Nothing Special   »   [go: up one dir, main page]

JP2013023586A - Method for producing polyarylene sulfide resin - Google Patents

Method for producing polyarylene sulfide resin Download PDF

Info

Publication number
JP2013023586A
JP2013023586A JP2011159865A JP2011159865A JP2013023586A JP 2013023586 A JP2013023586 A JP 2013023586A JP 2011159865 A JP2011159865 A JP 2011159865A JP 2011159865 A JP2011159865 A JP 2011159865A JP 2013023586 A JP2013023586 A JP 2013023586A
Authority
JP
Japan
Prior art keywords
polyarylene sulfide
sulfide resin
alkali metal
reaction mixture
mpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011159865A
Other languages
Japanese (ja)
Other versions
JP5794468B2 (en
Inventor
Keiichiro Fukazawa
啓一郎 深澤
Toshio Himori
俊男 檜森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2011159865A priority Critical patent/JP5794468B2/en
Publication of JP2013023586A publication Critical patent/JP2013023586A/en
Application granted granted Critical
Publication of JP5794468B2 publication Critical patent/JP5794468B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing a polyarylene sulfide resin, including a purification step of polyarylene sulfide, in which a polyarylene sulfide resin with a low metal ion content can be obtained without acid addition and through a short-time purification.SOLUTION: The method for producing a polyarylene sulfide resin includes: a purification step of reacting a polyhalo aromatic compound and an alkali metal sulfide, or an alkali metal sulfhydrate and an alkali metal hydroxide in an organic polar solvent to obtain a rough reaction mixture including a polyarylene sulfide resin and the alkali metal sulfhydrate, solid-liquid separating the solvent from the rough reaction mixture to obtain a reaction mixture including the polyarylene sulfide resin, the alkali metal sulfhydrate, and at least one selected from a sulfur atom and allotropes thereof and alkali metal thiosulfate, and then bringing the reaction mixture into contact with water under an oxygen pressure condition having an oxygen pressure of 0.02-0.2 MPa.

Description

本発明はポリアリーレンスルフィド樹脂(以下、PASと略称することがある)の精製工程を含むポリアリーレンスルフィド樹脂の製造方法に関する。   The present invention relates to a method for producing a polyarylene sulfide resin including a purification step of a polyarylene sulfide resin (hereinafter sometimes abbreviated as PAS).

ポリアリーレンスルフィド樹脂の中でも代表的なポリフェニレンスルフィド樹脂(以下、PPSと略称することがある)は、極性有機溶媒中で、硫化ナトリウムに代表されるアルカリ金属硫化物、あるいは水硫化ナトリウムに代表されるアルカリ金属水硫化物と水酸化ナトリウムに代表されるアルカリ金属水酸化物と、p−ジクロルベンゼンに代表されるポリハロ芳香族化合物とを反応させる方法などによって得られる。
ポリアリーレンスルフィド樹脂は重合反応後に粗反応混合物を固液分離して溶媒を留去した後、樹脂中の不純物を除去する各種精製処理が行われているが、単純に水洗、濾過を行っただけではポリアリーレンスルフィド樹脂の分子末端に存在するナトリウムイオンなどの金属イオン含有量が高く、成形加工時に結晶化時間が長くなり生産性が低くなるという問題があった。
Among polyarylene sulfide resins, typical polyphenylene sulfide resins (hereinafter sometimes abbreviated as PPS) are represented by alkali metal sulfides typified by sodium sulfide or sodium hydrosulfide in polar organic solvents. It can be obtained by a method of reacting an alkali metal hydrosulfide, an alkali metal hydroxide typified by sodium hydroxide, and a polyhaloaromatic compound typified by p-dichlorobenzene.
The polyarylene sulfide resin is subjected to various purification treatments to remove impurities in the resin after solid-liquid separation of the crude reaction mixture after the polymerization reaction and the solvent is distilled off, but it is simply washed with water and filtered. However, there is a problem that the content of metal ions such as sodium ions present at the molecular ends of the polyarylene sulfide resin is high, and the crystallization time is long during the molding process, resulting in low productivity.

そこでポリアリーレンスルフィド樹脂の重合反応後の粗反応混合物を固液分離した後、炭酸ガスまたは炭酸水を系内に導入して、炭酸ガスまたは炭酸水とポリアリーレンスルフィド樹脂とを接触させる精製方法が知られている(特許文献1および2参照)。しかし、この方法は二酸化炭素が水に溶解して生成した炭酸イオンを用いてポリアリーレンスルフィド樹脂の塩基性型末端(SNa型末端)を酸性型末端(SH)に変換させるものであり、処理時間が長時間に及ぶため生産性に劣る方法であった。   Therefore, after the solid reaction separation of the crude reaction mixture after the polymerization reaction of the polyarylene sulfide resin, carbon dioxide gas or carbonated water is introduced into the system, and the carbon dioxide gas or carbonated water and the polyarylene sulfide resin are brought into contact with each other. Known (see Patent Documents 1 and 2). However, this method is to convert the basic type terminal (SNa type terminal) of the polyarylene sulfide resin into the acidic type terminal (SH) using carbonate ions generated by dissolving carbon dioxide in water, and the processing time. However, this method is inferior in productivity because it takes a long time.

またポリアリーレンスルフィド樹脂の重合反応後の粗反応混合物を固液分離した後、水ならびに無機酸および有機酸から選ばれる少なくとも1種の酸を加えて高温で酸洗浄する方法も知られている(特許文献3参照)。しかしながら、このような精製時に酸添加する方法は、原材点数や生産設備の増加によるコスト増加を招き、生産性を低下させる原因になっていた。   Also known is a method in which a crude reaction mixture after polymerization reaction of polyarylene sulfide resin is subjected to solid-liquid separation, and then at least one acid selected from water and inorganic acids and organic acids is added, followed by acid cleaning at high temperature ( (See Patent Document 3). However, such a method of adding an acid at the time of refining causes an increase in cost due to an increase in the number of raw materials and production facilities, and causes a decrease in productivity.

特開2002−187949号公報JP 2002-187949 A 特開2005−264030号公報JP 2005-264030 A 特開2009−280637号公報JP 2009-280637 A

そこで本発明が解決しようとする課題は、金属イオン含有量の低いポリアリーレンスルフィド樹脂を、酸添加を行うことなく且つ短時間の精製で得ることができる、ポリアリーレンスルフィドの精製工程を含むポリアリーレンスルフィド樹脂の製造方法を提供することにある。   Therefore, the problem to be solved by the present invention is to obtain a polyarylene sulfide resin having a low metal ion content, which can be obtained by refining in a short time without performing acid addition. It is providing the manufacturing method of sulfide resin.

本願発明者らは種々の検討を行った結果、ポリアリーレンスルフィド樹脂の重合反応後の粗反応混合物中に残留する微量の原料(アルカリ金属水硫化物およびその酸化物)を利用してポリアリーレンスルフィド樹脂分子鎖の末端変性を行うという簡便な手段により、金属イオン含有量の低いポリアリーレンスルフィド樹脂を得ることができることを見出し、本願発明を完成するに至った。   As a result of various studies, the inventors of the present application have used polyarylene sulfide utilizing a trace amount of raw material (alkali metal hydrosulfide and its oxide) remaining in the crude reaction mixture after the polymerization reaction of polyarylene sulfide resin. The inventors have found that a polyarylene sulfide resin having a low metal ion content can be obtained by a simple means of performing terminal modification of a resin molecular chain, and have completed the present invention.

すなわち、本発明は有機極性溶媒中で、ポリハロ芳香族化合物と、(i)アルカリ金属硫化物とを、または、(ii)アルカリ金属水硫化物及びアルカリ金属水酸化物とを反応させてポリアリーレンスルフィド樹脂とアルカリ金属水硫化物を含む粗反応混合物を得た後、粗反応混合物から前記溶媒を固液分離させてポリアリーレンスルフィド樹脂とアルカリ金属水硫化物、硫黄原子およびその同素体並びにチオ硫酸アルカリ金属から選ばれる少なくとも一種を含む反応混合物を得、その後、該反応混合物を酸素圧力0.02〜0.2〔MPa〕の範囲にある酸素加圧条件下で水と接触させる精製工程を有することを特徴とするポリアリーレンスルフィド樹脂の製造方法に関する。   That is, the present invention relates to polyarylene by reacting a polyhaloaromatic compound with (i) an alkali metal sulfide or (ii) an alkali metal hydrosulfide and an alkali metal hydroxide in an organic polar solvent. After obtaining a crude reaction mixture containing a sulfide resin and an alkali metal hydrosulfide, the solvent is solid-liquid separated from the crude reaction mixture to obtain a polyarylene sulfide resin, an alkali metal hydrosulfide, a sulfur atom and its allotrope, and an alkali thiosulfate Obtaining a reaction mixture containing at least one selected from metals, and then bringing the reaction mixture into contact with water under oxygen pressure conditions in the range of oxygen pressure 0.02-0.2 [MPa] To a process for producing a polyarylene sulfide resin.

本発明によれば、金属イオン含有量の低いポリアリーレンスルフィド樹脂を、酸添加を行うことなく且つ短時間の精製で得ることができる、ポリアリーレンスルフィドの精製工程を含むポリアリーレンスルフィド樹脂の製造方法を提供できる。   According to the present invention, a polyarylene sulfide resin having a low metal ion content can be obtained by refining in a short time without adding an acid, and a method for producing a polyarylene sulfide resin comprising a purification step of polyarylene sulfide. Can provide.

本発明は、有機極性溶媒中で、ポリハロ芳香族化合物とアルカリ金属硫化物とを反応させてポリアリーレンスルフィド樹脂とアルカリ金属水硫化物を含む粗反応混合物を得るか、または、ポリハロ芳香族化合物とアルカリ金属水硫化物及びアルカリ金属水酸化物とを反応させてポリアリーレンスルフィド樹脂とアルカリ金属水硫化物を含む粗反応混合物を得る。   The present invention provides a reaction mixture of a polyhaloaromatic compound and an alkali metal sulfide in an organic polar solvent to obtain a crude reaction mixture containing a polyarylene sulfide resin and an alkali metal hydrosulfide, or a polyhaloaromatic compound and An alkali metal hydrosulfide and an alkali metal hydroxide are reacted to obtain a crude reaction mixture containing a polyarylene sulfide resin and an alkali metal hydrosulfide.

本発明で用いられるポリハロ芳香族化合物は、例えば、芳香族環に直接結合した2個以上のハロゲン原子を有するハロゲン化芳香族化合物であり、具体的には、p−ジクロルベンゼン、o−ジクロルベンゼン、m−ジクロルベンゼン、トリクロルベンゼン、テトラクロルベンゼン、ジブロムベンゼン、ジヨードベンゼン、トリブロムベンゼン、ジブロムナフタレン、トリヨードベンゼン、ジクロルジフェニルベンゼン、ジブロムジフェニルベンゼン、ジクロルベンゾフェノン、ジブロムベンゾフェノン、ジクロルジフェニルエーテル、ジブロムジフェニルエーテル、ジクロルジフェニルスルフィド、ジブロムジフェニルスルフィド、ジクロルビフェニル、ジブロムビフェニル等のジハロ芳香族化合物及びこれらの混合物が挙げられ、これらの化合物をブロック共重合してもよい。これらの中でも好ましいのはジハロゲン化ベンゼン類であり、特に好ましいのはp−ジクロルベンゼンを80モル%以上含むものである。   The polyhaloaromatic compound used in the present invention is, for example, a halogenated aromatic compound having two or more halogen atoms directly bonded to an aromatic ring, and specifically includes p-dichlorobenzene, o-dioxy. Chlorobenzene, m-dichlorobenzene, trichlorobenzene, tetrachlorobenzene, dibromobenzene, diiodobenzene, tribromobenzene, dibromonaphthalene, triiodobenzene, dichlorodiphenylbenzene, dibromodiphenylbenzene, dichlorobenzophenone, And dihaloaromatic compounds such as dibromobenzophenone, dichlorodiphenyl ether, dibromodiphenyl ether, dichlorodiphenyl sulfide, dibromodiphenyl sulfide, dichlorobiphenyl, dibromobiphenyl, and mixtures thereof. The compound may be block copolymerized. Of these, dihalogenated benzenes are preferred, and those containing p-dichlorobenzene of 80 mol% or more are particularly preferred.

また、枝分かれ構造とすることによってポリアリーレンスルフィド樹脂の粘度増大を図る目的で、1分子中に3個以上のハロゲン置換基を有するポリハロ芳香族化合物を分岐剤として所望に応じて用いてもよい。このようなポリハロ芳香族化合物としては、例えば、1,2,4−トリクロルベンゼン、1,3,5−トリクロルベンゼン、1,4,6−トリクロルナフタレン等が挙げられる。   Further, for the purpose of increasing the viscosity of the polyarylene sulfide resin by using a branched structure, a polyhaloaromatic compound having 3 or more halogen substituents in one molecule may be used as a branching agent as desired. Examples of such polyhaloaromatic compounds include 1,2,4-trichlorobenzene, 1,3,5-trichlorobenzene, 1,4,6-trichloronaphthalene, and the like.

更に、アミノ基、チオール基、ヒドロキシル基等の活性水素を持つ官能基を有するポリハロ芳香族化合物を挙げることが出来、具体的には、2,6−ジクロルアニリン、2,5−ジクロルアニリン、2,4−ジクロルアニリン、2,3−ジクロルアニリン等のジハロアニリン類;2,3,4−トリクロルアニリン、2,3,5−トリクロルアニリン、2,4,6−トリクロルアニリン、3,4,5−トリクロルアニリン等のトリハロアニリン類;2,2’−ジアミノ−4,4’−ジクロルジフェニルエーテル、2,4’−ジアミノ−2’,4−ジクロルジフェニルエーテル等のジハロアミノジフェニルエーテル類およびこれらの混合物においてアミノ基がチオール基やヒドロキシル基に置き換えられた化合物などが例示される。   Furthermore, polyhaloaromatic compounds having a functional group having active hydrogen such as amino group, thiol group, hydroxyl group can be mentioned. Specifically, 2,6-dichloroaniline, 2,5-dichloroaniline 2,4-dichloroaniline, 2,3-dichloroaniline and other dihaloanilines; 2,3,4-trichloroaniline, 2,3,5-trichloroaniline, 2,4,6-trichloroaniline, 3, Trihaloanilines such as 4,5-trichloroaniline; dihaloaminodiphenyl ethers such as 2,2′-diamino-4,4′-dichlorodiphenyl ether and 2,4′-diamino-2 ′, 4-dichlorodiphenyl ether Examples thereof include compounds in which the amino group is replaced by a thiol group or a hydroxyl group in a mixture thereof.

また、これらの活性水素含有ポリハロ芳香族化合物中の芳香族環を形成する炭素原子に結合した水素原子が他の不活性基、例えばアルキル基などの炭化水素基に置換している活性水素含有ポリハロ芳香族化合物も使用出来る。   In addition, active hydrogen-containing polyhalo compounds in which the hydrogen atom bonded to the carbon atom forming the aromatic ring in these active hydrogen-containing polyhaloaromatic compounds is substituted with another inert group, for example, a hydrocarbon group such as an alkyl group. Aromatic compounds can also be used.

これらの各種活性水素含有ポリハロ芳香族化合物の中でも、好ましいのは活性水素含有ジハロ芳香族化合物であり、特に好ましいのはジクロルアニリンである。   Among these various active hydrogen-containing polyhaloaromatic compounds, an active hydrogen-containing dihaloaromatic compound is preferable, and dichloroaniline is particularly preferable.

ニトロ基を有するポリハロ芳香族化合物としては、例えば、2,4−ジニトロクロルベンゼン、2,5−ジクロルニトロベンゼン等のモノまたはジハロニトロベンゼン類;2−ニトロ−4,4’−ジクロルジフェニルエーテル等のジハロニトロジフェニルエーテル類;3,3’−ジニトロ−4,4’−ジクロルジフェニルスルホン等のジハロニトロジフェニルスルホン類;2,5−ジクロル−3−ニトロピリジン、2−クロル−3,5−ジニトロピリジン等のモノまたはジハロニトロピリジン類;あるいは各種ジハロニトロナフタレン類などが挙げられる。   Examples of the polyhaloaromatic compound having a nitro group include mono- or dihalonitrobenzenes such as 2,4-dinitrochlorobenzene and 2,5-dichloronitrobenzene; 2-nitro-4,4′-dichlorodiphenyl ether Dihalonitrodiphenyl ethers; dihalonitrodiphenyl sulfones such as 3,3′-dinitro-4,4′-dichlorodiphenyl sulfone; 2,5-dichloro-3-nitropyridine, 2-chloro-3,5 -Mono or dihalonitropyridines such as dinitropyridine; or various dihalonitronaphthalenes.

本発明で用いられるアルカリ金属硫化物としては、硫化リチウム、硫化ナトリウム、硫化ルビジウム、硫化セシウム及びこれらの混合物が含まれる。かかるアルカリ金属硫化物は、水和物あるいは水性混合物あるいは無水物として使用することができる。また、アルカリ金属硫化物はアルカリ金属水硫化物とアルカリ金属水酸化物との反応によっても導くことができる。   Examples of the alkali metal sulfide used in the present invention include lithium sulfide, sodium sulfide, rubidium sulfide, cesium sulfide, and mixtures thereof. Such alkali metal sulfides can be used as hydrates, aqueous mixtures or anhydrides. The alkali metal sulfide can also be derived from the reaction between an alkali metal hydrosulfide and an alkali metal hydroxide.

尚、通常、アルカリ金属硫化物中に微量存在するアルカリ金属水硫化物、チオ硫酸アルカリ金属と反応させるために、少量のアルカリ金属水酸化物を加えても差し支えない。   Normally, a small amount of alkali metal hydroxide may be added to react with alkali metal hydrosulfide or alkali metal thiosulfate present in a trace amount in the alkali metal sulfide.

本発明で用いられる有機極性溶媒としては、ホルムアミド、アセトアミド、N−メチルホルムアミド、N,N−ジメチルアセトアミド、テトラメチル尿素、N−メチル−2−ピロリドン、2−ピロリドン、N−メチル−ε−カプロラクタム、ε−カプロラクタム、ヘキサメチルホスホルアミド、N−ジメチルプロピレン尿素、1,3−ジメチル−2−イミダゾリジノン酸などのアミド、尿素及びラクタム類;スルホラン、ジメチルスルホラン等のスルホラン類;ベンゾニトリル等のニトリル類;メチルフェニルケトン等のケトン類及びこれらの混合物を挙げることができ、これらの中でもN−メチル−2−ピロリドン、2−ピロリドン、N−メチル−ε−カプロラクタム、ε−カプロラクタム、ヘキサメチルホスホルアミド、N−ジメチルプロピレン尿素、1,3−ジメチル−2−イミダゾリジノン酸の脂肪族系環状構造を有するアミドが好ましい。   Examples of the organic polar solvent used in the present invention include formamide, acetamide, N-methylformamide, N, N-dimethylacetamide, tetramethylurea, N-methyl-2-pyrrolidone, 2-pyrrolidone, and N-methyl-ε-caprolactam. , Ε-caprolactam, hexamethylphosphoramide, N-dimethylpropyleneurea, amides such as 1,3-dimethyl-2-imidazolidinone, urea and lactams; sulfolanes such as sulfolane and dimethylsulfolane; benzonitrile and the like Nitriles; ketones such as methyl phenyl ketone and mixtures thereof, among which N-methyl-2-pyrrolidone, 2-pyrrolidone, N-methyl-ε-caprolactam, ε-caprolactam, hexamethyl Phosphoramide, N-dimethylpro Ren urea, 1,3-dimethyl-2-amide having an aliphatic cyclic structure imidazolidinone acid.

ポリアリーレンスルフィド樹脂の重合反応は、これらの有機極性溶媒の存在下、いわゆるスルフィド化剤と呼ばれる上記のアルカリ金属硫化物またはアルカリ金属水硫化物及びアルカリ金属水酸化物と、ポリハロ芳香族化合物とを反応させる。重合条件は一般に、温度200〜330℃の範囲であり、圧力は重合溶媒及び重合モノマーであるポリハロ芳香族化合物を実質的に液層に保持するような範囲であるべきであり、一般には0.1〜20MPaの範囲、好ましくは0.1〜2MPaの範囲より選択される。   In the presence of these organic polar solvents, the polymerization reaction of the polyarylene sulfide resin is carried out by combining the above-mentioned alkali metal sulfide or alkali metal hydrosulfide and alkali metal hydroxide called a sulfidizing agent with a polyhaloaromatic compound. React. The polymerization conditions are generally in the range of 200 to 330 ° C., and the pressure should be in such a range that the polymerization solvent and the polymerization monomer polyhaloaromatic compound are substantially retained in the liquid layer. It is selected from the range of 1-20 MPa, preferably from the range of 0.1-2 MPa.

本発明で用いるポリアリーレンスルフィド樹脂の製造方法の具体的態様の一つとして、例えば、ポリハロ芳香族化合物の存在下、アルカリ金属硫化物、又は、含水アルカリ金属水硫化物及びアルカリ金属水酸化物と、脂肪族環状構造を有するアミド、尿素またはラクタムとを、脱水させながら反応させて固形のアルカリ金属硫化物を含むスラリーを製造する工程、該スラリーを製造した後、更にNMPなどの極性有機溶媒を加え、水を留去して脱水を行う工程、次いで、脱水工程を経て得られたスラリー中で、ポリハロ芳香族化合物と、アルカリ金属水硫化物と、前記脂肪族環状構造を有するアミド、尿素またはラクタムの加水分解物のアルカリ金属塩とを、NMPなどの極性有機溶媒1モルに対して反応系内に現存する水分量が0.02モル以下で反応させて重合を行う工程を必須の製造工程として有するポリアリーレンスルフィド樹脂の製造方法が挙げられる。   As one specific embodiment of the method for producing the polyarylene sulfide resin used in the present invention, for example, in the presence of a polyhaloaromatic compound, an alkali metal sulfide, or a hydrous alkali metal hydrosulfide and an alkali metal hydroxide are used. , A step of producing a slurry containing solid alkali metal sulfide by reacting amide, urea or lactam having an aliphatic cyclic structure while dehydrating, and further producing a polar organic solvent such as NMP after the slurry is produced. In addition, a step of dehydrating by distilling off water, and then in a slurry obtained through the dehydration step, a polyhaloaromatic compound, an alkali metal hydrosulfide, an amide having an aliphatic cyclic structure, urea or The alkali metal salt of the lactam hydrolyzate is present in an amount of 0.02 mol of water present in the reaction system with respect to 1 mol of a polar organic solvent such as NMP. Method for producing a polyarylene sulfide resin having a step of performing the polymerization by reacting the following as essential production steps and the like.

本発明においては、粗反応生成物がスルフィド化剤及び有機極性溶媒の存在下に、ポリハロ芳香族化合物及び有機極性溶媒を連続的ないし断続的に加えながら反応させる形態も包含する。   In the present invention, a form in which the crude reaction product is reacted in the presence of a sulfidizing agent and an organic polar solvent while continuously or intermittently adding a polyhaloaromatic compound and an organic polar solvent is also included.

ポリアリーレンスルフィド樹脂の重合終了後に、重合体、副生成物、アルカリ金属塩やアルカリ金属水硫化物を始めとする未反応物質、溶媒などを含む粗反応混合物を固液分離して、ポリアリーレンスルフィド樹脂およびアルカリ金属水硫化物を含む反応混合物を回収する。回収方法には大きく分けて、後述するフラッシュ法とクウェンチ法の2種類がある。フラッシュ法は、溶媒を蒸発させて溶媒回収し、同時に固形物を回収する方法であり、一方、クウェンチ法は、重合反応物を、除冷して粒子状のポリアリーレンスルフィド樹脂を回収する方法である。フラッシュ法は、固形物を比較的簡便に回収することができる点で好ましく、クウェンチ法は、ポリアリーレンスルフィド樹脂の粒度を制御しやすい点で好ましい。   After the polymerization of the polyarylene sulfide resin is completed, the crude reaction mixture containing the polymer, by-products, unreacted substances such as alkali metal salts and alkali metal hydrosulfides, and solvents is subjected to solid-liquid separation to obtain polyarylene sulfide. A reaction mixture containing the resin and alkali metal hydrosulfide is recovered. There are roughly two types of recovery methods: a flash method and a quench method described later. The flash method is a method of recovering the solvent by evaporating the solvent and simultaneously recovering the solid matter, while the quench method is a method of recovering the particulate polyarylene sulfide resin by cooling the polymerization reaction product. is there. The flash method is preferable in that a solid can be recovered relatively easily, and the quench method is preferable in that the particle size of the polyarylene sulfide resin can be easily controlled.

本発明に用いる反応混合物は、前記粗反応混合物を固液分離させた後、水洗処理して得られたものであってもよく、例えば、固液分離により回収されたポリアリーレンスルフィド樹脂およびアルカリ金属水硫化物を、水でスラリー化した後、必要に応じて、水洗浄を行ってえられたものであってもよい。水洗浄は、窒素ないし空気雰囲気下、20〜100℃の範囲の条件下において、一回または複数回繰り返し行うことができる。複数回繰り返し水洗浄する場合、前記雰囲気・温度条件は同一でも異なっていても良い。なお、空気雰囲気下で水洗浄を行うと、アルカリ金属水硫化物(MSH)の一部が酸化されて、硫黄原子(S)、その同素体(Sなど)、チオ硫酸アルカリ金属(M)などの酸化物を生成することがある。アルカリ金属水硫化物またはその酸化物は、後述する精製工程において活物質の前駆体となるため、前記固液分離および水洗浄工程は、アルカリ金属塩を極力除去しつつ、有効成分量のアルカリ金属水硫化物またはその酸化物(S、S、Mなど)が残留するよう調整しながら行う。アルカリ金属水硫化物またはその酸化物の残留量は、所定の精製効果を得られる範囲であれば特に限定されるものではないが、該残留量が少ないと所定の精製効果を得にくく、一方、該残留量が多いとポリアリーレンスルフィド樹脂が分解するため、ポリアリーレンスルフィド樹脂1gに対して0.1〜300〔μmol〕の範囲、好ましくは1〜200〔μmol〕の範囲、さらに好ましくは10〜100〔μmol〕の範囲となるよう調整する。 The reaction mixture used in the present invention may be obtained by subjecting the crude reaction mixture to solid-liquid separation and then washing with water, for example, polyarylene sulfide resin and alkali metal recovered by solid-liquid separation. The hydrosulfide may be obtained by slurrying with water and then washing with water as necessary. The water washing can be repeated once or a plurality of times under the condition of 20 to 100 ° C. in a nitrogen or air atmosphere. When water washing is repeated a plurality of times, the atmosphere and temperature conditions may be the same or different. Incidentally, when the water washing in an air atmosphere, a portion of the alkali metal hydrosulfide (MSH) is oxidized, a sulfur atom (S), (such as S 8) allotrope thereof, thiosulfate alkali metal (M 2 S 2 O 3 ) and other oxides may be produced. Since the alkali metal hydrosulfide or its oxide serves as a precursor of the active material in the purification step described later, the solid-liquid separation and water washing step removes the alkali metal salt as much as possible while reducing the effective component amount of alkali metal. Adjusting so that hydrosulfide or its oxide (S, S 8 , M 2 S 2 O 3, etc.) remains is performed. The residual amount of the alkali metal hydrosulfide or its oxide is not particularly limited as long as the predetermined purification effect can be obtained, but if the residual amount is small, it is difficult to obtain the predetermined purification effect, When the residual amount is large, the polyarylene sulfide resin is decomposed, so the amount is in the range of 0.1 to 300 [μmol], preferably in the range of 1 to 200 [μmol], more preferably 10 to 10 g with respect to 1 g of the polyarylene sulfide resin. It adjusts so that it may become the range of 100 [micromol].

上記の固液分離および必要に応じて水洗浄を行って得られたポリアリーレンスルフィド樹脂とアルカリ金属水硫化物またはその酸化物を含む反応混合物は、続いて、酸素圧力0.02〜0.1〔MPa〕の範囲の酸素加圧条件下で水と接触させ、ポリアリーレンスルフィド樹脂を精製する。   The reaction mixture containing the polyarylene sulfide resin and the alkali metal hydrosulfide or its oxide obtained by performing the above-described solid-liquid separation and water washing as necessary is subsequently subjected to an oxygen pressure of 0.02 to 0.1. The polyarylene sulfide resin is purified by contacting with water under oxygen pressure conditions in the range of [MPa].

加圧する酸素は、酸素(O)のみを用いても良いし、安全性の面から窒素ガス、アルゴンガス、ネオンガス等の不活性ガスとの混合ガスを用いても良いが、経済性の面から、空気を用いることが最も好ましい。酸素加圧条件下でポリアリーレンスルフィド樹脂と水を接触させる際の温度は、ポリアリーレンスルフィド樹脂中の金属イオンの含有量の低減効果を奏する室温(23℃)以上であれば特に限定されないが、具体的にはポリアリーレンスルフィド樹脂中の金属イオンの含有量の低減効果が顕著であることから、100℃以上、好ましくは130℃以上、より好ましくは170℃以上、より好ましくは210℃以上である。また、この際の温度の上限は特に限定されないが、ポリアリーレンスルフィド樹脂の融点未満が好ましい。
また酸素加圧条件下でポリアリーレンスルフィド樹脂と水を接触させる際に用いる水の量についても、水分子が液体として存在する量であれば特に制限は無い。酸素加圧条件下、密閉系内の水の圧力が、その温度での飽和蒸気圧に達していれば、水が液体として存在するが、本発明においては、ポリアリーレンスルフィド樹脂粒子と水に溶解した酸素との接触が良好に行われ、精製効率がさらに好適となることから、ポリアリーレンスルフィド樹脂100質量部に対して、50〜2000質量部の範囲が好ましく、さらに100〜1000質量部の範囲がより好ましく、200〜800質量部の範囲がさらに好ましい。
As oxygen to be pressurized, only oxygen (O 2 ) may be used, or a mixed gas with an inert gas such as nitrogen gas, argon gas, or neon gas may be used from the viewpoint of safety. Therefore, it is most preferable to use air. The temperature at which the polyarylene sulfide resin and water are brought into contact with each other under oxygen pressurization conditions is not particularly limited as long as it is equal to or higher than room temperature (23 ° C.) that exerts an effect of reducing the content of metal ions in the polyarylene sulfide resin. Specifically, since the effect of reducing the content of metal ions in the polyarylene sulfide resin is remarkable, it is 100 ° C. or higher, preferably 130 ° C. or higher, more preferably 170 ° C. or higher, more preferably 210 ° C. or higher. . The upper limit of the temperature at this time is not particularly limited, but is preferably less than the melting point of the polyarylene sulfide resin.
The amount of water used when the polyarylene sulfide resin and water are brought into contact with each other under oxygen pressure conditions is not particularly limited as long as water molecules are present as a liquid. If the pressure of the water in the closed system reaches the saturated vapor pressure at that temperature under the oxygen pressure condition, the water exists as a liquid, but in the present invention, it is dissolved in the polyarylene sulfide resin particles and water. In the range of 50 to 2000 parts by mass, and more preferably in the range of 100 to 1000 parts by mass with respect to 100 parts by mass of the polyarylene sulfide resin. Is more preferable, and the range of 200 to 800 parts by mass is even more preferable.

本発明のポリアリーレンスルフィド樹脂の精製条件において、加えるべき酸素の量については、精製対象となるポリアリーレンスルフィド樹脂の種類あるいは合成条件等によっても異なるし、また、ポリアリーレンスルフィド樹脂と水に溶解した酸素との接触温度・時間等によっても異なる為、一概に規定できないが、接触させる水溶液中に酸素が飽和していることが好ましい。従って、接触させている温度における水の蒸気圧よりも高い圧力になるように酸素で圧力を高めていることが好ましく、その際の高めるべき圧力は、0.02MPa〜0.2MPaの範囲である。さらに、優れた所定の精製効果を発揮しつつ、かつ結晶化速度の速いポリアリーレンスルフィド樹脂が得られることから、酸素圧力の下限値は0.021MPaより大きいことが好ましく、さらには0.04MPa以上がより好ましく、0.06MPa以上がもっとも好ましい。一方、その上限値は特に限定されないが経済的な観点から、0.1MPa以下が好ましい。酸素源として空気を用いる場合は、酸素分圧が上記範囲となるよう調整すればよいが、空気中の酸素含有量を考慮して、通常、0.1MPaより大きいことが好ましく、さらに0.2MPa以上がより好ましく、0.3MPaがもっとも好ましく、一方、上限値は1MPa以下が好ましく、0.5MPa以下がより好ましい。   In the purification conditions of the polyarylene sulfide resin of the present invention, the amount of oxygen to be added varies depending on the type of polyarylene sulfide resin to be purified or the synthesis conditions, and also dissolved in the polyarylene sulfide resin and water. Since it differs depending on the temperature and time of contact with oxygen and the like, it cannot be defined generally, but it is preferable that oxygen is saturated in the aqueous solution to be contacted. Therefore, it is preferable to increase the pressure with oxygen so that the pressure is higher than the vapor pressure of water at the temperature of contact, and the pressure to be increased in this case is in the range of 0.02 MPa to 0.2 MPa. . Furthermore, since a polyarylene sulfide resin having a high crystallization rate can be obtained while exhibiting an excellent predetermined purification effect, the lower limit value of the oxygen pressure is preferably larger than 0.021 MPa, and more preferably 0.04 MPa or more. Is more preferable, and 0.06 MPa or more is most preferable. On the other hand, the upper limit is not particularly limited, but is preferably 0.1 MPa or less from an economical viewpoint. When air is used as the oxygen source, the oxygen partial pressure may be adjusted within the above range. However, in consideration of the oxygen content in the air, it is usually preferably greater than 0.1 MPa, and more preferably 0.2 MPa. The above is more preferable, and 0.3 MPa is most preferable, while the upper limit is preferably 1 MPa or less, and more preferably 0.5 MPa or less.

本発明においては、酸素加圧条件下でのポリアリーレンスルフィド樹脂と水との接触は連続的に行っても良いし、バッチ式に行ってもいずれでも良い。   In the present invention, the contact between the polyarylene sulfide resin and water under the oxygen pressure condition may be performed continuously or may be performed batchwise.

本発明は、酸素加圧条件下でのポリアリーレンスルフィド樹脂と水との接触を、容器内部に撹拌翼を有し、且つ、底部に濾過用フィルターが配設された密閉型あるいは密閉可能な混合機能を有す容器内で行うことができる。本発明における精製工程を実施するための酸素導入の概略構成図としては図1、図2及び図3などを例示することができるが、これらに限定されない。酸素を液層に溶解可能な密閉型あるいは密閉可能な混合機能を有す装置であり、本発明の目的を達成可能なものであるなら何れのものでもよい。   The present invention relates to a contact between a polyarylene sulfide resin and water under oxygen-pressurized conditions, a sealed type or a sealable mixture having a stirring blade inside a container and a filter for filtration disposed at the bottom. It can be performed in a functional container. As a schematic configuration diagram of oxygen introduction for carrying out the purification step in the present invention, FIG. 1, FIG. 2, FIG. 3 and the like can be illustrated, but are not limited thereto. Any device may be used as long as it is a sealed type capable of dissolving oxygen in the liquid layer or has a mixing function capable of being sealed, and can achieve the object of the present invention.

本発明は密閉容器または装置内等の密閉系に酸素を吹き込みその系内圧力と温度を制御することで酸素の水への溶解度をコントロールする。その際、酸素を溶解させた水をアルカリ金属水硫化物またはその酸化物と接触させることで、水中に溶解した硫黄源(SH、S、S 2−など)が酸化されて硫酸イオン(SO 2−)を生成させているものと考えられ、これをポリアリーレンスルフィド樹脂と適切な時間以上(例えば、5分以上)接触させることで分子末端を塩基性型末端(SNa型末端)から酸性型末端(SH型末端)に効率的に変換され、ポリアリーレンスルフィド樹脂の結晶化速度が向上する。 The present invention controls the solubility of oxygen in water by blowing oxygen into a closed system such as a closed container or an apparatus and controlling the pressure and temperature in the system. At that time, the sulfur source (SH , S, S 2 O 3 2−, etc.) dissolved in the water is oxidized and sulfuric acid is brought into contact with the alkali metal hydrosulfide or its oxide by bringing water in which oxygen is dissolved. It is considered that ions (SO 4 2− ) are generated, and this is brought into contact with the polyarylene sulfide resin for an appropriate time or more (for example, 5 minutes or more), thereby making the molecular end a basic type end (SNa type end). ) To an acidic type terminal (SH type terminal), and the crystallization speed of the polyarylene sulfide resin is improved.

このように本発明は、重合反応後のポリアリーレンスルフィド樹脂を含むスラリー中に残留する微量の原料(アルカリ金属水硫化物およびその酸化物)を利用してポリアリーレンスルフィド樹脂分子鎖の末端変性を行うという簡便な手段により、洗浄工程における有機酸または無機酸などの酸添加を省略することが可能であり、コスト増大や鋼材負荷を伴わずに従来品より結晶化速度の速いポリアリーレンスルフィド樹脂を得ることができる。また、炭酸水や炭酸ガスを用いた場合に比べても短時間で精製処理が可能となり、また生産性を向上させながら、従来品より結晶化速度の速いポリアリーレンスルフィド樹脂を得ることができる。   As described above, the present invention uses the trace amount of raw material (alkali metal hydrosulfide and its oxide) remaining in the slurry containing the polyarylene sulfide resin after the polymerization reaction to modify the terminal end of the polyarylene sulfide resin molecular chain. It is possible to omit the addition of organic acid or inorganic acid in the washing process by a simple means of performing, and polyarylene sulfide resin having a faster crystallization speed than conventional products without increasing costs and loading steel materials. Can be obtained. In addition, a purification process can be performed in a shorter time than when carbonated water or carbon dioxide is used, and a polyarylene sulfide resin having a faster crystallization rate than conventional products can be obtained while improving productivity.

酸素加圧条件下でポリアリーレンスルフィド樹脂と水とを接触させて塩基性型末端(SNa型末端)を酸性型末端(SH型末端)に変換させた後、該ポリアリーレンスルフィド樹脂は、一旦、固液分離する。その後、そのまま乾燥してポリアリーレンスルフィド樹脂粉末を得ても良いし、更に洗浄処理した後、固液分離し、乾燥を行ってポリアリーレンスルフィド樹脂粉末を得ても良い。   After the polyarylene sulfide resin is brought into contact with water under oxygen pressure conditions to convert the basic type terminal (SNa type terminal) to the acidic type terminal (SH type terminal), the polyarylene sulfide resin is once Solid-liquid separation. Thereafter, the polyarylene sulfide resin powder may be obtained by drying as it is, or after further washing treatment, solid-liquid separation and drying may be performed to obtain the polyarylene sulfide resin powder.

乾燥は実質的に水等の溶媒が蒸発する温度に加熱して行う。乾燥は真空下で行っても良いし、空気中あるいは窒素のような不活性雰囲気下で行っても良い。   Drying is performed by heating to a temperature at which a solvent such as water substantially evaporates. Drying may be performed under vacuum, or may be performed in air or in an inert atmosphere such as nitrogen.

洗浄処理は、例えば有機溶媒による洗浄を行っても良い。用いる溶媒としては、反応に用いた有機極性溶媒、あるいはアセトン、メチルエチルケトン等のケトン類、メタノール、エタノール等の、アルコール類などの溶媒が挙げられる。有機溶媒による洗浄は重合反応に用いた極性有機溶媒で洗浄することがオリゴマーの除去を効率的に実行できるので好ましい。なお、洗浄に使用する有機溶媒の量には特に制限は無いが、好ましくはポリアリーレンスルフィド樹脂100質量部に対して、20〜1000質量部の範囲、より好ましくは50〜700質量部の範囲、更に好ましくは100〜500質量部の範囲である。   The cleaning process may be performed with an organic solvent, for example. Examples of the solvent used include organic polar solvents used in the reaction, or ketones such as acetone and methyl ethyl ketone, and solvents such as alcohols such as methanol and ethanol. Washing with an organic solvent is preferably performed with a polar organic solvent used in the polymerization reaction because the removal of the oligomer can be carried out efficiently. In addition, although there is no restriction | limiting in particular in the quantity of the organic solvent used for washing | cleaning, Preferably it is the range of 20-1000 mass parts with respect to 100 mass parts of polyarylene sulfide resin, More preferably, the range of 50-700 mass parts, More preferably, it is the range of 100-500 mass parts.

本発明における精製工程および乾燥工程などを経て得られたポリアリーレンスルフィド樹脂粉末は従来と同様、そのまま各種成形材料等に利用できるが、空気あるいは酸素富化空気中あるいは減圧下で熱処理することにより増粘することが可能であり、必要に応じてこのような増粘操作を行った後、各種成形材料等に利用しても良い。この熱処理温度は処理時間によっても異なるし処理する雰囲気によっても異なるので一概に規定できないが、通常は180℃以上で行うことが好ましい。熱処理温度が180℃未満では増粘速度が非常に遅く生産性が悪く好ましくない。熱処理は押出機等を用いて重合体の融点以上で、溶融状態で行っても良い。但し、重合体の劣化の可能性あるいは作業性等から、融点プラス100℃以下で行うことが好ましい。   The polyarylene sulfide resin powder obtained through the purification step and the drying step in the present invention can be used as it is for various molding materials as it is, but it can be increased by heat treatment in air or oxygen-enriched air or under reduced pressure. Viscosity is possible, and after performing such a thickening operation as necessary, it may be used for various molding materials. This heat treatment temperature varies depending on the treatment time and also varies depending on the atmosphere to be treated, so it cannot be specified unconditionally. However, it is usually preferable to carry out the treatment at 180 ° C. or higher. If the heat treatment temperature is less than 180 ° C., the speed of thickening is very slow and the productivity is poor, which is not preferable. The heat treatment may be performed in a molten state using an extruder or the like above the melting point of the polymer. However, it is preferable to carry out at melting | fusing point plus 100 degrees C or less from the possibility of deterioration of a polymer or workability | operativity.

本発明における精製工程および乾燥工程などを経て得られたポリアリーレンスルフィド樹脂粉末は、従来のポリアリーレンスルフィド樹脂の製造方法と同様に、そのまま射出成形、押出成形、圧縮成形、ブロー成形のごとき各種溶融加工法により、耐熱性、成形加工性、寸法安定性等に優れた成形物にすることができる。しかしながら強度、耐熱性、寸法安定性等の性能をさらに改善するために、本発明の目的を損なわない範囲で各種充填材と組み合わせて使用することも可能である。充填材としては、繊維状充填材、無機充填材等が挙げられる。   The polyarylene sulfide resin powder obtained through the purification process and the drying process in the present invention is melted in various ways such as injection molding, extrusion molding, compression molding, and blow molding as in the conventional method for producing polyarylene sulfide resin. By the processing method, a molded product having excellent heat resistance, molding processability, dimensional stability and the like can be obtained. However, in order to further improve performance such as strength, heat resistance, and dimensional stability, it can be used in combination with various fillers as long as the object of the present invention is not impaired. Examples of the filler include a fibrous filler and an inorganic filler.

また、成形加工の際に添加剤として本発明の目的を逸脱しない範囲で少量の、離型剤、着色剤、耐熱安定剤、紫外線安定剤、発泡剤、防錆剤、難燃剤、滑剤、カップリング剤を含有せしめることができる。更に、同様に下記のごとき合成樹脂及びエラストマーを混合して使用できる。これら合成樹脂としては、ポリエステル、ポリアミド、ポリイミド、ポリエーテルイミド、ポリカーボネート、ポリフェニレンエーテル、ポリスルフォン、ポリエーテルスルフォン、ポリエーテルエーテルケトン、ポリエーテルケトン、ポリアリーレン、ポリエチレン、ポリプロピレン、ポリ四弗化エチレン、ポリ二弗化エチレン、ポリスチレン、ABS樹脂、エポキシ樹脂、シリコーン樹脂、フェノール樹脂、ウレタン樹脂、液晶ポリマー等が挙げられ、エラストマーとしては、ポリオレフィン系ゴム、弗素ゴム、シリコーンゴム等が挙げられる。   In addition, a small amount of a release agent, a colorant, a heat stabilizer, an ultraviolet stabilizer, a foaming agent, a rust inhibitor, a flame retardant, a lubricant, a cup as long as they do not deviate from the object of the present invention as additives during molding processing A ring agent can be contained. Furthermore, the following synthetic resins and elastomers can also be mixed and used. These synthetic resins include polyester, polyamide, polyimide, polyetherimide, polycarbonate, polyphenylene ether, polysulfone, polyethersulfone, polyetheretherketone, polyetherketone, polyarylene, polyethylene, polypropylene, polytetrafluoroethylene, Examples thereof include poly (difluoroethylene), polystyrene, ABS resin, epoxy resin, silicone resin, phenol resin, urethane resin, and liquid crystal polymer. Examples of the elastomer include polyolefin rubber, fluorine rubber, and silicone rubber.

本発明のポリアリーレンスルフィド樹脂及びその組成物は、従来の方法で得られるポリアリーレンスルフィド樹脂同様耐熱性、寸法安定性等が優れるので、例えば、コネクタ・プリント基板・封止成形品などの電気・電子部品、ランプリフレクター・各種電装部品などの自動車部品、各種建築物や航空機・自動車などの内装用材料、あるいはOA機器部品・カメラ部品・時計部品などの精密部品等の射出成形・圧縮成形品、あるいは繊維・フィルム・シート・パイプなどの押出成形・引抜成形品等として幅広く利用可能である。   Since the polyarylene sulfide resin and the composition thereof according to the present invention are excellent in heat resistance, dimensional stability and the like, as in the case of the polyarylene sulfide resin obtained by the conventional method, Automotive parts such as electronic parts, lamp reflectors and various electrical parts, interior molding materials such as various buildings and aircrafts and automobiles, or injection molding and compression molded parts such as precision parts such as OA equipment parts, camera parts and watch parts, Alternatively, it can be widely used as extrusion molding, pultrusion molding, etc. for fibers, films, sheets, pipes, etc.

〔合成例1〕 ポリフェニレンスルフィド樹脂の重合工程
圧力計、温度計、コンデンサー、デカンター、精留塔を連結した撹拌翼付き150リットルオートクレーブにp−ジクロロベンゼン(以下、p−DCBと略す)33.222kg(226モル)、NMP2.280kg(23モル)、47.23質量%NaSH水溶液27.300kg(230モル)、及び49.21質量%NaOH水溶液18.533kg(228モル)を仕込み、撹拌しながら窒素雰囲気下で173℃まで5時間掛けて昇温して、水27.300kgを留出させた後、釜を密閉した。脱水時に共沸により留出したDCBはデカンターで分離して、随時釜内に戻した。脱水終了後の釜内は微粒子状の無水硫化ナトリウム組成物がp−DCB中に分散した状態であった。
[Synthesis Example 1] Polymerization process of polyphenylene sulfide resin 33.222 kg of p-dichlorobenzene (hereinafter abbreviated as p-DCB) in a 150 liter autoclave with a stirring blade connected with a pressure gauge, thermometer, condenser, decanter, and rectifying tower. (226 mol), NMP 2.280 kg (23 mol), 47.33% by weight NaSH aqueous solution 27.300 kg (230 mol), and 49.21% by mass NaOH aqueous solution 18.533 kg (228 mol), while stirring, nitrogen The temperature was raised to 173 ° C. over 5 hours under an atmosphere to distill 27.300 kg of water, and the kettle was sealed. DCB distilled by azeotropy during dehydration was separated with a decanter and returned to the kettle as needed. After completion of the dehydration, the inside of the kettle was in a state where the particulate anhydrous sodium sulfide composition was dispersed in p-DCB.

上記工程終了後に、内温を160℃に冷却し、NMP47.492kg(479モル)を仕込み、185℃まで昇温した。圧力が0.00MPaに到達した時点で、精留塔を連結したバルブを開放し、内温200℃まで1時間掛けて昇温した。この際、精留塔出口温度が110℃以下になる様に冷却とバルブ開度で制御した。留出したDCBと水の混合蒸気はコンデンサーで凝縮し、デカンターで分離して、DCBは釜へ戻した。留出水量は179gであった。   After completion of the above steps, the internal temperature was cooled to 160 ° C., NMP 47.492 kg (479 mol) was charged, and the temperature was raised to 185 ° C. When the pressure reached 0.00 MPa, the valve connected to the rectifying column was opened, and the temperature was raised to an internal temperature of 200 ° C. over 1 hour. At this time, the cooling and the valve opening were controlled so that the rectification tower outlet temperature was 110 ° C. or lower. The distilled steam of DCB and water was condensed by a condenser and separated by a decanter, and DCB was returned to the kettle. The amount of distilled water was 179 g.

次に、内温200℃から230℃まで3時間掛けて昇温し、1時間攪拌した後、250℃まで昇温し、1時間攪拌した。最終圧力は0.48MPaであった。
〔実施例1〕 ポリフェニレンスルフィド樹脂の精製工程
合成例1で得られたスラリーを冷却し、冷却後に得られたスラリー260g中に含まれるNMPを、真空乾燥機で150℃、2時間減圧留去した。この混合物に70℃のイオン交換水360gを加えて10分間攪拌した後にろ過し、ろ過後のケーキに70℃のイオン交換水480gを加えケーキ洗浄を行った。得られた含水ケーキとイオン交換水180gを0.5リッターオートクレーブに仕込み70℃で30分間攪拌を行った。室温まで冷却した後、ろ過し、ろ過後のケーキに70℃のイオン交換水480gを加えケーキ洗浄を行った。スラリー中に残留するNaSH及びその酸化物(Na等)の総量はPPS樹脂1gに対し73μmolであった。得られた含水ケーキとイオン交換水180gを0.5リッターオートクレーブに仕込み、0.4MPaの空気加圧(酸素圧力0.072MPa)下、220℃で30分間攪拌を行った。室温まで冷却して得たpH6.5のスラリーを、ろ過し、ろ過後のケーキに70℃のイオン交換水480gを加えケーキ洗浄を行った。その後、120℃で4時間乾燥し、溶融粘度45Pa・s、Na量150ppm、Tc239℃のPPS樹脂を得た。
Next, the temperature was raised from 200 ° C. to 230 ° C. over 3 hours and stirred for 1 hour, then heated to 250 ° C. and stirred for 1 hour. The final pressure was 0.48 MPa.
[Example 1] Purification process of polyphenylene sulfide resin The slurry obtained in Synthesis Example 1 was cooled, and NMP contained in 260 g of the slurry obtained after cooling was distilled off under reduced pressure at 150 ° C for 2 hours using a vacuum dryer. . To this mixture, 360 g of ion exchanged water at 70 ° C. was added and stirred for 10 minutes, followed by filtration. To the cake after filtration, 480 g of ion exchanged water at 70 ° C. was added to perform cake washing. The obtained hydrous cake and 180 g of ion-exchanged water were charged into a 0.5 liter autoclave and stirred at 70 ° C. for 30 minutes. After cooling to room temperature, the mixture was filtered, and cake washing was performed by adding 480 g of ion-exchanged water at 70 ° C. to the cake after filtration. The total amount of NaSH and its oxide (Na 2 S 2 O 3 etc.) remaining in the slurry was 73 μmol per 1 g of PPS resin. The obtained hydrous cake and 180 g of ion-exchanged water were charged into a 0.5 liter autoclave and stirred at 220 ° C. for 30 minutes under 0.4 MPa air pressure (oxygen pressure 0.072 MPa). The slurry of pH 6.5 obtained by cooling to room temperature was filtered, and 480 g of ion-exchanged water at 70 ° C. was added to the cake after filtration to perform cake washing. Then it dried 4 hours at 120 ° C., to give a melt viscosity 45 Pa · s, Na amount 150 ppm, the Tc 2 239 ° C. of the PPS resin.

〔実施例2〕 ポリフェニレンスルフィド樹脂の精製工程
実施例1で、0.4MPaの空気加圧(酸素圧力0.072MPa)を、0.2MPaの空気加圧(酸素圧力0.036MPa)下で行ったこと以外は、同様の操作を行った。その結果、pH7.5のスラリーから、溶融粘度43Pa・s、Na量250ppm、Tc222℃のポリフェニレンスルフィド樹脂を得た。
[Example 2] Step of purifying polyphenylene sulfide resin In Example 1, 0.4 MPa air pressurization (oxygen pressure 0.072 MPa) was performed under 0.2 MPa air pressurization (oxygen pressure 0.036 MPa). The same operation was performed except that. As a result, a polyphenylene sulfide resin having a melt viscosity of 43 Pa · s, an Na amount of 250 ppm, and a Tc 2 of 222 ° C. was obtained from the slurry of pH 7.5.

〔実施例3〕 ポリフェニレンスルフィド樹脂の精製工程
合成例1で得られたスラリーに、70℃のイオン交換水360gを加えて10分間攪拌した後にろ過し、ろ過後のケーキに70℃のイオン交換水480gを加えケーキ洗浄を行った。得られた含水ケーキとイオン交換水180gを0.5リッターオートクレーブに仕込み70℃で30分間攪拌を行った。室温まで冷却した後、ろ過し、ろ過後のケーキに70℃のイオン交換水480gを加えケーキ洗浄を行った。スラリー中に残留するNaSH及びその酸化物(Na等)の総量はPPS樹脂1gに対し25μmolであった。得られた含水ケーキとイオン交換水180gを0.5リッターオートクレーブに仕込み、0.4MPaの空気加圧(酸素圧力0.072MPa)下、150℃で30分間攪拌を行った。室温まで冷却して得たpH5.0のスラリーを、ろ過し、ろ過後のケーキに70℃のイオン交換水480gを加えケーキ洗浄を行った。その後、120℃で4時間乾燥し、溶融粘度45Pa・s、Na量200ppm、Tc220℃のPPS樹脂を得た。
[Example 3] Step of purifying polyphenylene sulfide resin To the slurry obtained in Synthesis Example 1, 360 g of ion exchange water at 70 ° C was added and stirred for 10 minutes, followed by filtration. The cake after filtration was subjected to 70 ° C ion exchange water. 480 g was added and the cake was washed. The obtained hydrous cake and 180 g of ion-exchanged water were charged into a 0.5 liter autoclave and stirred at 70 ° C. for 30 minutes. After cooling to room temperature, the mixture was filtered, and cake washing was performed by adding 480 g of ion-exchanged water at 70 ° C. to the cake after filtration. The total amount of NaSH and its oxides (Na 2 S 2 O 3 etc.) remaining in the slurry was 25 μmol per 1 g of PPS resin. The obtained hydrous cake and 180 g of ion-exchanged water were charged into a 0.5 liter autoclave, and stirred at 150 ° C. for 30 minutes under 0.4 MPa air pressure (oxygen pressure 0.072 MPa). The slurry of pH 5.0 obtained by cooling to room temperature was filtered, and 480 g of ion-exchanged water at 70 ° C. was added to the cake after filtration to perform cake washing. Then, it was dried at 120 ° C. for 4 hours to obtain a PPS resin having a melt viscosity of 45 Pa · s, an Na amount of 200 ppm, and Tc 2 of 220 ° C.

〔実施例4〕ポリアリーレンスルフィド樹脂の精製工程
実施例1で、空気加圧洗浄前の2度の水洗を40℃で行ったこと以外は、同様の操作を行った。その結果、空気加圧洗浄直前のスラリー中に残留するNaSH及びその酸化物(Na)の総量はPPS樹脂1gに対し125μmolとなり、pH5.5のスラリーから、溶融粘度46Pa・s、Na量170ppm、Tc230℃のポリフェニレンスルフィド樹脂を得た。
[Example 4] Step of purifying polyarylene sulfide resin In Example 1, the same operation was carried out except that the water washing before air pressure washing was carried out at 40 ° C. As a result, the total amount of NaSH and its oxide (Na 2 S 2 O 3 ) remaining in the slurry immediately before air pressure washing was 125 μmol with respect to 1 g of PPS resin, and the melt viscosity was 46 Pa · s from the slurry at pH 5.5. A polyphenylene sulfide resin having an Na content of 170 ppm and Tc 2 of 230 ° C. was obtained.

〔実施例5〕ポリアリーレンスルフィド樹脂の精製工程
実施例2で、0.4MPaの空気加圧(酸素圧力0.072MPa)を、70℃下で行ったこと以外は、同様の操作を行った。その結果、pH8.0のスラリーから、溶融粘度45Pa・s、Na量350ppm、Tc209℃のポリフェニレンスルフィド樹脂を得た。
[Example 5] Step of purifying polyarylene sulfide resin The same operation as in Example 2 was performed except that air pressurization (oxygen pressure 0.072 MPa) at 0.4 MPa was performed at 70 ° C. As a result, a polyphenylene sulfide resin having a melt viscosity of 45 Pa · s, an Na amount of 350 ppm, and a Tc 2 of 209 ° C. was obtained from the slurry of pH 8.0.

〔実施例6〕ポリアリーレンスルフィド樹脂の精製工程
実施例2で、空気加圧洗浄前の70℃水洗を3度行ったこと以外は、同様の操作を行った。その結果、空気加圧洗浄直前のスラリー中に残留するNaSH及びその酸化物(Na等)の総量はPPS樹脂1gに対し5μmolとなり、pH7.0のスラリーから、溶融粘度46Pa・s、Na量250ppm、Tc211℃のポリフェニレンスルフィド樹脂を得た。
[Example 6] Step of purifying polyarylene sulfide resin In Example 2, the same operation was performed except that the 70 ° C water washing before the air pressure washing was carried out three times. As a result, the total amount of NaSH and its oxides (Na 2 S 2 O 3, etc.) remaining in the slurry immediately before air pressure washing was 5 μmol per 1 g of PPS resin, and the melt viscosity of 46 Pa · s, a polyphenylene sulfide resin having an Na amount of 250 ppm and Tc 2 of 211 ° C. was obtained.

〔比較例1〕ポリアリーレンスルフィド樹脂の精製工程
実施例1で、0.4MPaの空気加圧(酸素圧力0.072MPa)を、0.3MPaの窒素加圧(酸素圧力0MPa)で行ったこと以外は、同様の操作を行った。その結果、pH9.0のスラリーから、溶融粘度46Pa・s、Na量520ppm、Tc199℃のポリフェニレンスルフィド樹脂を得た。
[Comparative Example 1] Step of purifying polyarylene sulfide resin In Example 1, except that 0.4 MPa air pressurization (oxygen pressure 0.072 MPa) was performed with 0.3 MPa nitrogen pressurization (oxygen pressure 0 MPa). Did the same operation. As a result, a polyphenylene sulfide resin having a melt viscosity of 46 Pa · s, an Na amount of 520 ppm, and Tc 2 of 199 ° C. was obtained from the slurry of pH 9.0.

〔比較例2〕ポリアリーレンスルフィド樹脂の精製工程
0.4MPaの空気加圧(酸素圧力0.072MPa)下、220℃で30分間攪拌を行った精製処理を、0.3MPaの炭酸ガス加圧(酸素圧力0MPa)下、160℃で4時間行ったこと以外は、実施例1と同様の操作を行った。その結果、溶融粘度46Pa・s、Na量400ppm、Tc203℃のポリフェニレンスルフィド樹脂を得た。
[Comparative Example 2] Purification process of polyarylene sulfide resin A purification treatment in which stirring was performed at 220 ° C for 30 minutes under an air pressurization (oxygen pressure 0.072 MPa) of 0.4 MPa was carried out under a pressure of 0.3 MPa of carbon dioxide gas ( The same operation as in Example 1 was performed except that the operation was performed at 160 ° C. for 4 hours under an oxygen pressure of 0 MPa. As a result, a polyphenylene sulfide resin having a melt viscosity of 46 Pa · s, an Na amount of 400 ppm, and Tc 2 of 203 ° C. was obtained.

〔比較例3〕ポリアリーレンスルフィド樹脂の精製工程
0.4MPaの空気加圧(酸素圧力0.072MPa)下、220℃で30分間攪拌を行った精製処理を、0.5質量%酢酸を加え、180℃で1時間行ったこと以外は、実施例1と同様の操作を行った。その結果、溶融粘度46Pa・s、Na量180ppm、Tc231℃のポリフェニレンスルフィド樹脂を得た。
[Comparative Example 3] Purification process of polyarylene sulfide resin A purification treatment in which stirring was performed at 220 ° C for 30 minutes under an air pressure of 0.4 MPa (oxygen pressure 0.072 MPa) was added with 0.5 mass% acetic acid, The same operation as in Example 1 was performed except that the operation was performed at 180 ° C. for 1 hour. As a result, a polyphenylene sulfide resin having a melt viscosity of 46 Pa · s, an Na amount of 180 ppm, and Tc 2 of 231 ° C. was obtained.

[溶融粘度測定]
島津製作所製フローテスター CFT−500Cと、孔長10.00mm、孔直径1.00mmのダイスを用い、試験温度300℃、予熱時間6分、試験加重20kgf/cmで溶融粘度の測定を行った。
[Na含有量]
得られたポリアリーレンスルフィド樹脂のナトリウム含有量(Na含有量)は、樹脂を焼成した残留物を水溶液とし、原子吸光光度計にて測定した。
[結晶化測定]
パーキンエルマー製DSC装置 Pyris Diamondを用い、350℃で3分間溶融した後、20℃/minで降温した時に現れる発熱ピークのピーク温度(Tc)を測定した。
[Measurement of melt viscosity]
Using a flow tester CFT-500C manufactured by Shimadzu Corporation and a die having a hole length of 10.00 mm and a hole diameter of 1.00 mm, the melt viscosity was measured at a test temperature of 300 ° C., a preheating time of 6 minutes, and a test load of 20 kgf / cm 2 . .
[Na content]
The sodium content (Na content) of the obtained polyarylene sulfide resin was measured with an atomic absorption photometer using a residue obtained by baking the resin as an aqueous solution.
[Crystallization measurement]
A Perkin Elmer DSC apparatus Pyris Diamond was used to measure the peak temperature (Tc 2 ) of the exothermic peak that appeared when the temperature was lowered at 20 ° C./min after melting at 350 ° C. for 3 minutes.

Claims (7)

有機極性溶媒中で、ポリハロ芳香族化合物と、(i)アルカリ金属硫化物とを、または、(ii)アルカリ金属水硫化物及びアルカリ金属水酸化物とを反応させてポリアリーレンスルフィド樹脂とアルカリ金属水硫化物を含む粗反応混合物を得た後、粗反応混合物から前記溶媒を固液分離させてポリアリーレンスルフィド樹脂とアルカリ金属水硫化物、硫黄原子およびその同素体並びにチオ硫酸アルカリ金属から選ばれる少なくとも一種を含む反応混合物を得、その後、該反応混合物を酸素圧力0.02〜0.2〔MPa〕の範囲にある酸素加圧条件下で水と接触させる精製工程を有することを特徴とするポリアリーレンスルフィド樹脂の製造方法。 In an organic polar solvent, a polyhaloaromatic compound and (i) an alkali metal sulfide or (ii) an alkali metal hydrosulfide and an alkali metal hydroxide are reacted to form a polyarylene sulfide resin and an alkali metal. After obtaining a crude reaction mixture containing hydrosulfide, the solvent is solid-liquid separated from the crude reaction mixture, and at least selected from polyarylene sulfide resin, alkali metal hydrosulfide, sulfur atom and allotrope thereof, and alkali metal thiosulfate A purification process comprising obtaining a reaction mixture containing one kind, and then contacting the reaction mixture with water under an oxygen pressure condition in the range of oxygen pressure of 0.02 to 0.2 [MPa]. Method for producing arylene sulfide resin. 前記酸素加圧条件下で100℃以上からポリアリーレンスルフィド樹脂の融点未満の温度範囲にある該反応混合物を水と接触させる請求項1記載のポリアリーレンスルフィド樹脂の製造方法。 The method for producing a polyarylene sulfide resin according to claim 1, wherein the reaction mixture in a temperature range of 100 ° C or higher and lower than the melting point of the polyarylene sulfide resin is brought into contact with water under the oxygen pressure condition. 前記精製工程において、水の存在量がポリアリーレンスルフィド樹脂100質量部に対して、50〜2000質量部の範囲である請求項1又は2記載のポリアリーレンスルフィド樹脂の製造方法。 3. The method for producing a polyarylene sulfide resin according to claim 1, wherein, in the purification step, the amount of water is in the range of 50 to 2000 parts by mass with respect to 100 parts by mass of the polyarylene sulfide resin. 該反応混合物に含まれるアルカリ金属水硫化物、硫黄原子およびその同素体並びにチオ硫酸アルカリ金属から選ばれる少なくとも一種の割合がポリアリーレンスルフィド樹脂1gに対して10〜100〔μmol〕の範囲である請求項1〜3の何れか一項記載のポリアリーレンスルフィド樹脂の製造方法。 The ratio of at least one selected from alkali metal hydrosulfides, sulfur atoms and allotropes thereof, and alkali metal thiosulfate contained in the reaction mixture is in the range of 10 to 100 [μmol] with respect to 1 g of polyarylene sulfide resin. The manufacturing method of the polyarylene sulfide resin as described in any one of 1-3. 該反応混合物は、前記粗反応混合物を固液分離させた後、水洗処理して得られたものである請求項1〜4の何れか一項記載のポリアリーレンスルフィド樹脂の製造方法。 The method for producing a polyarylene sulfide resin according to any one of claims 1 to 4, wherein the reaction mixture is obtained by subjecting the crude reaction mixture to solid-liquid separation and then washing with water. 前記固液分離がフラッシングにより溶媒を分離し除去するものである請求項1〜5の何れか一項記載のポリアリーレンスルフィド樹脂の製造方法。 The method for producing a polyarylene sulfide resin according to any one of claims 1 to 5, wherein the solid-liquid separation is performed by separating and removing the solvent by flushing. 有機極性溶媒中で、(i)ポリハロ芳香族化合物とアルカリ金属硫化物とを、または、(ii)ポリハロ芳香族化合物とアルカリ金属水硫化物及びアルカリ金属水酸化物とを反応させてポリアリーレンスルフィド樹脂とアルカリ金属水硫化物を含む粗反応混合物を得た後、該粗反応混合物から前記溶媒を固液分離させてポリアリーレンスルフィド樹脂とアルカリ金属水硫化物、硫黄原子およびその同素体並びにチオ硫酸アルカリ金属から選ばれる少なくとも一種を含む反応混合物を得、その後、該反応混合物を酸素圧力0.02〜0.1〔MPa〕の範囲にある酸素加圧条件下で水と接触させることを特徴とするポリアリーレンスルフィド樹脂の精製方法。 In an organic polar solvent, (i) a polyhaloaromatic compound and an alkali metal sulfide, or (ii) a polyarylene sulfide obtained by reacting a polyhaloaromatic compound with an alkali metal hydrosulfide and an alkali metal hydroxide. After obtaining a crude reaction mixture containing a resin and an alkali metal hydrosulfide, the solvent is solid-liquid separated from the crude reaction mixture to obtain a polyarylene sulfide resin, an alkali metal hydrosulfide, a sulfur atom and its allotrope, and an alkali thiosulfate A reaction mixture containing at least one selected from metals is obtained, and then the reaction mixture is contacted with water under oxygen pressure conditions in the range of oxygen pressure of 0.02 to 0.1 [MPa]. A method for purifying a polyarylene sulfide resin.
JP2011159865A 2011-07-21 2011-07-21 Method for producing polyarylene sulfide resin Active JP5794468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011159865A JP5794468B2 (en) 2011-07-21 2011-07-21 Method for producing polyarylene sulfide resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011159865A JP5794468B2 (en) 2011-07-21 2011-07-21 Method for producing polyarylene sulfide resin

Publications (2)

Publication Number Publication Date
JP2013023586A true JP2013023586A (en) 2013-02-04
JP5794468B2 JP5794468B2 (en) 2015-10-14

Family

ID=47782304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011159865A Active JP5794468B2 (en) 2011-07-21 2011-07-21 Method for producing polyarylene sulfide resin

Country Status (1)

Country Link
JP (1) JP5794468B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9388283B2 (en) 2013-09-25 2016-07-12 Ticona Llc Method of polyarylene sulfide crystallization
US9403948B2 (en) 2013-09-25 2016-08-02 Ticona Llc Salt byproduct separation during formation of polyarylene sulfide
US9562139B2 (en) 2013-09-25 2017-02-07 Ticona Llc Process for forming low halogen content polyarylene sulfides
US9587074B2 (en) 2013-09-25 2017-03-07 Ticona Llc Multi-stage process for forming polyarylene sulfides
US9604156B2 (en) 2013-09-25 2017-03-28 Ticona Llc Method and system for separation of a polymer from multiple compounds
US9617387B2 (en) 2013-09-25 2017-04-11 Ticona Llc Scrubbing process for polyarylene sulfide formation
US9809681B2 (en) 2015-02-19 2017-11-07 Ticona Llc Method for forming a low viscosity polyarylene sulfide
US9815942B2 (en) 2015-03-25 2017-11-14 Ticona Llc Technique for forming a high melt viscosity polyarylene sulfide
US9988494B2 (en) 2015-02-19 2018-06-05 Ticona Llc Method for forming a high molecular weight polyarylene sulfide
US10106654B2 (en) 2015-02-19 2018-10-23 Ticona Llc Method of polyarylene sulfide precipitation
KR20210052074A (en) * 2019-10-31 2021-05-10 주식회사 엘지화학 Manufacturing Method of Polyarylene Sulfide Having Hydrophilic Functional Group
US11319441B2 (en) 2019-12-20 2022-05-03 Ticona Llc Method for forming a polyarylene sulfide
US11407861B2 (en) 2019-06-28 2022-08-09 Ticona Llc Method for forming a polyarylene sulfide
US12018129B2 (en) 2021-09-08 2024-06-25 Ticona Llc Extraction technique for recovering an organic solvent from a polyarylene sulfide waste sludge
US12024596B2 (en) 2021-09-08 2024-07-02 Ticona Llc Anti-solvent technique for recovering an organic solvent from a polyarylene sulfide waste sludge

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7110514B1 (en) 2022-07-07 2022-08-01 株式会社貝印刃物開発センター cutlery case

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61220445A (en) * 1985-03-27 1986-09-30 Toray Ind Inc Resin sealed electronic device
JP2001172387A (en) * 1999-12-21 2001-06-26 Tonen Chem Corp Method for producing polyarylene sulfide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61220445A (en) * 1985-03-27 1986-09-30 Toray Ind Inc Resin sealed electronic device
JP2001172387A (en) * 1999-12-21 2001-06-26 Tonen Chem Corp Method for producing polyarylene sulfide

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9868824B2 (en) 2013-09-25 2018-01-16 Ticona Llc Method of polyarylene sulfide crystallization
US9562139B2 (en) 2013-09-25 2017-02-07 Ticona Llc Process for forming low halogen content polyarylene sulfides
US9388283B2 (en) 2013-09-25 2016-07-12 Ticona Llc Method of polyarylene sulfide crystallization
US9587074B2 (en) 2013-09-25 2017-03-07 Ticona Llc Multi-stage process for forming polyarylene sulfides
US9604156B2 (en) 2013-09-25 2017-03-28 Ticona Llc Method and system for separation of a polymer from multiple compounds
US9617387B2 (en) 2013-09-25 2017-04-11 Ticona Llc Scrubbing process for polyarylene sulfide formation
US9938379B2 (en) 2013-09-25 2018-04-10 Ticona Llc Salt byproduct separation during formation of polyarylene sulfide
US9403948B2 (en) 2013-09-25 2016-08-02 Ticona Llc Salt byproduct separation during formation of polyarylene sulfide
US10106654B2 (en) 2015-02-19 2018-10-23 Ticona Llc Method of polyarylene sulfide precipitation
US9988494B2 (en) 2015-02-19 2018-06-05 Ticona Llc Method for forming a high molecular weight polyarylene sulfide
US10882959B2 (en) 2015-02-19 2021-01-05 Ticona Llc Method of polyarylene sulfide precipitation
US9809681B2 (en) 2015-02-19 2017-11-07 Ticona Llc Method for forming a low viscosity polyarylene sulfide
US9815942B2 (en) 2015-03-25 2017-11-14 Ticona Llc Technique for forming a high melt viscosity polyarylene sulfide
US11407861B2 (en) 2019-06-28 2022-08-09 Ticona Llc Method for forming a polyarylene sulfide
KR102701677B1 (en) 2019-10-31 2024-08-30 주식회사 엘지화학 Manufacturing Method of Polyarylene Sulfide Having Hydrophilic Functional Group
KR20210052074A (en) * 2019-10-31 2021-05-10 주식회사 엘지화학 Manufacturing Method of Polyarylene Sulfide Having Hydrophilic Functional Group
US11319441B2 (en) 2019-12-20 2022-05-03 Ticona Llc Method for forming a polyarylene sulfide
US12018129B2 (en) 2021-09-08 2024-06-25 Ticona Llc Extraction technique for recovering an organic solvent from a polyarylene sulfide waste sludge
US12024596B2 (en) 2021-09-08 2024-07-02 Ticona Llc Anti-solvent technique for recovering an organic solvent from a polyarylene sulfide waste sludge

Also Published As

Publication number Publication date
JP5794468B2 (en) 2015-10-14

Similar Documents

Publication Publication Date Title
JP5794468B2 (en) Method for producing polyarylene sulfide resin
JP6402971B2 (en) Sulfiding agent and method for producing polyarylene sulfide resin
JP5888118B2 (en) Method for producing oligoarylene sulfide and carboxyalkylamino group-containing compound
JP2017071752A (en) Method for producing polyarylene sulfide resin
JP6003345B2 (en) Method for producing polyarylene sulfide resin
JP6120054B2 (en) Method for producing polyarylene sulfide resin
JP6136293B2 (en) Method for producing crosslinked polyarylene sulfide
JP6136292B2 (en) Process for producing polyarylene sulfide
JP2017210559A (en) Method for producing composition containing carboxyalkylamino group-containing compound and oligomer
JP7331661B2 (en) Method for producing sulfidating agent and polyarylene sulfide resin
JP6003346B2 (en) Method for producing polyarylene sulfide resin
JP5888142B2 (en) Method for producing solution containing carboxyalkylamino group-containing compound and aprotic polar solvent, and method for producing composition containing alkali metal-containing inorganic salt and aprotic polar solvent
JP7214997B2 (en) Method for producing carboxyalkylamino group-containing compound and method for producing cyclic polyarylene sulfide
JP6003347B2 (en) Method for producing polyarylene sulfide resin
JP7214998B2 (en) Method for producing carboxyalkylamino group-containing compound and method for producing cyclic polyarylene sulfide
JP6256734B2 (en) Process for producing polyarylene sulfide
JP7380278B2 (en) Sulfidating agent and method for producing polyarylene sulfide resin
JP2024021680A (en) Production method of composition containing polyarylene sulfide oligomer, and production method of crosslinked polyarylene sulfide resin
JP7413820B2 (en) Sulfidating agent and method for producing polyarylene sulfide resin
JP5888143B2 (en) Method for producing aqueous solution containing alkali metal-containing inorganic salt and method for producing composition containing carboxyalkylamino group-containing compound and polyhaloaromatic compound
JP7453617B2 (en) Sulfidating agent and method for producing polyarylene sulfide resin
JP6194566B2 (en) Method for producing aqueous solution containing alkali metal-containing inorganic salt and method for producing solution containing carboxyalkylamino group-containing compound and water-insoluble solution
JP7214996B2 (en) Method for producing carboxyalkylamino group-containing compound and method for producing cyclic polyarylene sulfide
JP2024021682A (en) Production method of polyarylene sulfide resin
JP2022161191A (en) Method for producing sulfidizing agent and polyarylene sulfide resin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150730

R150 Certificate of patent or registration of utility model

Ref document number: 5794468

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250