Nothing Special   »   [go: up one dir, main page]

JP2013111553A - Water treatment system - Google Patents

Water treatment system Download PDF

Info

Publication number
JP2013111553A
JP2013111553A JP2011261785A JP2011261785A JP2013111553A JP 2013111553 A JP2013111553 A JP 2013111553A JP 2011261785 A JP2011261785 A JP 2011261785A JP 2011261785 A JP2011261785 A JP 2011261785A JP 2013111553 A JP2013111553 A JP 2013111553A
Authority
JP
Japan
Prior art keywords
water treatment
water
organic compound
gas
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011261785A
Other languages
Japanese (ja)
Other versions
JP5948822B2 (en
Inventor
Hiroki Kono
大樹 河野
Tsutomu Sugiura
勉 杉浦
Mikinori Sugita
幹典 杉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2011261785A priority Critical patent/JP5948822B2/en
Publication of JP2013111553A publication Critical patent/JP2013111553A/en
Application granted granted Critical
Publication of JP5948822B2 publication Critical patent/JP5948822B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Physical Water Treatments (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a water treatment system capable of decreasing the regenerating energy quantity of an adsorption element and improving a heat recovery efficiency while keeping the adsorption performance to decrease the regenerating energy of the adsorption element as a problem to be solved.SOLUTION: The water treatment system which purifies water by adsorbing and removing an organic compound from the water containing the organic compound, includes: a water treatment apparatus in which an adsorption process in which a water containing the organic compound is passed through the adsorption element including an active carbon fiber with a fiber diameter of 21-40 μm and a toluene adsorption capacity of 200-750 mg/g to adsorb the organic compound onto the adsorption element, and a desorption process in which a high temperature heated gas is passed through the adsorption element to make desorption of the organic compound adsorbed onto the adsorption element to exhaust the desorbed gas containing the organic compound, are alternatively repeated; and a combustion apparatus for decomposing the organic compound in the desorption gas generated in the desorption process of the water treatment apparatus and exhausting the treated gas.

Description

本発明は、有機化合物を含有する水から有機化合物を除去して浄化する装置に関し、特に各種工場、研究施設等から排出される有機溶剤等の有機化合物を含有した産業排水の浄化に用いられる装置に関するものである。   The present invention relates to an apparatus for removing and purifying organic compounds from water containing organic compounds, and in particular, an apparatus used for purifying industrial wastewater containing organic compounds such as organic solvents discharged from various factories and research facilities. It is about.

従来、有機化合物など被吸着物を含有する水を浄化する装置として、活性炭などの吸着材からなる交換可能な吸着素子を用いた交換式吸着装置が広く用いられている。交換式吸着装置においては、被吸着物を含有する水が吸着材を充填された槽に流入されて、吸着材が被吸着物を吸着することにより、水中に含まれる被吸着物が除去される。   Conventionally, as an apparatus for purifying water containing an adsorbent such as an organic compound, an exchangeable adsorption apparatus using a replaceable adsorption element made of an adsorbent such as activated carbon has been widely used. In the exchangeable adsorption device, water containing an adsorbent is introduced into a tank filled with an adsorbent, and the adsorbent adsorbs the adsorbent to remove the adsorbate contained in the water. .

しかしながら、交換式吸着装置は被吸着物を一定時間吸着し続け、吸着材の吸着能力が飽和に達すれば、新品への交換、もしくは一度装置から吸着材を取り出して再生が必要となって連続浄化ができず、更に、水の浄化は、空気の浄化と異なり、微生物の繁殖が不可避であり、吸着材の寿命を縮めることもあって、交換および再生への労力、コスト増大が問題であった。
また、従来の浄化装置では、吸着材使用開始時と使用終了前では吸着性能が変化しており、安定に浄化処理することができないという問題点も有していた。
However, the exchangeable adsorption device continues to adsorb the adsorbed material for a certain period of time, and if the adsorption capacity of the adsorbent reaches saturation, it is necessary to replace it with a new one, or to remove the adsorbent from the device once and regenerate it continuously. Furthermore, unlike the purification of air, the purification of water is unavoidable for the growth of microorganisms, and the life of the adsorbent may be shortened. .
Further, the conventional purification apparatus has a problem that the adsorption performance changes between the start of use of the adsorbent and before the end of use, and the purification process cannot be stably performed.

特許文献1には、有機化合物など被吸着物を含有する水を連続浄化可能で、基本的に吸着材の交換の必要がない水処理装置が記載されている。この水処理装置においては、活性炭素繊維を含む吸着素子に被吸着物を含有する水を通流させて被吸着物を吸着させる吸着工程、その後被吸着物を吸着した吸着素子に高速のガスを通風させて吸着素子に付着する付着水を除去するパージ(脱水)工程、高温の加熱ガスを通気させることにより、吸着素子に吸着された被吸着物を脱離させて吸着素子を再生する脱着工程を連続的に行なっている。   Patent Document 1 describes a water treatment apparatus that can continuously purify water containing an adsorbed substance such as an organic compound and basically does not require replacement of an adsorbent. In this water treatment apparatus, an adsorption process in which water containing an adsorbed substance is caused to flow through an adsorbing element containing activated carbon fibers to adsorb the adsorbing object, and then a high-speed gas is applied to the adsorbing element that adsorbs the adsorbing object. A purge (dehydration) process for removing adhering water adhering to the adsorbing element by ventilating, and a desorption process for regenerating the adsorbing element by desorbing the adsorbed material adsorbed on the adsorbing element by ventilating high-temperature heated gas Is performed continuously.

また、特許文献2の水処理システムにおいては、特許文献1記載の水処理装置の再生時に排出される有機化合物を含む脱着ガスを、燃焼装置に通して、有機化合物を分解させている。   Moreover, in the water treatment system of patent document 2, the desorption gas containing the organic compound discharged | emitted at the time of reproduction | regeneration of the water treatment apparatus of patent document 1 is passed through a combustion apparatus, and the organic compound is decomposed | disassembled.

特許文献1の水処理装置において、吸着素子の再生エネルギーとしては、吸着素子に吸着された被吸着物の脱離のほかに、吸着素子に吸着した水の脱離および吸着素子表面に残存した付着水の乾燥に使用される加熱ガスの供給に必要なエネルギーが必要となる。そのため、付着水を高効率に脱水除去させることができれば、吸着素子の再生エネルギーの削減が可能となる。   In the water treatment apparatus of Patent Document 1, as the regeneration energy of the adsorption element, in addition to the desorption of the adsorbed object adsorbed on the adsorption element, the desorption of water adsorbed on the adsorption element and the adhesion remaining on the surface of the adsorption element The energy required to supply the heated gas used for water drying is required. Therefore, if the adhering water can be dehydrated and removed with high efficiency, the regeneration energy of the adsorption element can be reduced.

また、特許文献1の水処理装置において、吸着素子の再生エネルギーとしては、加熱ガスの給気手段である送風機やブロワーなどに使用される電気エネルギーがかかるが、吸着素子に含まれる吸着材の圧力損失が高い場合、給気に使用する電気エネルギーが多くかかる。そのため、低圧力損失な吸着材を吸着素子として使用することができれば、吸着素子の再生エネルギーの削減が可能となる。   Further, in the water treatment apparatus of Patent Document 1, as the regeneration energy of the adsorption element, electric energy used for a blower or a blower that is a heating gas supply means is applied, but the pressure of the adsorbent contained in the adsorption element When the loss is high, a lot of electric energy is used for supplying air. Therefore, if an adsorbent with a low pressure loss can be used as the adsorbing element, the regeneration energy of the adsorbing element can be reduced.

また、特許文献2の水処理システムにおいて、水処理装置の再生効率が向上した場合、再生に使用するガス量は少なく済むので、燃焼装置の小型化が可能となったり、再生後のガス中の有機化合物の濃度が高くなり、燃焼装置の処理ガス温度が上昇するので、熱回収し易くなる。   Further, in the water treatment system of Patent Document 2, when the regeneration efficiency of the water treatment device is improved, the amount of gas used for regeneration is small, so that the combustion device can be downsized or the gas in the gas after regeneration can be reduced. Since the concentration of the organic compound increases and the processing gas temperature of the combustion apparatus rises, it becomes easy to recover heat.

特開2008−188493号公報JP 2008-188493 A 特開2008−188492号公報JP 2008-188492 A

本発明は、吸着素子の再生エネルギーの削減を課題としてなされたものであって、吸着性能を維持しながら、吸着素子の再生エネルギー量を低減することができ、熱回収効率を向上できる、水処理システムを提供することを課題とする。   The present invention has been made with the object of reducing the regeneration energy of the adsorption element, and is capable of reducing the amount of regeneration energy of the adsorption element while maintaining the adsorption performance, thereby improving the heat recovery efficiency. The problem is to provide a system.

本発明者らは鋭意検討した結果、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。すなわち本発明は以下の構成からなる。   As a result of intensive studies, the present inventors have found that the above problems can be solved by the following means, and have reached the present invention. That is, the present invention has the following configuration.

1.有機化合物を含有する水から有機化合物を吸着除去して水を浄化する水処理システムであって、
有機化合物を含有する水を、繊維径21〜40μm、トルエン吸着容量200〜750mg/gの活性炭素繊維を含む吸着素子に通流させて該吸着素子に有機化合物を吸着させる吸着工程と、該吸着素子に高温の加熱ガスを通流させて該吸着素子に吸着された有機化合物を脱着させて有機化合物を含む脱着ガスを排出する脱着工程とを、交互に繰り返す水処理装置と、
該水処理装置の脱着工程にて発生した脱着ガス中の有機化合物を分解して、処理ガスを排出する燃焼装置とを、
有する水処理システム。
2.前記水処理装置の脱着工程の前に、高速ガスを前記吸着素子に通風させて、該吸着素子表面に付着する水分を除去する脱水工程を含む上記1に記載の水処理システム。
3.前記吸着素子表面に付着する水分を、前記吸着素子の前に返送させて、再度、該吸着素子に吸着させる上記2に記載の水処理システム。
4.ガスと水を接触させることで、水中の有機化合物を曝気除去させ、有機化合物を含む曝気ガスを排出させる曝気装置で、有機化合物を含有する水を処理後、その排水を上記1の水処理装置に導入する上記1〜3のいずれかに記載の水処理システム。
5.前記曝気装置から排出される曝気ガスを、上記1の水処理装置から排出される脱着ガスと混合させて、前記燃焼装置に導入する上記1〜4のいずれかに記載の水処理システム。
6.前記燃焼装置から排出される処理ガスを熱交換し、前記水処理装置の加熱ガスを予熱する上記1〜5のいずれかに記載の水処理システム。
7.前記活性炭素繊維が、フェノール樹脂に、脂肪酸アミド類、リン酸エステル類、セルロース類よりなる群から選択される少なくとも1種の化合物を混合した混合物を紡糸し、硬化して得たフェノール系繊維を炭化・賦活して得られる活性炭素繊維である上記1〜6のいずれかに記載の水処理システム。
1. A water treatment system for purifying water by adsorbing and removing organic compounds from water containing organic compounds,
An adsorption step in which water containing an organic compound is passed through an adsorption element containing activated carbon fibers having a fiber diameter of 21 to 40 μm and a toluene adsorption capacity of 200 to 750 mg / g to adsorb the organic compound to the adsorption element; A water treatment device that alternately repeats a desorption step of passing a high-temperature heating gas through the element to desorb an organic compound adsorbed on the adsorption element and discharging a desorption gas containing the organic compound;
A combustion apparatus for decomposing an organic compound in the desorption gas generated in the desorption process of the water treatment apparatus and discharging the treatment gas;
Having water treatment system.
2. 2. The water treatment system according to 1, further comprising a dehydration step of removing moisture adhering to the surface of the adsorption element by passing a high-speed gas through the adsorption element before the desorption process of the water treatment apparatus.
3. 3. The water treatment system according to 2 above, wherein moisture adhering to the surface of the adsorbing element is returned before the adsorbing element and is adsorbed by the adsorbing element again.
4). The aeration apparatus for removing aeration gas containing water by contacting a gas with water, and treating the water containing the organic compound after treating the water containing the organic compound. 4. The water treatment system according to any one of 1 to 3 introduced into 1.
5. 5. The water treatment system according to any one of 1 to 4, wherein the aeration gas discharged from the aeration apparatus is mixed with a desorption gas discharged from the water treatment apparatus 1 and introduced into the combustion apparatus.
6). The water treatment system according to any one of the above 1 to 5, wherein the treatment gas discharged from the combustion device is subjected to heat exchange, and the heated gas of the water treatment device is preheated.
7). A phenolic fiber obtained by spinning and curing a mixture in which the activated carbon fiber is a phenol resin mixed with at least one compound selected from the group consisting of fatty acid amides, phosphate esters, and celluloses. 7. The water treatment system according to any one of 1 to 6 above, which is an activated carbon fiber obtained by carbonization / activation.

本発明の水処理システムによれば、水処理装置の吸着素子の再生エネルギー量を低減させて、燃焼装置の燃焼効率を向上することができる。   According to the water treatment system of the present invention, the amount of regeneration energy of the adsorption element of the water treatment device can be reduced, and the combustion efficiency of the combustion device can be improved.

本発明の好ましい水処理システムの一形態の例である。It is an example of one form of the preferable water treatment system of this invention. 本発明の好ましい水処理装置の一形態の例である。It is an example of one form of the preferable water treatment apparatus of this invention. 本発明の好ましい水処理システムの一形態の例である。It is an example of one form of the preferable water treatment system of this invention. 本発明の好ましい燃焼装置の一形態の例である。It is an example of one form of the preferable combustion apparatus of this invention.

図1は、本発明の好ましい一形態の例であり、水処理装置と、燃焼装置を主として備えた水処理システムである。   FIG. 1 shows an example of a preferred embodiment of the present invention, which is a water treatment system mainly including a water treatment device and a combustion device.

本発明の水処理装置は、有機化合物を含有する水を吸着素子に通流させて吸着素子に有機化合物を吸着させる吸着工程と、該吸着素子に高温の加熱ガスを通流させて吸着素子に吸着された有機化合物を脱着する脱着工程を備え、かかる工程を交互に行う水処理装置である。かかる構造を採用することにより、処理を連続的に行うことができるからである。   The water treatment apparatus of the present invention includes an adsorption process in which water containing an organic compound is passed through an adsorption element to adsorb the organic compound in the adsorption element, and a high-temperature heated gas is passed through the adsorption element to the adsorption element. The water treatment apparatus includes a desorption process for desorbing an adsorbed organic compound, and alternately performs the process. This is because the processing can be continuously performed by adopting such a structure.

より好ましい装置の構造としては、吸着素子が幾つかに分割されており、それらの吸着工程と脱着工程をダンパー等にて切替操作を行い、吸着と脱着を連続的に行う水処理装置である。また、吸着素子が回転することができ、吸着工程で有機化合物を吸着した吸着素子の部位が、吸着素子の回転により、脱着工程へ移動する構造を有する水処理装置も好ましい装置の構造である。   A more preferable apparatus structure is a water treatment apparatus in which the adsorption element is divided into several parts, and the adsorption process and the desorption process are switched by a damper or the like, and the adsorption and desorption are continuously performed. A water treatment apparatus having a structure in which the adsorbing element can rotate and the part of the adsorbing element that adsorbs the organic compound in the adsorption process moves to the desorption process by the rotation of the adsorbing element is also a preferable apparatus structure.

本発明の水処理装置は、図2に示す通り、有機化合物の吸着工程後に吸着素子表面に残存する付着水を、配管ラインL8より高速ガスを通流することにより除去する脱水工程を有することが好ましい。付着水を気流で除去することにより、加熱による有機化合物の脱着が容易になるからである。   As shown in FIG. 2, the water treatment apparatus of the present invention may have a dehydration step of removing the adhering water remaining on the surface of the adsorption element after the organic compound adsorption step by flowing high-speed gas from the piping line L8. preferable. This is because the organic compound can be easily desorbed by heating by removing the adhering water with an air stream.

さらに、除去した水滴は、図2に示す戻りラインL9より装置入口の有機化合物を含有する原水に戻すことが好ましい。かかる方法によれば、工程数を省略でき、効率的だからである。   Furthermore, it is preferable to return the removed water droplets to the raw water containing the organic compound at the inlet of the apparatus from the return line L9 shown in FIG. This is because the number of steps can be omitted and this method is efficient.

本発明の吸着素子は、脱水工程の後工程として加熱ガスにより吸着素子を加熱することで吸着した有害物質を脱着して再度吸着が行える状態に再生される脱着工程を有することが好ましい。加熱により有機化合物を脱着した後、連続的に吸着工程に移行することができるからである。脱着工程により発生した有機化合物を含有した脱着ガスは、直接燃焼装置や触媒燃焼装置、蓄熱式燃焼装置等の燃焼装置にて処理する。   The adsorbing element of the present invention preferably has a desorption step in which a harmful substance adsorbed by heating the adsorbing element with a heated gas is desorbed and regenerated so that it can be adsorbed again after the dehydration step. This is because the organic compound can be desorbed by heating and then the adsorption process can be continued. The desorption gas containing the organic compound generated in the desorption process is processed by a combustion apparatus such as a direct combustion apparatus, a catalytic combustion apparatus, or a regenerative combustion apparatus.

燃焼装置は、前記水処理装置の脱着工程により発生したガス中の有機化合物を分解処理する装置である。処理形式は特に限定されるものではないが、ガスを650〜800℃の高温で直接酸化分解する直接燃焼装置や、触媒を使用してガスを触媒酸化反応させて酸化分解する触媒燃焼装置や、蓄熱体を使用して熱回収を行い経済的に直接酸化分解する蓄熱式直接燃焼装置や蓄熱式触媒燃焼装置であってもよい。このような装置であれば、高効率・連続的に有機化合物を分解処理できるからである。   The combustion apparatus is an apparatus that decomposes an organic compound in a gas generated by a desorption process of the water treatment apparatus. The treatment format is not particularly limited, but a direct combustion device that directly oxidizes and decomposes gas at a high temperature of 650 to 800 ° C., a catalytic combustion device that performs catalytic oxidation reaction of gas using a catalyst, and oxidative decomposition, It may be a regenerative direct combustion apparatus or a regenerative catalytic combustion apparatus that recovers heat using a heat accumulator and directly oxidatively decomposes economically. This is because such an apparatus can decompose organic compounds with high efficiency and continuously.

図3に示す通り、前記水処理装置の前段に排水を曝気装置にて、バブリングさせて水中の有機化合物を揮発除去させ、バブリング後に排出される曝気ガスを前記脱着ガスと混合させて、前記燃焼装置にて分解処理させる構成にしても良い。かかる構成を採用することにより、前記水処理装置への有機化合物負荷量を下げることができ、装置サイズの小型化や、前記燃焼装置の燃焼効率が向上するからである。   As shown in FIG. 3, the combustion is performed by bubbling the waste water before the water treatment device with an aeration device to volatilize and remove organic compounds in the water, and mixing the aeration gas discharged after bubbling with the desorption gas. You may make it the structure made to decompose | disassemble with an apparatus. By adopting such a configuration, it is possible to reduce the load of the organic compound on the water treatment apparatus, and to reduce the apparatus size and improve the combustion efficiency of the combustion apparatus.

図4に示す通り、前記燃焼装置から排出される処理ガスを熱交換機器などを経由して、熱交換を行い、前記燃焼装置の予熱や、前記水処理装置の加熱ガスの予熱に使用しても良い。かかる構成を採用することにより、これらの装置のガスの加温に必要なエネルギーを削減することができるからである。   As shown in FIG. 4, the process gas discharged from the combustion device is subjected to heat exchange via a heat exchange device or the like, and is used for preheating the combustion device or preheating the heated gas of the water treatment device. Also good. This is because by adopting such a configuration, it is possible to reduce energy required for heating the gas in these apparatuses.

かかる連続的な吸着−加熱脱着−分解により、低コストで、安定かつ安全に、高い能力で水中の有機化合物を除去処理することができる。   By such continuous adsorption-heat desorption-decomposition, organic compounds in water can be removed at a low cost, stably and safely with high capacity.

本発明にかかる吸着素子は、構造は、粉末状、粒状、ハニカム構造などが挙げられるが、性能面から活性炭素繊維である。つまり、活性炭素繊維は表面にミクロ孔を有することと繊維状構造であることで水との接触効率が高く、特に水中の有機化合物の吸着速度が速くなり、他の構造に比べて極めて高い除去効率を発現できるからである。   The adsorbing element according to the present invention may be in the form of powder, granule, honeycomb structure, etc., but is an activated carbon fiber in terms of performance. In other words, activated carbon fiber has micropores on the surface and a fibrous structure, so it has high contact efficiency with water, especially the adsorption rate of organic compounds in water is high, and removal is extremely high compared to other structures. It is because efficiency can be expressed.

本発明で用いる活性炭素繊維は、繊維径が21〜40μmである。繊維径が22μm以上とすることで、加熱ガスを通風させる際の吸着素子の圧力損失を低減させることができ、繊維表面の付着水量を減らして、脱着効率が向上させることができるからである。一方、繊維径が40μmを越えると、上述の脱着効率の向上効果は期待できるが、繊維径が大きくなることにより、水中の被吸着物質と吸着素子との接触効率が低下するために、吸着性能が低下する。   The activated carbon fiber used in the present invention has a fiber diameter of 21 to 40 μm. This is because, when the fiber diameter is 22 μm or more, the pressure loss of the adsorption element when the heated gas is ventilated can be reduced, the amount of water adhering to the fiber surface can be reduced, and the desorption efficiency can be improved. On the other hand, if the fiber diameter exceeds 40 μm, the above-described effect of improving the desorption efficiency can be expected, but the contact efficiency between the substance to be adsorbed in water and the adsorbing element decreases due to the increase in the fiber diameter. Decreases.

本発明で用いる活性炭素繊維の前駆体であるフェノール繊維としては、フェノール樹脂に、脂肪酸アミド類、リン酸エステル類、セルロース類よりなる群から選択される少なくとも1種の化合物を混合した混合物を紡糸し、硬化して得られるフェノール系繊維であることが好ましい。前記化合物を混合させることで、化合物を混合させていない太繊維径のフェノール系繊維では、引張伸度が低く、不織布の製造が困難であったり、例え不織布が製造できても炭化・賦活後の活性炭素繊維不織布の引張強度が低いという問題を、解決でき、引張強度の高い活性炭素繊維不織布を得ることができる。   As the phenol fiber which is a precursor of the activated carbon fiber used in the present invention, a mixture obtained by mixing a phenol resin with at least one compound selected from the group consisting of fatty acid amides, phosphate esters and celluloses is spun. And phenolic fibers obtained by curing. By mixing the compound, the phenolic fiber having a thick fiber diameter not mixed with the compound has a low tensile elongation and it is difficult to produce a nonwoven fabric. The problem that the activated carbon fiber nonwoven fabric has low tensile strength can be solved, and an activated carbon fiber nonwoven fabric having high tensile strength can be obtained.

本発明で用いるフェノール系繊維としては、フェノール樹脂に脂肪酸アミド類、リン酸エステル類、セルロース類よりなる群から選択される少なくとも1種の化合物(配合物)を混合した混合物を紡糸して得られるフェノール系繊維が好適に用いられる。   The phenol fiber used in the present invention is obtained by spinning a mixture obtained by mixing a phenol resin with at least one compound (compound) selected from the group consisting of fatty acid amides, phosphate esters, and celluloses. Phenol fiber is preferably used.

フェノール樹脂としては、酸性触媒の存在下でフェノール類とアルデヒド類とを反応させて得られるノボラック型フェノール樹脂、塩基性触媒の存在下でフェノール類とアルデヒド類とを反応させて得られるレゾール型フェノール樹脂、各種変性フェノール樹脂又はこれらの混合物等が挙げられる。   As the phenol resin, a novolac type phenol resin obtained by reacting phenols and aldehydes in the presence of an acidic catalyst, or a resol type phenol obtained by reacting phenols and aldehydes in the presence of a basic catalyst Examples thereof include resins, various modified phenolic resins, and mixtures thereof.

本発明では、ノボラック型フェノール樹脂、レゾール型フェノール樹脂を用いることが好ましい。フェノール樹脂は、一種を単独で用いてもよく、二種以上を併用してもよい。   In the present invention, it is preferable to use a novolac type phenol resin or a resol type phenol resin. A phenol resin may be used individually by 1 type, and may use 2 or more types together.

本発明において配合物として用いられる脂肪酸アミド類とは、アンモニア又はアミンの窒素原子に結合する水素原子の1以上がアシル基によって置換された構造をもつ非重合体を意味し、該窒素原子に水素原子が2つ結合する第1級アミド、該窒素原子に水素原子が1つ結合する第2級アミド、該窒素原子に水素原子が結合していない第3級アミド、ラクタム、及び1分子中にアミンの窒素原子を2個以上有するものを包含する。したがって、本発明における「脂肪酸アミド類」は、ナイロン−6、ナイロン−6,6に代表される所謂、脂肪族ポリアミドのような重合体とは異なる。なお、「脂肪酸アミド類」は脂肪酸アマイド類とも称される。   The fatty acid amides used as a blend in the present invention means a non-polymer having a structure in which one or more hydrogen atoms bonded to the nitrogen atom of ammonia or amine are substituted with an acyl group. A primary amide in which two atoms are bonded, a secondary amide in which one hydrogen atom is bonded to the nitrogen atom, a tertiary amide in which no hydrogen atom is bonded to the nitrogen atom, a lactam, and one molecule Includes those having two or more amine nitrogen atoms. Therefore, the “fatty acid amides” in the present invention are different from polymers such as so-called aliphatic polyamides typified by nylon-6 and nylon-6,6. “Fatty acid amides” are also referred to as fatty acid amides.

上脂肪酸アミド類のなかでも、原料混合物の取扱い性、安定性又は紡糸性等の点から、第1級アミド、第2級アミドが好ましく、第1級アミドがより好ましく、飽和脂肪酸モノアミド、不飽和脂肪酸モノアミドが特に好ましい。   Among the above fatty acid amides, primary amides and secondary amides are preferred, primary amides are more preferred, saturated fatty acid monoamides, unsaturated, from the viewpoints of handleability, stability or spinnability of the raw material mixture. Fatty acid monoamides are particularly preferred.

本発明において配合物として用いられるリン酸エステル類の「リン酸」とは、十酸化四リン(P410)が加水分解を受けて生ずる種々のオキソ酸の総称であり、オルトリン酸、ピロリン酸(二リン酸)、三リン酸、四リン酸、メタリン酸等を包含する。 “Phosphoric acid” of the phosphoric acid esters used as a compound in the present invention is a general term for various oxo acids generated by hydrolysis of tetraphosphorus decaoxide (P 4 O 10 ). Including acid (diphosphoric acid), triphosphoric acid, tetraphosphoric acid, metaphosphoric acid and the like.

本発明において「リン酸エステル類」とは、リン酸における−OHの一つ以上が下記一般式(1)で表される基に置換されたもの(リン酸エステル)又はその塩を意味する。   In the present invention, the “phosphate esters” mean those in which one or more of —OH in phosphoric acid is substituted with a group represented by the following general formula (1) (phosphate esters) or salts thereof.

[式中、R13はヘテロ原子(炭素と水素以外の原子)を有していてもよい炭素数4以上の炭化水素基であり、AOは炭素数2〜4のオキシアルキレン基であり、nは平均付加モル数であり、0〜100の数を示す。] [Wherein R 13 is a hydrocarbon group having 4 or more carbon atoms which may have a hetero atom (atom other than carbon and hydrogen), AO is an oxyalkylene group having 2 to 4 carbon atoms, n Is the average number of moles added and represents a number from 0 to 100. ]

リン酸エステル類としては、特に太径のフェノール系繊維とした際に機械的強度が高まりやすいことから、オルトリン酸における−OHの一つ以上が前記式(1)で表される基に置換されたもの(オルトリン酸エステル)又はその塩が好ましい。   As phosphate esters, since mechanical strength is likely to increase particularly when a large-diameter phenolic fiber is used, at least one of —OH in orthophosphoric acid is substituted with the group represented by the above formula (1). (Orthophosphoric acid ester) or a salt thereof is preferred.

リン酸エステルの塩としては、リン酸エステルのアルカリ金属塩、アルカリ土類金属塩、アンモニウム塩、アミン塩等が挙げられる。リン酸エステル類は、単独で用いても、二種以上を併用してもよい。   Examples of the phosphate ester salt include alkali metal salts, alkaline earth metal salts, ammonium salts and amine salts of phosphate esters. Phosphate esters may be used alone or in combination of two or more.

本発明において配合物として用いられるセルロース類としては、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース等が挙げられる。セルロース類は、単独で用いても、二種以上を併用してもよい。   Examples of celluloses used as a blend in the present invention include methyl cellulose, ethyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose and the like. Cellulose may be used independently or may use 2 or more types together.

本発明で用いる活性炭素繊維は、前記フェノール系繊維を前駆体とし、炭化・賦活処理することで得られる。   The activated carbon fiber used in the present invention is obtained by carbonizing and activating the phenolic fiber as a precursor.

本発明で用いる活性炭素繊維の上記以外の物性は特に限定されるものではないが、BET比表面積が900〜2000m/gで、細孔容積が0.4〜0.9cm/gで、平均細孔経が14〜18Åのものが好ましい。それはBET比表面積が900m/g未満、細孔容積が0.4cm/g未満、細孔径が14Å未満では、有機化合物の吸着量が低くなり、BET比表面積が2000m/gを超え、細孔容積が0.9cm/gを超え、細孔径が18Åを超えると、細孔径が大きくなることで、有機化合物の吸着能力が低下したり、吸着素子の強度が弱くなり、また素材のコストが高くなり経済的では無くなる。 The physical properties other than the above of the activated carbon fiber used in the present invention are not particularly limited, but the BET specific surface area is 900 to 2000 m 2 / g, the pore volume is 0.4 to 0.9 cm 3 / g, Those having an average pore diameter of 14 to 18 mm are preferred. When the BET specific surface area is less than 900 m 2 / g, the pore volume is less than 0.4 cm 3 / g, and the pore diameter is less than 14 mm, the adsorption amount of the organic compound becomes low, the BET specific surface area exceeds 2000 m 2 / g, When the pore volume exceeds 0.9 cm 3 / g and the pore diameter exceeds 18 mm, the pore diameter increases, so that the adsorption ability of the organic compound decreases, the strength of the adsorption element decreases, Costs are high and not economical.

このように、今回開示した上記各実施の形態はすべての点で例示であって、制限的なものではない。本発明の技術的範囲は特許請求の範囲によって画定され、また特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。   Thus, the above-described embodiments disclosed herein are illustrative in all respects and are not restrictive. The technical scope of the present invention is defined by the terms of the claims, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

以下に実施例を示し、本発明をより具体的に説明する。実施例中に示した特性は以下の方法で測定した。   Hereinafter, the present invention will be described in more detail with reference to examples. The characteristics shown in the examples were measured by the following methods.

(BET比表面積)
BET比表面積は、液体窒素の沸点(−195.8℃)雰囲気下、相対圧力0.0〜0.15の範囲で上昇させたときの試料への窒素吸着量を数点測定し、BETプロットにより試料単位質量あたりの表面積(m/g)を求めた。
(BET specific surface area)
The BET specific surface area was measured by measuring the amount of nitrogen adsorbed on the sample when the relative pressure was raised in the range of 0.0 to 0.15 in the atmosphere of the boiling point of liquid nitrogen (-195.8 ° C), and a BET plot. Was used to determine the surface area (m 2 / g) per unit mass of the sample.

(細孔容積)
細孔容積は、相対圧0.95における窒素ガスの気体吸着法により測定した。
(Pore volume)
The pore volume was measured by a nitrogen gas adsorption method at a relative pressure of 0.95.

(平均細孔径)
平均細孔径は、以下の式で求めた。
dp=40000Vp/S(ただし、dp:平均細孔径(Å))
Vp:細孔容積(cc/g)
S:BET比表面積(m/g)
(Average pore diameter)
The average pore diameter was determined by the following formula.
dp = 40000 Vp / S (where dp: average pore diameter (径))
Vp: pore volume (cc / g)
S: BET specific surface area (m 2 / g)

(トルエン吸着容量)
トルエン吸着容量は、JIS K1477に定める方法で測定した。
(Toluene adsorption capacity)
The toluene adsorption capacity was measured by the method defined in JIS K1477.

(有機化合物濃度)
装置入口・出口の水中およびガス中の有機化合物濃度は、ガスクロマトグラフ法により分析し測定した。
(Organic compound concentration)
The concentration of organic compounds in the water at the inlet / outlet of the apparatus and in the gas was analyzed and measured by gas chromatography.

(平衡吸着量)
平衡吸着量(q)は、50%破過時間を測定し、以下の式で求めた。
(mg/g)=有機化合物供給量×50%破過時間/吸着材重量
(Equilibrium adsorption amount)
The equilibrium adsorption amount (q * ) was determined by measuring the 50% breakthrough time and using the following equation.
q * (mg / g) = organic compound supply amount × 50% breakthrough time / adsorbent weight

(吸着帯厚み)
吸着帯厚み(10%Za)は、10%破過する破過時間を測定し、以下の式で求めた。
10%Za=(50%破過時間−10%破過時間)×2/(50%破過時間)
(Adsorption band thickness)
The adsorption band thickness (10% Za) was determined by the following formula by measuring the breakthrough time for breakthrough by 10%.
10% Za = (50% breakthrough time−10% breakthrough time) × 2 / (50% breakthrough time)

(付着水分量)
付着水分量は、脱水操作後の吸着材の重量を測定し、以下の式で求めた。
付着水分量(g/g)=脱水操作後の吸着材重量(g)/絶乾時の吸着材重量(g)
(Moisture content)
The amount of adhering moisture was determined by the following equation by measuring the weight of the adsorbent after the dehydration operation.
Adhesive water content (g / g) = Adsorbent weight after dehydration operation (g) / Adsorbent weight in absolute dryness (g)

(吸着材の平均圧力損失)
吸着材の平均圧力損失は、脱水及び脱着操作中の装置入口・出口の圧力をマノスターケージにて測定し、装置入口・出口の圧力の平均値より以下の式で求めた。
吸着材の圧力損失(kPa)=装置入口の圧力(kPa)−装置出口の圧力(kPa)
(Average pressure loss of adsorbent)
The average pressure loss of the adsorbent was determined by measuring the pressure at the inlet / outlet of the apparatus during the dehydration and desorption operations with a manostar cage and calculating the average value of the pressure at the inlet / outlet of the apparatus by the following formula.
Pressure loss of adsorbent (kPa) = apparatus inlet pressure (kPa) −apparatus outlet pressure (kPa)

(ブロワー動力)
ブロワー動力は、以下の式で求めた。
ブロワー動力(W)=風量(m/min)×装置入口の圧力(kPa)/6120/9.81/0.7×10
(Blower power)
The blower power was obtained by the following formula.
Blower power (W) = air volume (m 3 / min) × inlet pressure (kPa) /6120/9.81/0.7×10 6

[実施例1]
フェノール1000質量部と37質量%ホルマリン733質量部とシュウ酸5質量部を、還流冷却器を備えた反応容器に仕込み、40分間で常温から100℃に昇温させ、さらに100℃で4時間反応させた後、200℃まで加熱して脱水濃縮した後、冷却してノボラック型フェノール樹脂を得た。
[Example 1]
1000 parts by weight of phenol, 733 parts by weight of formalin 733 parts by weight and 5 parts by weight of oxalic acid were charged into a reaction vessel equipped with a reflux condenser, heated from room temperature to 100 ° C. over 40 minutes, and further reacted at 100 ° C. for 4 hours. Then, the mixture was heated to 200 ° C., dehydrated and concentrated, and then cooled to obtain a novolac type phenol resin.

上記ノボラック型フェノール樹脂475kgとベヘン酸アミド25kgとを、二軸混練機(高速二軸連続ミキサー)に投入して、150℃で混練(溶融混合)を行い、室温まで冷却して、淡黄色透明なブロック状物を得た。なお、ベヘン酸アミドは日本精化社製のベヘニン酸アミド(BNT−22H)を用いた。   475 kg of the above-mentioned novolak type phenol resin and 25 kg of behenamide are charged into a biaxial kneader (high-speed biaxial continuous mixer), kneaded (melted and mixed) at 150 ° C., cooled to room temperature, and light yellow transparent A block-like product was obtained. In addition, behenic acid amide (BNT-22H) manufactured by Nippon Seika Co., Ltd. was used as the behenic acid amide.

次に、このブロック状物を粗粉砕し、溶融紡糸装置(グリッドメルター式)を用いて200℃で溶融し、該溶融により得られた溶融物を、170℃に保たれた孔径0.1mm、L/D=3、ホール数10個の紡糸口金から一定吐出量を保ちながら紡糸速度75m/分で紡糸(溶融紡糸)して糸条を得た。   Next, this block-like product is coarsely pulverized and melted at 200 ° C. using a melt spinning apparatus (grid melter type), and the melt obtained by the melting has a pore diameter of 0.1 mm maintained at 170 ° C., A yarn was obtained by spinning (melt spinning) at a spinning speed of 75 m / min while maintaining a constant discharge rate from a spinneret with L / D = 3 and 10 holes.

得られた糸条を、長さ70mmにカットして容器に入れ、塩酸14質量%かつホルムアルデヒド8質量%の水溶液に常温で30分間浸漬した後、2時間で98℃まで昇温し、さらに98℃で2時間保持することにより硬化を行った。   The obtained yarn was cut into a length of 70 mm, placed in a container, immersed in an aqueous solution of 14% by mass hydrochloric acid and 8% by mass formaldehyde for 30 minutes at room temperature, heated to 98 ° C. in 2 hours, and further 98 Curing was performed by holding at 2 ° C. for 2 hours.

次いで、得られた硬化物を、前記容器から取出して十分に水洗した後、3質量%アンモニア水溶液で60℃、30分間の中和を行った。その後、再度十分に水洗し、90℃、30分間乾燥することにより、単繊維繊度11dtex、繊維長70mm、繊維クリンプなしのフェノール系繊維を得た。   Subsequently, after taking out the hardened | cured material obtained from the said container and fully washing with water, neutralization was performed for 30 minutes at 60 degreeC with 3 mass% ammonia aqueous solution. Thereafter, it was thoroughly washed with water again and dried at 90 ° C. for 30 minutes to obtain a phenolic fiber having a single fiber fineness of 11 dtex, a fiber length of 70 mm, and no fiber crimp.

得られたフェノール系繊維を使用し、ニードルパンチ機により、針密度500本/inch2、針深度12mm(裏)、7mm(表)の条件で裏表処理を行い、ACF不織布前駆体を得、その前駆体を不活性雰囲気(窒素雰囲気)中30分かけて、常温から890℃まで加熱して炭化させ、次に水蒸気12質量%を含有する雰囲気中890℃の温度で100分間賦活して、繊維径が24μm、平均細孔径14Å、BET比表面積1650m/g、全細孔容積0.7cm/g、トルエン吸着容量490mg/gの活性炭素繊維からなる不織布を得た。 Using the obtained phenol-based fiber, a back and front treatment was performed with a needle punch machine under the conditions of a needle density of 500 / inch 2 , a needle depth of 12 mm (back) and 7 mm (front) to obtain an ACF nonwoven fabric precursor, The precursor is heated from normal temperature to 890 ° C. for 30 minutes in an inert atmosphere (nitrogen atmosphere) and carbonized, and then activated for 100 minutes at a temperature of 890 ° C. in an atmosphere containing 12% by mass of water vapor. A nonwoven fabric composed of activated carbon fibers having a diameter of 24 μm, an average pore diameter of 14 mm, a BET specific surface area of 1650 m 2 / g, a total pore volume of 0.7 cm 3 / g, and a toluene adsorption capacity of 490 mg / g was obtained.

得られた活性炭素繊維不織布を使用した130mmφで、厚み150mmの絶乾重量200gの吸着素子を2個作成し、図1のダンパー切替方式の水処理装置に設置して5000mg/lの1,4?ジオキサンを含む原水を通水線速2.8cm/minで導入した。その際の出口濃度の経時変化を確認した結果、表1に示すように吸着帯厚み(Za10%)が40mmであり、平衡吸着量(q)が300mg/gと良好な吸着性能であった。 Two adsorbing elements with an absolute dry weight of 200 g having a thickness of 150 mm and a thickness of 150 mm using the obtained activated carbon fiber non-woven fabric were prepared and installed in the damper-switching water treatment apparatus of FIG. ? Raw water containing dioxane was introduced at a water linear velocity of 2.8 cm / min. As a result of confirming the change over time in the outlet concentration at that time, as shown in Table 1, the adsorption band thickness (Za 10%) was 40 mm, and the equilibrium adsorption amount (q * ) was 300 mg / g, which was a good adsorption performance. .

次に、水処理装置の脱水工程のガスとして30℃の空気を風速35cm/sで5min通風し、吸着素子に付着する水分をパージ除去した。その際の付着水分量は2.4g/gであった。   Next, 30 ° C. air was blown for 5 minutes at a wind speed of 35 cm / s as a gas for the dehydration process of the water treatment apparatus, and water adhering to the adsorption element was purged away. At that time, the amount of adhering water was 2.4 g / g.

次に、脱着工程における加熱ガスとして120℃の空気を風速35cm/sで通風した。その際の吸着材の平均圧力損失は3.8kPaであった。また、ブロワー動力は25Wであった。   Next, 120 degreeC air was ventilated by the wind speed of 35 cm / s as heating gas in a desorption process. At that time, the average pressure loss of the adsorbent was 3.8 kPa. The blower power was 25W.

次に、脱着工程より発生したガスを原ガスとして、白金触媒の設置された触媒燃焼装置へ空間速度(SV)40000h−1、燃焼温度300℃で導入した。この触媒燃焼装置は、処理ガスと原ガスを60%の熱交換率の熱交換器にて熱交換して原ガスの予熱を行い、その後、電気ヒーターで昇温できる構成とした。処理ガス濃度を測定したところ、1ppm以下と良好な分解性能であった。また、処理ガス温度を測定したところ、355℃であった。その際の、電気ヒーターの必要電力は、150W以下であった。 Next, the gas generated in the desorption process was introduced as a raw gas into a catalytic combustion apparatus in which a platinum catalyst was installed at a space velocity (SV) of 40000 h −1 and a combustion temperature of 300 ° C. This catalytic combustion apparatus has a configuration in which the processing gas and the raw gas are heat-exchanged by a heat exchanger having a heat exchange rate of 60% to preheat the raw gas, and then the temperature is raised by an electric heater. When the treatment gas concentration was measured, it was a good decomposition performance of 1 ppm or less. Moreover, it was 355 degreeC when the process gas temperature was measured. At that time, the required power of the electric heater was 150 W or less.

[比較例1]
単繊維繊度5.6dtex、繊維長70mm、繊維クリンプなしのフェノール系繊維(群栄化学工業(株)社製、カイノールKF−0570)を使用し、ニードルパンチ機により、針密度500本/inch2、針深度12mm(裏)、7mm(表)の条件で裏表処理を行いACF不織布前駆体を得、その前駆体を不活性雰囲気中18分かけて、常温から890℃まで加熱して炭化させ、次に水蒸気12質量%を含有する雰囲気中890℃の温度で60分間賦活して、繊維径17μm、平均細孔径14Å、BET比表面積1650m/g、全細孔容積0.7cm/g、トルエン吸着容量490mg/gの活性炭素繊維からなる不織布を得た。
[Comparative Example 1]
A monofilament fineness of 5.6 dtex, a fiber length of 70 mm, a phenolic fiber (Kinei Chemical Industry Co., Ltd., Kynol KF-0570) without fiber crimp is used, and a needle density of 500 / inch 2 is obtained by a needle punch machine. The ACF nonwoven fabric precursor was obtained by performing backside treatment under conditions of needle depth 12 mm (back) and 7 mm (front), and the precursor was heated from normal temperature to 890 ° C. over 18 minutes in an inert atmosphere, and carbonized. Next, activation was performed for 60 minutes at a temperature of 890 ° C. in an atmosphere containing 12% by mass of water vapor, a fiber diameter of 17 μm, an average pore diameter of 14 mm, a BET specific surface area of 1650 m 2 / g, a total pore volume of 0.7 cm 3 / g, A nonwoven fabric made of activated carbon fibers having a toluene adsorption capacity of 490 mg / g was obtained.

得られた活性炭素繊維不織布を使用した130mmφで、厚み150mmの絶乾重量200gの吸着素子を2個作成し、図1のダンパー切替方式の水処理装置に設置して5000mg/lの1,4?ジオキサンを含む原水を通水線速2.8cm/minで導入した。その際の出口濃度の経時変化を確認した結果、表1に示すように吸着帯厚み(Za10%)が40mmであり、平衡吸着量(q)が300mg/gと良好な吸着性能であった。 Two adsorbing elements with an absolute dry weight of 200 g having a thickness of 150 mm and a thickness of 150 mm using the obtained activated carbon fiber non-woven fabric were prepared and installed in the damper-switching water treatment apparatus of FIG. ? Raw water containing dioxane was introduced at a water linear velocity of 2.8 cm / min. As a result of confirming the change over time in the outlet concentration at that time, as shown in Table 1, the adsorption band thickness (Za 10%) was 40 mm, and the equilibrium adsorption amount (q * ) was 300 mg / g, which was a good adsorption performance. .

次に、水処理装置の脱水工程のガスとして30℃の空気を風速56cm/sで5min通風し、吸着素子に付着する水分をパージ除去した。その際の付着水分量は2.4g/gであった。   Next, air at 30 ° C. was blown for 5 min at a wind speed of 56 cm / s as a gas for the dehydration process of the water treatment apparatus, and moisture adhering to the adsorption element was purged away. At that time, the amount of adhering water was 2.4 g / g.

次に、脱着工程における加熱ガスとして120℃の空気を風速を風速56cm/sで通風した。その際の吸着材の平均圧力損失は9.5kPaであった。ブロワー動力は101Wであり、実施例1と比較して4倍以上の電力が必要であった。   Next, air at 120 ° C. was blown at a wind speed of 56 cm / s as a heating gas in the desorption process. At that time, the average pressure loss of the adsorbent was 9.5 kPa. The blower power was 101 W, and 4 times or more electric power was required as compared with Example 1.

次に、脱着工程より発生したガスを原ガスとして、実施例と同様の装置構成の白金触媒の設置された触媒燃焼装置へ空間速度(SV)40000h−1、燃焼温度300℃で導入した。処理ガス濃度を測定したところ、1ppm以下と良好な分解性能であった。また、処理ガス温度を測定したところ、335℃であった。その際の、電気ヒーターの必要電力は、400W以上必要であり、2.6倍以上の電力を必要とした。 Next, the gas generated in the desorption process was introduced as a raw gas into a catalytic combustion apparatus in which a platinum catalyst having the same apparatus configuration as that of the example was installed at a space velocity (SV) of 40000 h −1 and a combustion temperature of 300 ° C. When the treatment gas concentration was measured, it was a good decomposition performance of 1 ppm or less. Moreover, it was 335 degreeC when the process gas temperature was measured. In that case, the electric power required of the electric heater is 400 W or more, and 2.6 times or more of electric power is required.

本発明の水処理システムは、有機化合物を含む水の連続浄化を実現し、基本的に吸着材の交換が必要なく、多量の上記有機化合物を高効率かつ安定に除去することができる処理システムであるため、設備増大を必要とせずに、吸着材交換作業を省略でき、コストの低減、有害物質の安定除去ができ、特に研究所や工場等の幅広い分野に利用することができるシステムであり、産業界に寄与することが大である。   The water treatment system of the present invention is a treatment system that realizes continuous purification of water containing organic compounds, basically eliminates the need for replacement of adsorbents, and can efficiently remove a large amount of the organic compounds with high efficiency. Therefore, it is a system that can be used in a wide range of laboratories, factories, etc. It is important to contribute to the industry.

100 水処理装置
110 第1処理槽
111 吸着材
120 第2処理槽
121 吸着材
200 燃焼装置
210 熱交換器
211 熱交換器
220 燃焼炉
300 曝気装置
311 散気管
L1〜L15 配管ライン
V101〜V112 バルブ
DESCRIPTION OF SYMBOLS 100 Water treatment apparatus 110 1st process tank 111 Adsorbent 120 2nd process tank 121 Adsorbent 200 Combustion apparatus 210 Heat exchanger 211 Heat exchanger 220 Combustion furnace 300 Aeration apparatus 311 Aeration pipe L1-L15 Piping line V101-V112 Valve

Claims (7)

有機化合物を含有する水から有機化合物を吸着除去して水を浄化する水処理システムであって、
有機化合物を含有する水を、繊維径21〜40μm、トルエン吸着容量200〜750mg/gの活性炭素繊維を含む吸着素子に通流させて該吸着素子に有機化合物を吸着させる吸着工程と、該吸着素子に高温の加熱ガスを通流させて該吸着素子に吸着された有機化合物を脱着させて有機化合物を含む脱着ガスを排出する脱着工程とを、交互に繰り返す水処理装置と、
該水処理装置の脱着工程にて発生した脱着ガス中の有機化合物を分解して、処理ガスを排出する燃焼装置とを、
有する水処理システム。
A water treatment system for purifying water by adsorbing and removing organic compounds from water containing organic compounds,
An adsorption step in which water containing an organic compound is passed through an adsorption element containing activated carbon fibers having a fiber diameter of 21 to 40 μm and a toluene adsorption capacity of 200 to 750 mg / g to adsorb the organic compound to the adsorption element; A water treatment device that alternately repeats a desorption step of passing a high-temperature heating gas through the element to desorb an organic compound adsorbed on the adsorption element and discharging a desorption gas containing the organic compound;
A combustion apparatus for decomposing an organic compound in the desorption gas generated in the desorption process of the water treatment apparatus and discharging the treatment gas;
Having water treatment system.
前記水処理装置の脱着工程の前に、高速ガスを前記吸着素子に通風させて、該吸着素子表面に付着する水分を除去する脱水工程を含む請求項1に記載の水処理システム。   The water treatment system according to claim 1, further comprising a dehydration step of removing moisture adhering to the surface of the adsorption element by passing a high-speed gas through the adsorption element before the desorption process of the water treatment apparatus. 前記吸着素子表面に付着する水分を、前記吸着素子の前に返送させて、再度、該吸着素子に吸着させる請求項2に記載の水処理システム。   The water treatment system according to claim 2, wherein moisture adhering to the surface of the adsorption element is returned before the adsorption element and is adsorbed by the adsorption element again. ガスと水を接触させることで、水中の有機化合物を曝気除去させ、有機化合物を含む曝気ガスを排出させる曝気装置で、有機化合物を含有する水を処理後、その排水を上記1の水処理装置に導入する請求項1〜3のいずれかに記載の水処理システム。   The aeration apparatus for removing aeration gas containing water by contacting a gas with water, and treating the water containing the organic compound after treating the water containing the organic compound. The water treatment system in any one of Claims 1-3 introduce | transduced into. 前記曝気装置から排出される曝気ガスを、上記1の水処理装置から排出される脱着ガスと混合させて、前記燃焼装置に導入する請求項1〜4のいずれかに記載の水処理システム。   The water treatment system according to any one of claims 1 to 4, wherein the aeration gas discharged from the aeration apparatus is mixed with a desorption gas discharged from the one water treatment apparatus and introduced into the combustion apparatus. 前記燃焼装置から排出される処理ガスを熱交換し、前記水処理装置の加熱ガスを予熱する請求項1〜5のいずれかに記載の水処理システム。   The water treatment system according to any one of claims 1 to 5, wherein the treatment gas discharged from the combustion device is subjected to heat exchange to preheat the heating gas of the water treatment device. 前記活性炭素繊維が、フェノール樹脂に、脂肪酸アミド類、リン酸エステル類、セルロース類よりなる群から選択される少なくとも1種の化合物を混合した混合物を紡糸し、硬化して得たフェノール系繊維を炭化・賦活して得られる活性炭素繊維である請求項1〜6のいずれかに記載の水処理システム。   A phenolic fiber obtained by spinning and curing a mixture in which the activated carbon fiber is a phenol resin mixed with at least one compound selected from the group consisting of fatty acid amides, phosphate esters, and celluloses. The water treatment system according to any one of claims 1 to 6, which is an activated carbon fiber obtained by carbonization and activation.
JP2011261785A 2011-11-30 2011-11-30 Water treatment system Active JP5948822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011261785A JP5948822B2 (en) 2011-11-30 2011-11-30 Water treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011261785A JP5948822B2 (en) 2011-11-30 2011-11-30 Water treatment system

Publications (2)

Publication Number Publication Date
JP2013111553A true JP2013111553A (en) 2013-06-10
JP5948822B2 JP5948822B2 (en) 2016-07-06

Family

ID=48707680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011261785A Active JP5948822B2 (en) 2011-11-30 2011-11-30 Water treatment system

Country Status (1)

Country Link
JP (1) JP5948822B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103979631A (en) * 2014-05-28 2014-08-13 扬州石化有限责任公司 Adsorption-catalytic oxidation degrading method for phenol in waste water
CN104086029A (en) * 2014-07-21 2014-10-08 上海伟业环保工程有限公司 Process for recovering wastewater in production of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and derivatives thereof
JP2015042396A (en) * 2013-08-26 2015-03-05 東洋紡株式会社 Water treatment apparatus and water treatment system
CN106606917A (en) * 2015-10-22 2017-05-03 中国石油化工股份有限公司 Method and apparatus for f toluene oxidation tail gas treatment
JP2018008209A (en) * 2016-07-13 2018-01-18 東洋紡株式会社 Water treatment device
JP2018008212A (en) * 2016-07-13 2018-01-18 東洋紡株式会社 Water treatment system
JP2018103164A (en) * 2016-12-28 2018-07-05 東洋紡株式会社 Water treatment system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108715493A (en) * 2018-08-15 2018-10-30 浙江森友环保成套设备有限公司 A kind of processing method of petrochemical industry phenol wastewater

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630526A (en) * 1979-08-20 1981-03-27 Noritake Co Ltd Plant for heat treatment of waste fluid
JP2002161439A (en) * 2000-09-12 2002-06-04 Toyobo Co Ltd Low-pressure loss and nonwoven fabric-style activated carbon fiber and method for producing the same
JP2005256183A (en) * 2004-03-09 2005-09-22 Gun Ei Chem Ind Co Ltd Method for producing activated carbon fiber
JP2008188492A (en) * 2007-02-01 2008-08-21 Toyobo Co Ltd Water treatment system
JP2008188493A (en) * 2007-02-01 2008-08-21 Toyobo Co Ltd Water treatment apparatus
JP2010142728A (en) * 2008-12-18 2010-07-01 Toyobo Co Ltd System for treating exhaust
JP2010142730A (en) * 2008-12-18 2010-07-01 Toyobo Co Ltd Wastewater treatment system
JP2011246841A (en) * 2010-05-26 2011-12-08 Gunei-Chemical Industry Co Ltd Producing method of phenol-based fiber, producing method of phenol-based carbon fiber, and producing method of phenol-based activated carbon fiber
JP2011246840A (en) * 2010-05-26 2011-12-08 Gunei-Chemical Industry Co Ltd Producing method of phenol-based fiber, producing method of phenol-based carbon fiber, and producing method of phenol-based activated carbon fiber
WO2013081049A1 (en) * 2011-11-30 2013-06-06 東洋紡株式会社 Active carbon fiber non-woven fabric, and element using said non-woven fabric

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5630526A (en) * 1979-08-20 1981-03-27 Noritake Co Ltd Plant for heat treatment of waste fluid
JP2002161439A (en) * 2000-09-12 2002-06-04 Toyobo Co Ltd Low-pressure loss and nonwoven fabric-style activated carbon fiber and method for producing the same
JP2005256183A (en) * 2004-03-09 2005-09-22 Gun Ei Chem Ind Co Ltd Method for producing activated carbon fiber
JP2008188492A (en) * 2007-02-01 2008-08-21 Toyobo Co Ltd Water treatment system
JP2008188493A (en) * 2007-02-01 2008-08-21 Toyobo Co Ltd Water treatment apparatus
JP2010142728A (en) * 2008-12-18 2010-07-01 Toyobo Co Ltd System for treating exhaust
JP2010142730A (en) * 2008-12-18 2010-07-01 Toyobo Co Ltd Wastewater treatment system
JP2011246841A (en) * 2010-05-26 2011-12-08 Gunei-Chemical Industry Co Ltd Producing method of phenol-based fiber, producing method of phenol-based carbon fiber, and producing method of phenol-based activated carbon fiber
JP2011246840A (en) * 2010-05-26 2011-12-08 Gunei-Chemical Industry Co Ltd Producing method of phenol-based fiber, producing method of phenol-based carbon fiber, and producing method of phenol-based activated carbon fiber
WO2013081049A1 (en) * 2011-11-30 2013-06-06 東洋紡株式会社 Active carbon fiber non-woven fabric, and element using said non-woven fabric

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042396A (en) * 2013-08-26 2015-03-05 東洋紡株式会社 Water treatment apparatus and water treatment system
CN103979631A (en) * 2014-05-28 2014-08-13 扬州石化有限责任公司 Adsorption-catalytic oxidation degrading method for phenol in waste water
CN103979631B (en) * 2014-05-28 2015-08-19 扬州石化有限责任公司 A kind of absorption-catalytic oxidation degradation method of phenol in wastewater
CN104086029A (en) * 2014-07-21 2014-10-08 上海伟业环保工程有限公司 Process for recovering wastewater in production of 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide and derivatives thereof
CN106606917A (en) * 2015-10-22 2017-05-03 中国石油化工股份有限公司 Method and apparatus for f toluene oxidation tail gas treatment
JP2018008209A (en) * 2016-07-13 2018-01-18 東洋紡株式会社 Water treatment device
JP2018008212A (en) * 2016-07-13 2018-01-18 東洋紡株式会社 Water treatment system
JP2018103164A (en) * 2016-12-28 2018-07-05 東洋紡株式会社 Water treatment system

Also Published As

Publication number Publication date
JP5948822B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP5948822B2 (en) Water treatment system
CN101194755A (en) Additive agent selectively reducing aldehydes matter in cigarette flue gas, production method and application thereof
WO2021106364A1 (en) Molecular polar substance-adsorbing charcoal
JP6897572B2 (en) Water treatment equipment, adsorption elements, and water treatment methods
JP5982796B2 (en) Gas processing equipment containing organic solvent
JP6393965B2 (en) Wastewater treatment system
JPS5938016B2 (en) Collecting agent and method for collecting and concentrating basic malodorous components
JP2008188492A (en) Water treatment system
JP5929130B2 (en) Water treatment equipment
JP2008188493A (en) Water treatment apparatus
KR20130040273A (en) Absorbent for purifying air, filter comprising the absorbent and method for preparing the filter
CN110201661A (en) A kind of manganese base charcoal of porous array structure and its preparation method and application
JP2012040479A (en) Wastewater treatment system
JP2011083693A (en) Material for adsorbing/decomposing volatile organic compound
JP2012035232A (en) Wastewater treatment system
JP6428992B2 (en) Wastewater treatment system
JP6066176B2 (en) Cigarette odor deodorant filter
JP5565106B2 (en) Wastewater treatment equipment
JP4512993B2 (en) Water treatment equipment
JP2017205684A (en) Water treatment system
JP4512994B2 (en) Water treatment system
JP2015042396A (en) Water treatment apparatus and water treatment system
JP2022116822A (en) Adsorbent and method for producing the same
CN111068513A (en) Method for treating coating waste gas by manganese-loaded expanded graphite adsorption coupling catalysis ozone oxidation
JP2013212458A (en) Wastewater treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160523

R151 Written notification of patent or utility model registration

Ref document number: 5948822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250