Nothing Special   »   [go: up one dir, main page]

JP2013213603A - Drain structure of corrugated fin type heat exchanger - Google Patents

Drain structure of corrugated fin type heat exchanger Download PDF

Info

Publication number
JP2013213603A
JP2013213603A JP2012083652A JP2012083652A JP2013213603A JP 2013213603 A JP2013213603 A JP 2013213603A JP 2012083652 A JP2012083652 A JP 2012083652A JP 2012083652 A JP2012083652 A JP 2012083652A JP 2013213603 A JP2013213603 A JP 2013213603A
Authority
JP
Japan
Prior art keywords
corrugated fin
heat exchanger
water
heat exchange
flat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012083652A
Other languages
Japanese (ja)
Inventor
Kazuhiko Yamazaki
和彦 山崎
Kenji Yoshida
健司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2012083652A priority Critical patent/JP2013213603A/en
Publication of JP2013213603A publication Critical patent/JP2013213603A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F17/00Removing ice or water from heat-exchange apparatus
    • F28F17/005Means for draining condensates from heat exchangers, e.g. from evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a drain structure of a corrugated fin type heat exchanger which is improved in the draining performance of condensate water attached to corrugated fin and prevents an increase in airflow resistance caused by the condensate water.SOLUTION: A corrugated fin type heat exchanger includes: an upper header pipe 2a and a lower header pipe 2b which face each other in parallel in a vertical direction; a plurality of flat-shape heat exchanger tubes 3 whose upper ends and lower ends are connected to and communicate with the header pipes and which are arranged with flat surfaces parallel to one another; and corrugated fins 4 each of which is interposed between the flat-shape heat exchanger tubes and is bent into a wavy shape continuously in the vertical direction of the flat-shape heat exchanger tubes, in which water conducting members 7 are arranged vertically along a lateral surface orthogonal to flat surfaces of the flat-shape heat exchanger tubes, and the water conducting members are brought into contact with bent parts 4a from uppermost edges to lowermost steps of the corrugated fins located on both sides of the water conducting members, so that condensate water attached to the corrugated fins is caused to flow downward by means of the water conducting members and drained.

Description

この発明は、コルゲートフィン式熱交換器の排水構造に関するもので、更に詳細には、鉛直方向の扁平状熱交換チューブとコルゲートフィンを交互に配置したコルゲートフィン式熱交換器の排水構造に関するものである。   The present invention relates to a drainage structure of a corrugated fin heat exchanger, and more particularly to a drainage structure of a corrugated fin heat exchanger in which vertical flat heat exchange tubes and corrugated fins are alternately arranged. is there.

一般に、コルゲートフィン式熱交換器を蒸発器として使用した場合、コルゲートフィンや扁平状熱交換チューブ表面に凝縮水が付着して通気抵抗が増加する。   In general, when a corrugated fin heat exchanger is used as an evaporator, condensed water adheres to the corrugated fin or the flat heat exchange tube surface, thereby increasing ventilation resistance.

そのため、コルゲートフィン式の熱交換器は、ヘッダーパイプを鉛直方向の上下に位置し、コルゲートフィンと扁平状熱交換チューブを鉛直方向に配置させることで、フィン表面に付着する凝縮水が重力方向に流れるようにしている。   Therefore, the corrugated fin type heat exchanger has the header pipe positioned vertically and the corrugated fin and the flat heat exchange tube are arranged in the vertical direction so that the condensed water adhering to the fin surface is in the direction of gravity. It is made to flow.

これにより、熱交換器に付着した凝縮水を排出することが可能であるが、コルゲートフィンは薄板を山谷に屈曲した形状であるため、プレートフィンに比べて凝縮水が移動する距離が長く、熱交換器下部より排水するまでに時間を要する。   As a result, it is possible to discharge the condensed water adhering to the heat exchanger, but the corrugated fin has a shape in which a thin plate is bent in a mountain valley, so that the distance that the condensed water moves is longer than the plate fin, It takes time to drain from the bottom of the exchanger.

上記問題を解決するために、出願人は、コルゲートフィンに接触すると共に、下部ヘッダーパイプの上端面及び側面に接触する排水用案内板を設ける排水構造を提案している(例えば、特許文献1参照)。これにより、熱交換器に付着した凝縮水は排水用案内板を介して下部に流すことができる。   In order to solve the above problem, the applicant has proposed a drainage structure in which a drainage guide plate that contacts the corrugated fins and contacts the upper end surface and the side surface of the lower header pipe is provided (see, for example, Patent Document 1). ). Thereby, the condensed water adhering to the heat exchanger can be flowed to the lower part through the drainage guide plate.

また、別の排水構造として、扁平状熱交換チューブの両側平面部(扁平面部)に、両端部を残して長さ方向に延びる凹条を形成し、この凹条により熱交換チューブとコルゲートフィンとの間に排水部を形成する構造のものが知られている(例えば、特許文献2参照)。   Further, as another drainage structure, a concave strip extending in the length direction is formed on both side plane portions (flat plane portion) of the flat heat exchange tube, leaving both ends, and the heat exchange tube and the corrugated fin are formed by the concave strip. The thing of the structure which forms a waste_water | drain part between is known (for example, refer patent document 2).

特開2010−25462号公報(特許請求の範囲、図1〜図7)JP 2010-25462 (Claims, FIGS. 1 to 7) 特開平7−190661号公報(特許請求の範囲、図1,図2,図5)JP-A-7-190661 (Claims, FIGS. 1, 2 and 5)

しかしながら、特許文献1に記載のものは、コルゲートフィンの上部に付着する凝縮水の排水性を良好にするためには、コルゲートフィン同士間に排水用案内板を介在して排水用案内板をコルゲートフィンに接触させる必要があり、排水性の向上は図れる反面、排水用案内板を介在した分、通気抵抗が増大する懸念がある。   However, in order to improve the drainage of the condensed water adhering to the upper part of the corrugated fin, the one described in Patent Document 1 corrugates the drainage guide plate by interposing a drainage guide plate between the corrugated fins. Although it is necessary to make it contact with a fin and the drainage property can be improved, there is a concern that the ventilation resistance increases due to the presence of the drainage guide plate.

特許文献2に記載のものは、扁平状熱交換チューブの両側平面部(扁平面部)に凹条を形成し、この凹条により熱交換チューブとコルゲートフィンとの間に排水部を形成する構造であるが、厚さが数ミリの熱交換チューブにおいては、熱交換チューブの冷媒流路との関係で凹条の寸法に制限を受け、排水性に支障をきたす虞がある。また、凹条は両端部を残して形成するため、凹条の加工に手間を要するという問題がある。   The thing of patent document 2 is a structure which forms a concave part in the both-sides plane part (flat flat part) of a flat heat exchange tube, and forms a drainage part between a heat exchange tube and a corrugated fin by this concave line. However, in a heat exchange tube having a thickness of several millimeters, there is a risk that the drainage will be hindered due to the limitation of the size of the concave line due to the refrigerant flow path of the heat exchange tube. In addition, since the concave line is formed leaving both ends, there is a problem that it takes time to process the concave line.

また、この種のコルゲートフィン式熱交換器においては、特に熱交換器下部のコルゲートフィン間には表面張力により凝縮水が滞留し易いので、この滞留した凝縮水を熱交換器の下方に排出することが望まれている。   Further, in this type of corrugated fin heat exchanger, condensate tends to stay due to surface tension, particularly between the corrugated fins at the lower part of the heat exchanger, so that the accumulated condensate is discharged below the heat exchanger. It is hoped that.

この発明は、上記事情に鑑みてなされたもので、コルゲートフィンに付着する凝縮水の排水性の向上を図ると共に、凝縮水による通気抵抗の増加を防止するようにしたコルゲートフィン式熱交換器の排水構造を提供することを課題とする。   The present invention has been made in view of the above circumstances, and is intended to improve the drainage of condensed water adhering to corrugated fins and to prevent an increase in ventilation resistance due to condensed water. It is an object to provide a drainage structure.

上記課題を達成するために、この発明のコルゲートフィン式熱交換器の排水構造は、鉛直方向に平行に対峙する上部ヘッダーパイプ及び下部ヘッダーパイプと、これらヘッダーパイプに上端及び下端が連通接続され、扁平面同士を平行にして配列される複数の扁平状熱交換チューブと、上記扁平状熱交換チューブ間に介在され、扁平状熱交換チューブの鉛直方向に連続する波形状に屈曲されたコルゲートフィンと、を具備するコルゲートフィン式熱交換器において、上記扁平状熱交換チューブの扁平面と直交する側面に沿って導水部材を鉛直状に配置すると共に、該導水部材と上記扁平状熱交換チューブの両側に位置する上記コルゲートフィンの最上端から最下段の屈曲部とを接触してなり、上記コルゲートフィンに付着した凝縮水を上記導水部材によって下方に流して排出する、ことを特徴とする(請求項1)。   In order to achieve the above object, the corrugated fin heat exchanger drainage structure of the present invention has an upper header pipe and a lower header pipe facing in parallel to the vertical direction, and an upper end and a lower end connected to these header pipes in communication. A plurality of flat heat exchange tubes arranged in parallel with the flat surfaces, a corrugated fin interposed between the flat heat exchange tubes and bent into a wave shape continuous in the vertical direction of the flat heat exchange tubes; In the corrugated fin type heat exchanger comprising: a water guide member arranged vertically along a side surface orthogonal to the flat surface of the flat heat exchange tube, and both sides of the water guide member and the flat heat exchange tube The condensate adhering to the corrugated fin is guided by the uppermost end of the corrugated fin located at Discharged by flowing downward by a member, characterized in that (claim 1).

このように構成することにより、コルゲートフィンに付着した凝縮水は、扁平状熱交換チューブ側に流れ、熱交換チューブの側面に沿って鉛直状に配置された導水部材に流れて下部に排出される。   By comprising in this way, the condensed water adhering to the corrugated fin flows to the flat heat exchange tube side, flows to the water guide member arranged vertically along the side surface of the heat exchange tube, and is discharged to the lower part. .

この発明において、上記導水部材と上記扁平状熱交換チューブの側面との間に、鉛直方向に延びる隙間を設けるのが好ましい(請求項2)。   In this invention, it is preferable to provide a gap extending in the vertical direction between the water guide member and the side surface of the flat heat exchange tube.

このように構成することにより、導水部材と扁平状熱交換チューブの側面との間に設けられる隙間によって排水路が形成されるので、凝縮水の排水を迅速にすることができる。   By comprising in this way, since a drainage channel is formed by the clearance gap provided between the water conveyance member and the side surface of a flat heat exchange tube, drainage of condensed water can be made quick.

また、この発明において、上記導水部材が上記扁平状熱交換チューブの両側面に設けられている方が好ましい(請求項3)。   Moreover, in this invention, it is preferable that the said water conveyance member is provided in the both sides | surfaces of the said flat heat exchange tube (Claim 3).

このように構成することにより、扁平状熱交換チューブの両側に配置された導水部材を介して凝縮水を下部に排出することができる。   By comprising in this way, condensed water can be discharged | emitted below via the water guide member arrange | positioned at the both sides of a flat heat exchange tube.

また、この発明において、上記導水部材は扁平状熱交換チューブの扁平面と直交する側面に沿って鉛直状に配置されるものであれば、1本の線状部材であってもよいが、好ましくは複数の線状部材の撚り線にて形成される方がよい(請求項4)。   Moreover, in this invention, if the said water conveyance member is arrange | positioned perpendicularly along the side surface orthogonal to the flat surface of a flat heat exchange tube, it may be one linear member, However, Is preferably formed by a stranded wire of a plurality of linear members.

このように構成することにより、導水部材自体に毛細管現象の働きにより水を誘引する機能を持たせることができ、凝縮水の下部への排水を迅速にすることができる。   By comprising in this way, the water conveyance member itself can be given the function of attracting water by the action of the capillary phenomenon, and the drainage of the condensed water to the lower part can be expedited.

加えて、この発明において、上記導水部材が上記コルゲートフィンの最下端より下方へ突出しているのが好ましい(請求項5)。   In addition, in the present invention, it is preferable that the water guide member protrudes downward from the lowermost end of the corrugated fin.

このように構成することにより、コルゲートフィンの下端部に滞留する凝縮水を熱交換器の下方に確実に排出することができる。   By comprising in this way, the condensed water which retains in the lower end part of a corrugated fin can be reliably discharged | emitted below the heat exchanger.

この発明によれば、上記のように構成されているので、以下のような効果が得られる。   According to this invention, since it is configured as described above, the following effects can be obtained.

(1)請求項1記載の発明によれば、コルゲートフィンに付着した凝縮水は、扁平状熱交換チューブ側に流れ、熱交換チューブの側面に沿って鉛直状に配置された導水部材に流れて下部に排出されるので、コルゲートフィンに付着する凝縮水の排水性の向上を図ると共に、凝縮水による通気抵抗の増加を防止することができる。   (1) According to the invention described in claim 1, the condensed water adhering to the corrugated fin flows to the flat heat exchange tube side and flows to the water guide member arranged vertically along the side surface of the heat exchange tube. Since it is discharged to the lower part, it is possible to improve the drainage of the condensed water adhering to the corrugated fins and to prevent an increase in ventilation resistance due to the condensed water.

また、エアコンの室外機として低温環境で使用した際の除霜運転時に、溶解水が大量に発生しても円滑に排出されるため、除霜運転時間が短縮され、消費電力を低減できる。   In addition, during the defrosting operation when used in a low temperature environment as an air conditioner outdoor unit, even if a large amount of dissolved water is discharged, the defrosting operation time is shortened and power consumption can be reduced.

(2)請求項2記載の発明によれば、導水部材と扁平状熱交換チューブの側面との間に設けられる隙間によって排水路が形成されるので、上記(1)に加えて更に凝縮水の排水を迅速にすることができ、排水性の向上が図れると共に、凝縮水による通気抵抗の増加を防止することができる。   (2) According to the invention described in claim 2, since the drainage channel is formed by the gap provided between the water guide member and the side surface of the flat heat exchange tube, in addition to the above (1), the condensed water is further added. Drainage can be performed quickly, drainage can be improved, and increase in ventilation resistance due to condensed water can be prevented.

(3)請求項3記載の発明によれば、扁平状熱交換チューブの両側に配置された導水部材を介して凝縮水を下部に排出することができるので、上記(1),(2)に加えて更に排水性の向上が図れると共に、凝縮水による通気抵抗の増加を防止することができる。   (3) According to the invention described in claim 3, the condensed water can be discharged to the lower part through the water guide members arranged on both sides of the flat heat exchange tube. Therefore, in (1) and (2) above In addition, drainage can be further improved, and increase in ventilation resistance due to condensed water can be prevented.

(4)請求項4記載の発明によれば、導水部材自体に毛細管現象の働きにより水を誘引する機能を持たせることができ、凝縮水の下部への排水を迅速にすることができるので、上記(1)〜(3)に加えて更に排水性の向上が図れると共に、凝縮水による通気抵抗の増加を防止することができる。   (4) According to the invention described in claim 4, since the water guide member itself can have a function of attracting water by the action of capillary action, drainage to the lower part of the condensed water can be expedited, In addition to the above (1) to (3), drainage can be further improved, and increase in ventilation resistance due to condensed water can be prevented.

(5)請求項5記載の発明によれば、コルゲートフィンの下端部に滞留する凝縮水を熱交換器の下方に確実に排出することができるので、上記(1)〜(4)に加えて更に排水性の向上が図れると共に、凝縮水による通気抵抗の増加を防止することができる。   (5) According to the invention described in claim 5, since the condensed water staying at the lower end of the corrugated fin can be reliably discharged below the heat exchanger, in addition to the above (1) to (4) Further, drainage can be improved and increase in ventilation resistance due to condensed water can be prevented.

この発明に係る第1実施形態のコルゲートフィン式熱交換器を示す概略正面図である。It is a schematic front view which shows the corrugated fin type heat exchanger of 1st Embodiment which concerns on this invention. 図1のI部拡大図である。It is the I section enlarged view of FIG. この発明における導水部材の別の配置状態を示す断面図である。It is sectional drawing which shows another arrangement | positioning state of the water guide member in this invention. この発明におけるコルゲートフィンの一部を拡大して示す断面斜視図である。It is a section perspective view expanding and showing a part of corrugated fin in this invention. この発明に係る第2実施形態のコルゲートフィン式熱交換器を示す概略正面図である。It is a schematic front view which shows the corrugated fin type heat exchanger of 2nd Embodiment which concerns on this invention. 図4のII部拡大図である。It is the II section enlarged view of FIG. この発明に係る第3実施形態のコルゲートフィン式熱交換器の要部を示す拡大正面図である。It is an enlarged front view which shows the principal part of the corrugated fin type heat exchanger of 3rd Embodiment which concerns on this invention. この発明に係る第4実施形態のコルゲートフィン式熱交換器の要部を示す拡大正面図である。It is an enlarged front view which shows the principal part of the corrugated fin type heat exchanger of 4th Embodiment concerning this invention. 第3,第4実施形態における導水部材の別の配置状態を示す断面図である。It is sectional drawing which shows another arrangement | positioning state of the water conveyance member in 3rd, 4th embodiment. 排水試験の測定方法の手順を示す概略断面図である。It is a schematic sectional drawing which shows the procedure of the measuring method of a drainage test. 経過時間と保水量との関係を示すグラフである。It is a graph which shows the relationship between elapsed time and the amount of water retention.

以下に、この発明を実施するための形態について、添付図面に基づいて詳細に説明する。   EMBODIMENT OF THE INVENTION Below, the form for implementing this invention is demonstrated in detail based on an accompanying drawing.

<第1実施形態>
この発明に係る第1実施形態のコルゲートフィン式熱交換器1(以下に熱交換器1という)は、図1に示すように、それぞれアルミニウム(アルミニウム合金を含む)製部材からなる、鉛直方向に平行に対峙する上部ヘッダーパイプ2a及び下部ヘッダーパイプ2bと、これらヘッダーパイプ2a,2bに上端及び下端が連通接続され、扁平面3a同士を平行にして配列される複数の扁平状熱交換チューブ3(以下に熱交換チューブ3という)と、隣接する熱交換チューブ3間に介在され、熱交換チューブ3の鉛直方向に連続する波形状に屈曲されるコルゲートフィン4と、コルゲートフィン4に付着した凝縮水を下方へ排出する導水部材7と、を具備している。
<First Embodiment>
As shown in FIG. 1, a corrugated fin heat exchanger 1 (hereinafter referred to as a heat exchanger 1) according to a first embodiment of the present invention is made of an aluminum (including aluminum alloy) member, as shown in FIG. An upper header pipe 2a and a lower header pipe 2b that face each other in parallel, and a plurality of flat heat exchange tubes 3 (the upper and lower ends are connected in communication with the header pipes 2a and 2b, and the flat surfaces 3a are arranged in parallel with each other) (Hereinafter referred to as heat exchange tube 3), corrugated fin 4 interposed between adjacent heat exchange tubes 3 and bent into a wave shape continuous in the vertical direction of heat exchange tube 3, and condensed water adhering to corrugated fin 4 And a water guide member 7 for discharging the water downward.

なお、下部ヘッダーパイプ2bの一方の端部側(図1の左側)には冷媒流入管9aが接続されており、上部ヘッダーパイプ2aの一方の端部側(図1の右側)には冷媒流入管9bが接続されている。   A refrigerant inflow pipe 9a is connected to one end side (left side in FIG. 1) of the lower header pipe 2b, and refrigerant flows into one end side (right side in FIG. 1) of the upper header pipe 2a. A tube 9b is connected.

上記熱交換チューブ3は、図3に示すように、複数に区画された冷媒流路3cが形成されている。この熱交換チューブ3の上端部及び下端部は、それぞれ上部ヘッダーパイプ2a及び下部ヘッダーパイプ2bに設けられたスリット2c内に挿入されてろう付けされる。この場合、上部ヘッダーパイプ2a及び下部ヘッダーパイプ2bは、表面にろう材を有するクラッド材にて形成するのが好ましい。   As shown in FIG. 3, the heat exchange tube 3 is formed with a plurality of refrigerant flow paths 3c. The upper end and the lower end of the heat exchange tube 3 are inserted and brazed into slits 2c provided in the upper header pipe 2a and the lower header pipe 2b, respectively. In this case, the upper header pipe 2a and the lower header pipe 2b are preferably formed of a clad material having a brazing material on the surface.

上記コルゲートフィン4は、薄板を所定の高さになるように山−谷折りを交互に繰り返して波形状に成形されており、熱交換器正面からの視点では、横U字形状の連続として見ることができる。なお、コルゲートフィン4の形状は必ずしも横U字形状の連続ではなく、横V字形状の連続であってもよい。このコルゲートフィン4は少なくとも一方の表面にろう材が被覆されたブレージングシートにて形成されて、上部ヘッダーパイプ2a、下部ヘッダーパイプ2b、熱交換チューブ3及び導水部材7とろう付けされている。   The corrugated fin 4 is formed into a wave shape by alternately repeating a mountain-valley fold so that the thin plate has a predetermined height. From the viewpoint from the front of the heat exchanger, the corrugated fin 4 is viewed as a continuous horizontal U shape. be able to. Note that the shape of the corrugated fin 4 is not necessarily a continuous horizontal U shape, but may be a continuous horizontal V shape. The corrugated fin 4 is formed of a brazing sheet having a brazing material coated on at least one surface, and is brazed to the upper header pipe 2a, the lower header pipe 2b, the heat exchange tube 3, and the water guide member 7.

また、コルゲートフィン4には、コルゲートフィン4の幅方向に互いに平行に設けられた複数の縦スリット4cを切り起こして形成されたフィンルーバ4b(図3参照)が設けられている。このようにコルゲートフィン4にフィンルーバ4bを設けることにより、コルゲートフィン4の横U字形状部表面に凝縮した凝縮水をフィンルーバ4bの切り起こしの縦スリット4cを介して下段の横U字形状部に移動することができる。   Further, the corrugated fin 4 is provided with a fin louver 4b (see FIG. 3) formed by cutting and raising a plurality of vertical slits 4c provided parallel to each other in the width direction of the corrugated fin 4. By providing the fin louver 4b on the corrugated fin 4 in this way, the condensed water condensed on the surface of the horizontal U-shaped portion of the corrugated fin 4 is transferred to the lower horizontal U-shaped portion via the vertical slit 4c cut and raised by the fin louver 4b. Can move.

なお、コルゲートフィン4にフィンルーバ4bを設けることにより、熱交換能力の向上が図れる、すなわち、空気の通路に所定角度に成形された所定数のルーバーを設けることで、乱流効果等により熱伝達性能の向上が図れる。   In addition, heat exchange performance can be improved by providing the fin louver 4b in the corrugated fin 4, that is, by providing a predetermined number of louvers formed at a predetermined angle in the air passage, heat transfer performance due to the turbulence effect or the like Can be improved.

また、左右端のコルゲートフィン4の外方側には、それぞれアルミニウム製のサイドプレート5がろう付けされている。また、ヘッダーパイプ2a,2bの左右開口端にはアルミニウム製のエンドキャップ6がろう付けされている。   Also, aluminum side plates 5 are brazed to the outer sides of the corrugated fins 4 at the left and right ends, respectively. Also, aluminum end caps 6 are brazed to the left and right opening ends of the header pipes 2a and 2b.

上記導水部材7は、図2及び図3に示すように、アルミニウム製の2本の線材7aを撚った撚り線にて形成されており、それ自体に毛細管現象の働きにより水を誘引する機能を備えている。このように形成される導水部材7は、図3(a)又は図3(b)に示すように、熱交換チューブ3の扁平面3aと直交する一方又は双方の側面3bに沿って側面3bとの間に水路を形成する隙間8を残して鉛直状に配置されると共に、熱交換チューブ3の両側に位置するコルゲートフィン4の最上端から最下段の屈曲部4aに接触して設けられている。したがって、熱交換器1の構成部材である熱交換チューブ3に加工を施すことなく、容易に熱交換器1に導水部材7を組み付けて、排水機能を持たせることができる。   As shown in FIGS. 2 and 3, the water guide member 7 is formed of a stranded wire formed by twisting two aluminum wires 7a, and has a function of attracting water to itself by the action of a capillary phenomenon. It has. As shown in FIG. 3 (a) or FIG. 3 (b), the water guide member 7 formed in this way includes the side surface 3b along one or both side surfaces 3b orthogonal to the flat surface 3a of the heat exchange tube 3. Are arranged vertically leaving a gap 8 forming a water channel between them, and are provided in contact with the lowermost bent portion 4a from the uppermost end of the corrugated fins 4 located on both sides of the heat exchange tube 3. . Therefore, the water guide member 7 can be easily assembled to the heat exchanger 1 to have a drainage function without processing the heat exchange tube 3 that is a constituent member of the heat exchanger 1.

上記のように構成される第1実施形態の排水構造によれば、コルゲートフィン4に付着した凝縮水は、熱交換チューブ3側に流れ、熱交換チューブ3の側面3bに沿って鉛直状に配置された導水部材7に流れて下部に排出される。   According to the drainage structure of the first embodiment configured as described above, the condensed water adhering to the corrugated fins 4 flows to the heat exchange tube 3 side and is arranged vertically along the side surface 3b of the heat exchange tube 3. It flows to the water guide member 7 and is discharged to the lower part.

また、導水部材7と熱交換チューブ3の側面3bとの間に設けられる隙間8によって排水路が形成されるので、凝縮水の排水を迅速にすることができる。この場合、導水部材7を熱交換チューブ3の両側面3bに設けることにより、熱交換チューブ3の両側面3bに配置された導水部材7を介して凝縮水を下部に排出することができる。   Moreover, since a drainage channel is formed by the clearance gap 8 provided between the water guide member 7 and the side surface 3b of the heat exchange tube 3, drainage of condensed water can be made quick. In this case, by providing the water guide member 7 on both side surfaces 3 b of the heat exchange tube 3, the condensed water can be discharged to the lower part via the water guide members 7 arranged on the both side surfaces 3 b of the heat exchange tube 3.

また、導水部材7を2本の線材7aを撚った撚り線にて形成することにより、導水部材自体に毛細管現象の働きにより水を誘引する機能を持たせることができ、凝縮水の下部への排水を迅速にすることができる。   Further, by forming the water guide member 7 with a twisted wire obtained by twisting two wires 7a, the water guide member itself can be provided with a function of attracting water by the action of capillary action, and to the lower part of the condensed water. Can drain quickly.

また、熱交換器1をエアコンの室外機として低温環境で使用した際の除霜運転時に、溶解水が大量に発生しても円滑に排出されるため、除霜運転時間が短縮され、消費電力を低減できる。   In addition, during the defrosting operation when the heat exchanger 1 is used as an outdoor unit of an air conditioner in a low temperature environment, even if a large amount of dissolved water is discharged, the defrosting operation time is shortened and power consumption is reduced. Can be reduced.

<第2実施形態>
第2実施形態は、コルゲートフィン4の下端部に滞留する凝縮水を熱交換器の下方に確実に排出することができるようにした場合である。
Second Embodiment
The second embodiment is a case where the condensed water staying at the lower end portion of the corrugated fin 4 can be reliably discharged below the heat exchanger.

すなわち、第2実施形態の熱交換器1Aは、図4及び図5に示すように、上記導水部材7の下端部をコルゲートフィン4の最下端より下方へ突出させることにより、コルゲートフィン4の下端部に滞留する凝縮水を熱交換器の下方に確実に排出できるようにした場合である。   That is, as shown in FIGS. 4 and 5, the heat exchanger 1 </ b> A according to the second embodiment projects the lower end portion of the water guide member 7 downward from the lowermost end of the corrugated fin 4, thereby lowering the lower end of the corrugated fin 4. This is a case where the condensed water staying in the section can be surely discharged below the heat exchanger.

なお、第2実施形態において、その他の部分は第1実施形態と同じであるので、同一部分には同一符号を付して説明は省略する。   In the second embodiment, the other parts are the same as those in the first embodiment, so the same parts are denoted by the same reference numerals and description thereof is omitted.

上記のように構成される第2実施形態の排水構造によれば、コルゲートフィン4に付着した凝縮水は、熱交換チューブ3側に流れ、熱交換チューブ3の側面3bに沿って鉛直状に配置された導水部材7に流れて下部に排出される。この場合、導水部材7の下端部をコルゲートフィン4の最下端より下方へ突出させることにより、コルゲートフィン4の下端部に滞留する凝縮水を熱交換器の下方に確実に排出できる。   According to the drainage structure of the second embodiment configured as described above, the condensed water adhering to the corrugated fins 4 flows to the heat exchange tube 3 side and is arranged vertically along the side surface 3b of the heat exchange tube 3. It flows to the water guide member 7 and is discharged to the lower part. In this case, by causing the lower end portion of the water guiding member 7 to protrude downward from the lowermost end of the corrugated fin 4, the condensed water staying at the lower end portion of the corrugated fin 4 can be reliably discharged below the heat exchanger.

また、導水部材7と熱交換チューブ3の側面3bとの間に設けられる隙間8によって排水路が形成されるので、凝縮水の排水を迅速にすることができる。この場合、導水部材7を熱交換チューブ3の両側面3bに設けることにより、熱交換チューブ3の両側面3bに配置された導水部材7を介して凝縮水を下部に排出することができる。   Moreover, since a drainage channel is formed by the clearance gap 8 provided between the water guide member 7 and the side surface 3b of the heat exchange tube 3, drainage of condensed water can be made quick. In this case, by providing the water guide member 7 on both side surfaces 3 b of the heat exchange tube 3, the condensed water can be discharged to the lower part via the water guide members 7 arranged on the both side surfaces 3 b of the heat exchange tube 3.

また、第1実施形態と同様に、導水部材7を2本の線材7aを撚った撚り線にて形成することにより、導水部材自体に毛細管現象の働きにより水を誘引する機能を持たせることができ、凝縮水の下部への排水を迅速にすることができる。   Similarly to the first embodiment, the water guide member 7 is formed of a stranded wire formed by twisting two wires 7a, so that the water guide member itself has a function of attracting water by the action of capillary action. The drainage to the lower part of the condensed water can be expedited.

また、熱交換器1をエアコンの室外機として低温環境で使用した際の除霜運転時に、溶解水が大量に発生しても円滑に排出されるため、除霜運転時間が短縮され、消費電力を低減できる。   In addition, during the defrosting operation when the heat exchanger 1 is used as an outdoor unit of an air conditioner in a low temperature environment, even if a large amount of dissolved water is discharged, the defrosting operation time is shortened and power consumption is reduced. Can be reduced.

<第3実施形態>
第3実施形態は、第1実施形態の導水部材7に代えて1本のアルミニウム製線材にて導水部材7Aを形成した場合である。この場合、導水部材7Aは、図6Aに示すように、該導水部材7Aの下端部がコルゲートフィン4の最下端部に位置して設けられている。
<Third Embodiment>
In the third embodiment, the water guide member 7A is formed of one aluminum wire instead of the water guide member 7 of the first embodiment. In this case, as shown in FIG. 6A, the water guide member 7 </ b> A is provided such that the lower end portion of the water guide member 7 </ b> A is positioned at the lowest end portion of the corrugated fin 4.

また、第3実施形態における導水部材7Aは、図7(a)又は図7(b)に示すように、熱交換チューブ3の扁平面3aと直交する一方又は双方の側面3bに沿って側面3bとの間に水路を形成する隙間8を残して鉛直状に配置されると共に、熱交換チューブ3の両側に位置するコルゲートフィン4の最上端から最下段の屈曲部4aに接触して設けられている。したがって、熱交換器1Aの構成部材である熱交換チューブ3に加工を施すことなく、容易に熱交換器1に導水部材7Aを組み付けて、排水機能を持たせることができる。   Moreover, 7 A of water conveyance members in 3rd Embodiment are side surface 3b along one or both side surface 3b orthogonal to the flat surface 3a of the heat exchange tube 3, as shown to Fig.7 (a) or FIG.7 (b). Are arranged vertically leaving a gap 8 forming a water channel between them and the uppermost end of the corrugated fins 4 located on both sides of the heat exchange tube 3 in contact with the lower bent portion 4a. Yes. Therefore, it is possible to easily attach the water guiding member 7A to the heat exchanger 1 and to have a drainage function without processing the heat exchange tube 3 that is a constituent member of the heat exchanger 1A.

なお、第3実施形態において、その他の部分は第1実施形態と同じであるので、同一部分には同一符号を付して説明は省略する。   In the third embodiment, the other parts are the same as those in the first embodiment. Therefore, the same parts are denoted by the same reference numerals and description thereof is omitted.

上記のように構成される第3実施形態の排水構造によれば、コルゲートフィン4に付着した凝縮水は、熱交換チューブ3側に流れ、熱交換チューブ3の側面3bに沿って鉛直状に配置された導水部材7Aに流れて下部に排出される。   According to the drainage structure of the third embodiment configured as described above, the condensed water adhering to the corrugated fins 4 flows to the heat exchange tube 3 side and is arranged vertically along the side surface 3b of the heat exchange tube 3. It flows into the water guide member 7A and is discharged to the lower part.

また、導水部材7Aと熱交換チューブ3の側面3bとの間に設けられる隙間8によって排水路が形成されるので、凝縮水の排水を迅速にすることができる。この場合、導水部材7Aを熱交換チューブ3の両側面3bに設けることにより、熱交換チューブ3の両側面3bに配置された導水部材7Aを介して凝縮水を下部に排出することができる。   Moreover, since a drainage channel is formed by the gap 8 provided between the water guide member 7A and the side surface 3b of the heat exchange tube 3, drainage of condensed water can be expedited. In this case, by providing the water guide member 7A on both side surfaces 3b of the heat exchange tube 3, the condensed water can be discharged to the lower part via the water guide members 7A arranged on the both side surfaces 3b of the heat exchange tube 3.

また、導水部材7Aを1本のアルミニウム製線材にて形成することにより、構成部材の削減が図れると共に、凝縮水の下部への排水を迅速にすることができる。   Moreover, by forming the water guide member 7A with one aluminum wire, the number of constituent members can be reduced, and drainage to the lower part of the condensed water can be expedited.

また、第1実施形態と同様に、熱交換器1Aをエアコンの室外機として低温環境で使用した際の除霜運転時に、溶解水が大量に発生しても円滑に排出されるため、除霜運転時間が短縮され、消費電力を低減できる。   Similarly to the first embodiment, during the defrosting operation when the heat exchanger 1A is used as an outdoor unit of an air conditioner in a low temperature environment, even if a large amount of dissolved water is discharged, the defrosting is smoothly performed. The operation time is shortened and the power consumption can be reduced.

<第4実施形態>
第4実施形態は、第2実施形態の導水部材7に代えて1本のアルミニウム製線材にて導水部材7Aを形成した場合である。この場合、導水部材7Aは、図6Bに示すように、該導水部材7Aの下端部がコルゲートフィン4の最下端部より下方に突出した位置に設けられている。これにより、コルゲートフィン4の下端部に滞留する凝縮水は導水部材7Aを流れて熱交換器の下方に確実に排出される。
<Fourth embodiment>
The fourth embodiment is a case where the water guide member 7A is formed of one aluminum wire instead of the water guide member 7 of the second embodiment. In this case, as shown in FIG. 6B, the water guide member 7 </ b> A is provided at a position where the lower end portion of the water guide member 7 </ b> A protrudes downward from the lowest end portion of the corrugated fin 4. Thereby, the condensed water staying at the lower end of the corrugated fin 4 flows through the water guiding member 7A and is reliably discharged below the heat exchanger.

なお、第4実施形態において、その他の部分は第1実施形態と同じであるので、同一部分には同一符号を付して説明は省略する。   In the fourth embodiment, the other parts are the same as those in the first embodiment, and therefore the same parts are denoted by the same reference numerals and description thereof is omitted.

上記のように構成される第4実施形態の排水構造によれば、コルゲートフィン4に付着した凝縮水は、熱交換チューブ3側に流れ、熱交換チューブ3の側面3bに沿って鉛直状に配置された導水部材7Aに流れて下部に排出される。この場合、導水部材7Aの下端部をコルゲートフィン4の最下端より下方へ突出させることにより、コルゲートフィン4の下端部に滞留する凝縮水を熱交換器の下方に確実に排出できる。   According to the drainage structure of the fourth embodiment configured as described above, the condensed water adhering to the corrugated fins 4 flows to the heat exchange tube 3 side and is arranged vertically along the side surface 3b of the heat exchange tube 3. It flows into the water guide member 7A and is discharged to the lower part. In this case, by causing the lower end portion of the water guiding member 7 </ b> A to protrude downward from the lowermost end of the corrugated fin 4, the condensed water staying at the lower end portion of the corrugated fin 4 can be reliably discharged below the heat exchanger.

また、導水部材7Aと熱交換チューブ3の側面3bとの間に設けられる隙間8によって排水路が形成されるので、凝縮水の排水を迅速にすることができる。この場合、導水部材7Aを熱交換チューブ3の両側面3bに設けることにより、熱交換チューブ3の両側面3bに配置された導水部材7Aを介して凝縮水を下部に排出することができる。   Moreover, since a drainage channel is formed by the gap 8 provided between the water guide member 7A and the side surface 3b of the heat exchange tube 3, drainage of condensed water can be expedited. In this case, by providing the water guide member 7A on both side surfaces 3b of the heat exchange tube 3, the condensed water can be discharged to the lower part via the water guide members 7A arranged on the both side surfaces 3b of the heat exchange tube 3.

また、第3実施形態と同様に、導水部材7Aを1本のアルミニウム製線材にて形成することにより、構成部材の削減が図れると共に、凝縮水の下部への排水を迅速にすることができる。   Similarly to the third embodiment, by forming the water guide member 7A with one aluminum wire, the number of constituent members can be reduced, and drainage to the lower part of the condensed water can be expedited.

また、第2実施形態と同様に、熱交換器1Aをエアコンの室外機として低温環境で使用した際の除霜運転時に、溶解水が大量に発生しても円滑に排出されるため、除霜運転時間が短縮され、消費電力を低減できる。   Similarly to the second embodiment, the defrosting operation is performed smoothly even if a large amount of dissolved water is generated during the defrosting operation when the heat exchanger 1A is used as an outdoor unit of an air conditioner in a low temperature environment. The operation time is shortened and the power consumption can be reduced.

次に、この発明に係る熱交換器の排水試験について、図8及び図9を参照して説明する。   Next, the drainage test of the heat exchanger according to the present invention will be described with reference to FIGS.

<試験体>
・サイズ:幅×高さ=約70mm×150mm
・比較例1:導水部材なし
・実施例1:アルミニウム製線材2本撚り、下端部はコルゲートフィンの最下端部より突出なし
・実施例2:アルミニウム製線材2本撚り、下端部はコルゲートフィンの最下端部より30mm突出。
<Test body>
・ Size: width x height = about 70mm x 150mm
・ Comparative example 1: No water guide member ・ Example 1: Twisted aluminum wire, lower end does not protrude from the lowest end of corrugated fin ・ Example 2: Twisted aluminum wire, lower end of corrugated fin Projected 30mm from the bottom end.

<試験方法>
排水機構の効果を定量的に評価するために、図8に示すように、試験体10を水11を貯留した水槽12内に水没した後、引き上げした直後から保水量の変化を計測する。また、試験体10下部の保水状態を目視にて観察する。
<Test method>
In order to quantitatively evaluate the effect of the drainage mechanism, as shown in FIG. 8, after the test body 10 is submerged in the water tank 12 storing the water 11, the change in the water retention amount is measured immediately after the test body 10 is pulled up. Moreover, the water retention state of the lower part of the test body 10 is visually observed.

<保水重量測定手順>
まず、試験体10を90度(鉛直)にした状態で図示しない保持具に保持する(図8(a)参照)。次に、試験体10を水槽12内に挿入して水没し(図8(b)参照)、引き上げる(図8(c)参照)。引上げ直後より付着水の重量を測定し、比較例1の600秒経過時点の付着水量(保水重量)を100とした指数で、経過時間と付着水量の変化を調べた結果、図9に示す結果が得られた。
<Water retention weight measurement procedure>
First, the test body 10 is held by a holder (not shown) in a state of 90 degrees (vertical) (see FIG. 8A). Next, the test body 10 is inserted into the water tank 12 and submerged (see FIG. 8B) and pulled up (see FIG. 8C). The weight of adhering water was measured immediately after the pulling, and the change in the elapsed time and the adhering water amount was examined with an index in which the adhering water amount (water retention weight) at the time of 600 seconds in Comparative Example 1 was 100, and the results shown in FIG. was gotten.

上記試験の結果、図9のIII部に示すように、導水部材を有する実施例1,2のものは、導水部材を有しない比較例1のものに比べて、60秒経過後では付着水量は少なく、排水が速いことが判った。   As a result of the above test, as shown in part III of FIG. 9, the amount of adhering water in Examples 1 and 2 having a water guiding member is less than that in Comparative Example 1 having no water guiding member after 60 seconds. There was little, and it turned out that drainage was quick.

また、経過時間を長期間にして付着水量を調べると、比較例1と実施例1(導水部材の下端部はコルゲートフィンの最下端部より突出なし)のものは、600秒経過時点では、図9のIV部に示すように、付着水量はほぼ同じであり、コルゲートフィンの7山分が保水されていた。これに対し、実施例2(導水部材の下端部はコルゲートフィンの最下端部より30mm突出)のものは、600秒経過時点では、図9のV部に示すように、付着水量は減少し、コルゲートフィンの1山分が保水されていた。   Further, when the amount of adhered water was examined by making the elapsed time long, those of Comparative Example 1 and Example 1 (the lower end portion of the water guide member is not protruded from the lowermost end portion of the corrugated fin) are shown in FIG. As shown in part IV of 9, the amount of adhering water was almost the same, and seven piles of corrugated fins were retained. On the other hand, in Example 2 (the lower end portion of the water guiding member protrudes 30 mm from the lowermost end portion of the corrugated fin), the amount of adhering water decreases at the time when 600 seconds have elapsed, as shown in V portion of FIG. One pile of corrugated fins was retained.

上記試験の結果より、導水部材を有する実施例1,2は導水部材を有しない比較例1に比べて排水が速いことが判った。また、導水部材の下端部をコルゲートフィンの最下端部より下方に突出させることにより、コルゲートフィンの下端部に滞留する凝縮水を下方に確実に排出できることが判った。   From the results of the above test, it was found that Examples 1 and 2 having a water guiding member drain faster than Comparative Example 1 having no water guiding member. It was also found that the condensed water staying at the lower end of the corrugated fin can be reliably discharged downward by projecting the lower end of the water guiding member downward from the lowermost end of the corrugated fin.

なお、実施例1,2に代えて1本のアルミニウム製線材を用いても、導水部材なしの比較例1のものに比べて上記と同様の結果が得られる。   In addition, even if it replaces with Example 1, 2 and uses one aluminum wire, the result similar to the above is obtained compared with the thing of the comparative example 1 without a water conveyance member.

1 熱交換器
2a 上部ヘッダーパイプ
2b 下部ヘッダーパイプ
3 熱交換チューブ(扁平状熱交換チューブ)
4 コルゲートフィン
4a 屈曲部
7,7A 導水部材
7a 線材
8 隙間
1 Heat Exchanger 2a Upper Header Pipe 2b Lower Header Pipe 3 Heat Exchange Tube (Flat Heat Exchange Tube)
4 Corrugated fin 4a Bent part 7, 7A Water guide member 7a Wire 8 Clearance

Claims (5)

鉛直方向に平行に対峙する上部ヘッダーパイプ及び下部ヘッダーパイプと、これらヘッダーパイプに上端及び下端が連通接続され、扁平面同士を平行にして配列される複数の扁平状熱交換チューブと、上記扁平状熱交換チューブ間に介在され、扁平状熱交換チューブの鉛直方向に連続する波形状に屈曲されたコルゲートフィンと、を具備するコルゲートフィン式熱交換器において、
上記扁平状熱交換チューブの扁平面と直交する側面に沿って導水部材を鉛直状に配置すると共に、該導水部材と上記扁平状熱交換チューブの両側に位置する上記コルゲートフィンの最上端から最下段の屈曲部とを接触してなり、
上記コルゲートフィンに付着した凝縮水を上記導水部材によって下方に流して排出する、ことを特徴とするコルゲートフィン式熱交換器の排水構造。
An upper header pipe and a lower header pipe facing each other in parallel to the vertical direction, a plurality of flat heat exchange tubes whose upper and lower ends are connected to each other and arranged in parallel with each other, and the flat shape In the corrugated fin type heat exchanger comprising a corrugated fin interposed between the heat exchange tubes and bent in a wave shape continuous in the vertical direction of the flat heat exchange tube,
A water guide member is arranged vertically along a side surface perpendicular to the flat surface of the flat heat exchange tube, and the bottom stage from the uppermost end of the corrugated fin located on both sides of the water guide member and the flat heat exchange tube In contact with the bent part of
A drainage structure for a corrugated fin-type heat exchanger, wherein condensed water adhering to the corrugated fin is caused to flow downward and discharged by the water guiding member.
請求項1に記載のコルゲートフィン式熱交換器の排水構造において、
上記導水部材と上記扁平状熱交換チューブの側面との間に、鉛直方向に延びる隙間を設ける、ことを特徴とするコルゲートフィン式熱交換器の排水構造。
In the drainage structure of the corrugated fin heat exchanger according to claim 1,
A drainage structure for a corrugated fin heat exchanger, wherein a gap extending in a vertical direction is provided between the water guide member and a side surface of the flat heat exchange tube.
請求項1又は2に記載のコルゲートフィン式熱交換器の排水構造において、
上記導水部材が上記扁平状熱交換チューブの両側面に設けられている、ことを特徴とするコルゲートフィン式熱交換器の排水構造。
In the drainage structure of the corrugated fin-type heat exchanger according to claim 1 or 2,
A drainage structure for a corrugated fin heat exchanger, wherein the water guiding members are provided on both side surfaces of the flat heat exchange tube.
請求項1ないし3のいずれかに記載のコルゲートフィン式熱交換器の排水構造において、
上記導水部材が複数の線状部材の撚り線にて形成される、ことを特徴とするコルゲートフィン式熱交換器の排水構造。
In the drainage structure of the corrugated fin heat exchanger according to any one of claims 1 to 3,
A drainage structure for a corrugated fin-type heat exchanger, wherein the water guiding member is formed by a stranded wire of a plurality of linear members.
請求項1ないし4のいずれかに記載のコルゲートフィン式熱交換器の排水構造において、
上記導水部材が上記コルゲートフィンの最下端より下方へ突出している、ことを特徴とするコルゲートフィン式熱交換器の排水構造。
In the drainage structure of the corrugated fin heat exchanger according to any one of claims 1 to 4,
The drainage structure for a corrugated fin heat exchanger, wherein the water guiding member protrudes downward from the lowest end of the corrugated fin.
JP2012083652A 2012-04-02 2012-04-02 Drain structure of corrugated fin type heat exchanger Pending JP2013213603A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012083652A JP2013213603A (en) 2012-04-02 2012-04-02 Drain structure of corrugated fin type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012083652A JP2013213603A (en) 2012-04-02 2012-04-02 Drain structure of corrugated fin type heat exchanger

Publications (1)

Publication Number Publication Date
JP2013213603A true JP2013213603A (en) 2013-10-17

Family

ID=49587045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012083652A Pending JP2013213603A (en) 2012-04-02 2012-04-02 Drain structure of corrugated fin type heat exchanger

Country Status (1)

Country Link
JP (1) JP2013213603A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347185A (en) * 1993-06-07 1994-12-20 Matsushita Refrig Co Ltd Heat exchanger
JP2009115339A (en) * 2007-11-02 2009-05-28 Sharp Corp Heat exchanger
JP2010025478A (en) * 2008-07-22 2010-02-04 Daikin Ind Ltd Heat exchanger
JP2010107102A (en) * 2008-10-30 2010-05-13 Sharp Corp Outdoor unit for air conditioner
JP2010255885A (en) * 2009-04-22 2010-11-11 Sharp Corp Heat exchanger and air conditioner equipped with the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06347185A (en) * 1993-06-07 1994-12-20 Matsushita Refrig Co Ltd Heat exchanger
JP2009115339A (en) * 2007-11-02 2009-05-28 Sharp Corp Heat exchanger
JP2010025478A (en) * 2008-07-22 2010-02-04 Daikin Ind Ltd Heat exchanger
JP2010107102A (en) * 2008-10-30 2010-05-13 Sharp Corp Outdoor unit for air conditioner
JP2010255885A (en) * 2009-04-22 2010-11-11 Sharp Corp Heat exchanger and air conditioner equipped with the same

Similar Documents

Publication Publication Date Title
EP2857785B1 (en) Heat exchanger and air conditioner
JP5320846B2 (en) Heat exchanger
AU2009344987B2 (en) Heat exchanger and air conditioner having the heat exchanger mounted therein
US20120227945A1 (en) Free-draining finned surface architecture for heat exchanger
JP5678392B2 (en) Corrugated fin heat exchanger drainage structure
KR102218301B1 (en) Heat exchanger and corrugated fin thereof
JP2010019534A (en) Heat exchanger
JP6016212B2 (en) Corrugated fin heat exchanger drainage structure
JP2013245884A (en) Fin tube heat exchanger
JP2016044895A (en) Fin and tube type heat exchanger
JP2010025476A (en) Heat exchanger
JP6375897B2 (en) Heat exchanger
JP2010025478A (en) Heat exchanger
JP5020886B2 (en) Heat exchanger
JP2015004449A (en) Fin tube heat exchanger
CN107843031B (en) Micro-channel heat exchanger
US9689618B2 (en) Heat exchanger and air conditioner equipped therewith with water guiding condensate notches and a linear member
JP2012251719A (en) Drainage structure of corrugated fin type heat exchanger
JP2013213603A (en) Drain structure of corrugated fin type heat exchanger
JP2010025482A (en) Heat exchanger
KR101601085B1 (en) evaporator
JP2010002152A (en) Heat exchanger and manufacturing method of heat exchanger
JP2012083070A (en) Drainage structure of corrugated fin-type heat exchanger
JP2010014329A (en) Heat exchanger
JP6771557B2 (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151102