Nothing Special   »   [go: up one dir, main page]

JP2013208003A - Permanent magnet type rotary electric machine - Google Patents

Permanent magnet type rotary electric machine Download PDF

Info

Publication number
JP2013208003A
JP2013208003A JP2012077243A JP2012077243A JP2013208003A JP 2013208003 A JP2013208003 A JP 2013208003A JP 2012077243 A JP2012077243 A JP 2012077243A JP 2012077243 A JP2012077243 A JP 2012077243A JP 2013208003 A JP2013208003 A JP 2013208003A
Authority
JP
Japan
Prior art keywords
segment
magnet
permanent magnet
electric machine
teeth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012077243A
Other languages
Japanese (ja)
Other versions
JP5596074B2 (en
Inventor
Toru Saito
徹 齊藤
Isamu Nitta
勇 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012077243A priority Critical patent/JP5596074B2/en
Priority to KR1020130024407A priority patent/KR101434091B1/en
Priority to CN201310073870.7A priority patent/CN103368294B/en
Publication of JP2013208003A publication Critical patent/JP2013208003A/en
Application granted granted Critical
Publication of JP5596074B2 publication Critical patent/JP5596074B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/03Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with a magnetic circuit specially adapted for avoiding torque ripples or self-starting problems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/02Details of the magnetic circuit characterised by the magnetic material
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets
    • H02K1/27915Magnets shaped to vary the mechanical air gap between the magnets and the stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/22Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating around the armatures, e.g. flywheel magnetos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a permanent magnet type rotary electric machine that improves demagnetization resistance of a segment magnet forming a permanent magnet-made magnetic pole due to armature reaction and overcurrent.SOLUTION: A permanent magnet type rotary electric machine including a stator having many teeth and a rotor having a permanent magnet-made segment magnet is configured to have many segment magnets arrayed in a circumferential direction with nonmagnetic gaps interposed therebetween, and a circumferentially directional corner portion of each segment magnet on a side opposed to a field magnetic gap is formed in a curved surface shape gradually increasing in opposition interval between a rotary cylindrical surface drawn by tips of the teeth 3 and a corner portion 9a of a segment magnet 9 toward an adjacent segment magnet 9.

Description

本発明の実施形態は、回転子磁極が永久磁石により構成された永久磁石型回転電機に関する。   Embodiments described herein relate generally to a permanent magnet type rotating electrical machine in which a rotor magnetic pole is formed of a permanent magnet.

この種の回転電機例えば永久磁石型ブラシレスモータ(以下単に永久磁石型モータという。)は、電機子巻線が施されたティースを持つ固定子と前記ティースの配列円周面と界磁空隙を介して対向する多数の永久磁石製磁極を円周方向に配列してなる回転子とからなる。永久磁石製磁極としては、プラスチック粉末に磁性粉末を混入して成型したプラスチック磁石と、磁性粉末を焼結してなる焼結磁石とがある。   This type of rotating electric machine, for example, a permanent magnet type brushless motor (hereinafter simply referred to as a permanent magnet type motor), includes a stator having teeth with armature windings, an arrangement circumferential surface of the teeth, and a field gap. And a rotor in which a large number of opposed permanent magnet magnetic poles are arranged in the circumferential direction. Permanent magnet magnetic poles include plastic magnets formed by mixing magnetic powder into plastic powder and sintered magnets formed by sintering magnetic powder.

プラスチック磁石からなる回転子磁極は、連続したリング状の成形体として形成されそのまま円盤状回転子フレームに収められる。これに対して焼結磁石からなる回転子磁極では、個々の磁石すなわちセグメント磁石がリング状に連続する一体物として成形し焼結すると半径方向厚みが変化する部分すなわち各セグメント磁石間に冷却にともなう収縮応力によって割れを生ずることが避けられない。   A rotor magnetic pole made of a plastic magnet is formed as a continuous ring-shaped molded body and is stored in a disk-shaped rotor frame as it is. On the other hand, in a rotor magnetic pole made of a sintered magnet, when individual magnets, that is, segment magnets, are molded and sintered as a single continuous ring, a portion whose radial thickness changes, that is, between each segment magnet, is cooled. It is inevitable that cracking occurs due to shrinkage stress.

従って、成形性及び組立性の点ではプラスチック磁石回転子の方が有利であるが、焼結磁石回転子に比べ磁石の単位体積当たりの出力が大幅に低い。プラスチック磁石が非磁性材であるプラスチック粉末(バインダー)と磁性粉末の混合物であるのに対して焼結磁石は磁性粉末のみからなるので単位体積当たりの出力が大きい。この種の永久磁石型モータでは、家電機器、情報通信機器、事務機器などの何れの機器に使用される場合でも、小型で高出力、低騒音が強く望まれ、これに向けた改善の努力がはらわれている。小型で高出力という点では、プラスチック磁石型よりも焼結磁石型モータの方が優れており、価格の面でも後者の方がかなり廉価である。なお、プラスチック磁石を用いた永久磁石型モータの低騒音化を図るための構成が特許文献1に開示されている。この特許文献1に開示された技術の主目的は、誘起起電力の正弦波近似性を高め、結果として高調波成分による出力低下の防止と低騒音化を図ろうとするもので、そのために永久磁石の固定子ティースと対向する磁極面を極中央で最大突出寸法をもつ凸曲面とし且つその円周方向両端の径方向肉厚寸法を極中央肉厚寸法の85〜88%とすることを開示している。   Therefore, although the plastic magnet rotor is more advantageous in terms of formability and assemblability, the output per unit volume of the magnet is significantly lower than that of the sintered magnet rotor. A plastic magnet is a mixture of a non-magnetic plastic powder (binder) and magnetic powder, whereas a sintered magnet is composed of only magnetic powder, so that the output per unit volume is large. In this kind of permanent magnet type motor, small size, high output and low noise are strongly desired regardless of whether it is used for home appliances, information communication equipment, office equipment, etc. I am addicted. In terms of small size and high output, the sintered magnet type motor is superior to the plastic magnet type, and the latter is considerably cheaper in terms of price. A configuration for reducing the noise of a permanent magnet type motor using a plastic magnet is disclosed in Patent Document 1. The main purpose of the technology disclosed in Patent Document 1 is to improve the sinusoidal approximation of the induced electromotive force, and as a result, to prevent output reduction due to harmonic components and reduce noise. The magnetic pole face opposite to the stator teeth is a convex curved surface having a maximum protruding dimension at the pole center, and the radial thickness at both ends in the circumferential direction is 85 to 88% of the pole center thickness. ing.

特開2003−319585号公報JP 2003-319585 A

特許文献1には開示されていないが、小型で高出力を得るために永久磁石を焼結磁石とした場合、前述のように回転子磁極は、個々のセグメント磁石を円盤状フレームに個々に接着して取り付けることになり、最初からリング状に一体成型するプラスチック磁石の場合と異なり、配列されたセグメント磁石の円周方向相互間に接着材などの非磁性支持部材を介在させるためこの部分が非磁性空隙になる。或いは支持部材を要さない場合でも空間が不可避的に発生する。発明者らは、この不可避的に生ずる磁気的空隙がモータ特性に重大な経時的悪影響を与えることを突き止めた。   Although not disclosed in Patent Document 1, if the permanent magnet is a sintered magnet in order to obtain a small size and high output, the rotor magnetic poles are individually bonded to the disk-shaped frame as described above. Unlike the case of plastic magnets that are integrally molded in the form of a ring from the beginning, this portion is not used because nonmagnetic support members such as adhesive are interposed between the circumferential directions of the segment magnets that are arranged. It becomes a magnetic gap. Or even when a support member is not required, a space is inevitably generated. The inventors have determined that this unavoidably generated magnetic air gap has a significant adverse effect on motor characteristics over time.

本発明の実施形態は、回転子磁極をなすセグメント磁石の耐減磁性を向上させることにより、モータ特性、特に誘起起電力の経時的低下や波形の経時的悪化を極力抑え得る永久磁石型回転電機を提供することを目的とする。   Embodiments of the present invention provide a permanent magnet type rotating electric machine that can suppress motor characteristics, particularly a decrease in induced electromotive force with time and a waveform with time, as much as possible by improving demagnetization resistance of a segment magnet forming a rotor magnetic pole. The purpose is to provide.

この目的を達成するための永久磁石型回転電機は、固定子巻線を巻回したティースを有する固定子と、前記ティースと界磁空隙を介して対向するように且つ互いの間に磁気的空隙を介して円周方向に配列され一極一セグメント関係をもつ焼結永久磁石製のセグメント磁石を持つ回転子とからなる回転電機であって、前記各セグメント磁石は磁束密度が極中央で高く円周方向両端に進むにつれ次第に低下する集束異方性を持ち、且つ各セグメント磁石の前記界磁空隙と対向する側の円周方向コーナ部の形状を前記ティースの先端が描く円筒面とセグメント磁石のコーナ部との対向間隔が隣り合うセグメント磁石方向に進むにつれ徐々に拡大する曲面形状に形成する。     In order to achieve this object, a permanent magnet type rotating electrical machine includes a stator having teeth around which a stator winding is wound, and a magnetic gap between the teeth so as to face each other via a field gap. A rotary electric machine comprising a rotor having a segment magnet made of sintered permanent magnets arranged in a circumferential direction via a pole, wherein each segment magnet has a high magnetic flux density at the center of the circle. The cylindrical surface on which the tip of the teeth draws the shape of the circumferential corner portion on the side facing each of the field gaps of each segment magnet has a convergence anisotropy that gradually decreases as it goes to both ends in the circumferential direction. It is formed in a curved surface shape that gradually expands as the facing distance to the corner portion advances in the direction of the adjacent segment magnet.

本発明の第1の実施形態の永久磁石型モータの要部を拡大して示す断面図Sectional drawing which expands and shows the principal part of the permanent magnet type motor of the 1st Embodiment of this invention 同モータの固定子を示す斜視図A perspective view showing a stator of the motor 同モータの回転子の斜視図Perspective view of rotor of same motor 同モータのセグメント磁石のコーナ部の曲面形状の説明図Explanatory drawing of the curved shape of the corner part of the segment magnet of the motor セグメント磁石の形状と減磁率及び誘起電圧変化率の関係を示す図Diagram showing the relationship between the shape of the segment magnet, demagnetization rate, and induced voltage change rate 第2の実施形態の図4相当図FIG. 4 equivalent view of the second embodiment 第3の実施形態の図4相当図FIG. 4 equivalent view of the third embodiment 従来のモータにおける図1相当図Fig. 1 equivalent view of a conventional motor

以下、第1の実施形態による永久磁石型回転電機例えば永久磁石型モータを図1ないし図5に基づいて説明する。固定子1は電機子巻線2を巻回する多数のティース3を放射状の円形配列に有する積層鋼板製の固定子鉄心4とからなり、取り付け対象機器例えば洗濯機のモータ支持フレームに取り付けるための取り付け部5を有する。回転子6は、鉄製ロータヨークを兼ねた円盤状の回転子フレーム7とこの回転子フレーム7の環状部8の内周面に配列された多数のセグメント磁石9とからなる。   Hereinafter, a permanent magnet type rotating electrical machine, for example, a permanent magnet type motor according to a first embodiment will be described with reference to FIGS. The stator 1 includes a stator core 4 made of a laminated steel plate having a large number of teeth 3 wound around an armature winding 2 in a radial circular arrangement, and is attached to an attachment target device such as a motor support frame of a washing machine. A mounting portion 5 is provided. The rotor 6 includes a disk-shaped rotor frame 7 also serving as an iron rotor yoke, and a number of segment magnets 9 arranged on the inner peripheral surface of the annular portion 8 of the rotor frame 7.

回転子フレーム7の平板部には、その中央に回転軸支持用の開口10有し、その周りに通風孔11を有する。前記セグメント磁石9による回転子磁極数と前記ティース3によるスロット数との比を4対3に定め、この実施形態では48極、36ティースである。前記セグメント磁石9は、磁性粉末例えばフェライト粉末を焼結して一極一セグメントに独立した形態に形成し、夫々を前記回転子フレーム7の環状部8の内面に円周方向配列となるように個々に接着により取り付ける。   The flat plate portion of the rotor frame 7 has an opening 10 for supporting a rotating shaft at the center thereof, and a ventilation hole 11 around the opening 10. The ratio of the number of rotor magnetic poles by the segment magnet 9 and the number of slots by the tooth 3 is set to 4 to 3, which is 48 poles and 36 teeth in this embodiment. The segment magnets 9 are formed by sintering magnetic powder, for example, ferrite powder, so as to be independent of each segment, and arranged in a circumferential direction on the inner surface of the annular portion 8 of the rotor frame 7. Individually attached by gluing.

この取り付けにおいて、リング状に成形されたプラスチック製永久磁石のように隣り合う磁石どうしが全く隙間のない配列に形成することは不可能であるから、図1に示すように各セグメント磁石9間に不可避的に隙間12(図3では図示を省略)が生ずる。その理由は、焼結磁石は粉末を固めて焼成し冷却する行程を経るがその冷却での収縮率が大きいため仕上がり寸法のばらつきも大きくなるためである。このばらつきが大きいと、48個のセグメント磁石9を回転子フレーム7の環状部8に配列するとき最後の一個を入れる隙間がなくなる可能性があり、これを避けるために環状部8の周長に余裕を与えておき、その余裕寸法を各セグメント磁石間に均等な隙間12として割り当てる。   In this attachment, it is impossible to form adjacent magnets in an array with no gaps like plastic permanent magnets formed in a ring shape. Therefore, as shown in FIG. Inevitably, a gap 12 (not shown in FIG. 3) is generated. The reason is that the sintered magnet undergoes a process of solidifying powder, firing and cooling, but since the shrinkage rate in the cooling is large, the variation in the finished dimensions also increases. If this variation is large, there is a possibility that there will be no gap for inserting the last one when arranging the 48 segment magnets 9 in the annular portion 8 of the rotor frame 7. To avoid this, the circumference of the annular portion 8 is increased. A margin is given, and the margin dimension is assigned as a uniform gap 12 between the segment magnets.

これにより、各セグメント磁石間に上記のような隙間12が不可避的に発生する。この隙間12は、空間であるが磁気的には磁気的空隙に相当すればよいので、この実施形態では非磁性スペーサを接着材と共に介在してセグメント磁石9の支持力を強化する。   Thereby, the above gaps 12 inevitably occur between the segment magnets. This gap 12 is a space but may be magnetically equivalent to a magnetic gap. Therefore, in this embodiment, a nonmagnetic spacer is interposed with an adhesive to reinforce the support force of the segment magnet 9.

このセグメント磁石9は、磁束数が磁極の中央で最も高く円周方向両端に進むにつれ低くなる磁気異方性(集束異方性)が与えられている。すなわち、磁化容易軸が極中央領域で半径方向を向き極中央から離れるに従い傾斜する特性持つ。このような磁気異方性を前提に、セグメント磁石9の前記ティース3の先端と界磁空隙を介して対向する面においては、その面の円周方向コーナ部9aの形状を図1に示すように角張った部分のない滑らかな曲面形状にする。すなわち、図4に示すようにティース3の先端が描く円筒面3aとセグメント磁石9のコーナ部9aとの対向間隔L1が隣り合うセグメント磁石9に進むにつれ徐々に拡大する形状である。特にこの実施形態では、図4に示すように、セグメント磁石9の界磁空隙側の面を平坦面9bとし、コーナ部9aの曲面形状をその平坦面9bを通る直線9cに正接する点9dをもつ円9eを描く円弧面形状にする。図4ではコーナ部9aが円9eの1/4円に一致する円弧であるが、セグメント磁石9の円周方向端面は想像線9fで示すように1/4円未満でカットされた形状であってもよい。   The segment magnet 9 has a magnetic anisotropy (focusing anisotropy) that has the highest number of magnetic fluxes at the center of the magnetic pole and decreases as it goes to both ends in the circumferential direction. That is, the axis of easy magnetization has a characteristic that it is oriented in the radial direction in the pole center region and is inclined as it is away from the pole center. On the premise of such magnetic anisotropy, the shape of the circumferential corner portion 9a on the surface of the segment magnet 9 facing the tip of the tooth 3 via the field gap is as shown in FIG. A smooth curved surface with no squared corners. That is, as shown in FIG. 4, the facing distance L <b> 1 between the cylindrical surface 3 a drawn by the tip of the tooth 3 and the corner portion 9 a of the segment magnet 9 gradually increases as the segment magnet 9 is adjacent. In particular, in this embodiment, as shown in FIG. 4, the surface of the segment magnet 9 on the field gap side is a flat surface 9b, and the curved surface shape of the corner portion 9a is a point 9d tangent to a straight line 9c passing through the flat surface 9b. A circular arc shape is drawn to draw a circle 9e. In FIG. 4, the corner portion 9a is an arc that coincides with a quarter circle of the circle 9e. However, the circumferential end surface of the segment magnet 9 has a shape cut by less than a quarter circle as indicated by an imaginary line 9f. May be.

上記した実施形態の構成を持つこの永久磁石型ブラシレスモータは次のような効果を期待することができる。モータの運転状態では、電機子巻線2からの磁束による電機子反作用を完全には回避できず、このため電機子反作用による逆向き磁界がセグメント磁石9に作用しこの磁石9が減磁作用を受ける。この減磁作用は異常負荷がかかった大電流時に著しくなる。これを図8に示す従来構成により説明すると、電機子巻線の通電によりティース(ロ)から発生した磁束φ1の一部が円周方向に隣り合う二つのセグメント磁石(イ)間の空隙を逆向き(セグメント磁石(イ)からの磁束φ2に対して逆向き)に通過する還流(逆向き磁界)が避けられないはずである。   This permanent magnet type brushless motor having the configuration of the above-described embodiment can be expected to have the following effects. In the operating state of the motor, the armature reaction due to the magnetic flux from the armature winding 2 cannot be completely avoided. Therefore, a reverse magnetic field due to the armature reaction acts on the segment magnet 9 and the magnet 9 exerts a demagnetizing action. receive. This demagnetization action becomes significant at a large current under an abnormal load. This will be explained by the conventional configuration shown in FIG. 8. A part of the magnetic flux φ1 generated from the teeth (b) by energization of the armature winding reverses the gap between the two segment magnets (a) adjacent in the circumferential direction. Reflux (reverse magnetic field) passing in the direction (opposite to the magnetic flux φ2 from the segment magnet (a)) should be unavoidable.

この逆向きに還流する磁束は、二つのセグメント磁石間の空隙よりも磁気抵抗の小さいセグメント磁石のコーナ部(ハ)を集中して通過し、このコーナ部(ハ)が磁路長の短い角張った形状であるとその集中が一層増し、この部分を強く減磁させる。磁石は層が薄いほど逆向き磁界により減磁し易いからである。この実施形態では、セグメント磁石9の円周方向コーナ部9aの形状を曲面形状にした結果、そのコーナ部9aの前記ティース3の回転面3aとの対向間隔L1がセグメント磁石9の中央領域すなわち平坦面9b部分に比べ円周方向に進むにつれ徐々に拡大し、その分磁気抵抗が増大をする。   The magnetic flux returning in the opposite direction concentrates and passes through the corner (c) of the segment magnet having a smaller magnetic resistance than the gap between the two segment magnets, and the corner (c) has an angular shape with a short magnetic path length. If the shape is too high, the concentration increases further, and this part is strongly demagnetized. This is because the thinner the magnet, the easier it is to demagnetize by a reverse magnetic field. In this embodiment, as a result of making the shape of the circumferential corner portion 9a of the segment magnet 9 into a curved surface shape, the interval L1 between the corner portion 9a and the rotating surface 3a of the tooth 3 is the central region of the segment magnet 9, that is, flat. As it advances in the circumferential direction as compared with the surface 9b portion, it gradually expands, and the magnetic resistance increases accordingly.

その結果、コーナ部9aを逆方向磁束が集中して通過することが緩和され、且つ逆向き磁界に対する磁石層も比較的厚い形状となるので、この部分の耐減磁性の低下が免れる。また、この実施形態が発明の対象とするモータのように隣り合う磁石間に非磁性空隙が不可避的に存在する場合、セグメント磁石のコーナ部が図8のように直角のままであると、この空隙(ニ)を通じて隣り合う異極磁石9から逆方向磁束を受け減磁作用を運転停止中でも常に受けてしまう。この実施形態では、コーナ部9aが曲面形状であることから隣り合う磁石との間の磁路長が拡大するのでこのような減磁作用も回避できる。   As a result, concentrated magnetic flux passing through the corner portion 9a is alleviated and the magnet layer with respect to the reverse magnetic field has a relatively thick shape. Further, when this embodiment inevitably has a non-magnetic gap between adjacent magnets as in the motor of the invention, if the corner part of the segment magnet remains at a right angle as shown in FIG. A reverse magnetic flux is received from the adjacent different-polar magnet 9 through the gap (d), and the demagnetizing action is always received even when the operation is stopped. In this embodiment, since the corner portion 9a has a curved surface, the magnetic path length between adjacent magnets is increased, so that such demagnetization action can be avoided.

また、セグメント磁石9のコーナ部9aが経時的に減磁されると同磁石の全域に設定された当初の磁束密度の正弦波分布も経時的に変化し、起電力の波形ひずみが拡大する。これと同時に誘起起電力も低下するのでその起電力の大きさをデータとするトルク制御や速度制御では制御精度が低下する。これに対してこの実施形態では、耐減磁性の向上によりモータの電磁気的特性を長期にわたり所期通りに維持されるので、誘起電圧波形の経時的なひずみ変化、従って経時的な出力低下、経時的な騒音増大の防止を期待できる。更に、起電力の経時的低下を避け得るのでモータの制御定数を変えることなく、所期通りの制御精度、良好なモータ特性を長期にわたり維持できる。特にこの実施態様のモータのようにセグメント磁石9が48個と相当数に及ぶ構成では、個々のセグメント磁石の減磁が及ぼす影響が極めて大であることから見ればこの実施態様の有用性は極めて高いものがある。   Further, when the corner portion 9a of the segment magnet 9 is demagnetized over time, the sine wave distribution of the initial magnetic flux density set over the entire area of the magnet also changes over time, and the waveform distortion of the electromotive force increases. At the same time, the induced electromotive force is also reduced, so that the control accuracy is reduced in torque control and speed control using the magnitude of the electromotive force as data. In contrast, in this embodiment, since the electromagnetic characteristics of the motor are maintained as expected over a long period of time by improving the anti-magnetism resistance, the change in strain of the induced voltage waveform over time, and hence the decrease in output over time, Can be expected to prevent noise increase. Furthermore, since the electromotive force can be prevented from decreasing with time, the desired control accuracy and good motor characteristics can be maintained over a long period of time without changing the control constant of the motor. In particular, in the configuration in which the number of segment magnets 9 is as large as 48, as in the motor of this embodiment, the demagnetization of each segment magnet has an extremely large influence, so that the usefulness of this embodiment is extremely high. There is something expensive.

この実施形態の実現に至るテストデータの一部を図5に示す。図5の(A)はテスト資料であるロータのセグメント磁石9の形状を示しており、このセグメント磁石9の厚さ比率Zの変化に対する磁石の減磁率αの変化を図5の(B)に、誘起電圧の変化率βを図5の(C)に示す。ここで磁石の円周方向両端以外の主要部分の半径方向の平均的厚さをYとし、その両端のコーナ部9aの先端面の厚さをX(X≦Y)としたとき、X/Yを厚さ比率Zと称している。コーナ部9aの曲面の始点をP1とし、曲面の終点をP2としたとき厚さXはセグメント磁石9取り付け面(ティース3と対向しない側の面)から前記終点P2までの寸法をいう。   FIG. 5 shows a part of the test data leading to the realization of this embodiment. FIG. 5A shows the shape of the segment magnet 9 of the rotor, which is a test material. FIG. 5B shows the change in the magnet demagnetization factor α with respect to the change in the thickness ratio Z of the segment magnet 9. The change rate β of the induced voltage is shown in FIG. Here, when the average thickness in the radial direction of the main part other than both ends in the circumferential direction of the magnet is Y and the thickness of the tip surface of the corner portion 9a at both ends is X (X ≦ Y), X / Y Is referred to as the thickness ratio Z. When the start point of the curved surface of the corner portion 9a is P1, and the end point of the curved surface is P2, the thickness X is the dimension from the segment magnet 9 attachment surface (the surface not facing the teeth 3) to the end point P2.

テストはセグメント磁石9のコーナ部9aを曲面の始点P1位置を変えずにX寸法を変化させる(P2位置を変化させる。)という形状変更を行い(従ってコーナ部9aの曲率半径が変化する)、その各形状(各厚さ比率Z)について減磁率α及び誘起電圧の変化率βを測定した。この測定は、厚さ比率100%、88%、78%、73%の4段階について行い、図5の(B)(C)を作成した。ここで減磁率α及び誘起電圧の変化率βとは、X=Yとしたときの減磁量及び誘起電圧値でXをYに対して変化させたときの各値を除した値をいう。   The test is performed by changing the shape of the corner portion 9a of the segment magnet 9 without changing the position of the starting point P1 of the curved surface (changing the P2 position) (therefore, the radius of curvature of the corner portion 9a changes) For each shape (each thickness ratio Z), the demagnetization factor α and the change rate β of the induced voltage were measured. This measurement was performed for four stages of thickness ratios of 100%, 88%, 78%, and 73%, and FIGS. 5B and 5C were created. Here, the demagnetization factor α and the change rate β of the induced voltage are values obtained by dividing each value when X is changed with respect to Y by the amount of demagnetization and the induced voltage when X = Y.

図5の(B)によれば厚さ比率Zの値が小さくなるにつれ、すなわちコーナ部9aの形状が矩形(Z=100%)から円に近くなるにつれ減磁率αが低くなること、すなわち耐減磁性の向上が認められる。また、図5の(C)によれば、厚さ比率Zが小さくなるにつれ誘起起電力が低下することが認められ、これは磁石の体積が大きいほど誘起起電力が大きくなる一般的特性に由来する。図5の(B)及び(C)からセグメント磁石9のコーナ部9aの厚さ比率Zが小さくなるにつれ耐減磁性が上昇するのに対して誘起起電力が低下することが認められ、これら相反する特性を考慮に入れるとコーナ部9aの形状は、厚さ比率Zでいうと90%を超えず好ましくは80%以下で且つ70%以上が実用的であると評価できる。   According to FIG. 5B, the demagnetization factor α decreases as the value of the thickness ratio Z decreases, that is, as the shape of the corner portion 9a approaches from a rectangle (Z = 100%) to a circle. An improvement in demagnetization is observed. Further, according to FIG. 5C, it is recognized that the induced electromotive force decreases as the thickness ratio Z decreases. This is due to the general characteristic that the induced electromotive force increases as the volume of the magnet increases. To do. 5 (B) and 5 (C), it is recognized that as the thickness ratio Z of the corner portion 9a of the segment magnet 9 becomes smaller, the resistance to demagnetization increases while the induced electromotive force decreases. In consideration of the characteristics, the shape of the corner portion 9a does not exceed 90% in terms of the thickness ratio Z, preferably 80% or less, and 70% or more can be evaluated as practical.

この実施形態では、回転子磁極数であるセグメント磁石数と前記ティースによる固定子スロット数との比を4対3に定めているので、セグメント磁石9のコーナ部9に受ける減磁作用が低下する。これはセグメント磁石3の厚み(径方向寸法)を薄くすることができることを意味する。これに対して比率を2対3にするとセグメント磁石9aの電気角幅がティース3のそれよりも大きくなって逆向き磁界が一つのセグメント磁石9aに集中してしまい、耐減磁性が低下する。   In this embodiment, since the ratio of the number of segment magnets, which is the number of rotor magnetic poles, to the number of stator slots by the teeth is set to 4 to 3, the demagnetizing action received by the corner portion 9 of the segment magnet 9 is reduced. . This means that the thickness (diameter dimension) of the segment magnet 3 can be reduced. On the other hand, when the ratio is 2 to 3, the electrical angle width of the segment magnet 9a is larger than that of the teeth 3, and the reverse magnetic field is concentrated on one segment magnet 9a, so that the demagnetization resistance decreases.

図6に第2の実施形態として示すように、セグメント磁石9のティース3と対向する面の形態は、図4では両コーナ部9a間すなわち中央区域を平坦面9bとしているのに対して凸曲面9gをなす形状であってもよい。この場合、中央区域の凸曲面9gの曲率半径はコーナ部9aの曲率半径よりも大きい値にすると共に、コーナ部9aと凸曲面9gとの境界を連続した曲面に形成する。   As shown in FIG. 6 as the second embodiment, the shape of the surface of the segment magnet 9 facing the teeth 3 is a convex curved surface in FIG. The shape which makes 9g may be sufficient. In this case, the radius of curvature of the convex curved surface 9g in the central area is set to a value larger than the radius of curvature of the corner portion 9a, and the boundary between the corner portion 9a and the convex curved surface 9g is formed as a continuous curved surface.

図7に第3の実施形態として示すように、セグメント磁石9のティース3と対向する面の形態は、両コーナ部9a間すなわち中央区域が凹曲面9hをなす形状であってもよい。この形態では、このコーナ部9aの曲率半径よりも中央区域の凹曲面9gの曲率半径の方を大きい値にし、且つ上記のようにコーナ部9aと凹曲面9hとの境界を連続した曲面に形成する。   As shown in FIG. 7 as the third embodiment, the shape of the surface of the segment magnet 9 that faces the teeth 3 may be a shape between the corner portions 9a, that is, the central area forms a concave curved surface 9h. In this embodiment, the radius of curvature of the concave curved surface 9g in the central area is larger than the radius of curvature of the corner portion 9a, and the boundary between the corner portion 9a and the concave curved surface 9h is formed as a continuous curved surface as described above. To do.

なお、本発明の実施形態を説明したが、この実施形態は例として提示したものであり発明の範囲を限定することは意図していない。これら新規な実施形態は、耐減磁性の向上に向けた他の様々な形態に変形して実施することが可能であり、発明の要旨を逸脱しない範囲で種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   In addition, although embodiment of this invention was described, this embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented by being modified to various other forms for improving the demagnetization resistance, and various omissions, replacements, and modifications can be made without departing from the scope of the invention. Can do. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

図面中、1は固定子、2は電機子巻線、3はティース、4は固定子鉄心、6は回転子、7は回転子フレーム、9はセグメント磁石、9aはコーナ部、9bは平坦面、9gは凸曲面、9hは凹曲面、12は非磁性空隙である。
In the drawings, 1 is a stator, 2 is an armature winding, 3 is a tooth, 4 is a stator core, 6 is a rotor, 7 is a rotor frame, 9 is a segment magnet, 9a is a corner portion, and 9b is a flat surface. 9g is a convex curved surface, 9h is a concave curved surface, and 12 is a non-magnetic gap.

Claims (5)

固定子巻線を巻回したティースを有する固定子と、前記ティースと界磁空隙を介して対向するように且つ互いの間に磁気的空隙を介して円周方向に配列され一極一セグメント関係をもつ焼結永久磁石製のセグメント磁石を持つ回転子とからなる回転電機であって、前記各セグメント磁石は磁束密度が極中央で高く円周方向両端に進むにつれ次第に低下する磁気特性を持ち、且つ各セグメント磁石の前記界磁空隙と対向する側の円周方向コーナ部の形状を前記ティースの先端が描く円筒面とセグメント磁石のコーナ部との対向間隔が隣り合うセグメント磁石に進むにつれ徐々に拡大する曲面形状に形成したことを特徴とする永久磁石型回転電機。   A stator having teeth around which a stator winding is wound, and a pole-to-segment relationship arranged in a circumferential direction so as to be opposed to the teeth via a magnetic field gap and between each other via a magnetic gap A rotary electric machine comprising a rotor having segment magnets made of sintered permanent magnets, wherein each of the segment magnets has a magnetic property that the magnetic flux density is high at the pole center and gradually decreases toward both ends in the circumferential direction, Further, as the distance between the cylindrical surface drawn by the tip of the tooth and the corner portion of the segment magnet, the shape of the circumferential corner portion of the segment magnet on the side facing the field air gap gradually advances to the adjacent segment magnet. A permanent magnet type rotating electric machine characterized by being formed into an expanding curved surface shape. 各セグメント磁石の磁気異方性が集束異方性であることを特徴とする請求項1に記載の永久磁石型回転電機。   The permanent magnet type rotating electric machine according to claim 1, wherein the magnetic anisotropy of each segment magnet is a focusing anisotropy. 前記セグメント磁石の前記ティースと対向する面を平坦面とし前記コーナ部の曲面形状を前記平坦面を通る直線に正接する円弧面としたことを特徴とする請求項1または2のいずれか一つに記載の永久磁石型回転電機。   The surface of the segment magnet facing the teeth is a flat surface, and the curved surface shape of the corner portion is an arc surface tangent to a straight line passing through the flat surface. The permanent magnet type rotating electric machine described. 回転子は環状部を形成した鉄製ロータヨークを有しその環状部に前記セグメント磁石が配列されていることを特徴とする請求項1ないし3の何れか一つに記載の永久磁石型回転電機。   The permanent magnet type rotating electric machine according to any one of claims 1 to 3, wherein the rotor has an iron rotor yoke having an annular portion, and the segment magnets are arranged in the annular portion. 前記セグメント磁石のコーナ部の曲面形状は、その曲面のティースと対向する側の始点をP1としその終点をP2とし、セグメント磁石のティースと対向しない側の面からP1及びP2までの夫々の寸法を夫々Y及びXとしたとき、70%≦X/Y≦80%としたことを特徴とする請求項1ないし4の何れか一つに記載の永久磁石型回転電機。   The curved surface shape of the corner portion of the segment magnet has P1 as the starting point on the side facing the teeth of the curved surface and P2 as the ending point, and the dimensions from the surface not facing the teeth of the segment magnet to P1 and P2. The permanent magnet type rotating electric machine according to any one of claims 1 to 4, wherein when Y and X are respectively set, 70%? X / Y? 80%.
JP2012077243A 2012-03-29 2012-03-29 Permanent magnet type rotating electric machine Active JP5596074B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012077243A JP5596074B2 (en) 2012-03-29 2012-03-29 Permanent magnet type rotating electric machine
KR1020130024407A KR101434091B1 (en) 2012-03-29 2013-03-07 Permanent magnet type rotating electric machine
CN201310073870.7A CN103368294B (en) 2012-03-29 2013-03-08 Permanent magnet type electric rotary machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012077243A JP5596074B2 (en) 2012-03-29 2012-03-29 Permanent magnet type rotating electric machine

Publications (2)

Publication Number Publication Date
JP2013208003A true JP2013208003A (en) 2013-10-07
JP5596074B2 JP5596074B2 (en) 2014-09-24

Family

ID=49369046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012077243A Active JP5596074B2 (en) 2012-03-29 2012-03-29 Permanent magnet type rotating electric machine

Country Status (3)

Country Link
JP (1) JP5596074B2 (en)
KR (1) KR101434091B1 (en)
CN (1) CN103368294B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211492A (en) * 2014-04-24 2015-11-24 株式会社東芝 Motor, laundry apparatus, and manufacturing method of motor
JP2020039251A (en) * 2019-10-29 2020-03-12 日立金属株式会社 Motor sintered magnet, manufacturing method thereof, and permanent magnet type synchronous motor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105827035A (en) * 2016-05-17 2016-08-03 浙江绿源电动车有限公司 Magnetic steel sheet and processing method thereof, rotor, motor, and electric vehicle
US11349379B2 (en) 2017-01-04 2022-05-31 Lg Innotek Co., Ltd. Motor and transmission
CN111512519B (en) * 2017-12-28 2022-10-11 株式会社电装 Rotating electrical machine
CN108173367A (en) * 2018-02-12 2018-06-15 芜湖长捷航空动力科技有限责任公司 A kind of one-pass molding generator outer rotor

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534857A (en) * 1978-09-04 1980-03-11 Hitachi Ltd Rotor for outer-rotor magnet generator and its manufacturing method
JPS63294244A (en) * 1987-05-25 1988-11-30 Meidensha Electric Mfg Co Ltd Permanent magnet type rotating machine
JP3013899U (en) * 1995-01-23 1995-07-25 国産電機株式会社 Flywheel magnet rotor
JP2002084695A (en) * 2000-06-30 2002-03-22 Kusatsu Electric Co Ltd Permanent magnet type motor
JP2006094604A (en) * 2004-09-22 2006-04-06 Toshiba Corp Permanent magnet motor, washing machine, and manufacturing method for anisotropic magnet
JP2008514174A (en) * 2004-09-22 2008-05-01 シーメンス アクチエンゲゼルシヤフト Permanent magnet synchronous machine
WO2008146437A1 (en) * 2007-05-31 2008-12-04 Panasonic Corporation Electric motor
JP2011166868A (en) * 2010-02-05 2011-08-25 Mitsubishi Electric Corp Permanent magnet rotary electric machine
WO2011147935A1 (en) * 2010-05-27 2011-12-01 Idm S.R.L. Permanent magnet multipole alternator for electrical energy generation systems

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3017953B2 (en) * 1996-07-24 2000-03-13 株式会社東芝 Motor rotor and method of manufacturing the same
JP3691345B2 (en) * 2000-05-25 2005-09-07 三菱電機株式会社 Permanent magnet type motor
US7898137B2 (en) * 2006-08-30 2011-03-01 Shin-Etsu Chemical Co., Ltd. Permanent magnet and permanent magnet rotating machine
JP5228582B2 (en) * 2008-04-04 2013-07-03 三菱電機株式会社 Permanent magnet type rotating electric machine and electric power steering device using the same
CN102214958A (en) * 2010-04-06 2011-10-12 上海海立(集团)股份有限公司 Stator and rotor structure of permanent magnet motor
EP2378635A1 (en) * 2010-04-13 2011-10-19 Siemens Aktiengesellschaft Electrical machine and permanent-magnet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5534857A (en) * 1978-09-04 1980-03-11 Hitachi Ltd Rotor for outer-rotor magnet generator and its manufacturing method
JPS63294244A (en) * 1987-05-25 1988-11-30 Meidensha Electric Mfg Co Ltd Permanent magnet type rotating machine
JP3013899U (en) * 1995-01-23 1995-07-25 国産電機株式会社 Flywheel magnet rotor
JP2002084695A (en) * 2000-06-30 2002-03-22 Kusatsu Electric Co Ltd Permanent magnet type motor
JP2006094604A (en) * 2004-09-22 2006-04-06 Toshiba Corp Permanent magnet motor, washing machine, and manufacturing method for anisotropic magnet
JP2008514174A (en) * 2004-09-22 2008-05-01 シーメンス アクチエンゲゼルシヤフト Permanent magnet synchronous machine
WO2008146437A1 (en) * 2007-05-31 2008-12-04 Panasonic Corporation Electric motor
JP2011166868A (en) * 2010-02-05 2011-08-25 Mitsubishi Electric Corp Permanent magnet rotary electric machine
WO2011147935A1 (en) * 2010-05-27 2011-12-01 Idm S.R.L. Permanent magnet multipole alternator for electrical energy generation systems

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015211492A (en) * 2014-04-24 2015-11-24 株式会社東芝 Motor, laundry apparatus, and manufacturing method of motor
JP2020039251A (en) * 2019-10-29 2020-03-12 日立金属株式会社 Motor sintered magnet, manufacturing method thereof, and permanent magnet type synchronous motor

Also Published As

Publication number Publication date
KR20130111288A (en) 2013-10-10
CN103368294A (en) 2013-10-23
KR101434091B1 (en) 2014-08-25
JP5596074B2 (en) 2014-09-24
CN103368294B (en) 2016-06-29

Similar Documents

Publication Publication Date Title
JP5596074B2 (en) Permanent magnet type rotating electric machine
JP6055725B2 (en) Axial type rotating electric machine using rotor and rotor
US10277099B2 (en) Synchronous motor
JPH05153744A (en) Permanent magnet field type rotor
JP2013247781A (en) Rotor and rotary electric machine having the same
JP2012228104A (en) Permanent magnet-embedded motor
JP2012100498A (en) Stator core
JP2013188131A (en) Permanent magnet motor
US20070252465A1 (en) Outer-rotor-type magneto generator
JP2011078202A (en) Axial gap motor
JP2018519782A (en) Permanent magnet motor
WO2014195999A1 (en) Synchronous motor
JP5490171B2 (en) Rotor and synchronous motor
KR20060025730A (en) Permanent magnet type motor
JP2017041979A (en) Electric motor
JP5481102B2 (en) motor
JP2009254030A (en) Motor
JP5946258B2 (en) PM stepping motor
JP2008187863A (en) Axial gap rotary electric machine and compressor
JP6012046B2 (en) Brushless motor
JP2010268650A (en) Axial gap type rotary electric machine
JP2013051761A (en) Permanent magnet type rotating electrical machine
JP2017028844A (en) motor
JP5340809B2 (en) Magnet for motor and motor
JP4838160B2 (en) Method for manufacturing rotor of synchronous motor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140806

R151 Written notification of patent or utility model registration

Ref document number: 5596074

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350