JP2014046910A - Main cooling system of diesel engine - Google Patents
Main cooling system of diesel engine Download PDFInfo
- Publication number
- JP2014046910A JP2014046910A JP2012203512A JP2012203512A JP2014046910A JP 2014046910 A JP2014046910 A JP 2014046910A JP 2012203512 A JP2012203512 A JP 2012203512A JP 2012203512 A JP2012203512 A JP 2012203512A JP 2014046910 A JP2014046910 A JP 2014046910A
- Authority
- JP
- Japan
- Prior art keywords
- cooling
- seawater
- fresh water
- temperature
- heat exchanger
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
Abstract
Description
この発明は、ディーゼル機関に使用する主冷却システムに関する。 The present invention relates to a main cooling system used for a diesel engine.
船舶で使用されるディーゼル機関を冷却するのに清水が使用されているが、その清水は海水と熱交換して冷却に使用しているのが一般的である。 Fresh water is used to cool diesel engines used in ships, but the fresh water is generally used for cooling by exchanging heat with seawater.
従来の燃料油の主冷却システムの概略系統図を図1に示すようにディーゼル機関10、発電機関11等の発熱体の冷却は冷却清水系統と冷却海水系統から構成され、発熱体で加熱された冷却清水は熱交換器9で冷却海水と熱交換され冷却される。 As shown in FIG. 1, a schematic diagram of a conventional main cooling system for fuel oil is used to cool a heating element such as a diesel engine 10 and a power generation engine 11, which is composed of a cooling fresh water system and a cooling seawater system, and is heated by the heating element. The cooled fresh water is cooled by heat exchange with cooling seawater in the heat exchanger 9.
冷却海水系統は、海水をシーチェスト1から取り入れ冷却海水吸入管2を通り冷却海水ポンプ4を一定量で運転し該熱交換器9の冷却海水入口5に供給され該熱交換器9では冷却海水と冷却清水と熱交換した冷却海水は冷却海水出口6から冷却海水吐出管7を経由して船外貫通管8から海に戻される。 The cooling seawater system takes in seawater from the sea chest 1, passes through the cooling seawater intake pipe 2, operates the cooling seawater pump 4 at a constant amount, and supplies it to the cooling seawater inlet 5 of the heat exchanger 9. Then, the cooled seawater exchanged with the cooled fresh water is returned from the cooling seawater outlet 6 to the sea via the cooling seawater discharge pipe 7 and from the outboard through pipe 8.
冷却清水系統は、冷却清水を冷却清水ポンプ12から一定量で運転し冷却清水管13を通り該熱交換器9の冷却清水入口14に接続し、一方、該管13から分岐した冷却清水管15は三方温度調整弁16のbポートに接続し、該熱交換器9に供給された冷却清水は冷却海水と熱交換した後、該熱交換器9の冷却清水出口17から冷却清水管18を通りcポートに接続し、aポートから温度調整された冷却清水は冷却清水管19を通り発熱体であるディーゼル機関10、発電機関11等に供給した冷却清水は冷却清水管20を通り該冷却清水ポンプ12に戻る循環回路となっている。 The cooling fresh water system is operated with a constant amount of cooling fresh water from the cooling fresh water pump 12 and connected to the cooling fresh water inlet 14 of the heat exchanger 9 through the cooling fresh water pipe 13, while the cooling fresh water pipe 15 branched from the pipe 13. Is connected to the b port of the three-way temperature control valve 16, and the cooled fresh water supplied to the heat exchanger 9 exchanges heat with the cooled seawater, and then passes through the cooled fresh water pipe 18 from the cooled fresh water outlet 17 of the heat exchanger 9. Cooled fresh water connected to the c port and temperature-adjusted from the a port passes through the cooled fresh water pipe 19, and the cooled fresh water supplied to the diesel engine 10, the power generation engine 11, etc. as a heating element passes through the cooled fresh water pipe 20 and is supplied to the cooled fresh water pump. The circulation circuit returns to 12.
従来の主冷却システムの概略のヒートバランスの参考例である図2でもって説明すると、冷却清水系統では冷却清水は発熱体であるディーゼル機関50及び発電機関51等を冷却した後、冷却清水ポンプ40(100m3/h)に至り、該冷却清水ポンプ40を出た冷却清水は二方に分岐され、一方は熱交換器44の冷却清水入口43に、もう一方の冷却水は三方温度調整弁42のbポートに接続され、熱交換器44の冷却清水入口43から入った冷却清水は熱交換し冷却された冷却水は冷却清水出口47から三方温度調整弁42のcポートに接続され、bポートからの冷却水と混合されaポートに設けた温度センサー45設定温度36℃で該ディーゼル機関50及び該発電機関51等に供給される循環回路である。 Referring to FIG. 2 which is a schematic heat balance reference example of the conventional main cooling system, in the cooling fresh water system, the cooling fresh water cools the diesel engine 50, the power generation engine 51, and the like, which are heating elements, and then the cooling fresh water pump 40. (100 m 3 / h), the cooled fresh water exiting the cooling fresh water pump 40 is branched into two directions, one at the cooling fresh water inlet 43 of the heat exchanger 44 and the other at the three-way temperature control valve 42. The cooled fresh water that is connected to the b port and entered from the cooling fresh water inlet 43 of the heat exchanger 44 is heat-exchanged and cooled, and the cooled cooling water is connected from the cooling fresh water outlet 47 to the c port of the three-way temperature control valve 42 and from the b port. This is a circulation circuit that is mixed with the cooling water and supplied to the diesel engine 50 and the power generation engine 51 at a temperature sensor 45 set at a port a at a set temperature 36 ° C.
冷却海水系統は航海水域の温度を加味した冷却海水温度を30℃として熱交換器44の冷却海水入口48の温度と、該熱交換器44の冷却海水出口49の温度を40℃とした冷却清水系統の冷却能力から熱交換面積と海水流量が決められ、冷却能力は、冷却海水ポンプ46の容量(120m3/h)と熱交換器44の冷却海水入口48の温度30℃と冷却海水出口49の温度40℃で決まる。 The cooling seawater system is a cooling fresh water in which the temperature of the cooling seawater inlet 48 of the heat exchanger 44 and the temperature of the cooling seawater outlet 49 of the heat exchanger 44 are 40 ° C. with the temperature of the cooling seawater taken into account of the temperature of the seawater area. The heat exchange area and the seawater flow rate are determined from the cooling capacity of the system, and the cooling capacity is determined by the capacity of the cooling seawater pump 46 (120 m3 / h), the temperature of the cooling seawater inlet 48 of the heat exchanger 44 and the temperature of the cooling seawater outlet 49. It is determined at a temperature of 40 ° C.
発熱体の冷却能力はディーゼル機関50、発電機関51等の出力、海水温度で大きく変動するが、従来の主冷却システムでは清水冷却系統の三方温度調整弁42のaポートの設定温度は変動なく36℃は維持されることからの冷却清水は二方に分岐し一方はから熱交換器44の冷却清水入口43の流量は該三方温度調整弁42のbポートに流れる量により変動することになる。 Although the cooling capacity of the heating element varies greatly depending on the output of the diesel engine 50, the power generation engine 51, and the seawater temperature, in the conventional main cooling system, the set temperature of the a port of the three-way temperature adjustment valve 42 of the fresh water cooling system does not vary. The cooled fresh water from which the temperature is maintained branches in two directions, and the flow rate at the cooling fresh water inlet 43 of the heat exchanger 44 varies depending on the amount flowing to the b port of the three-way temperature control valve 42.
冷却海水系統では、熱交換器44の熱交換する能力が変化することは冷却海水ポンプ46の吐出量は一定であれば冷却海水の該冷却海水入口48の温度と該冷却海水出口49の温度との温度差に変化が生じることになり、冷却海水容量に変更がないことは冷却海水ポンプ46の電動機に電力量には変化がない。 In the cooling seawater system, the ability of the heat exchanger 44 to exchange heat changes if the discharge amount of the cooling seawater pump 46 is constant and the temperature of the cooling seawater inlet 48 and the temperature of the cooling seawater outlet 49 of the cooling seawater. That the temperature difference between the two is changed, and that there is no change in the cooling seawater capacity, there is no change in the electric energy in the motor of the cooling seawater pump 46.
従来の主冷却システムの概略のヒートバランスで説明したようにディーゼル機関、発電機関等の発熱体の出力変化及び海水温度に変化があった場合にも冷却海水ポンプの電動機電力には反映されないシステムである。 As explained in the outline heat balance of the conventional main cooling system, even when there is a change in the output of the heating element such as a diesel engine or a power generation engine and a change in seawater temperature, it is not reflected in the motor power of the cooling seawater pump. is there.
ディーゼル機関、発電機関等の発熱体の出力変化及び海水温度に変化があった場合主冷却システムにおいて熱交換器の冷却清水と冷却海水との熱交換の授受は発熱体の出力変動は冷却海水の流量にも反映できる。 When there is a change in the output of the heating element such as a diesel engine or a power generation engine or a change in the seawater temperature In the main cooling system, heat exchange between the cooling fresh water and the cooling seawater in the heat exchanger It can also be reflected in the flow rate.
主冷却システムの能力は発熱体の最大出力時を考慮したもので、海水温度も航海時予想される最高温度で想定されていることから航海中の海水温度又は四季の温度変化も考慮に入れることで熱交換器の冷却海水入口の流量に反映すれば冷却海水ポンプの吐出量に反映し冷却海水ポンプの回転数を変えることで電動機の消費電力も減少することが可能である。The capacity of the main cooling system takes into account the maximum power output of the heating element, and the seawater temperature is assumed to be the highest temperature expected at the time of navigation. Therefore, if it is reflected in the flow rate of the cooling seawater inlet of the heat exchanger, it can be reflected in the discharge amount of the cooling seawater pump, and the power consumption of the motor can be reduced by changing the rotation speed of the cooling seawater pump.
内航船総トン数499型貨物船の例では、海水冷却ポンプの消費電力は航海中使用電力量の約10.7%が消費されている。しかし、従来の主冷却システムでは該冷却海水ポンプはディーゼル機関の最大出力の110%時にも賄える容量で冷却海水ポンプが運転され、ディーゼル機関の出力、海水温度、ポンプの性能によって冷却海水ポンプ容量の変動がなく海水の入口温度と出口温度の差が生じるのみで省エネになっていない。 In the example of a domestic tonnage 499 type cargo ship, the seawater cooling pump consumes about 10.7% of the power consumed during the voyage. However, in the conventional main cooling system, the cooling seawater pump is operated with a capacity that can cover even 110% of the maximum output of the diesel engine, and the cooling seawater pump capacity depends on the output of the diesel engine, seawater temperature, and pump performance. There is no fluctuation, only the difference between seawater inlet temperature and outlet temperature is generated, and it is not energy saving.
該冷却海水ポンプの流量Qfは120m3/hで海水温度t1は30℃で海水出口温度t2=40℃で計画すると冷却海水の冷却エネルギーはH(kj・h)は、次の式で計算できる。
H(kj/h)=Qf×sg×sh×(t2−t1)
Qf:120m3/h
sg:980kg.m3
sh:4.18kj/kg.K
t2:40℃
t1:30℃
H=120×980×4.18×(40−30)=4916000kj/h
Kw=H/3600=1365kW/hとなる。When the flow rate Qf of the cooling seawater pump is 120 m3 / h, the seawater temperature t1 is 30 ° C., and the seawater outlet temperature t2 = 40 ° C., the cooling energy of the cooling seawater H (kj · h) can be calculated by the following equation.
H (kj / h) = Qf * sg * sh * (t2-t1)
Qf: 120m3 / h
sg: 980 kg. m3
sh: 4.18 kj / kg. K
t2: 40 ° C
t1: 30 ° C
H = 120 × 980 × 4.18 × (40-30) = 4916000 kj / h
Kw = H / 3600 = 1365 kW / h.
この発明の着目点は、日本沿岸の海水温度を調査すると、鹿児島佐多岬沖、和歌山潮岬沖、千葉野島岬沖、北海道襟裳岬沖の海水温度2011年度の月平均温度は次のように変化している、
The main point of this invention is that when the seawater temperature on the coast of Japan is investigated, the monthly average seawater temperatures off the coast of Kagoshima Sata Cape, Wakayama Shionomisaki, Chiba Nojimamisaki, Hokkaido Erimo Cape are as follows: Yes,
前記式 H(kj/h)=Qf×sg×sh×(t2−t1)
から必要熱量を同じ4916000kj/hで海水温度変化に伴い該冷却海水ポンプの流量Qfポンプの必要量はQf(m3・h)を計算したものが次に示すように冷却海水必要量である。Formula H (kj / h) = Qf × sg × sh × (t2−t1)
Therefore, the necessary amount of heat of the cooling seawater pump with the same amount of 4916000 kj / h as the seawater temperature changes is calculated as Qf (m3 · h), and the required amount of cooling seawater is as follows.
この場合に年平均温度使用して冷却海水の冷却エネルギーH(kj・h)を一定として冷却海水必要量を計算すると次の通りである。
In this case, the required amount of cooling seawater is calculated by using the annual average temperature and keeping the cooling energy H (kj · h) of the cooling seawater constant.
該冷却海水ポンプの流量Qfポンプの必要量に対応した必要電力概算は効率は一定として計算したもので,各ポンプにより効率が異なるので正確な数字は困難であるが目安となる数字である。 The required power estimate corresponding to the required amount of the flow rate Qf pump of the cooling seawater pump is calculated assuming that the efficiency is constant, and since the efficiency varies depending on each pump, an accurate number is difficult but an approximate number.
該海水冷却ポンプの流量Qfは120m3/hで海水温度t1は30℃で海水出口温度t2=40℃であるが海水温度が
30℃であれば120m3/h 約13.4kW/h
23℃であれば 80m3/h 約 8.9kW/h
21℃であれば 48m3/h 約 5.4kW/h
10℃であれば 40m3/h 約 4.5kW/h
となり、上記表で示すように海水温度の変化だけで見ても一年を通して見ると大きな数字となる。The flow rate Qf of the seawater cooling pump is 120 m3 / h, the seawater temperature t1 is 30 ° C., and the seawater outlet temperature t2 = 40 ° C. If the seawater temperature is 30 ° C., 120 m3 / h approximately 13.4 kW / h
At 23 ° C, 80m3 / h Approx. 8.9kW / h
48 m3 / h about 5.4 kW / h at 21 ° C
If it is 10 ℃, 40m3 / h, about 4.5kW / h
As shown in the table above, even if only the change in seawater temperature is seen, it will be a large number throughout the year.
また、低温冷却水側においても、ディーゼル機関の出力についても110%出力で運転しているわけでもなく通常航海時は70〜85%と変化しているので発熱量も当然低減されているので海水冷却ポンプの流量も影響することになる。 Also, even on the low-temperature cooling water side, the diesel engine output is not operating at 110% output, and since it changes from 70 to 85% during normal voyage, the calorific value is naturally reduced. The flow rate of the cooling pump will also be affected.
冷却清水系統の冷却能力及び海水温度を冷却海水ポンプの回転数に反映すれば熱交換器の海水流量が極端に少なくなれば当然熱交換の効率も悪くなることからこれらを計算上で求めるのは困難である。 If the cooling capacity of the cooling fresh water system and the seawater temperature are reflected in the rotation speed of the cooling seawater pump, the heat exchange efficiency naturally deteriorates if the seawater flow rate of the heat exchanger is extremely reduced. Have difficulty.
この主冷却システムのキーポイントは熱交換器の冷却清水出口温度を設定温度(36℃)で冷却清水ポンプの流量を一定に保つことが出来れば良い。
従って、熱交換器の冷却清水出口に温度センサーを設け、この温度センサーを通過する冷却水の温度を設定温度になるように冷却海水ポンプの吐出量を電動機の回転数に反映した制御すればよい。The key point of this main cooling system is that the cooling fresh water outlet temperature of the heat exchanger can be kept at a set temperature (36 ° C.) and the flow rate of the cooling fresh water pump can be kept constant.
Therefore, a temperature sensor is provided at the cooling fresh water outlet of the heat exchanger, and the discharge amount of the cooling seawater pump may be controlled to reflect the rotational speed of the electric motor so that the temperature of the cooling water passing through the temperature sensor becomes the set temperature. .
ディーゼル機関、発電機関等の発熱体により加熱された冷却清水は熱交換器の冷却清水出口の冷却清水量を一定として冷却清水温度を設定温度に一致するように制御すればよい、よって、熱交換器の冷却海水の流量を海水冷却ポンプの回転数を制御し冷却清水の出口温度を追従して設定温度になるように回転制御することでディーゼル機関の出力、発電機関等の出力、冷却海水温度、配管抵抗、熱交換器の効率等の変動要素を加味した制御することで省エネに反映することを目的とする。 The cooling fresh water heated by a heating element such as a diesel engine or a power generation engine may be controlled so that the cooling fresh water amount at the cooling fresh water outlet of the heat exchanger is constant and the cooling fresh water temperature matches the set temperature. The output of the diesel engine, the output of the power generation engine, etc., and the temperature of the cooling seawater are controlled by controlling the rotation speed of the seawater cooling pump to control the flow rate of the cooling seawater to keep the outlet temperature of the cooling water at the set temperature. The purpose is to reflect energy savings by controlling in consideration of variable factors such as pipe resistance and heat exchanger efficiency.
上記目的を達成させるため、本発明によれば ディーゼル機関、発電機関等の発熱体は冷却清水でもって冷却を行い、該発熱体により加熱した冷却清水は清水冷却ポンプにて熱交換器の冷却清水入口に供給され、該熱交換器を通り冷却海水と熱交換して冷却され、冷却清水出口から再び該発熱体に冷却清水を供給循環する冷却清水系統と、船外の海水を冷却海水ポンプにより該熱交換器の冷却海水入口に供給し、該熱交換器で冷却清水を冷却した後、冷却海水出口から出た海水は直接船外に排出される冷却海水系統とした主冷却システムにおいて、該熱交換器の該冷却清水出口付近に温度センサーを設け、該温度センサーとコントローラを接続し、該温度センサーを通過する冷却清水温度と設定温度が一致するように該コントローラにより該冷却海水ポンプの吐出量を該冷却海水ポンプの電動機の回転数を自動制御することを特徴とする In order to achieve the above object, according to the present invention, a heating element such as a diesel engine or a power generation engine is cooled with cooling fresh water, and the cooling fresh water heated by the heating element is cooled by a fresh water cooling pump in a heat exchanger. A cooling fresh water system that is supplied to the inlet, passes through the heat exchanger and is cooled by exchanging heat with the cooling sea water, and is supplied and circulated again from the cooling fresh water outlet to the heating element. In the main cooling system as a cooling seawater system in which the seawater discharged from the cooling seawater outlet is directly discharged out of the ship after being supplied to the cooling seawater inlet of the heat exchanger and cooling the cooled fresh water with the heat exchanger. A temperature sensor is provided in the vicinity of the cooling fresh water outlet of the heat exchanger, the temperature sensor is connected to the controller, and the controller controls the temperature so that the cooling fresh water temperature passing through the temperature sensor matches the set temperature. The discharge amount of 却海 water pump characterized by automatically controlling the rotational speed of the motor of the cooling seawater pump
請求項2記載の発明は、請求項1に記載の主冷却システムにおいて、冷却海水ポンプの吐出側の配管に圧力を調整する弁を設け、最小水頭が保てることを特徴とする。 The invention according to claim 2 is characterized in that, in the main cooling system according to claim 1, a valve for adjusting the pressure is provided in the discharge side piping of the cooling seawater pump so that the minimum water head can be maintained.
請求項1に記載の本発明によれば、従来の清冷却海水ポンプは最大出力時の吐出容量を一定で運転していたが船舶では航海中日々、場所により海水温度は変化している、さらに冷却清水系統ではディーゼル機関、発電機関等の出力により発熱量は変化している状況下で主冷却システムは熱交換器の冷却清水出口温度を設定温度に保つことにあり、発熱体の温度、熱交換器の効率、海水温度、ポンプ効率も含めたものが冷却海水量に集約されることから冷却清水出口温度を監視し、制御することが効率が集約されることで省エネも効率よく対応、発揮できる。 According to the first aspect of the present invention, the conventional cooling and cooling seawater pump is operated with a constant discharge capacity at the maximum output, but the seawater temperature varies depending on the place on the ship every day during the voyage. In the cooling fresh water system, the main cooling system is to keep the cooling fresh water outlet temperature of the heat exchanger at the set temperature under the condition that the heat generation amount is changed by the output of diesel engine, power generation engine, etc. As the efficiency of the exchanger, seawater temperature, and pump efficiency are aggregated in the cooling seawater volume, monitoring and controlling the cooling freshwater outlet temperature will consolidate the efficiency and efficiently respond to and demonstrate energy conservation. it can.
請求項2記載の発明は、請求項1に記載の燃料油の主システムにおいて、冷却海水ポンプは他の目的にも共用使用されることが多いために、船の高い場所に海水を供給する場合には海水流量が減少すると配管抵抗も減少することになり冷却海水ポンプの水頭も減少することで高い場所に海水を供給することが出来なくなる可能性がある。 The invention according to claim 2 is a case where the seawater is supplied to a high place on a ship because the cooling seawater pump is often used for other purposes in the fuel oil main system according to claim 1. If the seawater flow rate decreases, the piping resistance will also decrease, and the head of the cooling seawater pump will also decrease, which may make it impossible to supply seawater to high places.
その問題点を回避するために冷却海水ポンプの吐出側の配管に圧力を調整する弁を設け、最小水頭が保つことで、他の目的に供給することも可能となる。 In order to avoid this problem, a valve for adjusting the pressure is provided in the discharge-side piping of the cooling seawater pump, and the minimum head is maintained, so that it can be supplied for other purposes.
本発明の主冷却システムでは、船外の海水温度に対応した海水量、ディーゼル機関、発電機関等の発熱体の出力に対応した冷却清水並びに熱交換効率も加味した制御が可能となり冷却海水ポンプの吐出量を対応することで電力の消費が減少することは発電機関の燃費にも及び省エネとなる。 In the main cooling system of the present invention, it is possible to control the amount of seawater corresponding to the seawater temperature outside the ship, the cooling freshwater corresponding to the output of a heating element such as a diesel engine and a power generation engine, and the heat exchange efficiency. Reducing the consumption of electric power by corresponding to the discharge amount also contributes to the fuel efficiency of the power generation engine and energy saving.
例として取り上げた総トン数499総トンの貨物船ではディーゼル機関の航海速力時の出力は約1000kWである。海水温度が年平均で考慮すると冷却海水ポンプの電力消費量が8.9kWとなれば約0.5%の省エネになる。
さらに、実航海時のディーゼル機関の出力は約700%の出力であればさらに削減されることになる。As an example, a cargo ship having a total tonnage of 499 gross tons has a power output of about 1000 kW at the voyage speed of a diesel engine. Considering the seawater temperature on an annual average, if the power consumption of the cooling seawater pump is 8.9 kW, energy saving is about 0.5%.
Further, the output of the diesel engine during actual voyage is further reduced if the output is about 700%.
本発明の実施形態に係る主冷却システムの概略系統を図2で説明すると、ディーゼル機関22、発電機関23等の発熱体の冷却は冷却清水を循環し、加熱された冷却清水は熱交換器24で海水を循環して熱交換して冷却する主冷却システムにおいて、冷却海水系統は船外の海水をシーチェスト25から取り入れ冷却海水吸入管26を通り冷却海水ポンプ27にて海水を該熱交換器24の冷却海水入口28に供給され、熱交換され加熱された海水は冷却海水出口29から冷却海水吐出管30にて船外貫通管31より排出される。 A schematic system of the main cooling system according to the embodiment of the present invention will be described with reference to FIG. 2. Cooling of the heating elements such as the diesel engine 22 and the power generation engine 23 circulates the cooling fresh water, and the heated cooling fresh water is the heat exchanger 24. In the main cooling system that circulates seawater and cools it by exchanging heat, the cooling seawater system takes in seawater outside the ship from the sea chest 25, passes through the cooling seawater intake pipe 26, and cools the seawater with the cooling seawater pump 27. The seawater supplied to the 24 cooling seawater inlets 28 and heat-exchanged and heated is discharged from the outboard through pipe 31 through the cooling seawater outlet 29 through the cooling seawater discharge pipe 30.
冷却清水系統は冷却清水ポンプ32にて一定量の冷却清水を吐出し、冷却清水管33を通り該熱交換器24の冷却清水入口34に供給し、該熱交換器24を通過し、該冷却清水出口35から温度センサー36を設けた冷却清水管33は順次該ディーゼル機関22、該発電機関23等の発熱体を経由して冷却清水管33を通り該冷却清水ポンプ32に戻る回路となっている。 The cooling fresh water system discharges a certain amount of cooling fresh water by a cooling fresh water pump 32, passes the cooling fresh water pipe 33, supplies it to the cooling fresh water inlet 34 of the heat exchanger 24, passes through the heat exchanger 24, and A cooling fresh water pipe 33 provided with a temperature sensor 36 from a fresh water outlet 35 is a circuit that sequentially returns to the cooling fresh water pump 32 through the cooling fresh water pipe 33 via heating elements such as the diesel engine 22 and the power generation engine 23. Yes.
温度センサー36からコントローラ37に配線し、該温度センサー36を通過する冷却清水の温度と設定温度が一致するように該コントローラ37で該冷却海水ポンプ27の吐出量を該冷却海水ポンプ27の電動機38の回転数を自動制御する。 The temperature sensor 36 is wired to the controller 37, and the controller 37 controls the discharge amount of the cooling seawater pump 27 by the controller 37 so that the temperature of the cooling fresh water passing through the temperature sensor 36 matches the electric motor 38 of the cooling seawater pump 27. The number of rotations is automatically controlled.
該冷却海水系統において、冷却海水ポンプ27の供給先が熱交換器24のみならず冷房用冷却水等に供給する場合には水頭圧にして約0.06MPaが必要となる場合には該冷却海水吐出管30に圧力センサーa及び電動弁bを設け、圧力センサーaからコントローラcに接続し、コントローラcにより設定圧より低下した場合に該電動弁bを設定圧まで上昇するように自動開閉制御する請求項2の発明である。 In the cooling seawater system, when the supply destination of the cooling seawater pump 27 is supplied not only to the heat exchanger 24 but also to cooling water for cooling or the like, when the head pressure is about 0.06 MPa, the cooling seawater pump 27 The discharge pipe 30 is provided with a pressure sensor a and an electric valve b, and is connected to the controller c from the pressure sensor a. When the controller c drops below the set pressure, automatic opening / closing control is performed so that the electric valve b rises to the set pressure. The invention of claim 2.
上記系統では冷却清水系統で実際には高温冷却系統、低温冷却系統、空気冷却系統などが存在しているが本説明では発熱体として一括にまとめて説明している。 In the above system, a cooling fresh water system actually includes a high temperature cooling system, a low temperature cooling system, an air cooling system, and the like, but in this description, they are collectively described as heating elements.
22 ディーゼル機関
23 発電機関
24 熱交換器
25 シーチェスト
26 冷却海水吸入管
27 冷却海水ポンプ
28 冷却海水入口
29 冷却海水出口
30 冷却海水吐出管
31 船外貫通管
32 冷却清水ポンプ
33 冷却清水管
34 冷却清水入口
35 冷却清水出口
36 温度センサー
37 コントローラ
38 電動機
a 圧力センサー
b 電動弁
c コントローラ22 Diesel engine 23 Power generation engine 24 Heat exchanger 25 Sea chest 26 Cooling seawater intake pipe 27 Cooling seawater pump 28 Cooling seawater inlet 29 Cooling seawater outlet 30 Cooling seawater discharge pipe 31 Outboard through pipe 32 Cooling fresh water pump 33 Cooling fresh water pipe 34 Cooling Fresh water inlet 35 Cooling fresh water outlet 36 Temperature sensor 37 Controller 38 Electric motor a Pressure sensor b Electric valve c Controller
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012203512A JP2014046910A (en) | 2012-08-29 | 2012-08-29 | Main cooling system of diesel engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012203512A JP2014046910A (en) | 2012-08-29 | 2012-08-29 | Main cooling system of diesel engine |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014046910A true JP2014046910A (en) | 2014-03-17 |
Family
ID=50606983
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012203512A Pending JP2014046910A (en) | 2012-08-29 | 2012-08-29 | Main cooling system of diesel engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014046910A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104787291A (en) * | 2015-04-09 | 2015-07-22 | 南京工业职业技术学院 | Cooling system for marine main diesel engine |
WO2016018601A1 (en) * | 2014-08-01 | 2016-02-04 | Imo Industries, Inc. | Intelligent sea water cooling system |
WO2016028474A1 (en) * | 2014-08-21 | 2016-02-25 | Imo Industries, Inc. | Intelligent seawater cooling system |
US20160076434A1 (en) * | 2013-04-19 | 2016-03-17 | Imo Industries, Inc. | Intelligent Sea Water Cooling System |
TWI570023B (en) * | 2014-11-10 | 2017-02-11 | Ship central fresh water cooling system | |
TWI570022B (en) * | 2014-10-30 | 2017-02-11 | Ship host cylinder water cooling system | |
CN109027654A (en) * | 2018-09-11 | 2018-12-18 | 上海和创船舶工程有限公司 | A kind of tail pipe oil system applied to polar region ship |
WO2021198019A1 (en) * | 2020-03-31 | 2021-10-07 | The-Trawler-Company Gmbh | Apparatus for monitoring the motor of a watercraft |
CN113602467A (en) * | 2021-07-21 | 2021-11-05 | 中国船舶重工集团公司第七一九研究所 | Ship cooling system |
CN114655414A (en) * | 2022-04-02 | 2022-06-24 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) | High-energy-efficiency ship cooling system |
CN115258119A (en) * | 2022-07-14 | 2022-11-01 | 中国船舶重工集团公司第七一九研究所 | Ship water inlet cross section area control method and device |
-
2012
- 2012-08-29 JP JP2012203512A patent/JP2014046910A/en active Pending
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160076434A1 (en) * | 2013-04-19 | 2016-03-17 | Imo Industries, Inc. | Intelligent Sea Water Cooling System |
US9797294B2 (en) * | 2013-04-19 | 2017-10-24 | Imo Industries Inc. | Intelligent sea water cooling system |
US10669002B2 (en) | 2014-08-01 | 2020-06-02 | Circor Pumps North America, Llc | Intelligent sea water cooling system |
US10583908B2 (en) | 2014-08-01 | 2020-03-10 | Circor Pumps North America, Llc | Intelligent sea water cooling system |
KR20170027848A (en) * | 2014-08-01 | 2017-03-10 | 아이엠오 인더스트리스 인크. | Intelligent sea water cooling system |
CN106605049A (en) * | 2014-08-01 | 2017-04-26 | Imo工业股份有限公司 | Intelligent sea water cooling system |
JP2017528636A (en) * | 2014-08-01 | 2017-09-28 | アイエムオー・インダストリーズ・インコーポレーテッド | Intelligent seawater cooling system |
WO2016018601A1 (en) * | 2014-08-01 | 2016-02-04 | Imo Industries, Inc. | Intelligent sea water cooling system |
US9937990B2 (en) | 2014-08-01 | 2018-04-10 | Circor Pumps North America, Llc | Intelligent sea water cooling system |
KR101983918B1 (en) * | 2014-08-01 | 2019-09-03 | 써코어 펌프 노스 아메리카, 엘엘씨 | Intelligent sea water cooling system |
WO2016028474A1 (en) * | 2014-08-21 | 2016-02-25 | Imo Industries, Inc. | Intelligent seawater cooling system |
US10344662B2 (en) | 2014-08-21 | 2019-07-09 | Circor Pumps North America, Llc | Intelligent seawater cooling system |
TWI570022B (en) * | 2014-10-30 | 2017-02-11 | Ship host cylinder water cooling system | |
TWI570023B (en) * | 2014-11-10 | 2017-02-11 | Ship central fresh water cooling system | |
CN104787291A (en) * | 2015-04-09 | 2015-07-22 | 南京工业职业技术学院 | Cooling system for marine main diesel engine |
CN109027654A (en) * | 2018-09-11 | 2018-12-18 | 上海和创船舶工程有限公司 | A kind of tail pipe oil system applied to polar region ship |
WO2021198019A1 (en) * | 2020-03-31 | 2021-10-07 | The-Trawler-Company Gmbh | Apparatus for monitoring the motor of a watercraft |
CN113602467A (en) * | 2021-07-21 | 2021-11-05 | 中国船舶重工集团公司第七一九研究所 | Ship cooling system |
CN114655414A (en) * | 2022-04-02 | 2022-06-24 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) | High-energy-efficiency ship cooling system |
CN114655414B (en) * | 2022-04-02 | 2024-04-09 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) | High-energy-efficiency ship cooling system |
CN115258119A (en) * | 2022-07-14 | 2022-11-01 | 中国船舶重工集团公司第七一九研究所 | Ship water inlet cross section area control method and device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2014046910A (en) | Main cooling system of diesel engine | |
JP5323584B2 (en) | Central fresh water cooling system | |
JP2009275512A (en) | Operating method and control device for fresh water circulating pump of ship, and cooling system for ship | |
JP5324409B2 (en) | Heat load cooling device and control device for heat load cooling device | |
JP7248378B2 (en) | Method for operating ship cooling system | |
JP2012122371A (en) | Cooling system and cooling method | |
CN102180256A (en) | Automatic temperature-control variable flow type central cooling system for ship | |
KR20100136151A (en) | Cooling system for a vessel | |
CN106605049A (en) | Intelligent sea water cooling system | |
JP6311043B1 (en) | Combine-integrated main engine heat exchanger and ship main engine cooling system | |
JP6002876B2 (en) | Marine fuel oil heating system | |
CN109383729A (en) | Marine main engine jacket water heat energy utilization system | |
KR20190040058A (en) | Ship cooling system | |
CN117360752B (en) | Thermal management system and control method of ship composite energy power system | |
EP2762802A2 (en) | Chilled water system, ship, and method of operating chilled water system | |
JP2010065612A (en) | Marine main engine cooling facility, cooling method and cooling system in ship | |
CN208907384U (en) | A kind of host afterheat utilizing system for air conditioner coolant water | |
CN209838517U (en) | Marine engine room cooling system | |
JP5572116B2 (en) | Heat source system | |
KR101864192B1 (en) | System for supplying Cooling fresh water | |
CN103485874B (en) | A kind of marine diesel engine single cycle hybrid cooling system and cooling means | |
NO315870B1 (en) | Multi-engine system with common fresh water cooling system | |
KR101990469B1 (en) | Ship cooling system for saving fuel energy | |
JP4294508B2 (en) | Cooling device operation method | |
KR20170061946A (en) | Cooling system for vessel with EGR unit and cooling method therefor |