Nothing Special   »   [go: up one dir, main page]

JP2014080653A - Production method of rare earth-transition metal-nitrogen system alloy powder, and obtained rare earth-transition metal-nitrogen system alloy powder - Google Patents

Production method of rare earth-transition metal-nitrogen system alloy powder, and obtained rare earth-transition metal-nitrogen system alloy powder Download PDF

Info

Publication number
JP2014080653A
JP2014080653A JP2012228713A JP2012228713A JP2014080653A JP 2014080653 A JP2014080653 A JP 2014080653A JP 2012228713 A JP2012228713 A JP 2012228713A JP 2012228713 A JP2012228713 A JP 2012228713A JP 2014080653 A JP2014080653 A JP 2014080653A
Authority
JP
Japan
Prior art keywords
rare earth
transition metal
alloy powder
nitrogen
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012228713A
Other languages
Japanese (ja)
Inventor
Takeshi Naganami
武 長南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2012228713A priority Critical patent/JP2014080653A/en
Publication of JP2014080653A publication Critical patent/JP2014080653A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method that can efficiently produce a rare earth-transition metal-nitrogen system alloy powder that has excellent magnetic properties as a permanent magnet, and the obtained rare earth-transition metal-nitrogen system alloy powder.SOLUTION: A production method includes: a first process in which an alkali solution is added with a solution including a rare earth compound and a transition metal compound, a generated precipitate is aged while being agitated; a second process in which an aged precipitate is cleaned being added with water, decantation is performed until a supernatant fluid becomes at most specific electric conductivity, then performed by dehydration to obtain a precursor of a complex oxide comprising a rare earth element and a transition metal element; a third process in which the precursor is heat-treated under the oxidizability atmosphere to obtain a complex oxide; a fourth process in which the complex oxide is heat-treated under the reduction property atmosphere, and thereby one part of a complex oxide is reduced to a rare earth-transition metal system alloy to make a part reduction complex oxide; a fifth process in which the part reduction complex oxide is mixed with a reduction agent, heat-treated in the specific inert gas atmosphere to obtain a rare earth-transition metal system alloy powder; and a sixth process in which the alloy powder is performed by nitriding.

Description

本発明は、希土類−遷移金属−窒素系合金粉末の製造方法、および得られる希土類−遷移金属−窒素系合金粉末に関し、より詳しくは、永久磁石用として優れた磁気特性を有する希土類−遷移金属−窒素系合金粉末を効率的に製造できる方法および得られる希土類−遷移金属−窒素系合金粉末に関するものである。   The present invention relates to a method for producing a rare earth-transition metal-nitrogen based alloy powder and the obtained rare earth-transition metal-nitrogen based alloy powder, and more particularly, a rare earth-transition metal having excellent magnetic properties for permanent magnets. The present invention relates to a method capable of efficiently producing a nitrogen-based alloy powder and the obtained rare earth-transition metal-nitrogen-based alloy powder.

希土類元素の少なくとも一種を構成成分とする永久磁石に、希土類元素−鉄−窒素(「R−Fe−N」)系永久磁石があり、ボンド磁石の材料として広く活用されている。このR−Fe−N系永久磁石は、RFe17相の時に大きな保磁力を発現することが知られている。
R−Fe−N系永久磁石の原料にはR−Fe−N系合金粉末が使用されるが、この合金粉末の製造法として溶解法と還元拡散法とがある。
A permanent magnet having at least one rare earth element as a constituent component is a rare earth element-iron-nitrogen ("R-Fe-N") permanent magnet, which is widely used as a material for bond magnets. This R—Fe—N permanent magnet is known to exhibit a large coercive force when in the R 2 Fe 17 N 3 phase.
An R—Fe—N alloy powder is used as a raw material for the R—Fe—N permanent magnet, and there are a melting method and a reduction diffusion method as a method for producing this alloy powder.

溶解法は、特許文献1〜3に記載されているように、構成成分となる金属や母合金を目的組成に調合して溶解し、得られた合金インゴットをジョークラッシャーなどで所定の粒度に粉砕するものである。しかし、これらの方法では粉砕工程が必要であり、しかも希土類金属は酸化に対して高活性であるため粉砕過程で酸化が進行したり、歪が生成されたりして合金品質が低下するという欠点がある。   As described in Patent Documents 1 to 3, the melting method is to prepare a constituent metal or mother alloy into a target composition and dissolve it, and pulverize the resulting alloy ingot to a predetermined particle size with a jaw crusher or the like. To do. However, these methods require a pulverization step, and since rare earth metals are highly active against oxidation, oxidation proceeds in the pulverization process or strain is generated, resulting in a decrease in alloy quality. is there.

一方、還元拡散法は、希土類酸化物粉末、鉄、ニッケル、コバルトなどの金属粉末あるいは酸化鉄粉末と、還元剤としてのアルカリ土類金属とを混合し、加熱して原料酸化物を還元し、拡散反応で希土類金属と遷移金属などを合金化し、次いで窒化処理した後湿式処理あるいは湿式処理してから窒化処理して合金粉末を得るものであり、溶解法と比較すると、原料が安価で熱処理温度が低いため低コストであると共に、均一な組成の合金粉末が得られ、しかも合金の組織が緻密で、かつ組成の調整がしやすいといった多くの利点を有する。   On the other hand, the reduction diffusion method mixes rare earth oxide powder, metal powder such as iron, nickel, cobalt or iron oxide powder and alkaline earth metal as a reducing agent, and heats to reduce the raw material oxide, Alloying rare earth metal and transition metal by diffusion reaction, then nitriding, then wet or wet treatment, then nitriding to obtain alloy powder. Compared with melting method, raw material is cheaper and heat treatment temperature Therefore, the alloy powder having a uniform composition can be obtained, the alloy structure is dense, and the composition can be easily adjusted.

このような還元拡散法による合金の製造方法として、例えば、特許文献4〜特許文献6には以下のような記載がある。
特許文献4には、金属Fe粉末と希土類元素を含む酸化物粉末の混合原料を、金属Caにより還元拡散を行う工程を有する希土類Fe系合金粉末の製造方法において、前記混合原料のタップ密度は1.5〜2.0g/mlの範囲で、金属Caを前記混合原料の等量に対して1.0〜3.0倍量加え、600〜1300℃の範囲の温度で加熱して希土類Fe系合金粉末を得る製造方法が記載されている。
As a method for producing an alloy by such a reduction diffusion method, for example, Patent Documents 4 to 6 include the following description.
In Patent Document 4, in a method for producing a rare earth Fe-based alloy powder having a step of reducing and diffusing a mixed raw material of metal Fe powder and oxide powder containing a rare earth element with metal Ca, the tap density of the mixed raw material is 1 In the range of 0.5 to 2.0 g / ml, metal Ca is added in an amount of 1.0 to 3.0 times the equivalent of the mixed raw material and heated at a temperature in the range of 600 to 1300 ° C. A production method for obtaining an alloy powder is described.

また、特許文献5には、Sm成分原料と、Fe成分原料と、粒状金属カルシウムとを所定割合で混合した原料を還元拡散および窒化を行い反応物を得る工程と、水による処理によって前記反応物を固液分離し固形分を得る工程と、前記固形分を真空加熱処理して合金粉末を得る工程と、前記合金粉末をCOガスを含む雰囲気中で処理する工程と、を有するSm−Fe−N系合金粉末の製造方法が記載されている。 Further, Patent Document 5 discloses a process of obtaining a reactant by reducing diffusion and nitriding a raw material obtained by mixing Sm component raw material, Fe component raw material, and granular metal calcium at a predetermined ratio, and treatment with water. Solid-liquid separation to obtain solid content, vacuum heat treatment of the solid content to obtain alloy powder, and treatment of the alloy powder in an atmosphere containing CO 2 gas. A method for producing -N-based alloy powder is described.

さらに、特許文献6には、酸化鉄粒子粉末と酸化サマリウム粒子粉末とを混合した後、当該混合物を還元反応を行って鉄粒子と酸化サマリウム粒子との混合物とし、次に30〜150℃の温度範囲、酸素含有雰囲気下で安定化処理を行って前記鉄粒子の粒子表面に1〜15重量%の酸化膜を形成した後、Caを混合して800〜1200℃の温度範囲、不活性ガス雰囲気下で還元拡散反応を行い、次いで、300〜600℃の温度範囲で窒化反応を行うボンド磁石用Sm−Fe−N系磁性粉末の製造方法が記載されている。   Furthermore, in Patent Document 6, after mixing iron oxide particle powder and samarium oxide particle powder, the mixture is subjected to a reduction reaction to obtain a mixture of iron particles and samarium oxide particles, and then at a temperature of 30 to 150 ° C. After forming a 1 to 15 wt% oxide film on the surface of the iron particles by performing a stabilization treatment in a range, oxygen-containing atmosphere, Ca is mixed to a temperature range of 800 to 1200 ° C., an inert gas atmosphere A method for producing an Sm—Fe—N based magnetic powder for bonded magnets is described in which a reduction diffusion reaction is performed under the conditions below, followed by a nitriding reaction in a temperature range of 300 to 600 ° C.

そして、本出願人も、希土類酸化物粉末と遷移金属粉末および還元剤からなる混合物を非酸化性雰囲気下で加熱処理して還元反応を起こさせ、希土類金属を遷移金属粉末に拡散させる還元拡散法を用いて、一般式RαFe(100−α−β−γ)β(式中、Rは希土類元素の一種又は二種以上、MはCu、Mn、Co、Cr、Ti、Ni、及びZrからなる群から選択される一種又は二種以上、α、β、γは原子%であり、3≦α≦20、0.1≦β≦25、17≦γ≦25を満たす。)で表される希土類−遷移金属−窒素系合金粉末を製造する方法を提案している(特許文献7)。
この方法によれば、アモルファス相と微小強磁性相と粒界とを有する粒子が焼結した希土類−遷移金属−窒素系合金粉末を解砕処理し、該解砕処理は希土類−遷移金属−窒素系合金の焼結部、粒界、もしくはアモルファス相部が砕け、結晶部分が実質的に砕けない条件で行うことにより、アモルファス相と結晶方向が揃った微小強磁性相を有する平均粒径が10μm以上の合金粒子を80体積%以上含有する合金粉末を得ることができるとしている。
しかし、還元拡散法には、前記のような利点があるものの、溶解法と同様に、平均粒径が10μm以上の粗大粒子が多いために、アトライターやビーズミルなどによるメカニカル粉砕が必須であり、しかも保磁力は10kOe前後であり十分とはいえなかった。
The present applicant also performs a reduction diffusion method in which a mixture comprising a rare earth oxide powder, a transition metal powder, and a reducing agent is heated in a non-oxidizing atmosphere to cause a reduction reaction, and the rare earth metal is diffused into the transition metal powder. , R is a general formula R α Fe (100-α-β-γ) M β N y (wherein R is one or more of rare earth elements, M is Cu, Mn, Co, Cr, Ti, Ni And one or more selected from the group consisting of Zr, α, β, and γ are atomic% and satisfy 3 ≦ α ≦ 20, 0.1 ≦ β ≦ 25, and 17 ≦ γ ≦ 25. Has been proposed (Patent Document 7).
According to this method, a rare earth-transition metal-nitrogen based alloy powder in which particles having an amorphous phase, a fine ferromagnetic phase, and a grain boundary are sintered is pulverized, and the pulverization is performed by the rare earth-transition metal-nitrogen. When the sintered part, the grain boundary, or the amorphous phase part of the alloy is crushed and the crystal part is not substantially crushed, the average grain size of the amorphous phase and the fine ferromagnetic phase aligned in the crystal direction is 10 μm. An alloy powder containing 80% by volume or more of the above alloy particles can be obtained.
However, although the reduction diffusion method has the advantages as described above, as with the dissolution method, since there are many coarse particles having an average particle size of 10 μm or more, mechanical grinding by an attritor or a bead mill is essential. Moreover, the coercive force was around 10 kOe, which was not sufficient.

一方、特許文献8には、一般式R100−x−y−zで表されるThZn17構造の磁性粒子の製造方法であって、RイオンおよびTイオンを有する溶液に、不溶性の塩を生成することが可能な沈殿剤を添加した後に、続いてM成分を添加する第一の工程、得られた沈殿物を焼成し、RおよびTの複合酸化物粉末を得る第二の工程と、粒度が10mm以下の金属カルシウムにて還元拡散反応を行う第三の工程、を有する磁性粉末の製造方法(但し、RはYを含む希土類元素のうちの少なくとも一種、Mは300℃〜1200℃において標準ギブスエネルギーが−80kcal〜−300kcalの範囲である少なくとも一種の元素あるいはその酸化物であり、3<x<30、5<y<15、0.001<z<5である。)が記載されている。
しかし、RイオンおよびTイオンを有する溶液に、不溶性の塩を生成することが可能な沈殿剤を添加するため、沈殿が生成され過飽和度まで溶解析出を繰り返すことによって生成される磁性粒子の粒子径が不均一となり、その結果、その磁気特性は満足すべきものではなかった。
On the other hand, Patent Document 8 discloses a method for producing a magnetic particle having a Th 2 Zn 17 structure represented by a general formula R x T 100-xyz N y Mz , which has R ions and T ions. After adding a precipitating agent capable of forming an insoluble salt to the solution, the first step of subsequently adding the M component, calcining the resulting precipitate, A method for producing a magnetic powder having a second step to be obtained and a third step in which a reduction diffusion reaction is performed with metallic calcium having a particle size of 10 mm or less (where R is at least one of rare earth elements including Y, M Is at least one element or oxide thereof having a standard Gibbs energy in the range of −80 kcal to −300 kcal at 300 ° C. to 1200 ° C., and 3 <x <30, 5 <y <15, 0.001 <z <5 It is. ) Is described.
However, since a precipitating agent capable of generating an insoluble salt is added to a solution having R ions and T ions, the particle size of magnetic particles generated by repeating precipitation by dissolution until the supersaturation is generated. As a result, the magnetic properties were not satisfactory.

このため、従来の溶解法や還元拡散法のように合金粉末のメカニカル粉砕を必要とすることなく、粒子径が均一となり、しかもその磁気特性も良好な希土類−遷移金属−窒素系合金粉末を効率的に製造できる方法が切望されていた。   For this reason, rare earth-transition metal-nitrogen based alloy powders with uniform particle size and good magnetic properties are required without the need for mechanical pulverization of the alloy powder as in the conventional melting method and reduction diffusion method. A method that can be manufactured in an efficient manner has been desired.

特開平3−153852号公報JP-A-3-153852 特開昭60−131949号公報Japanese Patent Laid-Open No. 60-131949 特開昭60−34005号公報Japanese Unexamined Patent Publication No. 60-34005 特許第3567742号公報Japanese Patent No. 3567742 特許第3931458号公報Japanese Patent No. 3931458 特許第4296379号公報Japanese Patent No. 4296379 特許第4127083号公報Japanese Patent No. 4127083 特許第4590920号公報Japanese Patent No. 4590920

本発明の目的は、上記従来技術の問題点に鑑み、永久磁石用として優れた磁気特性を有する希土類−遷移金属−窒素系合金粉末を効率的に製造できる方法および得られる希土類−遷移金属−窒素系合金粉末を提供することにある。   In view of the above-mentioned problems of the prior art, an object of the present invention is to provide a method capable of efficiently producing a rare earth-transition metal-nitrogen based alloy powder having excellent magnetic properties for permanent magnets, and the obtained rare earth-transition metal-nitrogen It is to provide an alloy powder.

本発明者は、上記課題を解決するために鋭意研究を重ねた結果、アルカリ溶液に、希土類化合物と遷移金属化合物とを含む溶液を添加すると共に攪拌して沈殿物を得た後、該沈澱物をデカンテーションし、上澄み液の導電率が特定値となるまでデカンテーションを繰り返し行い、引き続き洗浄された沈澱物を乾燥し希土類元素と遷移金属元素から成る複合酸化物の前駆体とし、この前駆体を加熱処理して希土類元素と遷移金属元素から成る複合酸化物を得るようにし、得られた複合酸化物の少なくとも一部を還元処理して、希土類−遷移金属系合金を含む部分還元複合酸化物とした後、これを還元拡散法の原料として用いると、粒径が比較的小さく、組成が均一な希土類−遷移金属系合金粉末を安定的に製造することができることを見だして本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventor added a solution containing a rare earth compound and a transition metal compound to an alkaline solution and stirred to obtain a precipitate, and then the precipitate The decantation is repeated until the conductivity of the supernatant reaches a specific value, and then the washed precipitate is dried to form a precursor of a complex oxide composed of rare earth elements and transition metal elements. To obtain a composite oxide composed of a rare earth element and a transition metal element, and at least a part of the obtained composite oxide is subjected to a reduction treatment to include a partially reduced composite oxide containing a rare earth-transition metal alloy After that, when this was used as a raw material for the reduction diffusion method, it was found that a rare earth-transition metal alloy powder having a relatively small particle size and a uniform composition could be stably produced. Which resulted in the completion of the invention.

すなわち、本発明の第1の発明によれば、アルカリ溶液に、希土類化合物と遷移金属化合物とを含む溶液を添加して、生成する沈殿物を攪拌しながら熟成させる第1の工程と、
熟成された沈澱物に水を加えて洗浄し、上澄み液の導電率が1mS/cm以下となるまでデカンテーションを繰り返し行った後、乾燥して希土類元素と遷移金属元素から成る複合酸化物の前駆体を得る第2の工程と、
該複合酸化物の前駆体を、500〜1400℃の酸化性雰囲気下で加熱処理して、希土類元素と遷移金属元素から成る複合酸化物を得る第3の工程と、
該希土類元素と遷移金属元素から成る複合酸化物を、300〜1000℃の還元性雰囲気下で加熱処理して、複合酸化物の一部を希土類−遷移金属系合金に還元し、部分還元複合酸化物とする第4の工程と、
該部分還元複合酸化物に、粒状または粉末状のアルカリ金属、アルカリ土類金属およびこれらの水素化物から選ばれる少なくとも1種の還元剤を混合し、不活性ガス雰囲気中で該混合物を900℃〜1200℃で加熱処理して希土類−遷移金属系合金粉末を得る第5の工程と、
該希土類−遷移金属系合金粉末を300℃〜600℃で、窒素またはアンモニアと水素とを含むガス雰囲気下で窒化熱処理して希土類−遷移金属−窒素系合金粉末を得る第6の工程と、
該希土類−遷移金属系窒化物を含む合金粉末を水で洗浄し、酸洗浄後に乾燥する第7の工程と、を含むことを特徴とする希土類−遷移金属−窒素系合金粉末の製造方法が提供される。
That is, according to the first invention of the present invention, a first step of adding a solution containing a rare earth compound and a transition metal compound to an alkaline solution and aging the resulting precipitate with stirring;
The aged precipitate is washed with water, and decantation is repeated until the supernatant has a conductivity of 1 mS / cm or less, and then dried to obtain a precursor of a composite oxide composed of a rare earth element and a transition metal element. A second step of obtaining a body;
A third step of heat-treating the precursor of the composite oxide in an oxidizing atmosphere at 500 to 1400 ° C. to obtain a composite oxide composed of a rare earth element and a transition metal element;
The complex oxide composed of the rare earth element and the transition metal element is heat-treated in a reducing atmosphere at 300 to 1000 ° C., and a part of the complex oxide is reduced to a rare earth-transition metal alloy, and partially reduced complex oxidation A fourth step of making a product,
The partially reduced composite oxide is mixed with at least one reducing agent selected from granular or powdery alkali metals, alkaline earth metals and hydrides thereof, and the mixture is heated in an inert gas atmosphere to 900 ° C to A fifth step of obtaining a rare earth-transition metal alloy powder by heat treatment at 1200 ° C .;
A sixth step of obtaining a rare earth-transition metal-nitrogen based alloy powder by nitriding heat treatment of the rare earth-transition metal based alloy powder at 300 ° C. to 600 ° C. in a gas atmosphere containing nitrogen or ammonia and hydrogen;
A seventh step of washing the alloy powder containing the rare earth-transition metal nitride with water and drying after the acid washing, and a method for producing the rare earth-transition metal-nitrogen alloy powder is provided. Is done.

また、本発明の第2の発明によれば、第1の発明において、第1の工程における、アルカリ溶液は、希土類化合物と遷移金属化合物とを含む溶液のpHが7.5以上となるに十分な濃度であることを特徴とする希土類−遷移金属−窒素系合金粉末の製造方法が提供される。   According to the second invention of the present invention, in the first invention, the alkaline solution in the first step is sufficient for the pH of the solution containing the rare earth compound and the transition metal compound to be 7.5 or more. A method for producing a rare earth-transition metal-nitrogen based alloy powder characterized in that the concentration is low.

また、本発明の第3の発明によれば、第1または2の発明において、第1の工程における、アルカリ溶液は、希土類化合物と遷移金属化合物に対して、両者が均一に混合するように、十分な時間をかけて添加することを特徴とする希土類−遷移金属−窒素系合金粉末の製造方法が提供される。   According to the third invention of the present invention, in the first or second invention, the alkaline solution in the first step is mixed uniformly with the rare earth compound and the transition metal compound, A method for producing a rare earth-transition metal-nitrogen based alloy powder characterized in that it is added over a sufficient time is provided.

また、本発明の第4の発明によれば、第1〜3のいずれかの発明において、第1の工程における、溶液温度が100℃以下であることを特徴とする希土類−遷移金属−窒素系合金粉末の製造方法が提供される。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the rare earth-transition metal-nitrogen system characterized in that the solution temperature in the first step is 100 ° C. or lower. A method for producing an alloy powder is provided.

また、本発明の第5の発明によれば、第1〜4のいずれかの発明において、第2の工程における、希土類元素と遷移金属元素から成る複合酸化物の前駆体に含まれる不純物含有量が元素換算として、1.5重量%以下であることを特徴とする希土類−遷移金属−窒素系合金粉末の製造方法が提供される。   According to the fifth invention of the present invention, in any one of the first to fourth inventions, the impurity content contained in the precursor of the composite oxide comprising the rare earth element and the transition metal element in the second step Is a rare earth-transition metal-nitrogen-based alloy powder, characterized in that, in terms of element, is 1.5% by weight or less.

また、本発明の第6の発明によれば、第1〜5のいずれかの発明の方法で得られる希土類−遷移金属−窒素系合金粉末が提供される。   According to the sixth aspect of the present invention, there is provided a rare earth-transition metal-nitrogen based alloy powder obtained by the method of any one of the first to fifth aspects.

また、本発明の第7の発明によれば、第6の発明において、最大エネルギー積(BH)maxが40MGOe以上であることを特徴とする希土類−遷移金属−窒素系合金粉末が提供される。   According to a seventh aspect of the present invention, there is provided a rare earth-transition metal-nitrogen based alloy powder characterized in that, in the sixth aspect, the maximum energy product (BH) max is 40 MGOe or more.

本発明の希土類−遷移金属−窒素系合金粉末の製造方法によれば、アルカリ溶液に、希土類化合物と遷移金属化合物とを含む溶液を添加すると共に攪拌して沈殿物を得た後、該沈澱物をデカンテーションし、上澄み液の導電率が特定値となるまでデカンテーションを繰り返し行うので、不純物が十分に低減され、これを乾燥すると希土類元素と遷移金属元素から成る複合酸化物の前駆体となり、この複合酸化物の前駆体を加熱処理して希土類元素と遷移金属元素から成る複合酸化物を得て、得られた複合酸化物の少なくとも一部を還元処理して、希土類−遷移金属系合金を含む部分還元複合酸化物とした後、これを還元拡散法の原料として用いるので、従来の溶解法や還元拡散法のように合金粉末のメカニカル粉砕を必要とせず、粒子径が均一となる。
また、それを窒化すると、磁気特性が良好な希土類−遷移金属−窒素系合金粉末を効率的に高い生産性をもって製造できる。
According to the method for producing a rare earth-transition metal-nitrogen based alloy powder of the present invention, a solution containing a rare earth compound and a transition metal compound is added to an alkaline solution and stirred to obtain a precipitate, and then the precipitate is obtained. The decantation is repeated until the electrical conductivity of the supernatant liquid reaches a specific value, so that impurities are sufficiently reduced, and when this is dried, it becomes a precursor of a complex oxide composed of a rare earth element and a transition metal element, The composite oxide precursor is heat-treated to obtain a composite oxide composed of a rare earth element and a transition metal element, and at least a part of the obtained composite oxide is reduced to form a rare earth-transition metal alloy. Since this is used as a raw material for the reduction diffusion method after the partial reduction composite oxide is contained, mechanically pulverizing the alloy powder is not required unlike the conventional dissolution method and reduction diffusion method, and the particle size is uniform. To become.
Moreover, when it is nitrided, a rare earth-transition metal-nitrogen alloy powder having good magnetic properties can be produced efficiently and with high productivity.

この希土類−遷移金属−窒素系合金粉末は、特に最大エネルギー積(BH)maxが高いので、ボンド磁石や焼結磁石に成形されて、高い磁気特性が必要とされる一般家電製品、通信、自動車、音響機器、医療機器、一般産業機器をはじめとする製品のモータなどの各種用途に適用することができる。   Since this rare earth-transition metal-nitrogen based alloy powder has a particularly high maximum energy product (BH) max, it is formed into a bonded magnet or a sintered magnet, and is required to have high magnetic properties. It can be applied to various uses such as motors for products including acoustic equipment, medical equipment, and general industrial equipment.

以下、本発明の実施の形態について、具体的に説明する。
1.希土類−遷移金属−窒素系合金粉末の製造方法
本発明に係る希土類−遷移金属−窒素系合金粉末の製造方法は、アルカリ溶液に、希土類化合物と遷移金属化合物とを含む溶液を添加して、生成する沈殿物を攪拌しながら熟成させる第1の工程と、
熟成された沈澱物に水を加えて洗浄し、上澄み液の導電率が1mS/cm以下となるまでデカンテーションを繰り返し行った後、乾燥して希土類元素と遷移金属元素から成る複合酸化物の前駆体を得る第2の工程と、
該複合酸化物の前駆体を、500〜1400℃の酸化性雰囲気下で加熱処理して、希土類元素と遷移金属元素から成る複合酸化物を得る第3の工程と、
該希土類元素と遷移金属元素から成る複合酸化物を、300〜1000℃の還元性雰囲気下で加熱処理して、複合酸化物の一部を希土類−遷移金属系合金に還元し、部分還元複合酸化物とする第4の工程と、
該部分還元複合酸化物に、粒状または粉末状のアルカリ金属、アルカリ土類金属およびこれらの水素化物から選ばれる少なくとも1種の還元剤を混合し、不活性ガス雰囲気中で該混合物を900℃〜1200℃で加熱処理して希土類−遷移金属系合金粉末を得る第5の工程と、
該希土類−遷移金属系合金粉末を300℃〜600℃で、窒素またはアンモニアと水素とを含むガス雰囲気下で窒化熱処理して希土類−遷移金属−窒素系合金粉末を得る第6の工程と、
該希土類−遷移金属系窒化物を含む合金粉末を水で洗浄し、酸洗浄後に乾燥する第7の工程と、を含むことを特徴とする。
Hereinafter, embodiments of the present invention will be specifically described.
1. Method for producing rare earth-transition metal-nitrogen based alloy powder The method for producing rare earth-transition metal-nitrogen based alloy powder according to the present invention is produced by adding a solution containing a rare earth compound and a transition metal compound to an alkaline solution. A first step of aging the precipitate to be stirred;
The aged precipitate is washed with water, and decantation is repeated until the supernatant has a conductivity of 1 mS / cm or less, and then dried to obtain a precursor of a composite oxide composed of a rare earth element and a transition metal element. A second step of obtaining a body;
A third step of heat-treating the precursor of the composite oxide in an oxidizing atmosphere at 500 to 1400 ° C. to obtain a composite oxide composed of a rare earth element and a transition metal element;
The complex oxide composed of the rare earth element and the transition metal element is heat-treated in a reducing atmosphere at 300 to 1000 ° C., and a part of the complex oxide is reduced to a rare earth-transition metal alloy, and partially reduced complex oxidation A fourth step of making a product,
The partially reduced composite oxide is mixed with at least one reducing agent selected from granular or powdery alkali metals, alkaline earth metals and hydrides thereof, and the mixture is heated in an inert gas atmosphere to 900 ° C to A fifth step of obtaining a rare earth-transition metal alloy powder by heat treatment at 1200 ° C .;
A sixth step of obtaining a rare earth-transition metal-nitrogen based alloy powder by nitriding heat treatment of the rare earth-transition metal based alloy powder at 300 ° C. to 600 ° C. in a gas atmosphere containing nitrogen or ammonia and hydrogen;
And a seventh step of washing the alloy powder containing the rare earth-transition metal nitride with water and drying after the acid washing.

以下、本発明に係る希土類−遷移金属−窒素系合金粉末の製造について各工程毎に説明し、併せて希土類−遷移金属−窒素系合金粉末について説明する。   Hereinafter, the production of the rare earth-transition metal-nitrogen based alloy powder according to the present invention will be described for each step, and the rare earth-transition metal-nitrogen based alloy powder will be described together.

(1)原料化合物を含むアルカリ性溶液からの沈殿物の生成工程
本発明においては、先ずアルカリ溶液に、原料化合物である希土類化合物と遷移金属化合物とを含む溶液を添加すると共に、継続的に攪拌しながら熟成させて沈殿物を得る。
(1) Step of generating precipitate from alkaline solution containing raw material compound In the present invention, first, a solution containing a rare earth compound and a transition metal compound as raw material compounds is added to the alkaline solution and continuously stirred. Aged to obtain a precipitate.

本発明において希土類化合物は、Yを含むランタノイド元素の一種または二種以上であり、例えば、Y、La、Ce、Pr、NdおよびSmの群から選択される一種以上の硝酸塩、硫酸塩、塩化物、酢酸塩などが挙げられる。また、遷移金属化合物は、例えば、Fe、Cu、Mn、Co、Cr、Ti、Ni、Zrの群からFeを必須成分として含む一種以上の硝酸塩、硫酸塩、塩化物、酢酸塩などが挙げられる。酸化物も使用できるが、硝酸塩、硫酸塩、塩化物、酢酸塩などの方が水に溶解しやすく好ましい。   In the present invention, the rare earth compound is one or more of lanthanoid elements including Y, for example, one or more nitrates, sulfates, chlorides selected from the group of Y, La, Ce, Pr, Nd and Sm. And acetate. Examples of the transition metal compound include one or more nitrates, sulfates, chlorides, and acetates containing Fe as an essential component from the group of Fe, Cu, Mn, Co, Cr, Ti, Ni, and Zr. . Although oxides can also be used, nitrates, sulfates, chlorides, acetates and the like are preferred because they are easier to dissolve in water.

上記希土類化合物と遷移金属化合物は、磁気特性の観点から金属元素の原子比で2〜2.8:17の比率となるように水に溶解させればよい。また、希土類化合物の水溶液と遷移金属化合物の水溶液を混合する場合でも前記比率となるように混合する。溶液の温度は特に制限されないが、安定した沈殿物を得るために、100℃以下に保持することが好ましい。   The rare earth compound and the transition metal compound may be dissolved in water so that the atomic ratio of the metal element is 2 to 2.8: 17 from the viewpoint of magnetic properties. Further, even when an aqueous solution of a rare earth compound and an aqueous solution of a transition metal compound are mixed, they are mixed so as to have the above ratio. The temperature of the solution is not particularly limited, but is preferably maintained at 100 ° C. or lower in order to obtain a stable precipitate.

さらに本発明においては、所望により前記工程で準備する希土類化合物と遷移金属化合物に加えてSi、Al、Ti、Zr、Zn、またはCu化合物から選ばれる一種以上(以下、M元素ともいう)を添加することができる。ここで、前記Si、Al、Ti、Zr、Zn、Cu化合物の各含有量は、以降の複合酸化物の加熱処理において形成される希土類−遷移金属系合金粉末が、粒子成長を抑制するに十分な量とすることが好ましい。具体的には、前記遷移金属化合物に対して、0.01〜10重量%とすることができ、0.05〜8重量%が好ましい。   Furthermore, in the present invention, if desired, one or more selected from Si, Al, Ti, Zr, Zn, or Cu compounds (hereinafter also referred to as M element) is added in addition to the rare earth compound and the transition metal compound prepared in the above step. can do. Here, each content of the Si, Al, Ti, Zr, Zn, and Cu compounds is sufficient for the rare earth-transition metal alloy powder formed in the subsequent heat treatment of the composite oxide to suppress particle growth. It is preferable to make it an amount. Specifically, it can be 0.01 to 10% by weight, preferably 0.05 to 8% by weight, based on the transition metal compound.

一方、アルカリ溶液は、希土類化合物と遷移金属化合物をpH8以上のアルカリ性にできるものであれば特に限定されない。例えば、炭酸水素アンモニウム、水酸化アンモニウム、水酸化ナトリウム、水酸化カリウム、尿素などの各アルカリ溶液が挙げられる。アルカリ溶液の濃度は、各塩が、前駆体として水酸化物となるに必要な化学当量以上あれば良いが、以降の工程で残留アルカリ分を除去する際の洗浄時間を短縮し生産性を上げる観点から、当量〜当量の3倍の範囲とすることが好ましい。
ここで、アルカリ溶液に対する希土類化合物と遷移金属化合物とを含む溶液の添加時間は、特に制限はないが、生産性の観点から60分以下、好ましくは50分以下とする。
On the other hand, the alkaline solution is not particularly limited as long as it can make the rare earth compound and the transition metal compound alkaline with a pH of 8 or more. Examples thereof include alkaline solutions such as ammonium hydrogen carbonate, ammonium hydroxide, sodium hydroxide, potassium hydroxide, and urea. The concentration of the alkaline solution may be higher than the chemical equivalent necessary for each salt to become a hydroxide as a precursor, but the washing time when removing the residual alkali in the subsequent steps is shortened and the productivity is increased. From a viewpoint, it is preferable to set it as the range of equivalent-3 times the equivalent.
Here, the addition time of the solution containing the rare earth compound and the transition metal compound to the alkaline solution is not particularly limited, but is 60 minutes or less, preferably 50 minutes or less from the viewpoint of productivity.

また、アルカリ溶液と希土類化合物と遷移金属化合物とを含む溶液の温度は100℃以下、好ましくは80℃以下、より好ましくは50℃以下とする。溶液温度を100℃以下とするのは、溶液から水が蒸発して系内の成分濃度が変化することを回避するためである。溶液温度の下限は、特に限定されないが、生産性の観点から、通常室温とする。特に、液温を室温以下とすると、新たに冷却装置などが必要になってくることから、そのような装置を必要としない液温とすることが好ましい。   The temperature of the solution containing the alkaline solution, the rare earth compound, and the transition metal compound is 100 ° C. or lower, preferably 80 ° C. or lower, more preferably 50 ° C. or lower. The reason why the solution temperature is set to 100 ° C. or less is to avoid the evaporation of water from the solution and the change of the component concentration in the system. The lower limit of the solution temperature is not particularly limited, but is usually room temperature from the viewpoint of productivity. In particular, when the liquid temperature is set to room temperature or lower, a cooling device or the like is newly required. Therefore, it is preferable that the liquid temperature does not require such a device.

アルカリ溶液に希土類化合物と遷移金属化合物とを含む溶液を添加した後、系内の均一化を図るために、溶液を継続的に攪拌しながら熟成を行う。該熟成時の温度は上記温度と同程度、すなわち室温以上100℃以下とするのが好ましい。また、熟成時間は特に限定されないが、生産性の観点から30分以下で十分である。溶液のpHを7.5以上、好ましくは8以上に維持することにより、生成した沈殿物の再溶解を回避して良好な収率を維持することができる。   After adding a solution containing a rare earth compound and a transition metal compound to the alkaline solution, the solution is aged with continuous stirring in order to make the system uniform. The aging temperature is preferably about the same as the above temperature, that is, room temperature to 100 ° C. The aging time is not particularly limited, but 30 minutes or less is sufficient from the viewpoint of productivity. By maintaining the pH of the solution at 7.5 or higher, preferably 8 or higher, re-dissolution of the generated precipitate can be avoided and a good yield can be maintained.

(2)沈澱物のデカンテーション
その後、沈澱物を水洗浄し、デカンテーションによって沈澱物から不純物を除去する。
本発明においては、上澄み液の導電率が1mS/cm以下となるまでデカンテーションを繰り返し実施することが重要である。即ち、沈殿物を十分洗浄して、沈殿物中に残留する塩素イオン、硝酸イオン、硫酸イオン、酢酸イオンなどの不純物を可能な限り除去することである。好ましい導電率は0.7mS/cm以下、より好ましい導電率は0.5mS/cm以下である。
(2) Decantation of precipitate After that, the precipitate is washed with water, and impurities are removed from the precipitate by decantation.
In the present invention, it is important to repeat the decantation until the supernatant has a conductivity of 1 mS / cm or less. That is, the precipitate is sufficiently washed to remove impurities such as chlorine ions, nitrate ions, sulfate ions, and acetate ions remaining in the precipitate as much as possible. A preferable conductivity is 0.7 mS / cm or less, and a more preferable conductivity is 0.5 mS / cm or less.

また、本出願人は、該洗浄後の沈澱物中に残留する不純物量が1.5重量%以下であれば、上述した希土類−遷移金属系合金粉末の磁気特性に影響しないこと、そして該洗浄後の沈澱物中に残留する不純物量と、上澄み液の導電率との関連を検討した結果、該洗浄液の導電率が1mS/cm以下となるまでデカンテーションを繰り返し実施すれば、沈澱物中に残留する不純物量を1.5重量%以下とすることができることを見出した。
上記知見により、不純物量は、1.5重量%以下とすることが好ましく、1重量%以下とすることがより好ましい。不純物の含有量が1.5重量%よりも多いと、希土類−遷移金属系合金粉末の磁気特性に影響し、所望とする磁気特性が得られなくなる。
In addition, the present applicant, if the amount of impurities remaining in the washed precipitate is 1.5 wt% or less, does not affect the magnetic properties of the rare earth-transition metal alloy powder described above, and the washing As a result of examining the relationship between the amount of impurities remaining in the subsequent precipitate and the conductivity of the supernatant liquid, if decantation is repeated until the conductivity of the washing liquid becomes 1 mS / cm or less, It has been found that the amount of remaining impurities can be 1.5% by weight or less.
Based on the above findings, the amount of impurities is preferably 1.5% by weight or less, and more preferably 1% by weight or less. When the impurity content is more than 1.5% by weight, the magnetic properties of the rare earth-transition metal alloy powder are affected, and desired magnetic properties cannot be obtained.

次に、洗浄された沈澱物は、例えば非酸化性雰囲気下、80℃以上に加熱し乾燥させる。乾燥温度は、水分が効率的に除去できる温度、例えば100℃以上400℃以下が好ましい。高温になるほど乾燥時間を短縮することができ、この時減圧したり、乾燥用ガスを流通させることもできる。これにより、乾燥物は希土類元素と遷移金属元素から成る複合酸化物の前駆体となる。   Next, the washed precipitate is dried by heating to 80 ° C. or higher, for example, in a non-oxidizing atmosphere. The drying temperature is preferably a temperature at which moisture can be efficiently removed, for example, 100 ° C. or more and 400 ° C. or less. The higher the temperature, the shorter the drying time. At this time, the pressure can be reduced or the drying gas can be circulated. Thereby, the dried product becomes a precursor of a complex oxide composed of a rare earth element and a transition metal element.

(3)希土類元素と遷移金属元素から成る複合酸化物の形成
得られた該複合酸化物前駆体は、酸化性ガス雰囲気下で加熱処理して、希土類元素と遷移金属元素から成る複合酸化物とする。
(3) Formation of Composite Oxide Consisting of Rare Earth Element and Transition Metal Element The obtained composite oxide precursor is subjected to heat treatment in an oxidizing gas atmosphere to form a composite oxide composed of a rare earth element and a transition metal element. To do.

この時の加熱処理温度は、500℃以上1400℃以下が好ましく、700℃以上1200℃以下がより好ましい。500℃未満では複合酸化物前駆体が完全に酸化物とならず、1400℃を超えると粒成長が顕著となる。加熱時間は、処理量と加熱温度にもよるが、1〜10時間が好ましく、3〜8時間がより好ましい。また、酸化性ガスとして、10%以上の酸素を含むガスの供給が必要であるが、空気、空気と窒素や不活性ガスなどとの混合物から適宜選択すればよい。   The heat treatment temperature at this time is preferably 500 ° C. or higher and 1400 ° C. or lower, and more preferably 700 ° C. or higher and 1200 ° C. or lower. When the temperature is lower than 500 ° C., the composite oxide precursor is not completely oxide, and when the temperature exceeds 1400 ° C., grain growth becomes significant. Although heating time is based also on a processing amount and heating temperature, 1 to 10 hours are preferable and 3 to 8 hours are more preferable. Further, as the oxidizing gas, it is necessary to supply a gas containing 10% or more of oxygen, but it may be appropriately selected from air, a mixture of air and nitrogen, an inert gas, or the like.

(4)複合酸化物の予備的還元処理
本発明では、上記により得られた複合酸化物の一部を還元して、希土類−遷移金属系合金を含む部分還元粉末複合酸化物とする。還元ガス種は特に限定されず、例えばHやCOなどが挙げられる。この時の加熱温度は、低過ぎると部分的にしか還元が進まず、逆に高過ぎると粒成長が顕著となるため、400℃から900℃の範囲が好ましい。また、加熱時間は、処理量と加熱温度にもよるが、0.5〜10時間が好ましく、1〜7時間がより好ましい。
(4) Preliminary reduction treatment of composite oxide In the present invention, a part of the composite oxide obtained as described above is reduced to obtain a partially reduced powder composite oxide containing a rare earth-transition metal alloy. The reducing gas species is not particularly limited, and examples thereof include H 2 and CO. If the heating temperature at this time is too low, the reduction does not proceed only partially, and conversely if it is too high, the grain growth becomes remarkable. Moreover, although heating time is based also on a processing amount and heating temperature, 0.5 to 10 hours are preferable and 1 to 7 hours are more preferable.

この還元処理により、複合酸化物の一部、すなわち10%以上が希土類−遷移金属系合金に還元され、部分還元複合酸化物となる。本発明においては、複合酸化物の30%以上、さらには50%以上が希土類−遷移金属系合金に還元されることが好ましい。   By this reduction treatment, a part of the composite oxide, that is, 10% or more is reduced to a rare earth-transition metal alloy to form a partially reduced composite oxide. In the present invention, 30% or more, more preferably 50% or more of the composite oxide is preferably reduced to the rare earth-transition metal alloy.

(5)還元拡散工程
その後、得られた希土類−遷移金属系合金を含む複合酸化物の混合物(部分還元複合酸化物)に、還元剤として、Liおよび/Ca、あるいはこれらの元素とNa、K、Rb、Cs、Mg、SrあるいはBaから選ばれる少なくとも一種からなるアルカリ金属またはアルカリ土類金属元素を混合して、所定の温度に加熱して部分還元複合酸化物を還元拡散する。
(5) Reduction diffusion step Subsequently, Li and / Ca, or these elements and Na, K as a reducing agent are added to the obtained composite oxide mixture (partial reduction composite oxide) including the rare earth-transition metal alloy. , Rb, Cs, Mg, Sr or Ba are mixed with at least one alkali metal or alkaline earth metal element, and heated to a predetermined temperature to reduce and diffuse the partially reduced composite oxide.

これら還元剤を使用するに当たっては、その投入量および部分還元複合酸化物の粉体性状、還元剤粉末の混合状態、還元拡散反応の温度と時間を注意深く制御する必要がある。なお、上記還元剤の中で、取扱い安全性とコストの点から、金属LiまたはCaが好ましく、特にCaが好ましい。   When these reducing agents are used, it is necessary to carefully control the input amount and powder properties of the partially reduced composite oxide, the mixing state of the reducing agent powder, and the temperature and time of the reduction diffusion reaction. Among the reducing agents, metal Li or Ca is preferable from the viewpoint of handling safety and cost, and Ca is particularly preferable.

部分還元複合酸化物粉末、および還元剤からなる原料粉末混合物の粒度分布は、目標製品の粒度に近い分布が望ましい。この混合物は、アルゴンガスなどの不活性ガスが流通する非酸化性雰囲気中において、還元剤が蒸発しない温度まで昇温保持し、加熱焼成する。   The particle size distribution of the partially reduced composite oxide powder and the raw material powder mixture composed of the reducing agent is desirably a distribution close to the particle size of the target product. This mixture is heated and heated to a temperature at which the reducing agent does not evaporate in a non-oxidizing atmosphere in which an inert gas such as argon gas flows.

Caの融点は、838℃(沸点1480℃)であるので、加熱処理は900℃〜1200℃の温度範囲とする。この条件であれば、還元剤は溶解するが蒸気にはならないため効率的に処理できる。この加熱処理により、部分還元複合酸化物を構成する希土類酸化物と遷移金属酸化物が希土類元素と遷移金属に還元されると共に、還元された希土類元素が遷移金属に拡散して希土類−遷移金属系合金(合金の塊で焼成物ともいう)が合成される。
加熱処理が900℃未満では拡散が不十分となり、逆に1200℃を超えると粒成長が顕著となる結果、いずれの場合でも所望の磁気特性を有する合金粉末が得られない。なお、加熱処理時間は、処理量、加熱温度などによって異なるが、1時間〜15時間とすることが望ましい。
Since the melting point of Ca is 838 ° C. (boiling point 1480 ° C.), the heat treatment is performed in a temperature range of 900 ° C. to 1200 ° C. Under these conditions, the reducing agent dissolves but does not become vapor, so that it can be processed efficiently. By this heat treatment, the rare earth oxide and the transition metal oxide constituting the partially reduced composite oxide are reduced to the rare earth element and the transition metal, and the reduced rare earth element diffuses into the transition metal to cause the rare earth-transition metal system. An alloy (also called a fired product in an alloy lump) is synthesized.
When the heat treatment is less than 900 ° C., the diffusion becomes insufficient. Conversely, when it exceeds 1200 ° C., the grain growth becomes remarkable. As a result, in any case, an alloy powder having desired magnetic properties cannot be obtained. In addition, although heat processing time changes with processing amount, heating temperature, etc., it is desirable to set it as 1 to 15 hours.

その後、得られた希土類、遷移金属を含む合金は、不活性ガス雰囲気下で300℃以下、好ましくは250℃以下に冷却する。不活性ガスの供給温度が300℃を超えると、以降に行う窒化反応が急激に進んでFeリッチ相を増加させることがあるので、300℃以下とすることが望ましい。これは300℃を超える温度では、活性な反応生成物が急激に窒化されるためにFeリッチ相とSmNとに分解されるためであると推測される。   Thereafter, the obtained alloy containing rare earth and transition metal is cooled to 300 ° C. or lower, preferably 250 ° C. or lower in an inert gas atmosphere. If the supply temperature of the inert gas exceeds 300 ° C., the nitridation reaction performed thereafter may proceed rapidly and the Fe-rich phase may be increased. This is presumably because at a temperature exceeding 300 ° C., the active reaction product is rapidly nitrided and thus decomposed into an Fe-rich phase and SmN.

なお、本発明においては、必要に応じて以下のような水中での崩壊性の改善を目的として、焼成物に水素処理を行うことができる。水素処理方法としては、希土類−遷移金属系合金粉末を実質的に酸素を含まない密閉容器内に装入し、容器内を10−3Pa以下の真空にした後、水素を充填して0.09〜0.11MPaとし、さらに外部より0.005〜0.02MPa加圧して水素を供給することが好ましい。前記合金と水素とを密閉容器内に封じることによって、反応生成物は自発的に水素吸蔵を開始し、自己発熱によって反応が促進されるため外部から加熱する必要がなくなる。水素を充填して0.01〜0.11MPaとした後、さらに外部より0.005〜0.02MPa加圧して、反応生成物が吸蔵した分の水素を常に供給するのは、供給量が上記範囲より少ないと水素吸蔵反応が促進できず、多いと反応熱が高くなり過ぎるためである。 In the present invention, the fired product can be treated with hydrogen for the purpose of improving the disintegration property in water as described below, if necessary. As a hydrogen treatment method, a rare earth-transition metal alloy powder is charged into a sealed container that does not substantially contain oxygen, the inside of the container is evacuated to 10 −3 Pa or less, and then filled with hydrogen. It is preferable to set the pressure to 09 to 0.11 MPa and further supply hydrogen by applying pressure of 0.005 to 0.02 MPa from the outside. By sealing the alloy and hydrogen in a sealed container, the reaction product spontaneously starts to store hydrogen, and the reaction is accelerated by self-heating, so that it is not necessary to heat from the outside. After filling with hydrogen to 0.01 to 0.11 MPa, further pressurizing 0.005 to 0.02 MPa from the outside, and supplying hydrogen in the amount occluded by the reaction product is always If the amount is less than the range, the hydrogen occlusion reaction cannot be promoted, and if it is more than the range, the heat of reaction becomes too high.

(6)希土類−遷移金属合金粉末の窒化処理
次に、上記で得られた希土類−遷移金属合金粉末を窒化する。希土類−遷移金属合金粉末は、合金粉をキルンに投入し、窒素またはアンモニアと水素との混合ガス雰囲気下で窒化する。以下、アンモニアと水素との混合ガスで窒化する例について詳述する。
(6) Nitriding treatment of rare earth-transition metal alloy powder Next, the rare earth-transition metal alloy powder obtained above is nitrided. The rare earth-transition metal alloy powder is nitrided in an atmosphere of nitrogen or a mixed gas of ammonia and hydrogen by putting the alloy powder into a kiln. Hereinafter, an example of nitriding with a mixed gas of ammonia and hydrogen will be described in detail.

窒化工程では、還元拡散時の雰囲気ガスを不活性ガスから、少なくともアンモニアと水素とを含有する混合ガスに代えてから350℃〜500℃、好ましくは400℃〜480℃に昇温して窒化熱処理する。350℃未満であると窒化速度が遅く、500℃を超えると希土類の窒化物と鉄に分解するため前記温度範囲とする。   In the nitriding step, the atmosphere gas during the reduction diffusion is changed from an inert gas to a mixed gas containing at least ammonia and hydrogen, and then heated to 350 ° C. to 500 ° C., preferably 400 ° C. to 480 ° C. To do. If it is less than 350 ° C., the nitriding rate is slow, and if it exceeds 500 ° C., it decomposes into rare earth nitride and iron, so that the temperature range is set.

窒化熱処理の保持時間は、窒化温度や合金粉末の処理量に応じて適宜選択すればよいが、200〜600分、好ましくは300〜550分とする。200分未満では、窒化が不十分となり、一方、600分を超えると窒化が過度に進むので好ましくない。
アンモニアと水素との混合割合は、特に限定されないが、10〜70:30〜90、好ましくは30〜60:40〜70が好ましい。この範囲を外れ、アンモニアが少な過ぎると窒化の効率が低下し、一方、アンモニアの割合が多過ぎると部分的に窒化が進み均一な窒化を行うことができない。窒化した後の合金粉中に水素が多く残留していると、この合金粉を磁石化しても磁気特性が低下するために、場合によっては真空加熱を行うなどの方法で十分に脱水素しておく必要がある。
The holding time of the nitriding heat treatment may be appropriately selected according to the nitriding temperature and the amount of alloy powder processed, but is 200 to 600 minutes, preferably 300 to 550 minutes. If it is less than 200 minutes, nitriding becomes insufficient. On the other hand, if it exceeds 600 minutes, nitriding proceeds excessively, which is not preferable.
The mixing ratio of ammonia and hydrogen is not particularly limited, but is preferably 10 to 70:30 to 90, preferably 30 to 60:40 to 70. If the ammonia is out of this range and the amount of ammonia is too small, the nitriding efficiency is lowered. On the other hand, if the proportion of ammonia is too large, nitriding proceeds partially and uniform nitriding cannot be performed. If a large amount of hydrogen remains in the alloy powder after nitriding, even if this alloy powder is magnetized, the magnetic properties will deteriorate, so in some cases it may be sufficiently dehydrogenated by methods such as vacuum heating. It is necessary to keep.

(7)水洗、デカンテーション、酸洗
その後、窒化された合金粉末を、例えば合金粉末1kgあたり約1リットルの水中に投入し、0.1〜3時間攪拌し、反応生成物を崩壊させる。その後、得られたスラリーを粗い篩を通し水洗槽に移す。この時スラリーのpHは11〜12程度であり、崩壊せずに残留する塊はなく、篩上に残ったロスは非常に少なくなる。
(7) Washing with water, decantation, pickling After that, the nitrided alloy powder is put into, for example, about 1 liter of water per 1 kg of alloy powder, and stirred for 0.1 to 3 hours to collapse the reaction product. Then, the obtained slurry is transferred to a water washing tank through a coarse sieve. At this time, the pH of the slurry is about 11 to 12, there is no lump remaining without collapsing, and the loss remaining on the sieve is very small.

この後、スラリーのpHが10以下になるまでデカンテーションによる洗浄を繰り返す。デカンテーション条件は、特に限定されるものではないが、本発明では、前記複合酸化物の前駆体に含まれる不純物が極めて少ないので、デカンテーションの回数は従来よりも大幅に減らすことができる。   Thereafter, washing by decantation is repeated until the pH of the slurry becomes 10 or less. Although the decantation conditions are not particularly limited, in the present invention, since the impurities contained in the precursor of the composite oxide are extremely small, the number of decantations can be significantly reduced as compared with the conventional case.

その後、スラリーのpHが5〜7になるように酢酸などの鉱酸を添加し、さらに脱酸水洗を行った後、アルコールなどの有機溶媒で置換してから乾燥することにより、希土類−遷移金属−窒素系合金粉末が得られる。乾燥条件は、150〜400°Cの非酸化性ガス雰囲気下とすることが好ましい。   Thereafter, a mineral acid such as acetic acid is added so that the slurry has a pH of 5 to 7, and after washing with deacidified water, the slurry is substituted with an organic solvent such as alcohol and dried, thereby rare earth-transition metal. -A nitrogen-based alloy powder is obtained. The drying conditions are preferably 150 to 400 ° C. in a non-oxidizing gas atmosphere.

(8)解砕
上記により得られる希土類−遷移金属−窒素系合金粉末の粒子径は、平均3μm以下であり、製造条件を最適化すれば平均1μm以下とすることもできる。これは、従来法により得られるものよりも十分に小さいが、さらに必要に応じて解砕することができる。
(8) Crushing The particle diameter of the rare earth-transition metal-nitrogen alloy powder obtained above is 3 μm or less on average, and can be 1 μm or less on average if the production conditions are optimized. This is sufficiently smaller than that obtained by the conventional method, but can be crushed as needed.

解砕を行う場合には、マイルドな条件、すなわち粉末に必要以上の応力を加えることなく、可能な限り短時間で解砕することが重要である。例えば、アトライター、ビーズを用いた媒体攪拌ミル、ジェットミルなどの粉砕装置を用いて解砕できる。アトライターで解砕を行う場合は、メディアの量を減らす、溶媒量を多くする、解砕量を多くする、回転数を低くするなどの条件で行うことにより、本発明の目的とする解砕を行うことができる。なお、解砕時間は、装置の種類、処理量などによって異なるが、60分以下とすることが望ましい。   When crushing, it is important to crush in as short a time as possible without applying excessive stress to the powder under mild conditions. For example, it can be pulverized by using a pulverizer such as an attritor, a medium stirring mill using beads, or a jet mill. When crushing with an attritor, crushing is performed for the purpose of the present invention by reducing the amount of media, increasing the amount of solvent, increasing the amount of crushing, and reducing the number of revolutions. It can be performed. The crushing time varies depending on the type of apparatus, the processing amount, etc., but is preferably 60 minutes or less.

2.希土類−遷移金属−窒素系合金粉末
上記の方法で製造された希土類−遷移金属−窒素系合金粉末は、残留磁束密度、保磁力、最大エネルギー積(BH)maxのいずれもが高い磁気特性を有する。本発明では、特に最大エネルギー積(BH)maxが40MGOe以上と高い磁気特性を有している。
2. Rare earth-transition metal-nitrogen-based alloy powder The rare-earth-transition metal-nitrogen-based alloy powder produced by the above method has high magnetic properties such as residual magnetic flux density, coercive force, and maximum energy product (BH) max. . In the present invention, in particular, the maximum energy product (BH) max is as high as 40 MGOe or more.

本発明の磁石合金粉末は、表面が酸化されやすいので、十分な耐酸化特性を有するように、リン酸などによる表面処理、Tiカップリング剤、Siカップリング剤などによる被覆処理を行うことが望ましい。リン酸などによる表面処理は、得られた希土類−遷移金属−窒素系合金粉末を溶媒に分散させながら行うこともできるし、前記解砕時にリン酸を含む粉砕溶媒を用いることで同時に行うこともできる。   Since the surface of the magnet alloy powder of the present invention is easily oxidized, it is desirable to perform a surface treatment with phosphoric acid or the like, or a coating treatment with a Ti coupling agent, a Si coupling agent or the like so as to have sufficient oxidation resistance. . Surface treatment with phosphoric acid or the like can be performed while dispersing the obtained rare earth-transition metal-nitrogen alloy powder in a solvent, or can be performed simultaneously by using a pulverizing solvent containing phosphoric acid during the pulverization. it can.

以下に、本発明の実施例を比較例とともに具体的に説明する。但し、本発明は以下の実施例に限定されるものではない。   Examples of the present invention will be specifically described below together with comparative examples. However, the present invention is not limited to the following examples.

沈殿物のデカンテーションによる洗浄後の上澄み液の導電率は、導電率計(堀場製作所社製、商品名ES−51)により測定し、沈殿物中に残留する塩素イオン、硝酸イオン、硫酸イオン、酢酸イオンなどの不純物がどの程度除去されかを、導電率の低下率により確認した。   The conductivity of the supernatant liquid after washing by decantation of the precipitate is measured by a conductivity meter (trade name ES-51, manufactured by Horiba, Ltd.), and chlorine ions, nitrate ions, sulfate ions remaining in the precipitate, The degree of removal of impurities such as acetate ions was confirmed by the rate of decrease in conductivity.

なお、粉末の磁気特性は、最大印可磁界1200kA/mの振動試料型磁力計(東英工業株式会社製、VSM−3)で測定した。この測定では、日本ボンド磁石工業協会ボンド磁石試験法ガイドブックBMG−2005に準じて1600kA/mの配向磁界をかけて試料を作製し、4000kA/mの磁界で着磁してから評価している。   The magnetic properties of the powder were measured with a vibrating sample magnetometer (manufactured by Toei Kogyo Co., Ltd., VSM-3) having a maximum applied magnetic field of 1200 kA / m. In this measurement, a sample was prepared by applying an orientation magnetic field of 1600 kA / m according to the Japan Bond Magnet Industry Association Bond Magnet Testing Method Guide Book BMG-2005, and evaluation was performed after magnetizing with a magnetic field of 4000 kA / m. .

[実施例1]
水2.5LにSm(NO6HO 246.68gとFe(NO9HO 1717g溶解した溶液を、2mol/LのNaOH水溶液2.25Lに15分間かけて添加して沈殿を生成させた後、さらに10分間攪拌を継続して沈殿を熟成した。この時の溶液温度は、20℃であり、pHは9であった。
[Example 1]
A solution prepared by dissolving 246.68 g of Sm (NO 3 ) 3 6H 2 O and 1717 g of Fe (NO 3 ) 3 9H 2 O in 2.5 L of water was added to 2.25 L of 2 mol / L NaOH aqueous solution over 15 minutes. After generating the precipitate, stirring was continued for another 10 minutes to age the precipitate. The solution temperature at this time was 20 ° C., and the pH was 9.

次に、生成した沈殿をデカンテーションにて洗浄を行った。該デカンテーションによる洗浄は、洗浄後の上澄み液の導電率が0.5mS/cm以下になるまで繰り返し行った。これにより、沈殿物中に残留する塩素イオン、硝酸イオン、硫酸イオン、酢酸イオンなどの不純物が除去されたことが確認できた。洗浄終了後、沈殿物を回収して105℃で乾燥した。   Next, the produced precipitate was washed by decantation. The washing by decantation was repeated until the conductivity of the supernatant after washing was 0.5 mS / cm or less. This confirmed that impurities such as chloride ions, nitrate ions, sulfate ions, and acetate ions remaining in the precipitate were removed. After the washing, the precipitate was collected and dried at 105 ° C.

次に、乾燥処理を施した沈殿物を電気炉に入れ、大気雰囲気下900℃で5時間焼成した後、水素雰囲気下、750℃で2時間還元処理を行った。得られた還元処理物に粒状の金属Ca38.38g添加して混合し、この混合物を鉄製坩堝に入れた後、アルゴンガス雰囲気下1180℃で5時間保持して還元拡散反応を行った。   Next, the dried precipitate was placed in an electric furnace and baked at 900 ° C. for 5 hours in an air atmosphere, and then reduced at 750 ° C. for 2 hours in a hydrogen atmosphere. The obtained reduction product was added with 38.38 g of granular metal Ca and mixed, and this mixture was put in an iron crucible, and then held at 1180 ° C. for 5 hours in an argon gas atmosphere to carry out a reduction diffusion reaction.

次に、室温まで冷却してから水素を吸蔵させた後、キルンに投入してNH31.5L/minと水素10.2L/minフィードしながら450℃で8時間保持して窒化反応を行った。窒化反応後の粉末は、水に添加して水砕し、水洗による洗浄を6回繰り返し行った後、酢酸をpH5となるよう添加した。添加終了後、10分間攪拌を継続し、脱酸水洗としたデンカンテーションによる洗浄を3回行った。その後、2−プロパノールで置換して濾過し、窒素ガス雰囲気下200℃で乾燥することにより、平均粒径が1.1μmの合金粉末aを得た。 Next, after cooling to room temperature, hydrogen was occluded, and then put into a kiln and maintained at 450 ° C. for 8 hours while feeding NH 3 31.5 L / min and hydrogen 10.2 L / min to perform a nitriding reaction It was. The powder after the nitriding reaction was added to water and crushed, and after washing with water was repeated 6 times, acetic acid was added to a pH of 5. After completion of the addition, stirring was continued for 10 minutes, and washing by decantation, which was deoxidized water washing, was performed three times. Then, it substituted by 2-propanol, filtered, and dried at 200 degreeC by nitrogen gas atmosphere, and obtained the alloy powder a whose average particle diameter is 1.1 micrometers.

得られた合金粉末aは、粉末X線回折測定を行った結果、SmFe17単一相であった。また、粉末の磁気特性を測定したところ、残留磁束密度Brが14.53kG、保磁力iHcが11.89kOe、最大エネルギー積(BH)maxが43.36MGOeだった。以上、実施例1の結果を表1に示す。 As a result of powder X-ray diffraction measurement, the obtained alloy powder a was a single phase of Sm 2 Fe 17 N 3 . When the magnetic properties of the powder were measured, the residual magnetic flux density Br was 14.53 kG, the coercive force iHc was 11.89 kOe, and the maximum energy product (BH) max was 43.36 MGOe. The results of Example 1 are shown in Table 1.

[実施例2]
実施例1において、2mol/LのNaOH水溶液2.63Lとした以外は実施例1と同様にして実施例2に係る合金粉末bを得た。溶液温度は、20℃であり、沈殿熟成時のpHは、10.2であった。
[Example 2]
In Example 1, an alloy powder b according to Example 2 was obtained in the same manner as in Example 1 except that 2.63 L of 2 mol / L NaOH aqueous solution was used. The solution temperature was 20 ° C., and the pH during precipitation aging was 10.2.

次に、実施例2の合金粉末bのX線回折測定を行った。その結果、SmFe17単一相であった。また、合金粉末の磁気特性を測定したところ、残留磁束密度Brが14kG以上で、保磁力iHcが11.6kOe以上で、最大エネルギー積(BH)maxが40MGOe以上であった。以上、実施例2の結果を表1に示す。 Next, the X-ray diffraction measurement of the alloy powder b of Example 2 was performed. As a result, it was a Sm 2 Fe 17 N 3 single phase. When the magnetic properties of the alloy powder were measured, the residual magnetic flux density Br was 14 kG or more, the coercive force iHc was 11.6 kOe or more, and the maximum energy product (BH) max was 40 MGOe or more. The results of Example 2 are shown in Table 1 above.

[実施例3〜実施例7]
また、実施例1において105℃で乾燥した後の沈殿物の焼成温度を800℃とした以外は、実施例1と同様にして実施例3に係る合金粉末cを得た。実施例1において105℃で乾燥した後の沈殿物の焼成温度を1000℃とした以外は、実施例1と同様にして実施例4に係る合金粉末dを得た。また、実施例1において還元拡散の温度を1150℃とした以外は実施例1と同様にして実施例5に係る合金粉末eを得た。実施例1において還元拡散の温度を1060℃で8時間とした以外は実施例1と同様にして実施例6に係る合金粉末fを得た。さらに、実施例1において脱酸水洗、2−プロパノールで置換して濾過したあとの乾燥温度を250℃とした以外は実施例1と同様にして実施例7に係る合金粉末gを得た。
[Examples 3 to 7]
Moreover, the alloy powder c which concerns on Example 3 was obtained like Example 1 except the baking temperature of the precipitate after drying at 105 degreeC in Example 1 having been 800 degreeC. An alloy powder d according to Example 4 was obtained in the same manner as in Example 1 except that the firing temperature of the precipitate after drying at 105 ° C. in Example 1 was 1000 ° C. Further, an alloy powder e according to Example 5 was obtained in the same manner as in Example 1 except that the reduction diffusion temperature was set to 1150 ° C. in Example 1. An alloy powder f according to Example 6 was obtained in the same manner as in Example 1 except that the reduction diffusion temperature in Example 1 was changed to 1060 ° C. for 8 hours. Further, an alloy powder g according to Example 7 was obtained in the same manner as in Example 1 except that the drying temperature after deacidified water washing, substitution with 2-propanol and filtration in Example 1 was 250 ° C.

次に、実施例3〜実施例7の合金粉末c〜fのX線回折測定を行った。その結果、すべてSmFe17単一相であった。また、各合金粉末の磁気特性を測定したところ、残留磁束密度Brが14kG以上で、保磁力iHcが11.6kOe以上で、最大エネルギー積(BH)maxが40MGOe以上であった。以上、実施例3から実施例7の結果をまとめて表1に示す。 Next, X-ray diffraction measurement of the alloy powders cf of Example 3 to Example 7 was performed. As a result, all were Sm 2 Fe 17 N 3 single phases. When the magnetic properties of each alloy powder were measured, the residual magnetic flux density Br was 14 kG or more, the coercive force iHc was 11.6 kOe or more, and the maximum energy product (BH) max was 40 MGOe or more. The results of Example 3 to Example 7 are collectively shown in Table 1.

[実施例8〜実施例9]
また、実施例1において、デカンテーションによる洗浄の繰り返しを、上澄み液の導電率が0.2mS/cmとなった時点で終了させた以外は、実施例1と同様にして実施例8に係る合金粉末hを得た。また、実施例1において、デカンテーションによる洗浄の繰り返しを、上澄み液の導電率が0.07mS/cmとなった時点で終了させた以外は実施例1と同様にして実施例9に係る合金粉末iを得た。いずれも沈殿物中に残留する塩素イオン、硝酸イオン、硫酸イオン、酢酸イオンなどの不純物が除去されたことが確認できた。
[Examples 8 to 9]
Further, in Example 1, the repetition of cleaning by decantation was terminated when the supernatant liquid conductivity reached 0.2 mS / cm, in the same manner as in Example 1, except that the alloy according to Example 8 was terminated. Powder h was obtained. Further, in Example 1, the repetition of washing by decantation was terminated when the supernatant liquid conductivity reached 0.07 mS / cm, and the alloy powder according to Example 9 was the same as Example 1. i was obtained. In all cases, it was confirmed that impurities such as chlorine ions, nitrate ions, sulfate ions and acetate ions remaining in the precipitate were removed.

次に、実施例8〜実施例9の合金粉末h〜iのX線回折測定を行った。その結果、いずれもSmFe17単一相であった。また、各合金粉末の磁気特性を測定したところ、残留磁束密度Brが14kG以上で、保磁力iHcが11.6kOe以上で、最大エネルギー積(BH)maxが40MGOe以上であった。以上、実施例8、9の結果をまとめて表1に示す。 Next, X-ray diffraction measurement of the alloy powders h to i of Examples 8 to 9 was performed. As a result, all were Sm 2 Fe 17 N 3 single phases. When the magnetic properties of each alloy powder were measured, the residual magnetic flux density Br was 14 kG or more, the coercive force iHc was 11.6 kOe or more, and the maximum energy product (BH) max was 40 MGOe or more. The results of Examples 8 and 9 are collectively shown in Table 1.

[実施例10〜実施例13]
さらに、実施例1において、Sm(NO6HOに替えてSmCl6HO202.47gを用いた以外は実施例1と同様にして実施例10に係る合金粉末jを得た。実施例1において、Fe(NO9HOに替えてFeCl6HO1148.63gを用いた以外は実施例1と同様にして実施例11に係る合金粉末kを得た。また、実施例1において、Fe(NO9HOに替えてFeSO7HO1181.54gを用いた以外は実施例1と同様にして実施例12に係る合金粉末lを得た。さらに、実施例1において、NaOHに替えてNHHCOを用いた以外は実施例1と同様にして実施例13に係る合金粉末mを得た。いずれも沈殿熟成時のpHは、9.1であった。
[Example 10 to Example 13]
Furthermore, an alloy powder j according to Example 10 was obtained in the same manner as in Example 1, except that 202.47 g of SmCl 3 6H 2 O was used instead of Sm (NO 3 ) 3 6H 2 O in Example 1. In Example 1, to obtain an alloy powder k according to Fe (NO 3) 3 9H 2 instead of O FeCl 3 6H 2 Example 11 in the same manner as in Example 1 except for using the O1148.63G. Further, in Example 1, an alloy powder l according to Example 12 was obtained in the same manner as in Example 1 except that 1181.54 g of FeSO 4 7H 2 O was used instead of Fe (NO 3 ) 3 9H 2 O. Furthermore, an alloy powder m according to Example 13 was obtained in the same manner as in Example 1 except that NH 4 HCO 3 was used instead of NaOH in Example 1. In all cases, the pH at the time of precipitation ripening was 9.1.

次に、実施例10〜実施例13の合金粉末j〜mのX線回折測定を行った。その結果、すべてSmFe17単一相であった。また、各合金粉末の磁気特性を測定したところ、残留磁束密度Brが14kG以上で、保磁力iHcが11.6kOe以上で、最大エネルギー積(BH)maxが40MGOe以上であった。以上、実施例10から実施例13の結果をまとめて表1に示す。 Next, X-ray diffraction measurement of the alloy powders j to m of Examples 10 to 13 was performed. As a result, all were Sm 2 Fe 17 N 3 single phases. When the magnetic properties of each alloy powder were measured, the residual magnetic flux density Br was 14 kG or more, the coercive force iHc was 11.6 kOe or more, and the maximum energy product (BH) max was 40 MGOe or more. The results of Example 10 to Example 13 are summarized in Table 1 above.

[比較例1]
実施例1において、Sm(NO6HOが246.68gとFe(NO9HOが1717g含まれる混合溶液2.5Lに、2mol/LのNaOH水溶液を添加した以外は、実施例1と同様にして比較例1に係る合金粉末nを得た。
[Comparative Example 1]
In Example 1, except that 2 mol / L NaOH aqueous solution was added to 2.5 L of a mixed solution containing 246.68 g of Sm (NO 3 ) 3 6H 2 O and 1717 g of Fe (NO 3 ) 3 9H 2 O. In the same manner as in Example 1, an alloy powder n according to Comparative Example 1 was obtained.

合金粉末nのX線回折測定を行った結果、SmFe17の単一相であったが、磁気特性を測定したところ、残留磁束密度Brが13.90kG、保磁力iHcが11.55kOeで、最大エネルギー積(BH)maxが39.85MGOeであった。以上、比較例1の結果を表1に示す。 As a result of X-ray diffraction measurement of the alloy powder n, it was a single phase of Sm 2 Fe 17 N 3. When the magnetic properties were measured, the residual magnetic flux density Br was 13.90 kG and the coercive force iHc was 11. At 55 kOe, the maximum energy product (BH) max was 39.85 MGOe. The results of Comparative Example 1 are shown in Table 1 above.

[比較例2〜比較例7]
実施例1において、デカンテーションによる洗浄の繰り返しを、上澄み液の導電率が2mS/cmとなった時点で終了させた以外は実施例1と同様にして比較例2に係る合金粉末oを得た。沈殿物中に塩素イオン、硝酸イオン、硫酸イオン、酢酸イオンなどの不純物が除去されずに存在していることが確認できた。
[Comparative Examples 2 to 7]
In Example 1, an alloy powder o according to Comparative Example 2 was obtained in the same manner as in Example 1 except that the repetition of washing by decantation was terminated when the supernatant liquid conductivity reached 2 mS / cm. . It was confirmed that impurities such as chloride ion, nitrate ion, sulfate ion and acetate ion were present in the precipitate without being removed.

また、実施例1において窒化熱処理温度を300℃とした以外は、実施例1と同様にして比較例3に係る合金粉末pを得た。実施例1において窒化熱処理温度を530℃とした以外は、実施例1と同様にして比較例4に係る合金粉末qを得た。実施例1において還元拡散反応の温度を800℃とした以外は、実施例1と同様にして比較例5に係る合金粉末rを得た。また、実施例1において還元拡散反応の温度を1300℃とした以外は、実施例1と同様にして比較例6に係る合金粉末sを得た。さらに、実施例1において脱酸水洗、AP−2で置換して濾過したあとの乾燥温度を50℃とした以外は実施例1と同様にして比較例7に係る合金粉末tを得た。   Further, an alloy powder p according to Comparative Example 3 was obtained in the same manner as in Example 1 except that the nitriding heat treatment temperature was set to 300 ° C. in Example 1. An alloy powder q according to Comparative Example 4 was obtained in the same manner as in Example 1 except that the nitriding heat treatment temperature was 530 ° C. in Example 1. An alloy powder r according to Comparative Example 5 was obtained in the same manner as in Example 1 except that the temperature of the reduction diffusion reaction was set to 800 ° C. in Example 1. Further, an alloy powder s according to Comparative Example 6 was obtained in the same manner as in Example 1 except that the temperature of the reduction diffusion reaction in Example 1 was 1300 ° C. Furthermore, an alloy powder t according to Comparative Example 7 was obtained in the same manner as in Example 1 except that the drying temperature after deacidified water washing, substitution with AP-2 and filtration in Example 1 was 50 ° C.

比較例2〜比較例7の合金粉末o〜tのX線回折測定を行った結果、合金粉末o〜q、sおよびtはSmFe17単一相であったが、合金粉末rはSmFe17の他に未反応のFeやSmの異相が認められた。また、粉末の磁気特性を測定したところ、比較例2〜比較例7の合金粉末o〜tの残留磁束密度Brが14kG未満で、保磁力iHcが11.6kOe未満で、最大エネルギー積(BH)maxが40MGOe未満であった。以上、比較例2から比較例7の結果をまとめて表1に示す。 As a result of X-ray diffraction measurement of the alloy powders o to t of Comparative Examples 2 to 7, the alloy powders o to q, s, and t were Sm 2 Fe 17 N 3 single phase, but the alloy powder r In addition to Sm 2 Fe 17 N 3 , unreacted Fe and Sm 2 O 3 heterogeneous phases were observed. Further, when the magnetic properties of the powder were measured, the alloy powders o to t of Comparative Examples 2 to 7 had a residual magnetic flux density Br of less than 14 kG, a coercive force iHc of less than 11.6 kOe, and a maximum energy product (BH). The max was less than 40 MGOe. The results of Comparative Examples 2 to 7 are collectively shown in Table 1.

[比較例8]
特開平9−143636号公報に記載の実施例1と同様にして、還元拡散法で上記実施例1と同等の合金組成が得られるように原料、還元剤の量を調整して、合金粉末uを製造した。得られた合金粉末は、平均粒径が20μmと粗大であったために、ボールミルによるメカニカル粉砕を行った。
[Comparative Example 8]
In the same manner as in Example 1 described in JP-A-9-143636, the amounts of raw materials and reducing agent are adjusted so that an alloy composition equivalent to that in Example 1 is obtained by the reduction diffusion method. Manufactured. Since the obtained alloy powder was as coarse as 20 μm in average particle size, it was mechanically pulverized by a ball mill.

比較例9の合金粉末uのX線回折測定を行った結果、SmFe17単一相であったが、粉末の磁気特性を測定したところ、残留磁束密度Brが14kG未満で、保磁力iHcが11.6kOe未満で、最大エネルギー積(BH)maxが40MGOe未満であった。以上、比較例8の結果を表1に示す。 As a result of X-ray diffraction measurement of the alloy powder u of Comparative Example 9, it was Sm 2 Fe 17 N 3 single phase, but when the magnetic properties of the powder were measured, the residual magnetic flux density Br was less than 14 kG, The magnetic force iHc was less than 11.6 kOe, and the maximum energy product (BH) max was less than 40 MGOe. The results of Comparative Example 8 are shown in Table 1 above.

Figure 2014080653
Figure 2014080653

[評価]
上記の表1から明らかなように、本発明の希土類−遷移金属−窒素系合金粉末の製造方法による実施例1から実施例13では、合金粉末aからmが本発明の工程、条件で製造されたために、SmFe17単一相であり、残留磁束密度Brが14kG以上で、保磁力iHcが11.6kOe以上で、かつ最大エネルギー積(BH)maxが40MGOe以上と優れた磁気特性を有していた。
[Evaluation]
As apparent from Table 1 above, in Examples 1 to 13 according to the method for producing rare earth-transition metal-nitrogen based alloy powder of the present invention, alloy powders a to m are produced by the process and conditions of the present invention. Therefore, it is an Sm 2 Fe 17 N 3 single phase, the residual magnetic flux density Br is 14 kG or more, the coercive force iHc is 11.6 kOe or more, and the maximum energy product (BH) max is 40 MGOe or more. Had.

一方、比較例1から7では、比較例1の合金粉末nから比較例4の合金粉末qと比較例6の合金粉末sおよび比較例7の合金粉末tが、本発明の方法から外れた条件で製造されたために、いずれもSmFe17単一相であるが、残留磁束密度Brが14kG未満で、保磁力が11.6kOe未満で、かつ最大エネルギー積(BH)maxが40MGOe未満となり、十分な磁気特性が得られなかった。また、比較例5の合金粉末rは、還元拡散時の温度が高過ぎたために、SmFe17の他にFeやSmの異相が混在し、残留磁束密度Brが14kG未満で、保磁力が11.6kOe未満で、かつ最大エネルギー積(BH)maxが40MGOe未満となり、十分な磁気特性が得られなかった。 On the other hand, in Comparative Examples 1 to 7, the conditions in which the alloy powder n of Comparative Example 1 to the alloy powder q of Comparative Example 4, the alloy powder s of Comparative Example 6, and the alloy powder t of Comparative Example 7 deviate from the method of the present invention. Are both Sm 2 Fe 17 N 3 single phase, but the residual magnetic flux density Br is less than 14 kG, the coercive force is less than 11.6 kOe, and the maximum energy product (BH) max is less than 40 MGOe. As a result, sufficient magnetic properties could not be obtained. In addition, since the alloy powder r of Comparative Example 5 has a temperature during reduction diffusion that is too high, other phases of Fe and Sm 2 O 3 are mixed in addition to Sm 2 Fe 17 N 3 , and the residual magnetic flux density Br is less than 14 kG. Thus, the coercive force was less than 11.6 kOe and the maximum energy product (BH) max was less than 40 MGOe, and sufficient magnetic properties could not be obtained.

比較例8の合金粉末は、従来の還元拡散法で得られたために、メカニカル粉砕が必要であり、処理時間とコストがかかっただけでなく、十分な磁気特性が得られなかった。   Since the alloy powder of Comparative Example 8 was obtained by the conventional reduction diffusion method, mechanical pulverization was required, and not only processing time and cost were required, but also sufficient magnetic properties were not obtained.

本発明の希土類−遷移金属−窒素系合金粉末の製造方法で得られる合金粉末は、従来の方法で得られた合金粉末と異なり、優れた磁気特性を有する。従って、一般家電製品、通信、自動車、音響機器、医療機器、一般産業機器をはじめとする製品のモータの磁石用合金粉末として利用でき、その工業的価値は極めて高い。   Unlike the alloy powder obtained by the conventional method, the alloy powder obtained by the method for producing the rare earth-transition metal-nitrogen based alloy powder of the present invention has excellent magnetic properties. Therefore, it can be used as an alloy powder for magnets of motors of products including general home appliances, communications, automobiles, acoustic equipment, medical equipment, and general industrial equipment, and its industrial value is extremely high.

Claims (7)

アルカリ溶液に、希土類化合物と遷移金属化合物とを含む溶液を添加して、生成する沈殿物を攪拌しながら熟成させる第1の工程と、
熟成された沈澱物に水を加えて洗浄し、上澄み液の導電率が1mS/cm以下となるまでデカンテーションを繰り返し行った後、乾燥して希土類元素と遷移金属元素から成る複合酸化物の前駆体を得る第2の工程と、
該複合酸化物の前駆体を、500〜1400℃の酸化性雰囲気下で加熱処理して、希土類元素と遷移金属元素から成る複合酸化物を得る第3の工程と、
該希土類元素と遷移金属元素から成る複合酸化物を、300〜1000℃の還元性雰囲気下で加熱処理して、複合酸化物の一部を希土類−遷移金属系合金に還元し、部分還元複合酸化物とする第4の工程と、
該部分還元複合酸化物に、粒状または粉末状のアルカリ金属、アルカリ土類金属およびこれらの水素化物から選ばれる少なくとも1種の還元剤を混合し、不活性ガス雰囲気中で該混合物を900℃〜1200℃で加熱処理して希土類−遷移金属系合金粉末を得る第5の工程と、
該希土類−遷移金属系合金粉末を300℃〜600℃で、窒素またはアンモニアと水素とを含むガス雰囲気下で窒化熱処理して希土類−遷移金属−窒素系合金粉末を得る第6の工程と、
該希土類−遷移金属系窒化物を含む合金粉末を水で洗浄し、酸洗浄後に乾燥する第7の工程と、を含むことを特徴とする希土類−遷移金属−窒素系合金粉末の製造方法。
A first step of adding a solution containing a rare earth compound and a transition metal compound to an alkaline solution and aging the resulting precipitate while stirring;
The aged precipitate is washed with water, and decantation is repeated until the supernatant has a conductivity of 1 mS / cm or less, and then dried to obtain a precursor of a composite oxide composed of a rare earth element and a transition metal element. A second step of obtaining a body;
A third step of heat-treating the precursor of the composite oxide in an oxidizing atmosphere at 500 to 1400 ° C. to obtain a composite oxide composed of a rare earth element and a transition metal element;
The complex oxide composed of the rare earth element and the transition metal element is heat-treated in a reducing atmosphere at 300 to 1000 ° C., and a part of the complex oxide is reduced to a rare earth-transition metal alloy, and partially reduced complex oxidation A fourth step of making a product,
The partially reduced composite oxide is mixed with at least one reducing agent selected from granular or powdery alkali metals, alkaline earth metals and hydrides thereof, and the mixture is heated in an inert gas atmosphere to 900 ° C to A fifth step of obtaining a rare earth-transition metal alloy powder by heat treatment at 1200 ° C .;
A sixth step of obtaining a rare earth-transition metal-nitrogen based alloy powder by nitriding heat treatment of the rare earth-transition metal based alloy powder at 300 ° C. to 600 ° C. in a gas atmosphere containing nitrogen or ammonia and hydrogen;
A seventh step of washing the alloy powder containing the rare earth-transition metal-based nitride with water and drying after the acid cleaning, and a method for producing the rare earth-transition metal-nitrogen based alloy powder.
第1の工程において、アルカリ溶液は、希土類化合物と遷移金属化合物とを含む溶液のpHが7.5以上となるに十分な濃度であることを特徴とする請求項1記載の希土類−遷移金属−窒素系合金粉末の製造方法。   The rare earth-transition metal- according to claim 1, wherein the alkaline solution has a concentration sufficient for the pH of the solution containing the rare earth compound and the transition metal compound to be 7.5 or more in the first step. A method for producing nitrogen-based alloy powder. 第1の工程において、アルカリ溶液は、希土類化合物と遷移金属化合物に対して、両者が均一に混合するように、十分な時間をかけて添加することを特徴とする請求項1または2に記載の希土類−遷移金属−窒素系合金粉末の製造方法。   3. The alkali solution according to claim 1, wherein the alkali solution is added to the rare earth compound and the transition metal compound over a sufficient period of time so that the two are uniformly mixed. A method for producing a rare earth-transition metal-nitrogen alloy powder. 第1の工程において、溶液温度が100℃以下であることを特徴とする請求項1〜3のいずれかに記載の希土類−遷移金属−窒素系合金粉末の製造方法。   The method for producing a rare earth-transition metal-nitrogen alloy powder according to any one of claims 1 to 3, wherein in the first step, the solution temperature is 100 ° C or lower. 第2の工程において、希土類元素と遷移金属元素から成る複合酸化物の前駆体に含まれる不純物含有量が元素換算として、1.5重量%以下であることを特徴とする請求項1〜4のいずれかに記載の希土類−遷移金属−窒素系合金粉末の製造方法。   In the second step, the impurity content contained in the precursor of the composite oxide composed of the rare earth element and the transition metal element is 1.5% by weight or less in terms of element. A method for producing a rare earth-transition metal-nitrogen-based alloy powder according to any one of the above. 請求項1〜5のいずれかに記載の方法で得られる希土類−遷移金属−窒素系合金粉末。   A rare earth-transition metal-nitrogen based alloy powder obtained by the method according to claim 1. 最大エネルギー積(BH)maxが40MGOe以上であることを特徴とする請求項6に記載の希土類−遷移金属−窒素系合金粉末。   The rare earth-transition metal-nitrogen based alloy powder according to claim 6, wherein the maximum energy product (BH) max is 40 MGOe or more.
JP2012228713A 2012-10-16 2012-10-16 Production method of rare earth-transition metal-nitrogen system alloy powder, and obtained rare earth-transition metal-nitrogen system alloy powder Pending JP2014080653A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012228713A JP2014080653A (en) 2012-10-16 2012-10-16 Production method of rare earth-transition metal-nitrogen system alloy powder, and obtained rare earth-transition metal-nitrogen system alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012228713A JP2014080653A (en) 2012-10-16 2012-10-16 Production method of rare earth-transition metal-nitrogen system alloy powder, and obtained rare earth-transition metal-nitrogen system alloy powder

Publications (1)

Publication Number Publication Date
JP2014080653A true JP2014080653A (en) 2014-05-08

Family

ID=50785112

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012228713A Pending JP2014080653A (en) 2012-10-16 2012-10-16 Production method of rare earth-transition metal-nitrogen system alloy powder, and obtained rare earth-transition metal-nitrogen system alloy powder

Country Status (1)

Country Link
JP (1) JP2014080653A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108777228A (en) * 2018-05-22 2018-11-09 宁波铄腾新材料有限公司 A kind of batch mixing adds the method for the rich cerium magnet magnetic property of hydrogen improvement
JPWO2017150557A1 (en) * 2016-03-04 2019-01-17 国立研究開発法人産業技術総合研究所 Samarium-iron-nitrogen alloy powder and method for producing the same
US11167987B2 (en) 2017-05-17 2021-11-09 Nichia Corporation Secondary particles for anisotropic magnetic powder and method of producing anisotropic magnetic powder
CN114933287A (en) * 2022-06-13 2022-08-23 赣州晨光稀土新材料有限公司 Rare earth nitride material for rare earth electrolytic cell and preparation method and application thereof
US11676748B2 (en) 2015-12-24 2023-06-13 Nichia Corporation Anisotropic magnetic powders and method of producing the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11676748B2 (en) 2015-12-24 2023-06-13 Nichia Corporation Anisotropic magnetic powders and method of producing the same
JPWO2017150557A1 (en) * 2016-03-04 2019-01-17 国立研究開発法人産業技術総合研究所 Samarium-iron-nitrogen alloy powder and method for producing the same
US11167987B2 (en) 2017-05-17 2021-11-09 Nichia Corporation Secondary particles for anisotropic magnetic powder and method of producing anisotropic magnetic powder
US11685654B2 (en) 2017-05-17 2023-06-27 Nichia Corporation Secondary particles for anisotropic magnetic powder
CN108777228A (en) * 2018-05-22 2018-11-09 宁波铄腾新材料有限公司 A kind of batch mixing adds the method for the rich cerium magnet magnetic property of hydrogen improvement
CN114933287A (en) * 2022-06-13 2022-08-23 赣州晨光稀土新材料有限公司 Rare earth nitride material for rare earth electrolytic cell and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP6968202B2 (en) Manufacturing method of sintered magnet and sintered magnet
JP5609783B2 (en) Method for producing rare earth-transition metal alloy powder
JP6489073B2 (en) Method for producing rare earth-iron-nitrogen based magnet powder
JP2007119909A (en) Rare-earth-iron-nitrogen-base magnet powder and method for manufacturing the same
JPH09143636A (en) Rare earth-iron-nitrogen magnetic alloy
JP2013083001A (en) Cu-CONTAINING RARE EARTH-IRON-BORON-BASED ALLOY POWDER AND METHOD FOR PRODUCING THE SAME
JP2014080653A (en) Production method of rare earth-transition metal-nitrogen system alloy powder, and obtained rare earth-transition metal-nitrogen system alloy powder
JP5974975B2 (en) Rare earth-transition metal-nitrogen based magnet fine powder and method for producing the same
JP2015113481A (en) Manufacturing method of rare earth-transition metal-nitrogen alloy powder, rare earth-transition metal-nitrogen alloy powder obtained by the method, bond magnet composition using the same, and bond magnet
JP4241461B2 (en) Rare earth-transition metal-nitrogen based magnet alloy powder, method for producing the same, and rare earth bonded magnet using the same
CN114898960A (en) Preparation method of nano-scale SmFeN magnetic powder
JP2011214113A (en) Method for manufacturing rare-earth-iron-nitrogen-base magnet powder and rare-earth-iron-nitrogen-base magnet obtained thereby
CN108140480B (en) Magnetic material and preparation method thereof
JP2006291257A (en) Rare earth-transition metal-nitrogen based magnetic powder, and method for producing the same
JP2014122392A (en) Method for producing rare earth-iron-nitrogen-based magnet powder
JP4814856B2 (en) Rare earth-iron-manganese-nitrogen magnet powder
JP2023067693A (en) Rare earth magnet and production method thereof
JP7044304B2 (en) Rare earth transition metal alloy powder manufacturing method
JP3336028B2 (en) Method for producing rare earth-transition metal-nitrogen alloy powder
JP7006156B2 (en) Rare earth-iron-nitrogen magnet powder manufacturing method
JP2010270379A (en) Method for producing rare-earth-iron-nitrogen-based magnet powder
JP4306389B2 (en) Method for producing alloy powder
JP2008171868A (en) Manufacturing method of rare earth-iron-nitrogen-based magnetic powder
JPH11189811A (en) Manufacture of alloy powder
JP2008001953A (en) Method for producing rare earth-iron-nitrogen-based alloy powder

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150608