (en) Method for producing bearing part
JP5417229B2 (en) Manufacturing method of sliding parts
JP2013221199A (en) Method for producing bearing ring of rolling bearing
JP5779887B2 (en) Heat treatment method for raceway member
JP5446410B2 (en) Heat treatment method for annular workpiece
WO1996006194A1 (en) Method and apparatus for correction tempering rolling part
CN1863931B (en) Thin-walled part producing method, bearing raceway ring, thrust needle roller bearing, rolling bearing raceway ring producing method, rolling bearing raceway ring, and rolling bearing
JPH0533059A (en) Device for restrict-quenching outer diameter of thin ring
JP2009203525A (en) Production line for rolling bearing
JP2021110033A (en) Production method of bearing ring of rolling bearing
JP5380812B2 (en) Quenching method for annular body
JP4627981B2 (en) Manufacturing method of thin bearing race
US20190072132A1 (en) Bearing ring for roller bearing, manufacturing method of bearing ring for roller bearing, and needle roller bearing
JP5130150B2 (en) Induction hardening method and bearing parts
JP2005113213A (en) Heat treatment system
TWI648122B (en) Hot process for rolling to approch final contour of guide rails
JPH09235618A (en) Heat treatment apparatus for correcting deformation of annular body
JP2005076111A (en) Method for quenching annular member made of steel
JP2009203522A (en) Method for manufacturing race ring of rolling bearing
JP7328032B2 (en) rolling bearing rings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170328