JP2013196294A - 人物画像処理装置、及び人物画像処理方法 - Google Patents
人物画像処理装置、及び人物画像処理方法 Download PDFInfo
- Publication number
- JP2013196294A JP2013196294A JP2012061975A JP2012061975A JP2013196294A JP 2013196294 A JP2013196294 A JP 2013196294A JP 2012061975 A JP2012061975 A JP 2012061975A JP 2012061975 A JP2012061975 A JP 2012061975A JP 2013196294 A JP2013196294 A JP 2013196294A
- Authority
- JP
- Japan
- Prior art keywords
- person
- image data
- face
- feature
- display area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Image Processing (AREA)
- Closed-Circuit Television Systems (AREA)
- Studio Devices (AREA)
- Image Analysis (AREA)
Abstract
【課題】目視確認が容易な画像データを提供する。
【解決手段】実施形態の人物画像処理装置は、入力処理手段と、抽出手段と、特徴検出手段と、補正手段と、を備える。入力処理手段は、撮像手段により撮像された時刻が異なる画像データを複数入力処理する。抽出手段は、撮影された時刻が異なる複数の画像データの各々から、同一の人物が表示されている人物表示領域を抽出する。特徴検出手段は、複数の画像データの各々から抽出された人物表示領域から、人物の部位の特徴が示された特徴点を検出するとともに、当該特徴点に部位が表示されている信頼度を取得する。補正手段は、入力処理手段により入力処理された人物表示領域を補正する際、各人物表示領域に含まれている特徴点の信頼度に基づいた重み付けを行う。
【選択図】図1
【解決手段】実施形態の人物画像処理装置は、入力処理手段と、抽出手段と、特徴検出手段と、補正手段と、を備える。入力処理手段は、撮像手段により撮像された時刻が異なる画像データを複数入力処理する。抽出手段は、撮影された時刻が異なる複数の画像データの各々から、同一の人物が表示されている人物表示領域を抽出する。特徴検出手段は、複数の画像データの各々から抽出された人物表示領域から、人物の部位の特徴が示された特徴点を検出するとともに、当該特徴点に部位が表示されている信頼度を取得する。補正手段は、入力処理手段により入力処理された人物表示領域を補正する際、各人物表示領域に含まれている特徴点の信頼度に基づいた重み付けを行う。
【選択図】図1
Description
本発明の実施形態は、人物画像処理装置、及び人物画像処理方法に関する。
従来から、何かイベントが生じたときに、防犯カメラで撮影された画像データを、目視確認している。このため、目視確認しやすい画像データを取得したいという要望がある。
このため、従来の技術では、同一人物の複数枚の画像データに対して、AAMやアクティブ形状モデル、又は動き量等を用いて、解像度を向上させる技術が提案されている。
その際に、対象人物の属性(例えば、人種や洋服)に合わせて、解像度を向上させるパラメータを変化させる技術が提案されている。
しかしながら、従来技術においては、防犯カメラで撮影した画像データを単純に複数枚用いて高解像度化しても、目視確認に適していない場合もある。例えば、防犯カメラに撮影された画像データにおいて、被写体の顔の向きが目視確認に適していない場合がある。さらには、顔の一部にマスクやサングラスなどが装着されているため、目視確認が難しい場合もある。
実施形態の人物画像処理装置は、入力処理手段と、抽出手段と、特徴検出手段と、補正手段と、を備える。入力処理手段は、撮像手段により撮像された時刻が異なる画像データを複数入力処理する。抽出手段は、撮影された時刻が異なる複数の画像データの各々から、同一の人物が表示されている人物表示領域を抽出する。特徴検出手段は、複数の画像データの各々から抽出された人物表示領域から、人物の部位の特徴が示された特徴点を検出するとともに、当該特徴点に部位が表示されている信頼度を取得する。補正手段は、入力処理手段により入力処理された人物表示領域を補正する際、各人物表示領域に含まれている特徴点の信頼度に基づいた重み付けを行う。
(第1の実施形態)
図1は、第1の実施形態にかかる人物画像処理装置のブロック構成を示した図である。図1に示すように、人物画像処理装置100は、顔向き用判定基準記憶部101と、隠蔽物用判定基準記憶部102と、特徴情報記憶部103と、画像入力処理部104と、人物検出部105と、人物特徴点検出部106と、補正部107と、出力部108と、を備える。また、人物画像処理装置100は、防犯カメラ150と接続され、防犯カメラ150により撮像された画像データを入力処理する。
図1は、第1の実施形態にかかる人物画像処理装置のブロック構成を示した図である。図1に示すように、人物画像処理装置100は、顔向き用判定基準記憶部101と、隠蔽物用判定基準記憶部102と、特徴情報記憶部103と、画像入力処理部104と、人物検出部105と、人物特徴点検出部106と、補正部107と、出力部108と、を備える。また、人物画像処理装置100は、防犯カメラ150と接続され、防犯カメラ150により撮像された画像データを入力処理する。
人物画像処理装置100は、画像入力処理部104により入力処理された画像データに映っている人物の領域を抽出し、当該領域から人物の特徴点を検出し、特徴点を考慮して修正を行った人物の画像データを出力する。その際、人物画像処理装置100は、撮影された際の被写体の状態に合わせて、複数の画像データを用いて補正し、目視確認が容易な画像データを生成する。
防犯カメラ150で撮影された画像データから、人物の顔の検出および記録を行う。なお、防犯カメラ150で撮影される画像データは、静止画像データでも動画像データでも良い。さらには、人物画像処理装置100に入力される画像データが撮像手段により撮像された画像データに制限するものではない。例えば、DVR(Digital Video Recorder)や記憶媒体等に記録された動画像データであってもよい。
防犯カメラ150は、所定の領域に対して撮影を行う。例えば、防犯カメラ150は、通行路の入退場対象エリアに対して撮影を行うことが考えられる。なお、本実施形態は、防犯カメラ150が設置される場所を制限するものではなく、例えば街頭や建物、公共エリアなどに設置してもよい。
防犯カメラ150は、撮影対象人物の人物画像を撮像するものであり、例えば動画像データを撮像可能なITVカメラとする。防犯カメラ150は、自装置のレンズを通して得られた光学的な情報をA/D変換器によりデジタル化して画像データを生成し、人物画像処理装置100に出力する。また、防犯カメラ150を設置する数は、1個でも複数個でも良い。複数個設置する場合、複数地点に設置しても良いし、同じ地点に高さ等を異ならせて設置してもよい。
図2は、防犯カメラ150による撮像領域201の概念を示した図である。図2に示すように、防犯カメラ150に対して、人物が歩いてくる場合、なお、人物は、時間の経過に従って、位置211、212、213、214と進んでいるものとする。図2に示すように、人物が遠くにいる場合(例えば位置211)は、人物は、防犯カメラ150に対して比較的正面に位置する。しかしながら、人物が近づくにつれて(例えば位置214)、人物は、防犯カメラ150の真下に近づいていく。近づくにつれて人物が防犯カメラ150に表示されている領域が大きくなるため、撮像された画像データの人物が表示されている領域の解像度が高くなるが、人物が表示されている角度が、正面からずれていくため、撮像された画像データにおいて、人物の視認が難しくなる可能性がある。そこで、本実施形態にかかる人物画像処理装置100は、かかる問題を解消する。
なお、本実施形態にかかる人物画像処理装置100は、設置された場所で何か問題が生じた場合に、防犯カメラ150により撮像された画像データを確認する用途を想定している。
人物画像処理装置100は、人物が表示されている画像データ(以下、人物画像データとも称す)を生成する。このために、人物画像処理装置100は、被写体の状態にあわせて人間の目視確認が容易になるように、画像補正を行う。
顔向き用判定基準記憶部101は、画像データに表示されている人物の顔の向きの判定する基準となる顔向き基準情報を記憶する。
隠蔽物用判定基準記憶部102は、画像データに表示されている人物の顔の一部が隠蔽されているか否かを判定する基準となる隠蔽基準情報を記憶する。本実施形態にかかる人物画像処理装置100では、画像データに表示されている人物がマスク着用やサングラスの着用、帽子の着用等の顔の一部が隠蔽される場合を検出するため、隠蔽物用判定基準記憶部102が、あらかじめサングラスやマスクや帽子で顔の一部が隠された場合の顔パタンを学習したテンプレートを記憶する。学習例としては、隠蔽物を顔に着用している画像と、着用していない画像とを予め準備し、これらの画像の輝度勾配特徴に基づいて、隠蔽物を顔に着用しているか否かの判定基準を導出する。そして、隠蔽物用判定基準記憶部102が、当該判定基準を記憶する。
画像入力処理部104は、防犯カメラ150により撮像された時刻が異なる画像データを複数入力処理する。
人物検出部105は、撮影された時刻が異なる複数の画像データの各々から、同一の人物が表示されている領域を抽出する。
人物検出部105は、人物が表示されている領域として、画像データ上の輝度情報を利用して、人物の顔が表示されている座標領域を求める。算出手法としてはどのような手法を用いても良いが、例えば、文献「三田雄志ほか、“顔検出に適した共起に基づくJoint Haar-like特徴”、電子情報通信学会論文誌(D)、vol.J89-D8、pp1791-1801、2006」を用いることが考えられる。
本実施形態は、顔の向きや大きさに基づいて抽出される顔の領域の形状を制限するものではなく、任意の形状でよい。なお、本実施形態では、説明を簡単にするために、顔の領域を矩形情報で示す例とする。そして、矩形情報の角の座標を、検出結果として利用する。その他に予め用意されたテンプレートを画像内で移動させながら相関値を求めることにより、最も高い相関値を与える位置を顔表示領域とする方法、固有空間法や部分空間法を利用した顔抽出法などでも実現は可能である。
また、防犯カメラ150などで撮影された画像データの場合、検出された同一人物の顔が複数のフレーム(画像データ)にわたって連続して映っていることが考えられる。このような場合に、それらを同一人物として対応付けできるように人物の顔の追跡処理を行う必要がある。この実現手段としては、オプティカルフローを用いて検出した顔が次のフレーム(画像データ)のどの位置にいるか対応付けする手法や、公知の技術文献(特開2011−170711号公報)に記載された手法を用いることが考えられる。
これにより、後述の人物特徴点検出部106が、同一人物として対応付けられた、複数の画像データに含まれている顔が表示されている領域から、検索をするために適切な、少なくとも1枚の画像データを選択することや、最大で検出されたフレーム数までの任意の枚数の画像データを用いることが可能となる。
図3は、人物検出部105により検出された人物の領域を示した図である。図3に示す例では、第1フレーム、第2フレーム、及び第3フレームの順に、防犯カメラ150により撮像されたものとする。図3に示すように、人物検出部105は、複数人の顔の領域の検出を可能とする。
そして、人物検出部105は、叙述した人物のトラッキング技術により、顔表示領域301、顔表示領域302、顔表示領域303を同一人物(例えば第1の人物)の顔が表示された領域として検出し、顔表示領域311、顔表示領域312を同一人物(例えば第2の人物)の顔が表示された領域として検出する。
本実施形態では、人物領域として顔の領域を検出する例について説明するが、検出対象を顔に制限するものではなく、人物全体が表示されている領域を検出しても良い。人物全体が表示されている領域を検出する技術としては、例えば「Watanabe他、”Co-occurrence Histograms of Oriented Gradients for Pedestrian Detection、 In Proceedings of the 3rd Pacific-Rim Symposium on Image and Video Technology”、PSIVT2009、pp.37-47.」を用いることが考えられる。このように、人物の領域を検出する技術であればよく、検出対象が、顔や人物全体やその他の身体などどこであってもよい。そして、検出対象から特徴情報を抽出できれば、本実施形態に記載した手法以外の手法を用いても良い。
人物特徴点検出部106は、複数の画像データの各々から検出された、人物の表示された領域(顔表示領域)から、人物の部位の特徴が示された特徴点を検出する。さらに、本実施形態にかかる人物特徴点検出部106は、検出された特徴点に、実際に部位が表示されている度合いを示した信頼度を取得する。
人物特徴点検出部106は、検出された顔表示領域から、目、鼻などの顔部位の位置を顔の特徴点として検出する。検出手法としてはどのような手法を用いても良いが、例えば、文献「福井和広、山口修、 “形状抽出とパタン照合の組合せによる顔特徴点抽出”、電子情報通信学会論文誌(D)、vol.J80-D-II、No.8、pp2170−2177、1997」に記載された手法を用いることが考えられる。
いずれの手法でも、二次元配列状の画像として取り扱える情報を獲得し、その中から顔特徴の領域を検出することが可能である。
また、人物特徴点検出部106は、これらの検出処理として、1枚の画像の中から1つの顔特徴だけを抽出するには全画像に対してテンプレートとの相関値を求め最大となる位置とサイズを出力すればよい。また、人物特徴点検出部106は、複数の顔特徴を抽出する際に、画像全体に対する相関値の局所最大値を求め、一枚の画像内での重なりを考慮して顔の候補位置を絞り込み、最後は連続して入力された過去の画像との関係性(時間的な推移)も考慮して最終的に複数の顔特徴を同時に検出しても良い。
図4は、人物特徴点検出部106により検出された特徴点の例を示した図である。図4に示すように、人物特徴点検出部106により瞳、目尻、口元などの特徴点401〜406が検出される。なお、本実施形態は、特徴点の位置、数を制限するものではなく、実施の態様毎に適切な特徴点の位置、数が設定されるものとする。このような特徴点401〜406は、サングラスやマスクや帽子等で隠蔽される可能性がある。
そこで、本実施形態にかかる人物特徴点検出部106は、隠蔽物用判定基準記憶部102に記憶されたサングラスやマスクや帽子で顔の一部が隠された場合の学習結果を参照して、顔の特徴点が全て検出できない場合でも、一部の顔特徴点が十分な評価値で検出されていれば、二次元平面、または3次元的な顔のモデルを利用して、残りの特徴点を推測する。
特徴点が全く検出できない程度に、マスク、帽子及びサングラス等で、顔の特徴点を隠蔽している場合、隠蔽物用判定基準記憶部102に顔全体をパタンとして学習結果を記憶させておき、人物特徴点検出部106が、隠蔽物用判定基準記憶部102を用いて、顔全体の位置を検出し、顔全体の位置から各特徴点の位置を推測できる。なお、複数の顔が画像データ内に存在した場合も同様の処理を、それぞれの顔が検出された領域に対して実施することで実現できる。
また、顔の一部が見えていない状態としては、様々な状態が考えられる。本実施形態では、顔の一部が見えていない状態の例として、顔の向きにより顔の特徴点の検出が困難な例、及び顔に遮蔽物が着用されているため顔の特徴点が困難な例について説明する。
顔の向きの推定手法としては、特許公開公報2003−141551号公報(山田貢己、福井和広、牧淳人、中島朗子、“顔向き計算方法及びその装置”)に示されている手法がある。当該手法では、顔の回転行列、顔の向き別に学習させた複数のクラス(部分空間)を利用することで、顔向きを推定することを可能とする。これにより、顔の角度がわかるため、顔の特徴点の一部が見えなくなるほど角度があるか否かを推定することが可能となる。
また、人物特徴点検出部106は、特徴点を検出した際に、特徴点が実際の人物の部位から検出されたか否かの度合いを示した信頼度を取得する。その際に、顔の向きに従って、顔の特徴点に対する信頼度を変更する。つまり、例え顔の特徴点が検出されていたとしても、顔向きの角度が厳しい場合に、実際の部位から検出された可能性が低くなる。この場合は、信頼度を下げた方が好ましい。
そこで、本実施形態にかかる信頼度判定部111は、画像データの顔表示領域から、顔向き用判定基準記憶部101に記憶された基準情報に基づいて、人物の顔の向きを検出した後、当該顔の向きに基づいて、顔の特徴点の信頼度を変更する。
図5は、フレーム(画像データ)毎に顔の向きに従って、検出される特徴点の違いを示した図である。図5に示す例では、時間の経過と共に、入力処理される画像データが、第1フレーム、第2フレーム、第3フレーム、第4フレーム、第5フレームと変化する例とする。図5に示すように、歩行中に顔の向きが変化する場合、第1フレームの人物501や、第5フレームの人物505のように、顔の向きが正面と判定された場合に、顔の各部位はしっかり見えていると考えられるため、信頼度判定部111は、顔の各部位の信頼度を高く設定する。
一方、第2フレームの人物502や、第4フレームの人物504のように、顔の向きが少し傾いている場合、目尻等の見えなくなりそうな特徴点について、信頼度判定部111は、信頼度を少し減らすなどの設定を行う方が好ましい。
さらに、第3のフレームの人物503のように、顔の右側が見えない場合、人物特徴点検出部106は、このような状況で、信頼度判定部111は、顔の右側の部位として検出された特徴点に対して、信頼度を低くする。
顔の向きだけでなく、顔の部位を隠蔽するサングラスやマスク、帽子や前髪、ひげといったものがあった場合も、同様に信頼度を変更した方が好ましい。
まず、マスク、サングラス、帽子等の顔を隠蔽する着用物の有無の判定や、前髪の影響などで顔の一部が隠れているか否かの判定や、ヒゲで顔の一部か隠れているか否かという判定手法は、どのような手法を用いても良いが、例えば特開2012−3623号公報に記載された手法を用いることが考えられる。
そして、本実施形態にかかる人物特徴点検出部106は、隠蔽物用判定基準記憶部102の他に、サポートベクターマシン(Support vector machine)や判別分析法を用いて、画像データの顔表示領域が、隠蔽物を着用している画像に類似しているか否かに基づいて、隠蔽物の有無を判定する。
隠蔽物があると判定された場合、信頼度判定部111が、隠蔽物によって隠れると思われる特徴点の信頼度を下げる。
例えば、人物特徴点検出部106により、サングラスが着用されていると判定された場合、信頼度判定部111が、目に関する特徴点(例えば目尻、目頭、瞳など)、眉毛付近の情報などの信頼度を下げる。他の例としては、マスクが着用されていると判定された場合、信頼度判定部111が、口に関する特徴点、鼻に関する特徴点の信頼度を下げる。
また、本実施形態では、顔の部位の全領域が網羅的に見えているか否かを基準に、信頼度を決定する例について説明した。しかしながら、このような手法に制限するものではなく、他の例としては、顔の部位の解像度が高い場合に信頼度を高くする、コントラストが高い(輝度の分布の分散が大きい、輝度の最大最小の値の差が大きい)場合に信頼度を高くしてもよい。さらには、画像データの全体に対してFFTをかけて、高周波成分の値が大きい場合に画像データがぼけておらずに鮮明度が高いことに基づいて、信頼度判定部111が、高周波成分の値が大きい場合に信頼度を高くする制御を行っても良い。
例えば、人物特徴点検出部106が顔の特徴点を検出した場合に、信頼度判定部111が、特徴点付近の所定サイズ(例えばM×N画素)領域の特徴点を示す画像として、当該領域の画像の最大輝度値と最小輝度値からコントラスト、または輝度値の分散をコントラストとして求め、当該コントラストが高い場合には、信頼度に所定の係数(例えば1より大きい値)をかけることで信頼度を高める。逆にコントラストが低い場合には、信頼度に所定の係数(例えば1より小さい値)を掛けることで、信頼度を低くする。
また、信頼度判定部111が、特徴点を示すM×N画素領域内の平均輝度を求めて、明るさを求める。そして、求められた明るさが中間的な値であれば、信頼度判定部111は、信頼度を高め、明るすぎる又は暗すぎる場合に信頼度を低くするという調整を行う。
また、特徴点間の距離などにより特徴点が示す顔の部位の大きさを示す画素数が確認できる。これに従い、信頼度判定部111が、顔の各部位の「解像度」に基づいて、信頼度を変更する。本実施形態では、解像度が高いほど画質が良いものとして扱う。そして、信頼度判定部111は、判定された解像度に応じた係数を、各特徴点の信頼度にかけることで、信頼度の高低を制御することが可能となる。
図6は、画像データ毎の顔の向きと信頼度とを説明した図である。図6に示す例では、第1フレームでは、顔表示領域701から各特徴点を検出できる。そして、人物特徴点検出部106が第1フレームから特徴点を検出した際に、信頼度判定部111は、顔表示領域の解像度が低いため、顔表示領域701から検出された各特徴点の信頼度を少し下げる。
一方、第3フレームでは、防犯カメラ150と人物との間の位置及び角度の関係から、顔全体の解像度は高いが、前髪のため、おでこ周辺から右目の周辺領域702を認識しにくい。そこで、人物特徴点検出部106が特徴点を検出した際に、信頼度判定部111は、右目周辺領域702から検出された特徴点の信頼度を下げるとともに、左眼周辺領域703については解像度が高いため、当該左眼周辺領域703に含まれる特徴点の信頼度を上げる。
図7は、画像データ毎の隠蔽物と信頼度とを説明した図である。図7に示す例では、隠蔽物がサングラスの例とする。第1フレームでは、顔表示領域のうち、領域801に含まれる部位については適切な特徴点の検出を図れず、領域802に含まれる部位については適切に特徴点を検出できる。このため、人物特徴点検出部106が特徴点を検出する際に、サングラスで被覆されていることも検出された場合に、信頼度判定部111は、領域801に含まれている特徴点の信頼度を下げる一方、領域802に含まれている特徴点の信頼度についても少し下げる。
一方、第3フレームでは、防犯カメラ150と人物との間の位置及び角度の関係から、サングラスの縁から、両目の周辺領域803を撮影できる。第3フレームでは、防犯カメラ150と人物が近接しているため、周辺領域の解像度が高い。そこで、人物特徴点検出部106が特徴点を検出した際に、信頼度判定部111は、両目の周辺領域803から検出された特徴点の信頼度を上げるとともに、周辺領域803より下の領域から検出された特徴点の信頼度を下げる。
このように、顔の領域を、細かく領域をわけて管理することで、表示されている目の一部に限り信頼度を変更するなどの管理が可能となる。
信頼度は、例えば、顔の特徴点単位で平均的なパタンを学習させておき、相関値や単純類似度や部分空間法で得られた類似度をもとに0〜1までの信頼度にしてもよい。また、信頼度判定部111が、顔向きに基づいて信頼度を変更する場合、画像データを撮像した防犯カメラ150の光軸に対する顔の角度θからcosθを算出し、算出したcosθを用いて信頼度を変更することが考えられる。
上述したように、本実施形態では、顔表示領域から顔の各部位の特徴点を検出した後、顔向きや顔の隠蔽物着用判定の結果によって、顔の各部位の特徴点が、どの程度はっきり見えているかを認識した上で、信頼度を変更することとした。このようにして、顔の特徴点と、顔の状態に応じた信頼度とを同時に求めることが可能となる。
本実施形態では、信頼度判定部111が、特徴点の見えやすさに応じて、係数をかけることで、信頼度を高くしたり低くしたりする例を示した。しかしながら、特徴点毎に信頼度を1つ設けるのではなく、1つの特徴点について指標毎に信頼度を別々に持たせてもよい。
特徴情報記憶部103は、入力処理された画像データを識別する情報と、検出された人物の特徴点と、を対応付けて記憶する。さらに、特徴情報記憶部103は、入力処理された画像データを記憶する。
図8は、特徴情報記憶部103が備えるテーブルの構造を示した図である。図8に示すように特徴情報記憶部103は、フレームを識別する番号と、インデックスと、顔の特徴点1〜Nに関する情報と、を対応付けて記憶する。フレームを識別する番号は、画像データ毎にユニークに設定される。
インデックスは、人物毎にユニークに設定される。本実施形態にかかるインデックスは、人物検出部105により検出された人物毎に設定される。
顔の特徴点の‘N’は、顔の特徴点の数を示している。‘N’は、実施の態様に応じて適切な値が設定される。また、特徴点毎に、特徴点を示すX座標、特徴点を示すY座標、及び当該特徴点の信頼度が記憶されている。
つまり、特徴情報記憶部103は、画像から検出された顔表示領域毎に、当該顔表示領域に含まれる全ての特徴点についての位置情報、及び当該特徴点が鮮明に表示されているか否かを示す信頼度を、管理する。
図8に示すフレーム番号1〜3は、図3の第1〜第3フレームに対応する。つまり、フレーム番号‘1’が図3の第1フレームに対応し、特徴情報記憶部103には、インデックス‘1’で示される人物の顔表示領域301の特徴点1〜Nに関する情報が格納されている。フレーム番号‘2’が図3の第2フレームに対応し、特徴情報記憶部103には、インデックス‘1’で示される人物の顔表示領域302の特徴点1〜Nに関する情報と、インデックス‘2’で示される人物の顔表示領域311の特徴点1〜Nに関する情報と、が格納されている。フレーム番号‘3’が図3の第3フレームに対応し、特徴情報記憶部103には、インデックス‘1’で示される人物の顔表示領域303の特徴点1〜Nに関する情報と、インデックス‘2’で示される人物の顔表示領域312の特徴点1〜Nに関する情報と、が格納されている。
そして、インデックス‘1’の人物は、いずれも顔の特徴点の信頼度が高い状態で検出されている。一方、インデックス‘2’の人物は、顔の特徴点2の信頼度が低いため、顔の一部の部位が隠れている可能性が高いと信頼度判定部111により判定されている。図3に示される例では、サングラス等の隠蔽物の着用により信頼度が低くなったものと考えられる。なお、顔の向きにより一部が隠れている場合でも同様の判定がなされる。
なお、特徴情報記憶部103が記憶する情報は、入力処理された画像データや、上述したテーブルで示した対応関係に制限するものではない。例えば、人物特徴点検出部106において信頼度の判定に用いられた顔向きの角度、マスクやサングラス、帽子といった着用判定結果が識別されている場合、特徴情報記憶部103が、当該顔の向きの角度、及び着用判定結果の少なくとも1つ以上を対応付けして記憶しても良い。なお、人物特徴点検出部106で指標毎に信頼度を求めた場合、求められた複数の信頼度を、上述した手法と同様の手法で管理してもよい。
補正部107は、画像入力処理部104により入力処理された画像データから検出された顔表示領域を補正して、当該顔表示領域が示された人物画像データを生成する。その際に、補正部107は、顔表示領域に含まれている特徴点の信頼度に基づいた重み付けを行った後、補正を行う。
補正部107による複数画像データを用いた補正のタイミングは、特に制限されるものではないが、本実施形態では過去の所定枚数分の画像データ用いて常時補正を行うこととする。この場合、tフレーム目に実行される補正では、t−nフレームからt−1フレームまでのn枚の画像データのうち、全(n枚の)画像データを用いても良いし、任意の枚数m(m<n)の画像データを用いてもよい。
また、人物が移動していることを考慮して、同一人物が検出されている画像データが所定枚数に到達した場合、人物が検出できなくなった場合(撮影領域の範囲外に移動した場合)、人物検出部105による人物のトラッキングが終了したと判断された場合に、補正部107が、所定枚数の画像データを用いて補正することが考えられる。
補正部107による補正処理としては、例えば、超解像処理(高解像度化する際の解像度の補間処理)がある。超解像の処理手法はどのような手法を用いても良いが、例えば、文献「竹島秀則、加藤宣弘、金子敏充、“サブピクセルシフト画像を用いた複数フレーム超解像技術”、東芝レビュー Vol64 No6, pp11-14、2009」に記載されている技術を用いることが考えられる。また、高解像度化の処理として、複数フレーム(画像データ)を用いて、高画質の画像データの生成も可能である。
本実施形態にかかる補正部107は、複数フレームを用いた高画質の画像データを生成する手法を用いる。本実施形態にかかる補正部107は、複数の画像データから検出された顔の表示領域に含まれる各領域を組み合わせて、同一の人物が示された超解像の人物画像データを生成する。その際に、補正部107は、複数フレームで検出されている複数の顔表示領域について、人物特徴点検出部106で特徴点として検出された座標で対応付けを行い、各フレームの特徴点間の対応関係に基づいて、複数の顔の表示領域を用いた超解像処理を行う。その際に、本実施形態では、各領域に含まれている特徴点の信頼度を重み付けとして用いる。
つまり、本実施形態にかかる補正部107は、特徴点間の対応付けを行う際に、該当する特徴点の信頼度が低い場合、複数の特徴点を用いた対応付けの度合いを抑止する。また、信頼度が高い特徴点間については、複数の特徴点を用いた対応付けの度合いをより強くする。これにより、鮮明な超解像の画像データを生成することが可能となる。
本実施の形態にかかる補正部107は、信頼度が低い顔の特徴点及びその周辺領域については対応付けを行わず、1フレーム内の輝度情報を利用した超解像の画像データの生成を行う。特徴点の周辺領域の範囲は、特に制限を設ける物ではないが、例えば、特徴点から所定の画素数以内としてもよいし、信頼度で重み付けして、特徴点から離れるほど信頼度が低くなるように変更しながら補正処理を行ってもよい。
本実施の形態にかかる補正部107は、人物画像データの生成に用いる複数フレームの顔表示領域の解像度が異なる場合に、各顔表示領域に対して縮小又は拡大を行い、解像度を一致させてから合成する。合成する際に、補正部107は、縮小又は拡大前の顔表示領域のうち、解像度が高い顔表示領域について重み付けを強くする。
補正部107が行う超解像以外の補正処理としては、コントラストや輝度の補正がある。本実施形態にかかる補正部107は、超解像と同様、複数の画像データに含まれている顔表示領域内で対応づけられた特徴点を用いて、輝度の補正処理を行う。
本実施形態にかかる補正部107は、複数の画像データ(個数nのフレーム)の顔の表示領域内で同一の部位を示すものとして対応付けられた場合、当該対応付けを用いて輝度の補正を行う。例えば、iフレーム目の画像データのうち、他のフレームと対応付けられた特徴点の座標が(Xi,Yi)の場合、当該座標の輝度値をI(Xi,Yi)であり、当該座標の信頼度をf(i)とする。そして、補正部107は、画像データに含まれている顔の表示領域の座標のうち、特徴点以外の座標については、周辺の特徴点からの距離に応じた線形補間に基づいて、当該座標の信頼度を求める。画像補正後の輝度値I’(X,Y)は、以下に示す式(1)で算出される。
I’(X,Y)=Σf(i)*I(i,Xi,Yi)…(1)
また、人物特徴点検出部106において、指標毎に信頼度を求めた場合、指標毎にf(i)の関数を保持しているため、全ての係数をかけた式にすればよい。
また、座標毎にそれぞれ別に輝度値を算出すると、ノイズが増加する可能性がある。そこで、周辺の所定範囲の画素の平均輝度を求めてから、他の補正処理を行うノイズ除去処理や、周辺の所定範囲の画素の平均輝度に基づいて、輝度の変動量を所定範囲内に上限下限値を設定することで、外れ値のようなノイズの混入を防ぐノイズ除去処理を行っても良い。これによって、所定のフレームではコントラストの低い画像である場合、複数フレームの画像を用いてコントラスト拡張処理を行うことで、でコントラストのある鮮明な人物画像データを生成できる。
また、補正部107は、解像度を向上させずに、鮮鋭度を向上させる処理を行っても良い。精鋭度の向上処理は、上述した処理と同様に、特徴点間を対応付けた上で、複数フレームの顔表示領域で同一部位であると見なされる領域の輝度情報に基づいて行う。その際に、所定のフレームにおいて、周辺画素との輝度差が小さい領域であっても、複数フレーム分蓄積することで、輝度差が生じる。そして、補正部107は、当該輝度差を強調した画像に補正することで、鮮鋭度の向上を実現できる。また、上述した超解像処理を行った後、元の解像度に戻すことで鮮鋭度を向上させた画像データ生成しても良い。
また、補正部107は、ノイズ補正処理を行う。ノイズ補正処理は、上述した処理と同様に、特徴点間を対応付けた上で、顔表示領域で同一部位であると見なされる領域の輝度情報を複数フレーム分蓄積し、平均値や中間値を採用する。これにより、ノイズを軽減することができる。
また、補正部107は、対象となる人物の顔の向きを補正した人物画像データを生成しても良い。上述した処理と同様に、複数フレーム間の特徴点間の対応付けを行うことで、顔の向きの変動を対応する特徴点の位置の変化で認識できる。そこで、補正部107は、特徴点の変化を考慮した上で、複数フレーム分の顔表示領域の輝度情報を用いて、人物の画像データを生成する。
さらに、補正部107は、向きを考慮した上で、複数フレームの顔表示領域から人物画像データを生成する際に、複数の顔表示領域に含まれる特徴点のうち、同じ部位を示す特徴点間を対応付けた上で、複数フレームの画像を合成して、予め定められた人物の3次元的な形状モデルに対して割り当てた後、当該三次元的な形状モデルに従って表示される人物の向きを補正した上で、人物画像データを生成しても良い。当該手法の詳細は、特開2007−4767号公報等に記載されているため説明を省略する。
補正部107は、上述した処理を全て行うことに制限するものではなく、上述した処理のうち少なくとも1つ実行すればよい。
また、補正部107による補正処理の際、信頼度の利用手法としては、以下に示す3種類の手法がある。
第1の手法としては、顔向きの影響で見えない領域の重み付けを下げるために、当該領域に含まれる特徴点の信頼度を下げる手法である。
図9は、複数フレームの顔表示領域を合成して、人物画像データを生成する例を示した図である。図9に示す例では、防犯カメラ150は、歩行している人物よりも高い位置から見下ろすような角度で設置されることが多い。この場合、防犯カメラ150から離れた位置(例えば第1フレーム)では、相対的に顔の角度はカメラの光軸に対して正面に近い顔表示領域901となる。一方、防犯カメラ150から離れているため、当該顔表示領域901の解像度は低くなる。そして、人物が前に進むにつれて徐々に顔の表示領域902、903の解像度は高くなるものの、防犯カメラ150の光軸に対して角度が正面からはずれてきて相対的に下を向いた状態で撮影されやすくなる。これにより、検出された顔表示領域902、903では、解像度こそ高いものの、全ての特徴点を検出できなくなる、又は誤った位置を特徴点として検出される可能性がある。
そのほか、人物はカメラを意識せずに歩行しているため、うつむき、わき見などで顔の向きが変動する場合がある。
そこで、信頼度判定部111は、顔の向き及び解像度に応じて、信頼度を調整する。具体的には、信頼度判定部111は、“領域901に含まれる特徴点の信頼度<領域902に含まれる特徴点の信頼度<領域903に含まれる特徴点の信頼度”と設定する。なお、第2〜第3フレームのうち、領域902及び領域903に含まれていない領域については、領域901に含まれる特徴点の信頼度よりも低く設定する。
このように、第1フレームでは、顔の特徴点はいずれも正面向きに近いため信頼度はある程度高い値となっている一方で解像度は低いので、超解像処理であればいずれの特徴点周辺の画素の輝度値も、複数フレームを用いた超解像処理に利用される。一方、第3フレームでは、解像度が高いため超解像処理をしやすくなるものの、顔が下を向く傾向にあるため、顔の上部の特徴点の信頼度が高くなる一方、顔の下部の特徴点の信頼度が低い状態となる。
これにより、補正部107は、見えている範囲(信頼度が高い)の輝度情報を積極的に利用する一方で、見えていない範囲(信頼度が低い)の輝度情報の利用を抑止することで、画像補正処理を行う。
図9に示す例では、第1フレームの顔表示領域901、第2フレームの顔表示領域902、第3フレームの顔表示領域903を合成して人物画像データ910を生成するが、その際に、信頼度に基づいて、領域911について顔表示領域901が積極的に利用され、領域912について顔表示領域902が積極的に利用され、領域913について顔表示領域903が積極的に利用される。このように信頼度に基づいた人物画像データの生成がなされる。
第2の手法は、マスクやサングラスなどで隠蔽された領域があれば、隠蔽された領域以外の見えている領域を見やすくする手法である。
図10は、顔表示領域から検出された隠蔽物に基づいて補正部107が実行する補正処理を示した図である。本実施形態では、顔がマスクやサングラス等の装着物で隠蔽されている場合、隠蔽をされている領域の特徴点の信頼度が低くなる。
さらには、隠蔽物用判定基準記憶部102を用いた信頼度判定部111による判定で、マスク着用やサングラス着用、帽子着用、前髪の影響などで顔の一部が隠れている、ヒゲで顔の一部か隠れていることが検出された場合に、特徴情報記憶部103が、当該検出結果を記憶する。そこで、本実施形態にかかる補正部107は、当該判定結果を用いて補正行うこととした。これにより明確な判断結果に基づいた、適切な補正が可能となる。
また、隠蔽されていない部分をより詳細に確認できるようになることが望ましいので、補正部107は、隠蔽されていない領域に高精度になるよう画質の補正処理を行う。そして、普段は通常の画質補正処理をすることでシステムの負荷を常時高めることなく、効率的な画像データの像確認を可能とする。
図10で示す例では、顔の隠蔽物がまったくない顔表示領域1001について従来通りの補正処理を行った後、通常の人物画像データ1011として表示や記録が行われる。
隠蔽物が検出された顔表示領域1002、1003について、隠蔽された領域以外について高精度な画像補整を行い、人物画像データ1012、1013を出力する。つまり、補正部107は、顔表示領域1002において、マスク着用が検出された場合に、マスク以外の領域1031に対して高精度な画像補正を行う。補正部107は、顔表示領域1003において、サングラス着用が検出された場合に、サングラス以外の領域1032に対して高精度な画像補正を行う。
着用物が顔全体を隠蔽している場合、検出された顔表示領域1004の全体領域について高精度な画像補整を行い、人物画像データ1014を出力する。他の例としては、補正部107は、顔表示領域1004において、マスク、サングラス着用が検出された場合に、頭部の輪郭周辺に限定して高精度な画像補整処理を行い、リソースを有効活用してもよい。
画像補正の高精度処理としては、超解像処理であれば対応する特徴点の探索範囲を広くすることや探索ステップを細かくして処理時間はかかるが高精度に対応する特徴点を求めること、ノイズ除去や輝度補正処理についても、フィルタ処理や処理計算を処理負荷のかかる処理にかえて高精度な人物画像データを生成することが考えられる。
また、上述した1つ目の手法と、2つ目の手法と、を組み合わせても良い。組み合わせた場合、図6、図7に示すように、移動している人物について前髪やサングラス等の着用物で隠蔽していたとしても、歩行中の顔の向きによっては、隠蔽物によって隠れる顔の領域が変化する。そこで、本実施形態にかかる補正部107は、見えている領域を組み合わせた上で、上述した高精度処理を行い、人物画像データを生成できる。
図6に示す例ではあれば、第1フレームでは前髪にかからずに撮影されていたおでこから目に掛けての領域が、人物が防犯カメラ150に近づくと、第3フレームでは前髪の影になって撮影されなくなる。この場合、人物特徴点検出部106が顔の特徴点をより多く検出して、より詳細に顔の部位と顔の部位の間に対する見え方の信頼度をより細かく求めることで、補正部107が詳細な顔の領域単位で合成が可能となる。
図7で示す例ではあれば、第1フレームではサングラスの影になっていた目の領域も、人物が防犯カメラ150に近づくため、第3フレームではサングラスに隠れていた目の領域が撮影される。これにより、当該目の領域を人物画像データとして合成可能となる。
3つ目の手法としては、マスクやサングラスなどで隠蔽された領域があれば隠蔽物をとり除き、画像を補間した上で、人物画像データを生成する手法がある。最も簡単な実現手法としては、人間の顔表示領域の平均画像を作成しておき、隠蔽されている領域は平均的な顔画像で補間して合成する手法である。また、他にも統計的に周辺の輝度の分布を求めることで統計的にどのような輝度が存在するかという手法を用いることが考えられる。当該手法としては、例えば、文献「小川ら、“高周波強調処理と入力画像の利用による学習型超解像”、画像の認識・理解シンポジウム(MIRU2010)、2010、IS2-35」に記載されている手法がある。
このように、補正部107は、複数の画像データの顔表示領域から、同一の人物が示された人物画像データを生成する際に、隠蔽されていると判定された人物の顔の一部の領域について、統計的に学習された輝度パタンを利用した補間画像で、隠蔽されていると判定された領域を置き換える。これにより、人物をより認識しやすい人物画像データを生成することが可能となる。
上述した補正処理は、全て行うのではなく、いずれか1つの処理を行ってもよいし、異なる複数の画像補正処理を行っても良い。さらには、補正処理毎に画像データを生成しても良い。
出力部108は、補正部107により得られた補正結果を画面に表示する。または、出力部108は、補正部107により得られた人物画像データを記録装置に記録する。または、出力部108は、接続された機器に補正部107により補正された後の人物画像データを送信しても良い。
また、補正部107から補正結果として複数の人物画像データが入力された場合、あらかじめ定めておいた順番で画像補正結果を表示や記録を行ってもよい。また、顔部位の信頼度の合計値が高い人物画像データから順に表示してもよい。複数の候補を見せることで、人間の目視確認で目的の画像が含まれている可能性を高めることができる。
次に、本実施の形態にかかる人物画像処理装置100における、全体的な処理について説明する。図11は、本実施の形態にかかる人物画像処理装置100における上述した処理の手順を示すフローチャートである。
まず、画像入力処理部104が、防犯カメラ150により撮像された画像データを、時間の経過に伴い複数入力処理する(ステップS1101)。次に、人物検出部105が、入力処理された画像データのそれぞれから、顔表示領域を検出する(ステップS1102)。
そして、人物特徴点検出部106は、検出された顔の表示領域から、顔の特徴点を検出する(ステップS1103)。
その後、信頼度判定部111は、顔向き用判定基準記憶部101及び隠蔽物用判定基準記憶部102に基づいて、検出された顔の特徴点から信頼度を判定する(ステップS1104)。
その後、補正部107が、特徴点の検出結果及び判定された信頼度を用いて、複数の画像データに対して補正処理を行い、人物画像データを生成する(ステップS1105)。その後、出力部108が、生成した人物画像データを表示する(ステップS1106)。
以上の実施形態により、防犯カメラ150などで撮影された画像データから、被写体である人物の状態にあわせて目視確認しやすい人物画像データの生成を可能とする。
(第2の実施形態)
第1の実施形態では、人物画像データの出力する例について説明した。しかしながら、生成した人物画像データの利用態様を出力に制限するものではない。そこで、第2の実施形態では特定の人物であるかの認証、または類似した顔を検索することを例について説明する。
第1の実施形態では、人物画像データの出力する例について説明した。しかしながら、生成した人物画像データの利用態様を出力に制限するものではない。そこで、第2の実施形態では特定の人物であるかの認証、または類似した顔を検索することを例について説明する。
第2の実施形態にかかる人物画像処理装置は、予め登録されている人物画像データから、現在撮影された人物画像とを比較し、同一の人物を検索する場合がある。例えば顧客データからお得意様を探す、不審者のデータベースから該当者を探す、ID証の更新時の本人確認や新規発行時の二重発給防止といった用途が考えられる。
第2の実施形態は、第1の実施形態と同様に、人物の顔を検出する例について説明するが、上述したように人物の全体を検出しても良い。
図12は、第2の実施形態にかかる人物画像処理装置のブロック構成を示した図である。図12に示すように、人物画像処理装置1200は、顔向き用判定基準記憶部101と、隠蔽物用判定基準記憶部102と、特徴情報記憶部103と、画像入力処理部104と、人物検出部105と、人物特徴点検出部106と、補正部107と、特徴抽出部1201と、認識部1202と、人物情報記憶部1203と、出力部1204と、を備える。なお、第1の実施形態と同様の構成については、同一の符号を割り当て、説明を省略する。
補正部107により行われる補正は、基本的には、第1の実施形態と同様の処理を行う。第2の実施形態では、顔認識処理に利用するため、実行する補正手法は、認識手法に合わせて適切な補正手法を選択する。実際に行われる補正手法は、上述した補正手法のうち、実施の態様に合わせて選択されるものとして、説明を省略する。
特徴抽出部1201は、補正部に生成された人物画像データから、個人を識別可能な顔の特徴を示した特徴情報(以下、顔特徴情報と示す)を抽出する。
特徴抽出部1201は、顔特徴情報として、顔の各特徴を示す数列を出力する。本実施形態にかかる特徴抽出部1201は、人物特徴点検出部106により検出された顔の特徴点の座標(顔の特徴的な部品となる位置)に基づいて、顔表示領域を一定の大きさ、形状に切り出し、その濃淡情報を、顔の特徴を示す特徴量として抽出する。本実施の形態では、複数の画像データを利用する場合にそなえて、補正部107が複数画像を出力をするようにしてもよい。
本実施形態では、mピクセル×nピクセルの領域の濃淡値をそのまま情報として用い、m×n次元の情報を、特徴量ベクトルとして抽出する。
特徴抽出部1201では、特徴量ベクトルと、特徴量ベクトルの長さとを、単純類似度法によりそれぞれ1とするように正規化し、内積を算出することで特徴ベクトル間の類似性を示す類似度を求める。当該手法は、文献「エルッキ・オヤ著、小川英光、佐藤誠訳、“パタン認識と部分空間法”、産業図書、1986年」で示された部分空間法を利用することで実現できる。また、特開2007−4767号公報「小坂谷達夫、“画像認識装置、方法およびプログラム”」で示された1枚の顔画像情報に対してモデルを利用して顔の向きや状態を意図的に変動させた画像データを生成することで、精度を向上させる手法を適用してもよい。これら手法を用いることで、1枚の画像データから、顔特徴情報を抽出できる。
一方、特徴抽出部1201が、同一人物に対して連続した複数の画像データを用いて、動画像データによる算出をすることでより精度の高い認識処理を行っても良い。例えば、文献「福井和広、山口修、前田賢一、“動画像を用いた顔認識システム”、電子情報通信学会研究報告PRMU、 vol97、 No.113、 pp17-24、 1997」又は文献「前田賢一、渡辺貞一、“局所的構造を導入したパタン・マッチング法”、 電子情報通信学会論文誌(D)、 vol.J68-D、 No.3、pp345--352、1985」に示された相互部分空間法を用いてもよい。これらの文献に示された相互部分空間法を用いた場合、画像入力処理部104が連続して入力処理した画像データから、人物特徴点検出部106がm×nピクセルの画像データを切り出し、これらの画像データから特徴量ベクトルの相関行列を算出し、K−L展開による正規直交ベクトルを求めることにより、連続した画像データから得られる顔の特徴情報を示す部分空間を算出する。
部分空間の算出法は、特徴量ベクトルの相関行列(または共分散行列)を求め、そのK−L展開による正規直交ベクトル(固有ベクトル)を求めることで、部分空間が算出される。部分空間は、固有値に対応する固有ベクトルを、固有値の大きな順にk個選択し、選択された固有ベクトル集合を用いて表現される。本実施形態では、相関行列Cdを特徴ベクトルから求め、相関行列Cd=ΦdΛdΦdTと対角化して、固有ベクトルの行列Φを求める。この固有ベクトルの行列Φが、現在認識対象としている人物の顔の特徴を示す部分空間となる。本実施形態では、当該部分空間を、入力された画像データから検出された個人の顔特徴情報とする。
人物情報記憶部1203は、人物毎に、あらかじめ登録されている顔特徴情報を管理する。人物情報記憶部1203は、後述する認識部1202が人物の認識処理を行う際に用いられるデータベースである。本実施形態にかかる人物情報記憶部1203は、検索対象となる個人毎に、人物の識別情報(人物IDや名前)、特徴抽出部1201で抽出された顔特徴情報、当該個人の性別、年齢、及び身長などの属性情報を対応付けて記憶する。
管理対象となる特徴抽出部1201で抽出された顔特徴情報は、m×nの特徴量ベクトルや、部分空間やKL展開を行う直前の相関行列でもよい。さらに、特徴抽出部1201で抽出された顔特徴情報を、画像入力処理部104により入力された画像データと共に、管理することで個人の検索や検索の表示が容易となる。
認識部1202は、特徴抽出部1201により抽出された顔特徴情報と、人物情報記憶部1203に記憶された顔特徴情報とに基づいて、画像入力処理部104により入力された画像データに含まれていた人物が人物情報記憶部1203に記憶されている人物IDで識別される人物であるか否かを認識する。本実施形態にかかる認識部1202は、特徴抽出部1201により抽出された顔特徴情報に類似する、人物情報記憶部1203に記憶された顔特徴情報を抽出し、抽出した顔特徴情報で示された人物を、防犯カメラ150で撮影された候補者として認識する。
本実施形態は、特徴抽出部1201により抽出された特徴情報を用いて認証を行う例について説明するが、当該特徴情報は、人物特徴点検出部106により検出された特徴点に基づいて補正等を行った結果生成された情報である。本実施形態は、特徴点に基づいて生成された特徴情報による認証に制限するものではなく、特徴点をそのまま用いて認証を行っても良い。
本実施形態にかかる認識部1202は、特徴抽出部1201で抽出された顔特徴情報と、人物情報記憶部1203に記憶された顔特徴情報との間の類似性を算出し、類似性が高い顔特徴情報の順に、当該顔特徴情報で表された人物に関する情報を出力部1204に出力する。
認識部1202は、処理結果としては類似性の高い顔識別情報から順に、人物情報記憶部1203で当該顔識別情報と対応付けられた人物IDや算出された類似性を示す情報を出力する。その他に当該人物IDと対応付けられている人物に関する様々な情報も出力しても良い。
また、認識部1202は、特徴抽出部1201が抽出した顔特徴情報と対応付けて、人物特徴点検出部106が検出に用いた顔の特徴点検出手法を、特徴抽出部1201を介して人物特徴点検出部106から取得する。そして、認識部1202は、取得した顔の特徴点検出手法を識別する情報を、当該手法で検出された顔特徴情報と対応付けて出力部1204に出力する。
本実施形態にかかる類似性を示す情報は、顔特徴情報として管理されている部分空間間の類似度とする。類似度の算出方法は、部分空間法や複合類似度法などの算出手法を用いてよい。これら算出手法では、人物情報記憶部1203に記憶された顔特徴情報、及び特徴抽出部1201により抽出された顔特徴情報が、部分空間として表現される。そして、本実施形態では2つの部分空間のなす「角度」を類似度として定義する。そして、認識部1202は、これら2つの部分空間に基づいて相関行列Cinを求めた後、Cin=ΦinΛinΦinTと対角化し、固有ベクトルΦinを求める。その後、認識部1202は、2つのΦin,ΦinTで表される部分空間の部分空間間類似度(0.0〜1.0)を求め、これを認識するための類似度とする。なお、具体的な算出方法については、例えば、上述した文献(エルッキ・オヤ著、小川英光、佐藤誠訳、「パタン認識と部分空間法」、産業図書、1986年)に示された手法を用いて良い。また、あらかじめ同一人物と分かる複数の顔画像をまとめて部分空間への射影によって本人であるか否かを識別することで精度を向上させてもよい。また、高速に検索するにはTREE構造を利用した検索方法なども利用してもよい。
出力部1204は、認識部1202により行われた認証結果、および補正部107により補正された画像データを画面に表示する。出力部1204は、認識部1202によって検索された結果のうち、指定した条件と一致するものをリアルタイムに表示するリアルタイム顔検索結果表示を行っても良い。また、出力部1204は、認識部1202によって検索された結果を検索履歴として保存しておき、後から条件を指定することで該当する検索履歴だけ表示するオフライン顔検索結果表示を行っても良い。さらに、両方を組み込んだ表示を行っても良い。
本実施形態では、履歴画像や検索結果を表示するにあたり、補正部107で補正された画像データを表示することで、第1の実施形態と同様に、利用者が目視確認が容易な画像データを表示することが可能となる。
以上の実施形態により、防犯カメラ150などで撮影された画像データの中から、検出した人物画像を利用して特定の人物であるか判定、または類似した顔を検索する際に、被写体の状態にあわせて人間の目視確認しやすい画像データの生成、および認識処理に必要な画像補正を効率的に行うことができる。
上述した実施形態においては、複数の画像データを用いて補正処理を行った人物画像データを生成することで、目視確認又は認証処理しやすい画像データの生成が可能となる。
図13は、上述した実施形態にかかる人物画像処理装置100、1200のハードウェア構成を示した図である。図13に示すように、人物画像処理装置100、1200は、CPU1301と、ROM(Read Only Memory)1302と、RAM1303と、通信I/F1304と、HDD1305と、表示装置1306と、キーボードやマウスなどの入力デバイス1307と、これらを接続するバス1308と、を備えており、通常のコンピュータを利用したハードウェア構成となっている。
本実施形態の人物画像処理装置100、1200で実行される人物画像処理プログラムは、インストール可能な形式又は実行可能な形式のファイルでCD−ROM、フレキシブルディスク(FD)、CD−R、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記録媒体に記録されて提供される。
また、本実施形態の人物画像処理装置100、1200で実行される人物画像処理プログラムを、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせることにより提供するように構成しても良い。また、本実施形態の人物画像処理装置100、1200で実行される人物画像処理プログラムをインターネット等のネットワーク経由で提供または配布するように構成しても良い。
また、本実施形態の人物画像処理プログラムを、ROM等に予め組み込んで提供するように構成してもよい。
本実施形態の人物画像処理装置100、1200で実行される人物画像処理プログラムは、上述した各構成を含むモジュール構成となっており、実際のハードウェアとしてはCPU1301が上記記憶媒体から顔認識プログラムを読み出して実行することにより上記各構成がRAM1303上にロードされ、上記各構成がRAM1303上に生成される。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
100、1200…人物画像処理装置、101…顔向き用判定基準記憶部、102…隠蔽物用判定基準記憶部、103…特徴情報記憶部、104…画像入力処理部、105…人物検出部、106…人物特徴点検出部、107…補正部、108…出力部、111…信頼度判定部、150…防犯カメラ、1201…特徴抽出部、1202…認識部、1203…人物情報記憶部、1204…出力部
Claims (13)
- 撮像手段により撮像された時刻が異なる画像データを複数入力処理する入力処理手段と、
撮影された時刻が異なる複数の前記画像データの各々から、同一の人物が表示されている人物表示領域を抽出する抽出手段と、
前記複数の画像データの各々から抽出された前記人物表示領域から、人物の部位の特徴が示された特徴点を検出するとともに、当該特徴点に前記部位が表示されている信頼度を取得する特徴検出手段と、
前記入力処理手段により入力処理された前記人物表示領域を補正する際、各人物表示領域に含まれている前記特徴点の前記信頼度に基づいた重み付けを行う補正手段と、
を備える人物画像処理装置。 - 前記補正手段は、前記複数の画像データの前記人物表示領域に含まれる特徴点間を、前記信頼度に基づいて対応付け、当該対応付けを用いて、前記同一の人物が示された人物画像データを生成する、
請求項1に記載の人物画像処理装置。 - 前記画像データに表示されている人物の顔の向きに基づいて、人物の部位が画像データに表示されているか否かを判定する基準を示す第1の基準情報を記憶する第1の基準記憶手段を、さらに備え、
前記特徴検出手段は、前記人物表示領域に含まれている人物の顔の向きを検出した後、当該顔の向きと、前記第1の基準情報とに基づいた、前記特徴点の前記信頼度を取得する、
請求項2に記載の人物画像処理装置。 - 画像データに表示されている人物の顔の一部が隠蔽されているか否かを判定する基準を示す第2の基準情報を記憶する第2の基準記憶手段を、さらに備え、
前記特徴検出手段は、前記人物表示領域に対して、前記第2の基準情報に基づいて顔の一部が隠蔽されているか否かを判定し、当該判定結果に基づいた前記特徴点の前記信頼度を取得する、
請求項2又は3に記載の人物画像処理装置。 - 前記補正手段は、さらに、複数の前記画像データの前記人物表示領域から、前記同一の人物が示された人物画像データを生成する際に、隠蔽されていると判定された人物の顔の一部の領域について、統計的に学習された輝度パタンを利用した補間画像で、隠蔽されていると判定された領域を置き換える、
請求項4に記載の人物画像処理装置。 - 前記補正手段は、複数の前記画像データから抽出された複数の前記人物表示領域の解像度が異なる場合に、各人物表示領域に対して縮小又は拡大を行い、解像度を一致させてから合成する、
請求項2乃至5のいずれか1つに記載の人物画像処理装置。 - 前記補正手段は、複数の前記画像データの前記人物表示領域の解像度を一致させてから合成する際に、前記人物表示領域の解像度を重み付けとして用いる、
請求項6に記載の人物画像処理装置。 - 前記補正手段は、人物画像データを合成する際に、複数の前記人物表示領域に含まれる特徴点のうち、同じ部位を示す特徴点間を対応付けた上で、予め定められた人物の3次元的な形状モデルに合わせて合成した後、当該三次元的な形状モデルに従って表示される人物の向きを補正する、
請求項2乃至7のいずれか1つに記載の人物画像処理装置。 - 前記補正手段は、人物画像データを合成する際に、複数の前記人物表示領域を用いて鮮鋭化処理、又はノイズの低減処理を行う、
請求項2乃至8のいずれか1つに記載の人物画像処理装置。 - 前記補正手段は、複数の前記画像データを用いた高解像度化処理、又は複数の前記画像データを用いたコントラスト補正処理を行う、
請求項1乃至9のいずれか1つに記載の人物画像処理装置。 - 人物の識別情報と、当該人物の部位の特徴が示された特徴点に関する情報と、対応付けて記憶する人物記憶手段と、
前記人物記憶手段に記憶された前記特徴点に関する情報と、前記特徴検出手段により検出された前記特徴点と、に基づいて、前記人物記憶手段で記憶されている前記識別情報で識別される人物であるか否かを認識する認識手段と、
をさらに備える請求項1乃至10のいずれか1つに記載の人物画像処理装置。 - 入力処理手段が、撮像手段により撮像された時刻が異なる画像データを複数入力処理する入力処理ステップと、
抽出手段が、撮影された時刻が異なる複数の前記画像データの各々から、同一の人物が表示されている人物表示領域を抽出する抽出ステップと、
特徴検出手段が、前記複数の画像データの各々から抽出された前記人物表示領域から、人物の部位の特徴が示された特徴点を検出するとともに、当該特徴点に前記部位が表示されている信頼度を取得する特徴検出ステップと、
補正手段が、前記入力処理ステップにより入力処理された前記人物表示領域を補正する際、各人物表示領域に含まれている前記特徴点の前記信頼度に基づいた重み付けを行う補正ステップと、
を含む人物画像処理方法。 - 前記補正ステップは、前記複数の画像データの前記人物表示領域に含まれる特徴点間を、前記信頼度に基づいて対応付け、当該対応付けを用いて、前記同一の人物が示された人物画像データを生成する、
請求項12に記載の人物画像処理方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012061975A JP2013196294A (ja) | 2012-03-19 | 2012-03-19 | 人物画像処理装置、及び人物画像処理方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012061975A JP2013196294A (ja) | 2012-03-19 | 2012-03-19 | 人物画像処理装置、及び人物画像処理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013196294A true JP2013196294A (ja) | 2013-09-30 |
Family
ID=49395188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012061975A Pending JP2013196294A (ja) | 2012-03-19 | 2012-03-19 | 人物画像処理装置、及び人物画像処理方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013196294A (ja) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015231816A (ja) * | 2014-06-10 | 2015-12-24 | トヨタ自動車株式会社 | 車両用前照灯制御装置 |
JP2016114988A (ja) * | 2014-12-11 | 2016-06-23 | 株式会社メガチップス | 状態推定装置、プログラムおよび集積回路 |
JP2016197302A (ja) * | 2015-04-02 | 2016-11-24 | キヤノン株式会社 | 画像処理装置、画像処理方法、及びプログラム |
WO2017002226A1 (ja) * | 2015-07-01 | 2017-01-05 | 株式会社島津製作所 | データ処理装置 |
WO2017043132A1 (ja) * | 2015-09-08 | 2017-03-16 | 日本電気株式会社 | 顔認識システム、顔認識方法、表示制御装置、表示制御方法および表示制御プログラム |
US9799140B2 (en) | 2014-11-25 | 2017-10-24 | Samsung Electronics Co., Ltd. | Method and apparatus for generating personalized 3D face model |
JP2018017743A (ja) * | 2017-11-06 | 2018-02-01 | 株式会社島津製作所 | データ処理装置 |
US10121068B2 (en) | 2015-08-18 | 2018-11-06 | Canon Kabushiki Kaisha | Information processing apparatus, information processing method and program |
JP2019079173A (ja) * | 2017-10-23 | 2019-05-23 | パナソニックIpマネジメント株式会社 | 3次元侵入検知システムおよび3次元侵入検知方法 |
CN110135230A (zh) * | 2018-02-09 | 2019-08-16 | 财团法人交大思源基金会 | 表情辨识训练系统及表情辨识训练方法 |
WO2019159364A1 (ja) * | 2018-02-19 | 2019-08-22 | 三菱電機株式会社 | 搭乗者状態検出装置、搭乗者状態検出システム及び搭乗者状態検出方法 |
JP2019534518A (ja) * | 2016-11-03 | 2019-11-28 | 華為技術有限公司Huawei Technologies Co.,Ltd. | 光学撮像方法および装置 |
CN110610127A (zh) * | 2019-08-01 | 2019-12-24 | 平安科技(深圳)有限公司 | 人脸识别方法、装置、存储介质及电子设备 |
JP2021043603A (ja) * | 2019-09-09 | 2021-03-18 | ヤフー株式会社 | 情報処理装置、情報処理方法および情報処理プログラム |
WO2022091588A1 (ja) * | 2020-10-29 | 2022-05-05 | オムロン株式会社 | 学習方法、学習済みモデル、検出システム、検出方法、及びプログラム |
WO2023166693A1 (ja) * | 2022-03-04 | 2023-09-07 | 富士通株式会社 | 補正装置、補正方法、及び補正プログラム |
WO2023181363A1 (ja) * | 2022-03-25 | 2023-09-28 | 日本電気株式会社 | 制御装置、制御方法及びコンピュータ可読媒体 |
JP7493995B2 (ja) | 2020-04-30 | 2024-06-03 | 日本信号株式会社 | 人物識別システム |
-
2012
- 2012-03-19 JP JP2012061975A patent/JP2013196294A/ja active Pending
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015231816A (ja) * | 2014-06-10 | 2015-12-24 | トヨタ自動車株式会社 | 車両用前照灯制御装置 |
US9928647B2 (en) | 2014-11-25 | 2018-03-27 | Samsung Electronics Co., Ltd. | Method and apparatus for generating personalized 3D face model |
US9799140B2 (en) | 2014-11-25 | 2017-10-24 | Samsung Electronics Co., Ltd. | Method and apparatus for generating personalized 3D face model |
JP2016114988A (ja) * | 2014-12-11 | 2016-06-23 | 株式会社メガチップス | 状態推定装置、プログラムおよび集積回路 |
JP2016197302A (ja) * | 2015-04-02 | 2016-11-24 | キヤノン株式会社 | 画像処理装置、画像処理方法、及びプログラム |
WO2017002226A1 (ja) * | 2015-07-01 | 2017-01-05 | 株式会社島津製作所 | データ処理装置 |
US11222773B2 (en) | 2015-07-01 | 2022-01-11 | Shimadzu Corporation | Data processing device |
JPWO2017002226A1 (ja) * | 2015-07-01 | 2017-12-14 | 株式会社島津製作所 | データ処理装置 |
US11776799B2 (en) | 2015-07-01 | 2023-10-03 | Shimadzu Corporation | Data processing device |
US10121068B2 (en) | 2015-08-18 | 2018-11-06 | Canon Kabushiki Kaisha | Information processing apparatus, information processing method and program |
US10885311B2 (en) | 2015-09-08 | 2021-01-05 | Nec Corporation | Face recognition system, face recognition method, display control apparatus, display control method, and display control program |
WO2017043132A1 (ja) * | 2015-09-08 | 2017-03-16 | 日本電気株式会社 | 顔認識システム、顔認識方法、表示制御装置、表示制御方法および表示制御プログラム |
US10885312B2 (en) | 2015-09-08 | 2021-01-05 | Nec Corporation | Face recognition system, face recognition method, display control apparatus, display control method, and display control program |
US11842566B2 (en) | 2015-09-08 | 2023-12-12 | Nec Corporation | Face recognition system, face recognition method, display control apparatus, display control method, and display control program |
US10970524B2 (en) | 2015-09-08 | 2021-04-06 | Nec Corporation | Face recognition system, face recognition method, display control apparatus, display control method, and display control program |
US10671837B2 (en) | 2015-09-08 | 2020-06-02 | Nec Corporation | Face recognition system, face recognition method, display control apparatus, display control method, and display control program |
JPWO2017043132A1 (ja) * | 2015-09-08 | 2018-01-25 | 日本電気株式会社 | 顔認識システム、顔認識方法、表示制御装置、表示制御方法および表示制御プログラム |
JP2019534518A (ja) * | 2016-11-03 | 2019-11-28 | 華為技術有限公司Huawei Technologies Co.,Ltd. | 光学撮像方法および装置 |
US10810720B2 (en) | 2016-11-03 | 2020-10-20 | Huawei Technologies Co., Ltd. | Optical imaging method and apparatus |
JP2019079173A (ja) * | 2017-10-23 | 2019-05-23 | パナソニックIpマネジメント株式会社 | 3次元侵入検知システムおよび3次元侵入検知方法 |
JP2018017743A (ja) * | 2017-11-06 | 2018-02-01 | 株式会社島津製作所 | データ処理装置 |
CN110135230B (zh) * | 2018-02-09 | 2024-01-12 | 财团法人交大思源基金会 | 表情辨识训练系统及表情辨识训练方法 |
CN110135230A (zh) * | 2018-02-09 | 2019-08-16 | 财团法人交大思源基金会 | 表情辨识训练系统及表情辨识训练方法 |
CN111712852A (zh) * | 2018-02-19 | 2020-09-25 | 三菱电机株式会社 | 乘客状态检测装置、乘客状态检测系统和乘客状态检测方法 |
CN111712852B (zh) * | 2018-02-19 | 2023-08-11 | 三菱电机株式会社 | 乘客状态检测装置、系统和方法 |
WO2019159364A1 (ja) * | 2018-02-19 | 2019-08-22 | 三菱電機株式会社 | 搭乗者状態検出装置、搭乗者状態検出システム及び搭乗者状態検出方法 |
JPWO2019159364A1 (ja) * | 2018-02-19 | 2020-05-28 | 三菱電機株式会社 | 搭乗者状態検出装置、搭乗者状態検出システム及び搭乗者状態検出方法 |
CN110610127B (zh) * | 2019-08-01 | 2023-10-27 | 平安科技(深圳)有限公司 | 人脸识别方法、装置、存储介质及电子设备 |
JP7106742B2 (ja) | 2019-08-01 | 2022-07-26 | 平安科技(深▲せん▼)有限公司 | 顔認識方法、装置、電子機器及びコンピュータ不揮発性読み取り可能な記憶媒体 |
JP2021534480A (ja) * | 2019-08-01 | 2021-12-09 | 平安科技(深▲せん▼)有限公司Ping An Technology (Shenzhen) Co., Ltd. | 顔認識方法、装置、電子機器及びコンピュータ不揮発性読み取り可能な記憶媒体 |
CN110610127A (zh) * | 2019-08-01 | 2019-12-24 | 平安科技(深圳)有限公司 | 人脸识别方法、装置、存储介质及电子设备 |
JP7179705B2 (ja) | 2019-09-09 | 2022-11-29 | ヤフー株式会社 | 情報処理装置、情報処理方法および情報処理プログラム |
JP2021043603A (ja) * | 2019-09-09 | 2021-03-18 | ヤフー株式会社 | 情報処理装置、情報処理方法および情報処理プログラム |
JP7493995B2 (ja) | 2020-04-30 | 2024-06-03 | 日本信号株式会社 | 人物識別システム |
WO2022091588A1 (ja) * | 2020-10-29 | 2022-05-05 | オムロン株式会社 | 学習方法、学習済みモデル、検出システム、検出方法、及びプログラム |
JP7512844B2 (ja) | 2020-10-29 | 2024-07-09 | オムロン株式会社 | 学習方法、学習済みモデル、検出システム、検出方法、及びプログラム |
WO2023166693A1 (ja) * | 2022-03-04 | 2023-09-07 | 富士通株式会社 | 補正装置、補正方法、及び補正プログラム |
WO2023181363A1 (ja) * | 2022-03-25 | 2023-09-28 | 日本電気株式会社 | 制御装置、制御方法及びコンピュータ可読媒体 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5795979B2 (ja) | 人物画像処理装置、及び人物画像処理方法 | |
JP2013196294A (ja) | 人物画像処理装置、及び人物画像処理方法 | |
US9098760B2 (en) | Face recognizing apparatus and face recognizing method | |
JP5766564B2 (ja) | 顔認証装置及び顔認証方法 | |
US10127437B2 (en) | Unified face representation for individual recognition in surveillance videos and vehicle logo super-resolution system | |
JP5649425B2 (ja) | 映像検索装置 | |
US8836777B2 (en) | Automatic detection of vertical gaze using an embedded imaging device | |
US10380421B2 (en) | Iris recognition via plenoptic imaging | |
US8983202B2 (en) | Smile detection systems and methods | |
JP2007265367A (ja) | 視線検出方法および装置ならびにプログラム | |
US20110135153A1 (en) | Image processing device, image processing method and program | |
JP6589321B2 (ja) | システム、検索方法およびプログラム | |
JP6822482B2 (ja) | 視線推定装置、視線推定方法及びプログラム記録媒体 | |
JP5776323B2 (ja) | 角膜反射判定プログラム、角膜反射判定装置および角膜反射判定方法 | |
JP5787686B2 (ja) | 顔認識装置、及び顔認識方法 | |
US20180174309A1 (en) | Eye Motion Detection Method, Program, Program Storage Medium, and Eye Motion Detection Device | |
JP5971712B2 (ja) | 監視装置及び方法 | |
JP2008015871A (ja) | 認証装置、及び認証方法 | |
JP2010244090A (ja) | 人物情報抽出装置、人物情報抽出方法、及び人物情報抽出プログラム | |
JP2009009404A (ja) | 画像処理装置、画像処理方法及び画像処理プログラム | |
Robin et al. | A novel approach to detect & track iris for a different and adverse dataset | |
JP7103443B2 (ja) | 情報処理装置、情報処理方法、およびプログラム | |
JP2011076439A (ja) | 撮像装置、撮像装置の制御方法、及びコンピュータプログラム |